ERRATA TO ACCOMPANY NATIONAL BUREAU OF STANDARDS NATIONAL STANDARD REFERENCE DATA SERIES 40 A MULTIPLET TABLE OF ASTROPHYSICAL INTEREST The attached page 76, REVISED MULTIPLET TABLE replaces page 76 in Part 1--Table of Multiplets in the above publication. Insert the accompanying new page 76 in your copy, and indicate this change by pen and ink on the original page 76. Please note that this change applies to Part 1 of this publication. | oratory | | E P | J Mult | iplet | Labor | rator | y _ | E | | J | Multiplet | | ratory | | E | P | J | Multiplet | |------------------------|-----------------------------|---|---|--|---|------------------|------------------------|--------------------------------------|--------------------------------------|---------------------------------|---|---|------------------|-----------------------------------|--------------------------------------|------------------------------|---------------------------------|---| | Ref
ontinued | | Low High | (No | o) | IA
Ni I cont | Ref
tinue | | Low | High | | (No) | IA
N1 I con | Ref
timued | | Low | High | | (ио) | | B
B
B
B | (10)
(10)
(7)
(9) | 3.66 5.26
3.69 5.28
3.82 5.45
3.66 5.28 | 3-3 z ³ pe-
2-3 (156
1-1
3-2 | | 3734.827
3629.906
3668.216 | B
B
B | 4
5
3 | 3.82
3.82
3.92 | 7.13
7.22
7.29 | 5-6
4-5
3-4 | z ³ G°-e ⁵ H
(182) | 6452.77
6258.591
6183.892
6204.640 | G
B
D
B | (1)
2
(1)
2 | 4.07
4.09
4.15
4.07 | 5.98
6.06
6.15
6.06 | 4-5
3-4
2-3
4-4 | y ³ F°-e ⁵ F
(336) | | Р
В
В | (4)
(2) | 3.69 5.45
3.69 5.26
3.82 5.28
3.66 5.46 | 2-1
2-3
1-2
3-2 z ³ p°- | -e ¹ D | 3723.38
3715.499
3724.26
3657.698 | P
B
P
D | 2 | | 7.14
7.14
7.24
7.30 | 4-5
5-5
3-3
3-2 | z ³ G°-e ⁵ G
(183) | 5998.86
5973.66
6230.115
6424.905 | G
G
B
B | (1)
(2)
(3n) | 4.09
4.15
4.09
4.15 | 6.15
6.23
6.07
6.07 | 3-3
2-3
3-2
2-1 | y ³ F°_e ³ p
(337) | | B
B
E
E | (2)
(1)
(1) | 3.69 5.46
3.82 5.46
3.66 6.06
3.69 6.15 | 2-2 (151
1-2
3-4 z ³ po-
2-3 (158 | 7)
-e ⁵ F | *3233.174
3221.273 | В | 5
——— | | 7.63 | 5-67 | z ³ G°-h ³ G
(184)
z ³ G°-f ³ H
(185) | 6176.813
6223.994
5857.755
*6170.568 | C
B
B | 12
3
7 | 4.07
4.09
4.15 | 6.07
6.07
6.26
6.07 | 4-5
3-4
2-3
4-4 | y ³ F°-e ³ G | | 5 B
7 B
P
E | (1) | 3.69 6.32
3.82 6.26
3.66 6.32
3.69 6.36 | 2-2
1-1
3-3
2-1 | , | 8637.04
8501.81
7555.60 | A
G
B | 15
(2)
5 | 3.83 | 5.26
5.28
5.46 | 3-2 | z ¹ F°-e ³ D
(186)
z ¹ F°-e ¹ D
(187)_ | 5691.58
6133.948
6165.18
6186.740 | G
H
P
B | (1) Fe?
(1n) | 4.09
4.07
4.09
4.09 | 6.26
6.08
6.09
6.08 | 3-3
4-3
3-2
3-3 | y ³ F°_f ³ D | | 3 B
5 B
P
E | 5
4
(1)
(1) | 3.66 6.07
3.69 6.07
3.82 6.21
3.69 6.07
3.82 6.07 | 3-2 z ³ pe-
2-1 (159
1-0
2-2
1-1 | | 5537.11
5175.78
5514.80 | G
P
G | (1) | 3.83
3.83
3.83 | 6.06
6.22
6.07 | 3-2 | z ¹ F°_e ⁵ F
(188)
z ¹ F°_e ³ P
(189) | 6360.798
6111.06
*6170.568
6118.06 | B
B
C | (5)
2n
(3)
(1)
(1) | 4.15
4.07
4.09 | 6.09
6.09
6.09 | 2-2
4-4
3-3 | y ³ F°_e ³ F
(230) | | L B
L B | (1)
4
(2) | 3.82 6.07
3.66 6.07
3.69 6.26
3.66 6.08 | 3-4 z ³ p°-
2-3 (160
3-3 z ³ p° | 0) | 5510.001
5088.534
5480.893 | B
B | (2)
(2) | 3.83
3.83
3.83 | 6.07
6.26
6.08 | 3-3
3-3 | z1F°_e3G
(190)
z1F°_f3D | 5641.112
6163.42
6366.483 | D
B
B | (1)
5n
4 | 4.09
4.09
4.15 | 6.09
6.28
6.09
6.09 | 4-3
3-2
3-4
2-3 | ³ 220—432 | | 1 B
3 B
E
E | 10
(1)
(1)
(1) | 3.69 6.09
3.82 6.26
3.69 6.26
3.82 6.09 | 3-3 2050
2-2 (16:
1-1
2-1
1-2 | 1) " | 5462.487
5468.101
4930.821
4758.43 | B
B
D
E | (2)
(1)
(1) | 3.83
3.83 | 6.09
6.09
6.33 | 33
33 | (191)
z ¹ F°_e ³ F
(192)
z ¹ F°_f ³ F | 5494.890
m5424.56
5453.255
5281.692
5760.847 | B
P
B | (3)
(3)
NT
3 | 4.09
4.15
4.07
4.09 | 6.33
6.42
6.33
6.42 | 4-4
3-3
2-2
4-3
3-3 | (231) | | . B
! B
} B | 15
12
3
(2)
(1) | 3.66 6.09
3.69 6.09
3.82 6.28
3.66 6.09
3.69 6.28 | 3-4 z ³ D°.
2-3 (16:
1-2
3-3 | -e ³ F
2) | 5081.111
5048.851 | e
B | (1)
25
4 | 3.83
3.83
3.83 | 6.43
6.26
6.28 | | (193) 21F0_01G (194) 21F0_01F (195) | 5649.697
5682.204 | B
B
B | 4
3
8 | 4.09
4.15
4.09 | 6.23
6.33
6.26 | 3-4
3-3
3-4 | y ³ F°-e ¹ G
(232)
y ³ F°- <u>f</u> 1D | | EP. BRB | 4 3 3 | 3.69 6.28
3.66 6.28
3.66 6.23
3.69 6.33
3.82 6.42 | 3-2
3-2
3-4 z ³ p°.
2-3 (16: | -f ³ F | 4399.607
4072.913
3974.650 | B
B
B | 3
(3)
10n | | 6.64
6.86
6.94 | | z1F°-g1D
(196)
z1F°-f1F
(197) | 5666.78
•5831.624
5641.880
5805.233 | B
B | (4)
5 | 4.09
4.15
4.09
4.15 | 6.27
6.27
6.28
6.28 | 3-2
2-3
3-3
2-3 | (233)
y3re_e1r
(234) | | , E
; B
P
; B | (2) | 3.66 6.33
3.69 6.42
3.69 6.24
3.82 6.24 | 3-3
3-3
2-2
2-1 z ³ D°. | _e ¹ P | 3962.12
8954.65 | В | 3n
 | 3.83 | 6.95 | 3 – 3 | ziFo_fiG
(198)
ziFo_giF
(199)
zipo-e3D | 4701.536
4729.291
•4490.541
4698.408 | B
B
B | 3
(2)
(3)
(2) | | 6.70
6.70
6.90
6.70 | 4-4
3-3
2-2
4-3 | y ³ F°-g ³ F
(235) | | , B
P
P B | (3) | 3.66 6.26
3.66 6.27
3.82 6.27 | 3-4 z ³ pe.
(16:
3-2 z ³ pe.
1-3 (16: | -e ¹ G
5)
-f ¹ D | 8954.65
8809.47
*7890.22
7797.62 | A
B
B | 30
(3)
3 | 3.88
3.88 | 5.28
5.45
5.46 | 2-2
3-1
2-2 | (200) | 4732.465
4843.53
4450.301
4551.236 | B
P
B | 3
{2} | 4.09
4.15
4.09
4.15 | 6.70
6.70
6.86
6.86 | 3-4
3-3
3-3
2-3 | y ³ F°_f ¹ F
(236) | | , B
! B | (1)
(2)
2 | 3.66 6.28
3.69 6.28
3.66 6.44 | 3-3 z ³ p°.
2-3 (16°
3-3 z ³ p°. | -e ¹ F | 5288.21
5179.136
5642.660
5638.82 | P
B
B | (2)
(1)
(1) | | 6.22
6.26
6.07 | 2-1
2-3 | (201)
z ¹ p ⁰ -e ⁵ F
(202)
z ¹ p ⁰ -e ³ P
(203) | 4236.372
4138.52
4201.723 | B
F
B | (2)
(2)
(2) | 4.07 | 7.00
7.13
7.01 | 3-2
3-1
4-4 | y ³ F°_f ³ F
(237)
y ³ F°_1 ³ F | | . B
. B
E | (3)
(2n)
(3)
(2n) | 3.69 6.45
3.82 6.63
3.66 6.45
3.69 6.44 | 2-2 (166
1-1
3-2
2-3 | 3) [*] | 5197.165
5607.05
5589.384 | B
G
B | (1)
3
(1)
2 | 3.88
3.88
3.88
3.88 | 6.07
6.26
6.08
6.09 | 2-3 | z ¹ D°-e ³ G
(204)
z ¹ D°-f ³ D
(205) | *4022.052
3995.83
4195.531
4051.18 | B
B
P | (2)
4 | 4.09
4.15
4.07
4.09 | 7.16
7.24
7.01
7.13 | 3-3
2-3
4-5
3-4 | y ³ F°-g ³ G
(239) | | Р
Р
: В
D | 3n
(1n) | 3.69 6.74
3.82 6.74
3.66 6.75
3.69 6.76 | 2-1 z ³ D°-
1-1 (169
3-3 z ³ D°-
2-3? (170 | 9)
-h ³ D | 5186.592
5593.735
5155.140 | B
B | (2)
4
4 | 3.88
3.88
3.88 | 6.26
6.09
6.28 | 2-3
2-3
2-3 | z ¹ D°-e ³ F
(206) | 4025.114
3924.18
3938.76
*4023.052 | B
P
P | (3) | | 7.14
7.23
7.28 | 4-4
3-3
3-3 | y3F°_f5F
(240) | | P B D E | 8n
6n
(1) | 3.69 6.75
3.66 6.76
3.69 6.76
3.82 6.95 | 3-4 z ³ De.
2-3 (17: | -h ³ F | 5032.748
4853.30
5235.45 | B
P
E | (1n)
3 | 3.88
3.88
3.88 | 6.33
6.42
6.24 | 2-3
3-2
2-1 | z ¹ D°-f ³ F
(307)
z ¹ D°-e ¹ P
(308) | 10979.87
11588.73
10302.61 | A
P | 5
5 | 4.07
4.14
4.22
4.25 | 7.14
5.26
5.28
5.45 | 3-3 | y3F°_e5G
(241)
y3p°_e3p
(242) | | B
B | 3 2 | 3.66 7.00
3.66 7.01
3.88 7.24 | 3-2 z ³ D°.
(172
3-4 z ³ D°.
1-3 (173 | -13F | 5176.565
5155.764
4460.570 | B
B
B | 5
9
(3) | | 6.27
6.28
5.54 | 2-3 | z ¹ D°-f ¹ D
(209)
z ¹ D°-e ¹ F
(210) | 10762.24
10048.60
11927.89
9898.90 | A
A
P | 3
10 | 4.14
4.22
4.35 | 5.45
5.28
5.45
5.28 | 1-1
3-2
3-1
1-3 | λ ₂ Do∽ė₁D | | B
B
- | 3
2n | 3.69 7.24 | 3-3 z ³ p•.
_ (17- | -1 ³ D | 4142.184
10193.25 | B | (2) | 3.88 | 6.86 | -
3–3 | z ¹ D ⁰ -g ¹ D
(211)
z ¹ D ⁰ -f ¹ F
(213)
z ¹ P ⁰ -e ³ D | 10145.37
6414.603
6272.650
6143.047 | A
B
D | (5)
(1)
(1)
(2) | 4.25
4.14
4.25 | 5.46
6.06
6.22
6.15 | 1-2
3-4
1-2
3-3 | (343)
y ³ D°_e ⁵ F
(344) | | . G
Р
С | {1}
{1}
{1} | 3.82 6.06
3.82 6.07
3.83 6.07
3.92 6.07 | 4-4 z ³ Go.
5-4 (17:
4-5 z ³ Go.
3-4 (17: | 5) | 8982.35
8862.59
5628.347 | A
A
B | 100 | 4.07 | 5.45
5.48
6.26 | 1-1 | (313)
z ¹ P°-e ¹ D
(314)
z ¹ P°-e ⁵ F | 6177.49
6119.780
6759.41 | E
B
G | (1) | 4.22
4.25 | 6.22 | 2-2
1-1
3-1 | y ³ D°-e ³ g
(245) | | B
B
D
B | 8
4
(2)
(3) | 3.82 6.23
3.82 6.33
3.92 6.43
3.82 6.23 | 5-4 z ³ G°.
4-3 (17'
3-8
4-4 | -13F
 6259.615
*0100.093
6175.424 | B
B | 3
(1n)
8 | 4.07
4.07
4.07 | 6.04
6.07
6.07 | 1-1
1-3
1-1 | (215)
zipe3g
(216) | 6384.697
6661.39
6300.363
6378.263 | B
B
D | (5n)
(3)
(1)
5 | 4.23
4.25
4.14 | 6.07
6.07
6.21 | 2-1
1-0
3-4 | (245)
y3pe_e3p
(246)
y3pe_e3g | | P
B
B | 15
8
(2n) | 3.92 6.33
3.92 6.23
3.82 6.70
3.82 6.70
3.92 6.90 | 3-3
3-4
5-4 z ³ Ge.
4-3 (17) | -g ³ F
8) | 5780.77
*6116.181
5637.121 | G
B
B | (1)
6n
2 | | 6.21 | 1-1 | z ¹ p°-f ³ D
(318) | 6053.680
6339.148
6592.472
6130.174 | B
D
B | 7
(3)
(3)
(1g?)
(1n) | 4.33
4.14
4.23
4.25 | 6.26
6.09
6.26 | 3-3
3-3
2-3
1-1 | (347)
y ³ D°-f ³ D
(348) | | B
F
B | (2) | 3.82 6.70
3.82 6.70
3.82 6.86
3.92 6.86 | 3-2
4-4
3-3
4-3 z ³ g°.
3-3 (17) | -f ¹ F | 5600.038
5694.998
5625.326 | B
B
B | 6
4 | 4.07
4.07 | | 1-3 | z ¹ po_e ³ F
(319)
z ¹ po_e ¹ p
(330)
z ¹ po_f ¹ D
(331) | 6316.61
6039.313
6617.14
6700.90 | G
H
P
G | (1) | 4.14
4.22
4.23
4.35 | 6.09
6.26
6.08
6.09 | 3-2
3-1
3-3
1-3 | 7 | | P
B
B | N1
5
3n | 3.82 6.99
3.82 7.12
3.92 7.22
3.82 7.22 | 5-6 z ³ G°.
4-5 (18)
3-4
4-4 | _e ³ H | 5411.227
4629.98 | B
P | 4 | 4.07 | 6.35 | 1-0
1-1 | zipo_eis
(222)
zipo_e3s
(223) | m6314.67
6598.594
6086.290
6322.165
5996.74 | P
B
B
B | N1
(4)
5n
(3)
3n | 4.14
4.23
4.25
4.14
4.23 | 6.09
6.28
6.09
6.28 | 3-4
2-3
1-2
3-3
3-2 | y ³ D°-e ³ F
(249) | | B
B
P | (5)
(2)
(3)
(3) | 3.82 7.01
3.83 7.13
3.83 7.13
3.83 7.01 | 5-5 z3ge | -g ³ G | 10378.62
10330.23
9520.06
10530.53
10891.25 | A
A
A | 100
50
100
20 | 4.07
4.09
4.15
4.09
4.15 | 5.26
5.28
5.45
5.26
5.28 | 4-3
3-3
2-1
3-3
3-3 | у ³ F°-е ³ D
(224) | m5892.76
*5831.624
5669.945
5614.790
5592.146 | P
B
B | N1
2
(3)
5
(1)
(3) | 4.22
4.25 | 6.23
6.33
6.42
6.33 | 3-4
2-31
1-2
3-3 | y ³ D°-f ³ F
(350) | # A Multiplet Table of Astrophysical Interest Revised Edition Part I—Table of Multiplets Part II—Finding List of All Lines in the Table of Multiplets # Charlotte E. Moore Office of Standard Reference Data National Bureau of Standards Washington, D.C. 20234 Contributions from the Princeton University Observatory No. 20, 1945 Reprinted by permission of the Director of the Princeton University Observatory # NSRDS-NBS 40 Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 40, 253 pages (Feb. 1972) CODEN: NSRDAP Reprint of NBS Technical Note 36 (PB151395). See author's note, pp. v-vi. Issued February 1972 #### FOREWORD The National Standard Reference Data System provides effective access to the quantitative data of physical science, critically evaluated and compiled for convenience, and readily accessible through a variety of distribution channels. The System was established in 1963 by action of the President's Office of Science and Technology and the Federal Council for Science and Technology, with responsibility to administer it assigned to the National Bureau of Standards. The System now comprises a complex of data centers and other activities, carried on in academic institutions and other laboratories both in and out of government. The independent operational status of existing critical data projects is maintained and encouraged. Data centers that are components of the NSRDS produce compilations of critically evaluated data, critical reviews of the state of quantitative knowledge in specialized areas, and computations of useful functions derived from standard reference data. In addition, the centers and projects establish criteria for evaluation and compilation of data and make recommendations on needed improvements in experimental techniques. They are normally closely associated with active research in the relevant field. The technical scope of the NSRDS is indicated by the principal categories of data compilation projects now active or being planned; nuclear properties, atomic and molecular properties, solid state properties, thermodynamic and transport properties, chemical kinetics, and colloid and surface properties and mechanical properties. The NSRDS receives advice and planning assistance from the National Research Council of the National Academy of Sciences-National Academy of Engineering. An overall Review Committee considers the program as a whole and makes recommendations on policy, long-term planning, and international collaboration. Advisory Panels, each concerned with a single technical area, meet regularly to examine major portions of the program, assign relative priorities, and identify specific key problems in need of further attention. For selected specific topics, the Advisory Panels sponsor subpanels which make detailed studies of users' needs, the present state of knowledge, and existing data resources, as a basis for recommending one or more data compilation activities. This assembly of advisory services contributes greatly to the guidance of NSRDS activities. The NSRDS-NBS series of publications is intended primarily to include evaluated reference data and critical reviews of long-term interest to the scientific and technical community. LEWIS M. BRANSCOMB, Director # **AUTHOR'S FOREWORD** The present Multiplet Table was first published in 1945 by the Princeton University Observatory; it has not yet in superseded. In 1959 it was reprinted as Technical Note 36 of the National Bureau of Standards. This issue is wout of print and is being reprinted as NSRDS-NBS 40. The format is not being changed. In the present publication a special note has been added in the heading for se spectra included in "Selected Tables of Atomic Spectra," NSRDS-NBS 3, to indicate the existence of a Revised ltiplet Table. gust 2, 1971 #### ABSTRACT Pending the completion of a current edition, the 1945 Multiplet Table is being reprinted here to meet continuing demands. The leading lines in 196 atomic spectra of 85 chemical elements are listed in related groups called multiplets. Estimated intensities, excitation potentials and multiplet designations are given for the individual lines, and each multiplet is assigned a number. An extensive bibliography covers the source material used for the compilation. The Table is presented in two parts: Part I includes the multiplets, with the spectra of each element being given in order of increasing ionization, and the elements in order of increasing atomic number. Part II is a Finding List in which all the lines in Part I are entered in order of increasing wavelength, with their multiplet numbers. The range of the Table is from 2951 Å to 13164 Å. A supplementary table of "Forbidden Lines" extends from 2972 Å to 12645 Å. Key words: Atomic spectra, multiplet table; finding list, atomic spectra; multiplet table; spectra, atomic. # Editorial Note—Spectra in Technical Note 36 (PB151395), for which revised data are given in NSRDS-NBS 3* | Page | Spectrum | Reference | |------------------------|--------------------------|---| | 2
2
3
3 | C II C III C IV | SEE REVISION IN NSRDS-NBS 3, Section 3, November 1970. | | New | Cv | SEE Section 3, November 1970. | | 6
6 | N IV)
N v } | SEE REVISION IN NSRDS-NBS 3, Section 4, August 1971. | | New
New | N vi)
N vii) | SEE Section 4, August 1971. | | 15 | Si 1 | SEE REVISION IN NSRDS-NBS 3, Section 2, November 1967. | | 16
16
17 | Si II
Si III
Si IV | SEE REVISION IN NSRDS-NBS 3, Section 1, June 1965. | | | | Correction | | Part I 2
Part II 76 | He II
He II | λ 6570.0 Ref. A has been corrected to λ 6527.10 Ref. P. λ 6570.0 has been corrected to λ 6527.10. | ^{*} See List of Publications in the National Standard Reference Data Series at the back of this book for information about obtaining these publications. # Author's Note on the Reprinting of the 1945 Princeton Multiplet Table: U.S. Department of Commerce, N.B.S. Tech. Note 36, (PB151395), 1959 The Multiplet Table that first appeared as Contributions from the Princeton University Observatory No. 20, 1945, is still a standard reference source used by astrophysicists, physicists, chemists, and many others. To date it has not been superseded and it continues to be in steady demand, although it is seriously in need of revision. In 1959 this table was reprinted as U.S. Department of Commerce, National Bureau of Standards Technical Note 36 (PB151395). This issue is now out of print. In view of the continuing requests, the Office of Standard Reference Data has decided to reprint Technical Note 36 as National Standard Reference Data Series-National Bureau of Standards, NSRDS-NBS 40, 1971, Parts I and II. Similarly, Volumes I, II, and III of "Atomic Energy Levels," Circular of the National Bureau of Standards 467 are being reprinted in the same series, NSRDS-NBS 35, Parts I, II, III. The present rapid technological advances by the astrophysicist in observing celestial spectra have created an urgent need for a current Multiplet Table of Astrophysical Interest. The correct interpretation of these spectra depends directly on the laboratory analyses of optical spectra. A critical compilation of spectroscopic data that provides the leading lines of individual atomic and ionic spectra of the more abundant elements, over the range from the x-ray to the microwave region is essential. In preparing such a table an effort should be made to envisage future developments in observing celestial spectra over this range and to design laboratory programs that will provide the
requisite data. Many gaps exist in our knowledge of atomic and ionic spectra. Sources that will produce clearly separated spectra in all stages of ionization for the elements H to Ni will be needed. Some of the less complex spectra can be traced along isoelectronic sequences, while more complex spectra have line lists containing thousands of lines. Encouraging progress is being made in the laboratory, where excellent spectrographs and carefully controlled sources can produce spectra that far outweigh the observations quoted in 1945. Although it is not yet possible to provide a complete revision of this 1945 edition, current Multiplet Tables together with corresponding revised tables of Atomic Energy Levels are available for selected spectra. They are being published by the National Bureau of Standards under the title "Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables," as Sections of NSRDS-NBS 3. Section 1 contains these data for the spectra Si II, Si III, Si IV; Section 2 for Si I; Section 3 for C I, C II, C III, C IV, C V, C VI; Section 4 for N IV, N V, N VII. Similar tables for N I, N III are in course of preparation as Section 5. A number of additional spectra are partially completed for inclusion in this series. These new Multiplet Tables cover the entire observed range of individual spectra, and, therefore, supersede not only the 1945 Multiplet Table, but also the Ultraviolet Multiplet Table which appeared as Circular of the National Bureau of Standards 488, Section 1, 1950; Section 2, 1952; Sections 3, 4, 5, 1962. In the present reprinted issue of the Princeton Table, the individual spectra that have been revised are clearly indicated. Readers are urged to use the revised data for the spectra thus marked and to note further such revisions of selected spectra as they appear in this series. This work advances slowly, although a number of revised analyses of spectra have been published that supersede the 1945 data. A bibliography in the National Bureau of Standards Special Publication 306, Sections 1, 2, 3, 4, 1968-1969, provides reference material on individual spectra to about July 1968, continuing from the reference listings given in the Volumes on Atomic Energy Levels. The most serious need for revision is perhaps in the infrared data. Current references to work on the spectra H I to Ni I in the range > 7000 Å may be found in a forthcoming publication of the Proceedings of the Seventeenth International Astrophysical Symposium, on "Astronomical Spectra in the Infrared and Microwave Regions," held at the Institut d'Astrophysique, Université de Liège, Cointe-Ougrée, Belgium, June 28-30, 1971. Washington, D.C. August 2, 1971 CHARLOTTE E. MOORE # TABLE OF CONTENTS # PART I. TABLE OF MULTIPLETS | | | Page | |------|--|---------| | I | Introduction | WII | | | 1 Need for spectrum analysis | XII | | | 2 Need for Multiplet Table | XII | | | 3 Range of Present Table | | | | 4 Importance of Multiplets | XII | | | 5 First edition | XII | | | 6 Arrangement of Table | XII | | II | The Multiplet Table—General Considerations | | | | 7 Astronomical Spectra | XII | | | 8 Astrophysical importance of spectra, H-Zn | XIII | | | 9 Elements Ga-Ba | XIII | | | 10 Rare Earths | XIII | | | 11 Elements <i>Hf-U</i> | XIII | | TTT | Basis of Selection | | | TYT | 12 The Short Periods (H-A) | XIII | | | 13 Nebular spectra | XIII | | | 14 First Spark Spectra. | XIII | | | 15 Infra-Red Solar Spectrum. | XIII | | | 16 The First Long Period $(K-K\tau)$. | xıv | | | 17 The Spectrum of Fe 1 | XIV | | | 18 The Second Long Period (Rb-Xe) | XIV | | | 19 Forbidden Lines | XIV | | | | | | IV | | | | | 20 Size of Present Revised Multiplet Table | XIV | | | 21 Periodic Table | XIV | | | 22 Headings | XVI | | | 23 Ionization Potential | XVI | | | 24 Grading of Analysis of Individual Spectra | xvi | | | 25 Grading of List of Individual Spectra | XVI | | | 26 Date of completion of Individual Spectra | XVII | | V | Arrangement of the Multiplets of Each Spectrum | | | | 27 Spectrum Analysis—general arrangement of multiplets | XVII | | | 28 Multiplet Designations—quantum numbers | XVIII | | | 29 Incomplete Multiplets | XX | | | 30 Unclassified Lines | XXI | | | 31 Special Remarks on Individual Spectra | XXI | | VI | Columns of the Table of Multiplets | | | 12 | 32 Wave-Length | XXI | | | 33 Symbols. | ихх | | | 34 Intensity | XXIII | | | 35 Excitation Potentials | XXIV | | | | | | VII | Spectroscopic Notation | | | | A Series Spectra | 3737117 | | | 36 Series Notation and Limits | XXIV | | | 37 Special Cases | XXV | | | B Complex Spectra | · yvm | | | 38 Regular Notation | XXVI | | | 39 Numbered Levels | XXVI | | /III | Special Notes on Individual Spectra | | | | 40 H, D, He II etc | IVXX | | | 41 Fe 1 etc | XXVIII | # TABLE OF CONTENTS # PART I. TABLE OF MULTIPLETS-Continued | | | Page | |---------------------------|--|---| | IX | Spectra Omitted from the R M T | | | | 42 Spectra of Astrophysical Interest—No Analysis | IIIVXX | | | 43 Analyzed Spectra without Astrophysical Importance | XXIX | | | 44 Spectra for which nothing is known | XXIX | | X | Forbidden Lines | | | | 45 Basis of Selection | XXIX | | $\mathbf{x}_{\mathbf{I}}$ | Details of Publication | | | | 46 Revised Solar Identifications | XXXI | | XII | Bibliography—Description | • | | | 47 References used for Wave-Length, Intensity and Analysis | $\mathbf{i}\mathbf{x}\mathbf{x}\mathbf{x}'$ | | KIII | Acknowledgments | | | Biblic | graphy | XXXIX | | ndex | by Pages | XLIII | | ndex | by Elements | XLIV | | Revis | ed Multiplet Table | | | | Body of Table | 1-99 | | | Forbidden Lines | 100-110 | # **PREFACE** The preparation of a Multiplet Table that will meet the needs of all astrophysicists both now and in the future is an almost overwhelming undertaking. The most eminent workers would have to exercise careful judgment in handling the spectroscopic literature today. The writer has been bold enough to attempt it, only because of the many requests for a revision of the earlier Table and the enthusiasm with which it was received in spite of its many faults. Admittedly the present work is far from ideal. With all its limitations, however, it could never have been published without a vast amount of collaboration. The generosity and encouragement of spectroscopists and astrophysicists both at home and abroad has been the inspiration for this book. No two people would present the same choice of material, and the writer feels that her judgment has been far from adequate for this task. Whatever usefulness the volume may have is due to the many workers who have stood by, ready to supply material, to discuss puzzling questions and to offer the most valuable suggestions. Since 1932 work on spectrum analysis has progressed so speedily that the selection of data useful to the astrophysicist has been one of the major problems. Requests for an entirely complete Multiplet Table have been received, but the purpose of this work has been to provide a book whose scope is limited—one that contains astrophysically useful data but is not unwieldy because of the inclusion of other material from the vast storehouse of spectroscopic literature now accessible. The bibliography should be consulted by those who desire more complete Tables of Multiplets. More work of astrophysical importance remains to be done, chiefly on the spectra of the rare-earths and on the second spark spectra in general. It is hoped that a supplement can be prepared to cover these spectra and that a large part of the present work will prove to be definitive. This book has been brought to a conclusion during the second world war. Consequently, restrictions of all kinds have been imposed and assistance has been limited. A very careful attempt has been made to prepare the manuscript accurately. The writer believes, however, that errors have inevitably been made in the compiling and editing of more than 25,750 spectral lines, for the work has been done with the minimum amount of clerical aid. She relies upon the users to detect serious errors and report them to her so that a list of errata may be published. Suggestions will be welcome. Mention has been made of the cordial cooperation experienced from the beginning of this work. It could not now have been brought to a conclusion without the hearty and enthusiastic support of Henry Norris Russell, the author of the first list of multiplets of astrophysical importance. He has generously offered his valuable collection of data on spectra and has been ever ready to help in spite of the many complications that have arisen in carrying out such an extensive program. CHARLOTTE E. MOORE Princeton University Observatory Princeton, New Jersey April 3, 1945 #### A MULTIPLET TABLE OF ASTROPHYSICAL INTEREST #### PART I # TABLE OF MULTIPLETS # I. INTRODUCTION - 1. The detailed interpretation of stellar spectra demands of the laboratory investigators an ever increasing amount of careful work on spectrum analysis. With the impetus provided by Hund's theory, remarkably rapid strides have been made. Additional encouragement, particularly in handling complex spectra, has resulted from the great development of mechanical devices to decrease the enormous labor of measuring and reducing spectrograms. The valuable machine developed by Harrison at the Massachusetts Institute of Technology for this purpose has already proven its worth and promises much more in the future. - 2. From an astrophysical point of view there is a definite need for a compendium of multiplets. The manuscript lists prepared for the present work have been almost continuously on loan to various investigators. Spectrum analysis has not been carried far enough to compile a completely satisfactory Table. So many spectra have been analyzed, however, that to wait for perfection
is to retard scientific progress. For many spectra "prediction" may be invoked to extend the existing lists of observed laboratory lines, and this has been done throughout the work. Three general classes of lines are tabulated: those observed in the laboratory; predicted "permitted" lines calculated from combinations among spectroscopic term values; and predicted "forbidden" lines. 3. A complete multiplet table would be welcomed by many scientists. It is not the purpose of the present work to furnish this. The range of wave-lengths is roughly from $\lambda 2950$ to $\lambda 13000$. The violet limit is imposed by the ozone in our atmosphere, which cuts off stellar observations beyond this region. In the infra-red the scarcity and inaccuracy of laboratory wave-lengths have made it necessary to predict many lines. Even within these limits, only the lines thought to be useful in the interpretation of astronomical spectra are listed. These are selected from the elements sufficiently abundant to appear in stellar spectra, and from only those stages of ionization and types of excitation which are to be expected. - 4. The importance of handling the various laboratory spectra by multiplets was stressed in 1925 by Russell, who published the original multiplet table under the title "A List of Ultimate and Penultimate Lines of Astrophysical Interest." Useful as it was, this soon proved to be incomplete, not only because it was intentionally limited, but also because more data were becoming available. Work on spectrum analysis was proceeding so rapidly that an extension of his list was imperative. - 5. When the writer was at the Mount Wilson Observatory in 1931 she prepared a solar multiplet table for private use in revising and extending the identification of lines in the solar and sun-spot spectra. This manuscript was constantly used by astronomers. In response to requests for copies, the laboratory data for light elements present in early type stars were added and a limited edition was printed in 1933.² This edition was out of date and out of print almost immediately—the demand for it had not been anticipated. To meet the situation the present book was planned; it is the first book designed from the start as a multiplet table for astrophysicists. For this reason, solar wave-lengths and intensities are excluded. It is essentially a manual of laboratory data needed by astronomers. - 6. In the Multiplet Table (Part I) the elements are arranged in order of increasing atomic number. For each spectrum of each element the multiplets are listed in order of increasing energy level (see § 27 for details), and are numbered for reference. While such an arrangement is useful in studying stellar spectra, it introduces one serious disadvantage. The search for a particular line is laborious. This has been a widespread and an entirely justified criticism of the earlier Table. A Finding List has, therefore, been prepared and forms Part II of this Contribution. Here every line in the Revised Multiplet Table (hereinafter referred to as the R M T), is entered in order of wavelength, listing the spectrum to which the line belongs, and the number of the multiplet containing it. # II. THE MULTIPLET TABLE—General Considerations 7. The astronomical spectra forming the basis of selection of the elements, spectra and lines included, fall into several general classes. The sun receives first consideration. The observed solar spectrum now extends from λ2914* to λ13495, which accounts for the range covered in this Table. In addition, the spot and chromospheric spectra, stellar spectra of every type from Wolf-Rayet stars down through M-stars, including giants and dwarfs, spectra of novae and nebulae, and of the corona must be taken into account. ¹ Mt. Wilson Contr. No. 286; Ap. J. 61, 223, 1925. ⁸ A Multiplet Table of Astrophysical Interest, Princeton 1933. A Multiplet Table of Astrophysical Interest, Princeton 1933. Accurate measures have not been made to the violet of λ2949. 8. The astrophysical importance of a spectrum depends upon the abundance of the element in the most favorle celestial sources, and the number and excitation potentials of the lines in the visible region. Almost all of the ments of atomic number 1-30 (H-Zn) have, on this account, preference over those that follow. The analyses of eir arc spectra are almost all adequate for astrophysical purposes. For the first spark spectra, which on the whole are more important, the analyses are fairly complete (except for n II and Co II) The lists for these spectra in the R M T include all but the weakest observed lines except for a w elements of low abundance. The second spark spectra are less completely analyzed in the two short periods. In the first long period Fe III complete and only a beginning has been made for any of the rest. Detailed knowledge of spectra of more highly ionized atoms is confined to a few of the lighter elements. - 9. The spectra of the elements from Ga to Ba are on the average considerably richer, and much less completely alyzed; but these elements are decidedly less abundant and the existing data are usually, though not always, fairly lequate for astrophysical purposes. - 10. The rare earths, which are no rarer than neighboring elements in cosmical abundance, usually have rich pectra, which adds to their significance. The arc spectra rarely appear. The first spark spectra are important in many ars, and lines of the second spark spectra of several of them have recently been identified. Analysis of the third spectra barely begun; for the second spectra it is well advanced for six of these elements and well begun for four more. The lists given here for the rare earths are approximately definitive for La II, Eu II and Lu II. It is hoped that eatly improved data for the others will be available in the near future. Extended tables for rare earths are likely form the larger part of a supplement to the R M T. 11. The elements from Hf onward are of low abundance, and the data for them, though incomplete, meet most strophysical needs tolerably. # I. BASIS OF SELECTION 12. The Short Periods (H-A). These spectra are so important in the hotter stars that the lists are entirely or almost complete for all degrees i ionization included, except for a few elements of low cosmic abundance. The spectra of Wolf-Rayet stars,^{2, 3} novae and nebulae contain many "predicted" lines of these elements, not et observed in the laboratory. For many light elements more predicted lines could probably have been included advantage. More accurate values of predicted wave-lengths could also have been given, particularly in the spark pectra of C, N, and O. The precedent set by Edlén in his work on Wolf-Rayet³ stars was followed. In many cases ne term separations are known with sufficient accuracy to justify predictions to 0.1 A, although he uses no decimals. Ise of the photographic method of reproduction for this book has prevented all but the most necessary alterations f the original manuscript. Changes later realized to be improvements have been omitted because of this restriction. - 13. Bowen's 4 work naturally forms the guide for selecting material related to nebular spectra. The leading ebular lines are due to forbidden lines of the light elements. In anticipation of future needs, the lists of forbidden nes have, however, been greatly extended throughout the first long period. - 14. No particular type of stellar spectrum has influenced the choice of lines from the first spark spectra of light lements. The lists have not been restricted to include only those lines known to be present in the stars. The bundance of the element has been the chief factor considered in omitting lines. For elements known to be fairly bundant, favorable predicted lines have been added. The lists are as extensive as the present state of analysis ermits. - 15. For some years Mr. H. D. Babcock at Mount Wilson, has been preparing for publication a monograph on he Infra-Red Solar Spectrum. His work now covers the interval λλ6600-13495 and includes approximately 7300 nes. The leading accessible lines of the arc spectra of most of the light elements lie in this interval. For example, nportant solar lines are unquestionably due to H, C I, N I, O I, Mg I, Si I, P I, and S I. In fact, the presence of hosphorus could not be detected until the solar observations were extended to the infra-red. The present Table as been compiled with Mr. Babcock's work especially in mind. For unblended lines the solar wave-lengths in this region are far more accurate than many laboratory measures. ii affords an excellent illustration. The lines are sharp in the sun and the term separations among solar wave- ¹ Swings, Ap. J. 100, 132, 1944. 2 Payne, Zeit. fur Ap. 7, 1, 1933. 3 Edlén, Zeit. fur Ap. 7, 378, 1933. 4 Rev. Mod. Phys. 8, 55 (No. 2), 1936. numbers are so consistent that accurate solar term values can be calculated. These term values have been very useful in predicting wave-lengths. Similarly, the triplet and singlet "F" series of Mg I were extended with the aid of solar data.1 The constancy of the term separations proves beyond doubt the correctness of the identifications. 16. The First Long Period (K-Kr). The elements in the first long period from K through Ni constitute by far the major portion of this book (pp. 23-77), on account of the complexity of their spectra. Generally speaking, the arc and first spark spectra are well analyzed except for those mentioned in § 8. Many lines of these spectra (as far as Cu) are present throughout the entire range of the solar and sun-spot spectra, the flash spectrum, stellar spectra like those of Y Cygni and a Persei, and later type stars. The only second spark spectrum in this group that can be given completely is that of Fe III. Astronomers eagerly await the definitive analysis of the rest. 17. The spectrum of Fe 1 deserves special mention. Although the importance of the analysis has long been
realized, a complete monograph of this spectrum has only recently been published.2 Practically every known line of Fe 1 is present in the sun. An amazing number of predicted lines agree well with solar wave-lengths. A statistical study of these coincidences indicates that most of them are real. For the statistical work the predicted lines were graded as "good," "fair," or "poor." The grades were based on the behavior of all the lines of each multiplet in the solar spectrum, the agreement in wave-length, and other factors. Only the "good" and "fair" lines have been published to date. Since the grading was severe, and since predicted wave-lengths are much in demand, many of the lines graded "poor," but considered useful to other workers, have been retained in the R M T. 18. The Second Long Period (Rb-Xe). These elements are observed chiefly in the solar and sun-spot spectra and later dwarf stars. Except for Y II and Zr 11 the lists are restricted to the lines from low atomic energy levels. They are, however, more extensive than in the earlier Multiplet Table and slightly longer than are necessary to meet present needs. 19. Forbidden lines are assuming more and more significance in astronomical sources. A special section of the R M T (pp. 100-110) and one of the Finding List (pp. 87-96) are devoted to them. It is extremely difficult to predict what the future needs will be. To list the array of possible predicted lines even among only abundant elements would be prohibitive. The present selection has been based largely on suggestions made by Dr. P. Swings. He was planning to publish a paper on this subject, but this was unknown to the writer when she was confronted with the problem of including them in the RMT. He generously suggested that they be given here instead of in a separate paper, and has examined the manuscript carefully. The author is extremely fortunate to have had the benefit of his extensive knowledge of both the theoretical and astrophysical aspects of forbidden lines while preparing this section of the Table. Details are discussed later in § 44. #### IV. GENERAL ARRANGEMENT OF THE MULTIPLET TABLE - 20. The toregoing remarks serve only as the most general guide to the scope of the material presented here. The book is colored throughout by individual judgment in the editing of spectroscopic literature. A serious attempt has been made to limit it in such a manner that it will be a useful astrophysical handbook. Even so, it is now more than twice the size of the earlier edition. - 21. The elements in the R M T are discussed in order of increasing atomic number, and the spectra of each element in order of increasing ionization. Table 1 gives a convenient arrangement of the Periodic Table of the elements. This Table is self-explanatory. The atomic number and chemical symbol of each element are given and elements with similar spectra in the short and long periods are connected by diagonal lines. Russell, Babcock and Moore, Phys. Rev. (2) 46, 826 (No. 9), 1934. Babcock and Moore, Ap. J. 101, 374, 1945. Russell, Moore and Weeks, Trans. Am. Phil. Soc. 34, 111 (Part 2), 1944. TABLE 1 THE PERIODIC TABLE 1 | st
riod | | 1
H | | 2
He | : | | | | | | | | | | | | | | | |----------------|----------|----------|-----------|----------|----------|----------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|------------------|--| | cond
riod | | 3
Li | | 4
Be | : | 5
E | | | 6
C | | 7
N | | 8
O | | 9
F | | | t0
Ne | | | iird
riod | | 11
Na | | 12
M | | 1
A | 3 | | 14
Si | / | 15
P | \ | 16
S | \ | 17
C | | | 18
A | | | ourth
criod | 19
K | 20
Ca | 21
Sc | 22
Ti | 23
V | 24
Cr | 25
Mn | 26
Fe | 27
Co | 28
Ni | 29
Cu | 30
Zn | 31
Ga | 32
Ge | 33
As | 34
Se | 35
Br | \
36
Кг | | | fth
riod | 37
Rb | 38
Sr | 39
Y | 40
Zr | 41
Cb | 42
Mo | 43
(Ma) | 44
Ru | 45
Rh | 46
Pd | 47
Ag | 48
Cd | 49
In | 50
Sn | 51
Sb | 52
Te | 53
I | 5 4
Xe | | | xth
:riod | 55
Cs | 56
Ba | 57*
La | 72
Hf | 73
Ta | 74
W | 75
Re | 76
Os | 77
Ir | 78
Pt | 79
Au | 80
Hg | 81
Tl | 82
Pb | 83
Bi | 84
Po | 85 | 86
Rn | | | venth
riod | 87 | 88
Ra | 89
Ac | 90
Th | 91
Pa | 92
U | | | | | | | | | | | | | | ^{*} Atomic numbers 58-71—Rare Earths. See below. 62 63 64 65 66 67 68 69 58 are Gd Tb Dy Ho Er Tm Yb Lu Nd (II) Sm Eu arths Ce Pr In Table 2 the elements are listed in the alphabetical order of their names. The successive columns contain, spectively, the name, the chemical symbol, and the atomic number of each element. Table 2 Alphabetical List of Elements | Name | Symbol | Atomic
No. | Name | Symbol | Atomic
No. | Name | Symbol | Atomic
No. | |----------|--------|---------------|------------|--------|---------------|-----------|--------|---------------| | tinium | Ac | 89 | Chlorine | Cl | 17 | Holmium | Но | 67 | | uminium | Al | 13 | Chromium | Cr | 24 | Hydrogen | H | 1 | | ntimony | Sb | 51 | Cobalt | Co | 27 | (Illinium | 11 | 61)† | | gon | Α | 18 | Columbium | СЪ | 41 | Indium | In | 49 | | rsenic | As | 33 | Copper | Cu | 29 | Iodine | I | 53 | | arium | Ba | 56 | Dysprosium | Dy | 66 | Iridium | Ir | 77 | | eryllium | Be | 4 | Erbium | Er | 68 | Iron | Fe | 26 | | smuth | Bi | 83 | Europium | Eu | 63 | Krypton | Kr | 36 | | oron | В | 5 | Fluorine | . F | 9 | Lanthanum | La | 57 | | romine | Br | 35 | Gadolinium | Gd | 64 | Lead | Pb | 82 | | admium | Cd | 48 | Gallium | Ga | 31 | Lithium | Li | . 3 | | aesium | Cs | 55 | Germanium | Ge | 32 | Lutecium | Lu | 71 | | alcium | Ca | 20 | Gold | Au | 79 | Magnesium | Mg | 12 | | arbon | C | 6 | Hafnium | Hf | 72 | Manganese | Mn | 25 | | erium | Ce | 58 | Helium | He | 2 | (Masurium | Ma | 43)† | [†] Not isolated. ¹ International Chemical Symbols—1941. TABLE 2-Continued | Name | Symbol | Atomic
No. | Name | Symbol | Atomic
No. | Name | Symbol | Atomic
No. | |---------------|--------|----------------|-----------|--------|---------------|-----------|---------------|---------------| | Mercury | Hg | 80 | Radium | Ra | 88 | Tellurium | Te | 52 | | Molybdenum | Mo | 42 | Radon | Rn | 86 | Terbium | Tb | 65 | | Neodymium | Nd | 60 | Rhenium | Re | 75 | Thallium | Tl | 81 | | Neon | Ne | 10 | Rhodium | Rh | 45 | Thorium | \mathbf{Th} | 90 | | Nickel | Ni | 28 | Rubidium | ŔЬ | 37 | Thulium | Tm | 69 | | Nitrogen | N | 7 | Ruthenium | Ru | 44 | Tin | Sn | 50 | | Osmium | Os | 76 | Samarium | Sm | 62 | Titanium | Ti | 22 | | Oxygen | 0 | 8 | Scandium | Sc | 21 | Tungsten | W | 74 | | Palladium | Pd | 4 6 | Selenium | Se | 34 | Uranium | U | 92 | | Phosphorus | P | 15 | Silicon | Si | 14 | Vanadium | V | 23 | | Platinum | Pt | 78 | Silver | Ag | 47 | Xenon | Xe | 5 4 | | Polonium | Po | 84 | Sodium | Na | 11 | Ytterbium | Yb | 70 | | Potassium | K | 19 | Strontium | Sr | 38 | Yttrium | Y | 39 | | Praseodymium | Pr | 59 | Sulphur | S | 16 | Zinc | Zn | 30 | | Protoactinium | Pa | 91 | Tantalum | Ta | 73 | Zirconium | Zr | 40 | # 22. Headings. Each spectrum of each element for which multiplets are given, begins with a heading containing four entries: the ionization potential, an astrophysical grade of the analysis, a grade of the list, expressing the fraction of classified lines listed, and finally, the date of completion of the manuscript of that spectrum. For example, Cr 1 (p. 37) starts with the heading > Cr 1 1 P 6.74 Anal A List B March 1941. # 23. The Ionization Potential. For arc spectra many of these have been taken from the list published by Meggers in 1941. For the first spark spectra he has kindly furnished a similar list 2 which has been extensively used. The monograph by Edlén 3 has furnished many more, but the values have been recalculated using the factor 0.00012345 instead of the one he used (see § 35). Edlén's unpublished values are quoted 4 for Ne. For many other elements the I P has been obtained from the limits published in the papers on analysis, as for Edlén's results. The list by Boyce 5 is frequently quoted, particularly in the section dealing with Forbidden Lines. Those interested in the source are advised to consult the part of the bibliography pertaining to analysis (Tables 9 and 10), or one of the above mentioned general lists. 24. The completeness of analysis from the standpoint of the astrophysicist (§§ 8-11) is indicated by four grades. "Anal A" signifies that practically all the important lines of wave-length > 2950 are classified, "Anal B" that only a small fraction remain unclassified, "Anal C" that a considerable proportion are unclassified and "Anal D" that the analysis is seriously incomplete. This rating necessarily involves a large amount of opinion and should not be given too much weight. No two appraisements would agree completely. Its purpose is to indicate the present state of analysis with regard to the needs of the astronomer. From the viewpoint of the physicist, the state of the term analysis of the various spectra has been similarly summarized elsewhere by means of grades A, B, C etc. With the aid of Hund's theory the physicist can compare the number of predicted and observed terms and assign a grade accordingly, whether or not most of the leading lines occur in a given region of the spectrum. Both Boyce 5 and Shenstone 6 have published extensive surveys. On account of the different viewpoints, the two grades are often not identical for the same spectrum. 25. A similar grading "List A, B, C, or D" is introduced to indicate the percentage of classified lines of a given spectrum included in the R M T. Since all lines of each spectrum considered are not equally useful to the astrophysicist, the omissions have been much more drastic in some cases than in others. For example, practically every ¹
Journ. Opt. Soc. Am. 31, 39 (No. 1), 1941. ² Unpublished material, April 1941. Nona Acta Regiæ Societatis Scientiarum Upsaliensis (IV) 9, No. 6, 1933. Communicated by Swings in a letter, March 1945. Rev. Mod. Phys. 13, 1 (No. 1), 1941. line of Fe I observed in the laboratory is present or accounted for in the solar spectrum. This applies to weak as well as strong lines. Hence, all classified lines of Fe I to the red of $\lambda 2950$ are entered and the list entry in the heading is "List A". Most of the spark spectra of the first long period are in this class, unless the element is scarce in stars. For many spark spectra most of the observed lines are in the violet and ultra-violet. In such cases the list may be very short, although graded "List A". This means that only a small fraction of the total number of observed classified lines lie in the region considered in this book. When all but the weakest classified lines are given, the list is graded "B". The spectra of Na 1 and Mg 1 illustrate "List B", the higher series members having been omitted as unimportant. In anticipation of requests for more material, the general policy has been to include slightly more than is necessary. Since all classified lines are not given, however, the list cannot be graded "A". "List C" denotes that most of the strong lines are entered: "List D", that only the leading strong lines are given. In grading the *lists*, unclassified lines have not been given consideration (although the stronger ones are listed after the multiplets of a spectrum). The purpose of this grading is to enable the reader to judge how many classified lines have been omitted, regardless of whether or not the *analysis* is complete. Thus for Co II few lines are classified, but all these are listed. Hence this element is in the class "Anal C, List A." 26. The last entry at the head of each spectrum gives the month and year in which that section of manuscript was completed. This work has extended over such a long period that the date of publication does not apply even approximately to the date at which some spectra were last examined. It is hoped that the lists are up to date, but if important references have been missed, or if existing unpublished material should replace that included here, the writer invites such suggestions. # V. ARRANGEMENT OF THE MULTIPLETS OF EACH SPECTRUM 27. Reference must be made to some details of spectrum analysis in order to discuss the plan of presentation adopted here. In brief, the atoms of a gas, when excited by radiation, absorb certain wave-lengths corresponding to transitions of their outer electrons from lower energy levels to higher ones. From differences in the wave numbers of the observed lines, energy levels can be worked out, each line being produced by a transition between two such levels. Related levels are grouped accordingly to well known rules to form spectroscopic terms. Transitions between terms give rise to groups of related lines called multiplets. In the RMT the terms of each spectrum have been arranged in order of increasing value of the component of *lowest* energy. This defines the relative level of the term, starting with the lowest term zero. The excitation potentials (columns 4 and 5) express in electron volts the values of the energy levels of those term components involved in the production of each line (see §35). To illustrate, the lowest term of Fe 1 is a^5D . This term is made up of five energy levels whose E P's are respectively 0.00, 0.05, 0.09, 0.11 and 0.12. The next term is a^5F . Here the components have E P's 0.86, 0.91, 0.95, 0.99 and 1.01. For the purposes of this book the terms are considered in order of the lowest level of each, i.e. a^5D 0.00, a^5F 0.86 etc. This is to avoid confusion in spectra whose term values overlap seriously. In each spectrum all multiplets with the same low term are in one group. The various groups are listed in the order of increasing value of the low terms. Within a group (which represents the combinations of a given low term with higher terms) the multiplets follow the order of increasing high term values. For example, all combinations from a^5D of Fe 1 (Multiplets 1-11) form the first group. These multiplets are listed in order of increasing high E P, 2.39, 2.82, 2.93, 3.20 etc. The next low term is a^5F . The combinations from this term form the next group (Multiplets 12-31) etc. In certain multiplets, the lowest components of one or both of the terms involved are not represented. This does not alter the arrangement. Whenever the low level changes, the break in the continuity is indicated by three long dashes between the groups. For Fe 1 the first of these occurs between multiplets 11 and 12. When terms are widely separated this arrangement results in listing the multiplets from a given low term in the order of decreasing wave-length of the leading line of each multiplet, since increasing energy of the high terms automatically results in increasing wave number, or decreasing wave-length. The wave-length criterion alone was used for part of the R M T until the overlapping of terms in some complex spectra of the first long period introduced serious complications of arrangement. Then the more rigorous procedure ¹ Russell, Moore and Weeks, Trans. Am. Phil. Soc. 34 (Part 2), 111, 1944. described above was adopted. Some spectra had been typed before the strictly orderly listing was put into effect. Owing to the excessive amount of labor involved in making such minor changes, slight irregularities of arrangement have not been corrected. For the greater part of the Table, however, the multiplets are in orderly array. 28. The energy levels that are grouped to form spectroscopic terms are defined by inner quantum numbers, commonly known as J-values. The terms have multiplicities (which are either all odd or all even in a given spectrum), and are further defined by azimuthal quantum numbers L which have the values 1, 2, 3 etc. for terms labeled S, P, D, F, G, H, I, K. The complete multiplet designation of any line includes all of these quantities for both the lower and upper energy level involved in the production of the line. In the RMT a simplified plan has been adopted. The inner quantum numbers are listed separately from the rest of the designation, in column six, under the heading J. The J-value belonging to the lower term comes first and is followed by that of the higher term. In the next column, headed "Multiplet Desig" the spectroscopic designation of the lower term is always stated first, followed by a dash, then that of the higher term. For example, in multiplet No. 5 of Fe I the first line, 3719.935 has J-values 4–5. The rest of the designation is a D-z Fe. In the complete notation the "4" appears as the subscript of a D and 5 as that of z Fe, i.e. a D4-z Fe. The complete designation of the second line $\lambda 3737.133$, is a D3-z Fe. 4 etc. The "a" and "z" merely distinguish these D and Fe terms from others of the same type. This notation is discussed later in § 38. For both terms the superscript 5 denotes the multiplicity. "Permitted" lines occur among combinations between two sets of terms, one "odd" and the other "even". The superscript "o" attached to ⁵F tells that this is the odd term. When both terms belong to the same set (odd or even), the lines are commonly called "Forbidden". Within a multiplet the arrangement of the individual lines is governed by the J-values. Each multiplet is entered as if it were written in multiplet array, i. e. the lines on the main diagonal come first, then the strongest satellite lines, then the next strongest etc. This is best illustrated by considering the inner quantum numbers, J, of each type of spectroscopic term. For convenience the J-values of all terms from S through I, of multiplicities 1-11 and 2-10 are given in Table 3, which applies equally to odd or even terms. Even multiplicites are on the left and odd on the right half of the table. The types of terms (in order of increasing L value) S, P, D, F, G, H, I are in the vertical column on the left. To arrange any multiplet in standard array, such as Multiplet No. 5 of Fe 1, a^5D - z^5F° , find the J-values of the two types of terms (odd or even) from Table 3. The term 5D is listed under multiplicity 5, and entry D on the left (J-values are 4, 3, 2, 1, 0). The term $^5F^\circ$ has J-values 5, 4, 3, 2, 1. Write these arrays as follows, with the low term horizontally arranged, and the high one vertically arranged: | z ⁵ F° a ⁵ D | 5D4 | ⁵ D ₃ | ⁵ D ₂ | 5D1 | ⁵D ₀ | |------------------------------------|----------------|-----------------------------|--|-----
--| | ⁵ F° ₅ | X ₁ | | Aller Microsia cocci y pobled deployed Microsia presidente | | S COMMON COMPANY OF THE PERSON | | 5F°4 | у1 | x_2 | | | | | ⁵ F° ₃ | Z ₁ | y ₂ | X3 | | | | ⁵ F° ₂ | | z_2 | уз | X4 | | | ⁵ F ⁰ 1 | | | z ₃ | У4 | x ₀ | Table 3 J-Values of Spectroscopic Terms | l√Iu | ltiplicity | 2 | 4 | 6 | 8 | 10 | 1 | 3 | 5 | 7 | 9 | 11 | |------|------------|----------------|---|---|--|--|---|-------------|-----------------------|---------------------------------|--|--| | L | Term | | | | | | | | | | | | | 1 | S | 1/2 | 11/2 | 21/2 | 31/2 | $4\frac{1}{2}$ | 0 | 1 | 2 | 3 | 4 | 5 | | 2 | P | 11/2 1/2 | $\frac{2\frac{1}{2}}{1\frac{1}{2}}$ | $ \begin{array}{c} 3\frac{1}{2} \\ 2\frac{1}{2} \\ 1\frac{1}{2} \end{array} $ | $\frac{41}{2}$ $\frac{31}{2}$ $\frac{21}{2}$ | $ 5\frac{1}{2} $ $ 4\frac{1}{2} $ $ 3\frac{1}{2} $ | 1 | 2
1
0 | 3
2
1 | 4
3
2 | 5
4
3 | 6
5
4 | | 3 | D | 2½
1½ | 3½
2½
1½
½
½ | 4½
3½
2½
1½
½ | 5½
4½
3½
2½
1½ | 6½
5½
4½
3½
2½ | 2 | 3
2
1 | 4
3
2
1
0 | 5
4
3
2 | 6
5
4
3
2 | 7
6
5
4
3 | | 4 | F | 3½
2½ | $\frac{41}{2}$ $\frac{31}{2}$ $\frac{21}{2}$ $\frac{11}{2}$ | 5½
4½
3½
2½
1½
½ | 6½
5½
4½
3½
2½
1½
½ | 7½
6½
5½
4½
3½
2½
1½ | 3 | 4
3
2 | 5
4
3
2
1 | 6
5
4
3
2
1
0 | 7
6
5
4
3
2 | 8
7
6
5
4
3
2 | | 5 | G | 4½
3½ | 5½
4½
3½
2½ | 6½
5½
4½
3½
2½
1½ | 7½
6½
5½
4½
3½
2½
1½ | 8½
7½
6½
5½
4½
3½
2½
1½ | 4 | 5
4
3 | 6
5
4
3
2 | 7
6
5
4
3
2 | 8
7
6
5
4
3
2
1 | 9
8
7
6
5
4
3
2 | | 6 | Н | 5½
4½
4½ | 6½
5½
4½
3½ | 7½
6½
5½
4½
3½
2½ | 81/2 71/2 61/2 51/2 41/2 31/2 21/2 11/2 | 9½
8½
7½
6½
5½
4½
3½
2½
1½ | 5 | 6
5
4 | 7
6
5
4
3 | 8
7
6
5
4
3
2 | 9
8
7
6
5
4
3
2 | 10
9
8
7
6
5
4
3
2 | | 7 | I | 61/2 51/2 | 7½
6½
5½
4½
4½ | 8½
7½
6½
5¼
4½
3½ | 9½
8½
7½
6½
5½
4½
3½
2½ | 10½ 9½ 8½ 7½ 6½ 5½ 4½ 3½ 2½ 1½ | 6 | 7
6
5 | 8
7
6
5
4 | 9
8
7
6
5
4
3 | 10
9
8
7
6
5
4
3
2 | 11
10
9
8
7
6
5
4
3
2 | Only those combinations between the low and high terms, for which J changes by O or ± 1 are "permitted". This rule restricts the number of lines to be expected to those denoted by x, y, and z, where the subscripts 1, 2, 3 represent decreasing J-values. The main diagonal lines are x_1-x_5 . The first satellites are y_1-y_4 and the second satellites, z_1-z_5 . In the RMT, the lines on the main diagonal are listed first, in order of decreasing J-values. From the example, the first lines entered are those in the positions x_1 , x_2 , x_3 , x_4 , x_5 in the Multiplet. The line at x_1 has the designation $a^5D_4-z^5F^\circ_{5}$, at x_2 $a^5D_3-z^5F^\circ_{4}$ etc. In the RMT the lines of this multiplet appear in the following order: | | λ | J | Desig | | |-----------------------|----------|-----|----------|-------------------| | $\mathbf{x_1}$ | 3719.935 | 4-5 | a5D-z5F° |) | | \mathbf{x}_2 | 3737.133 | 3-4 | " | 1 | | $\mathbf{x_3}$ | 3745.561 | 2-3 | " | Main Diagonal | | X_4 | 3748.264 | 1-2 | " | _ | | X5 | 3745.901 | 0-1 | " | , | | y ₁ | 3679.915 | 4-4 | " |) | | y ₂ | 3705.567 | 3-3 | " | First Satellites | | Уз | 3722.564 | 2-2 | " | First Satellites | | y ₄ | 3733.319 | 1-1 | " | 9 | | $\mathbf{z_1}$ | 3649.304 | 4-3 | 11 | | | \mathbf{z}_2 | 3683.054 | 3-2 | " | Second Satellites | | z_3 | 3707.828 | 2-1 | 44 |) | An example of a symmetrical multiplet should also be given. Multiplet No. 12 of Cr 11 (p. 43) has the designation a P-z⁴P°. Since the multiplicity (4) and type of term (P) are identical for both terms, the J-values are also identical. From Table 3 the J-values for a ⁴P term are 2½, 1½, ½. | z ⁴ P° a ⁴ P | ⁴ P ₂ 1/ ₂ | ⁴P₁⅓ | ⁴P⅓ | |---|---|----------------|-------| | 1P°234 | X1 | y 1 | | | ¹ P° ₂ ;;
⁴ P° ₁ ;;
⁴ P°;; | y 1 | X ₂ | y_2 | | ⁴P°₁₄ | | \mathbf{y}_2 | X3 | Here both sets of satellites involve the same J-values, $1\frac{1}{2}-2\frac{1}{2}$, $\frac{1}{2}-1\frac{1}{2}$ and $2\frac{1}{2}-1\frac{1}{2}$. Throughout the R M T for such cases, combinations in which J-values read from larger J to smaller J are entered first. Here, for example the pair $2\frac{1}{2}-1\frac{1}{2}$, $1\frac{1}{2}-\frac{1}{2}$ (y_1 and y_2 in bold face type above), precede the pair with J-values $1\frac{1}{2}-2\frac{1}{2}$, $1\frac{1}{2}-1\frac{1}{2}$ respectively. According to elementary theory the leading line of the principal diagonal is the strongest in the multiplet, and first satellites are stronger than the second, while the two sets of satellites in a symmetrical multiplet are comparable.¹ In the majority of spectra intersystem combinations occur, i.e. those in which the multiplicities of the terms differ by 2 or even 4, as for example multiplets 1 and 332 of Fe 1, $a^{\circ}D-z^{\prime}D^{\circ}$ and $z^{\prime}F^{\circ}-e^{\circ}G$ respectively. These multiplets often include strong lines, particularly for the heavier elements. The rule $\Delta J=0$ or ± 1 is strictly observed but there are no known formulae for the prediction of intensities, which are often apparently erratic. When intersystem lines are strong, intensities in regular multiplets often deviate from the formulae. The intersystem multiplets are arranged in the R M T on the "diagonal" basis described above, so far as irregularities permit. 29. For all types of multiplets the reader must bear in mind that the arrays described above, and the J-values in Table 3 give all the possible permitted theoretical transitions. In many cases the R M T does not give theoretically complete multiplets. Reasons for this are: - 1. When the strongest lines of a multiplet are likely to be very weak in astrophysical sources, the weaker ones have been deliberately omitted even though they may have been observed in the laboratory. Omissions are indicated by a "†" following the "Multiplet Designation". - 2. Individual lines in a multiplet are sometimes much fainter than theoretically expected and have never been observed. Sequences along the diagonals are thus broken. For such lines predicted positions are given only when it is believed that they may be observable astrophysically. For details see Russell, Mt. Wilson Contr. No. 537; Ap. J. 83, 129, 1936. 3. In some cases one or more components of a spectroscopic term have not yet been indentified. Such cases may be detected by comparing the column headed J for a given multiplet with the theoretical array ermitted lines, just described. 30. For the more important spectra, limited lists of the leading unclassified lines follow the multiplets. The 1 T is not designed as a source for the investigator who is interested primarily in unclassified lines. Three general factors have controlled the selection: the abundance of the element in astronomical sources, the le of the analysis and the accuracy of the laboratory material. Under "Anal A" more lines will be unclassified a complex spectrum like Fe I than for a simpler spectrum, but the
percentage of strong lines will be small. Under all B" there will be more and stronger unclassified lines than if the grade were A, etc. If A. S. King has made a temperature classification of the spectrum the leading unclassified lines can be readily sen from his lists. In such cases his temperature class follows the intensity in the R M T Among arc spectra the lists of unclassified lines are longest for N I, Ti I, Cr I, Mn I, Fe I, Ni I, Tm I. Only a lines are listed for Si I, S I, Ca I, Sc I, V I, Co I, Y I, Lu I, and none for any other elements. For first spark spectra the lists of unclassified lines may be summarized as follows: nited Si II, A II, Fe II, Cb II, La II, Nd II, Sm II, Gd II, Tm II. y limited O 11, S 11, Cl 11, Ti 11, V 11, Cr 11, Y 11, Zr 11, Ce 11, Pr 11, Eu 11, Hf 11. asures inadequate Mn II, Co II, Ni II. Lists are given for only five "third" spectra: C III (where a dubious classification has been suggested for the s) N III, S III and Fe III. The only one of any length is that of Fe III. For some spark spectra, notably La 11 and Fe 111 it is not certain that the separation of the lines in different tes of ionization is definitive. This is mentioned in the R M T under these spectra. For many spectra the aration is so uncertain that no unclassified lines have been included. For no spectrum is a complete list given. 31. A few notes are appended to the list of multiplets for certain spectra. These fall into two classes: those ling with notation (see § 37), and those dealing with fine structure. This book does not discuss fine structure or tope effects in any detail. Those spectra in which the fine structure or isotope effects should be called especially he attention of the astrophysicist have this fact mentioned, as follows: Li II Very wide fine structure Mg 1, Al 11 Fine structure Hg I, Tl I Many lines show fine structure He II, Bi I Wide fine structure. # COLUMNS OF THE TABLE OF MULTIPLETS # 32. Wave-length. The data for each spectrum are given in seven columns. The first contains the *laboratory* wave-length in I A ts. In the earlier edition solar wave-lengths were listed for all but the lighter elements (see § 5). Since any ar line may be a blend, it was decided to replace this entry by laboratory material. An effort has been made to ect the best available wave-length for each line. The individual lists are far from homogeneous—there is often enormous range in accuracy among the lines of a given spectrum. The reference from which each line has been taken is indicated in column two, by the letters A, B, C etc. Table 5. xxiv), contains the number of the reference in the bibliography to which the letters refer. The letter "P" in this 1mm denotes throughout that the wave-length is predicted from the laboratory term values, which may be found the references to analysis, Table 9 (p. xxvii). The order of the letters represents roughly the estimated precision of the measures, but this must not be interted too literally because some investigators have measured only limited regions of a spectrum. Consequently, eral accurate sources may be used within a multiplet. Furthermore, the letters A, B, etc. denote very different rees of accuracy for different spectra. While the earlier letters of the alphabet are the more favored choices, it ald be erroneous to conclude that the letters are arranged strictly according to the writer's rating of the accuracy the measures. # 33. Symbols in the R M T. Since most of the symbols occur in column one, they will all be described here. Wave-length column: - // This symbol follows the wave-length of the "Raie Ultime" as determined from observations in the laboratory. High transition probabilities as well as low energy levels are involved, and they do not always come from the lowest levels. When the known Raies Ultimes are to the violet of λ2950 they are not included in the R M T. With the exception of Eu II1 they are all quoted from Meggers 2, who generously furnished the data on first spark spectra 3 in advance of publication. - * An asterisk precedes the wave-length throughout the R M T to denote a blend. If no symbol follows the wave-length, the line is blended with another line in the same spectrum. For example, the line *2970.106 appears in multiplets 10 and 11 of Fe 1. An "*" is also used to denote blended intensities. For symbols in the intensity column see § 34G. - § This symbol follows the wave-length (an """ always preceding) to indicate a blend of an arc and spark line; or of two spark lines of the same element in spectra of different degrees of ionization. When this pair of symbols appears with an arc line it denotes that the arc line is blended with a line in the first spark spectrum of the element. Similarly, if it appears with a line in a first spark spectrum, the spark line is blended with an arc line of that element. Examples: - Fe I Multiplet No. 28 *3116.633§—Blend of Fe I and Fe II. - Cr 11 Multiplet No. 4 *3349.34\ Blend of Cr 11 and Cr 1. All uses of pairs of symbols not covered by the general cases of blends of arc lines with those in the first spark spectra or vice-versa, as described above, are summarized in Table 4, where another pair of symbols "* and §§" is also introduced. TABLE 4 SYMBOLS DENOTING BLENDS-SPECIAL CASES | Spectrum | * and § | * and §§ | |----------|--------------|--------------------------------| | C 111 | | C II and C III
C III " C II | | Рп | PII and PIII | P 11 " P 1V | | Рш | Рш" Рп | Рш "Ри | | P IV | Piv "Piii | Ри "Рп | | SII | Sıı "Sııı | | | S 111 . | Sm "Sm | | | К 111 | Km "Kn | | | Fe 11 | | Fe 11 " Fe 111 | | Fe пп | Fени" Fен | Fени" Fen | Column one of Table 4 indicates the spectrum in which the symbols are found. Columns two and three of the Table contain the pairs of symbols used and the meaning of each. For example: - C 11 Multiplet No. 45 *4368.14§§—Blend of C 11 and C 111. - S II Multiplet No. 50 *3860.648—Blend of S II and S III. The symbols mentioned above apply to blended lines which have come to the attention of the writer, but doubtless many more blends exist than are thus noted. A careful examination of the Finding List should reveal any important blends, but this list was prepared after the R M T was typed, and consequently could not be used to check the thoroughness with which the blended lines are marked. - m An "m" preceding the wave-length indicates that the line is masked (see § 34F). - † This symbol follows the Multiplet Designation to call attention to the fact that not all the lines observed in the multiplet are listed in the RMT. The violet limit $\lambda 2950$ explains the omission of some strong lines. Most of the omitted lines are too faint to be of astrophysical importance. Russell, Unpublished material. ² Meggers, Journ. Opt. Soc. Am. 31, 39 (No. 1), 1941. ³ April 1941. #### 34. Intensity. Column three contains the estimated laboratory intensity. It has been included only because of persistent uests. The intensities must be used with great caution not only because of the glaring lack of homogeneity in the imates, but also on account of the difference in the intensity scales used by various investigators. For each spectrum the writer has tried to adopt the best existing set of estimates made by a good observer who covered a long range of wave-length. In the red, the intensities by Meggers and Kiess have been the first choice. the visible, the arc intensities by A. S. King are given for arc spectra and for first spark spectra of the rare earths. other spark spectra, spark intensities have been used. When the intensities of the lines of a spectrum are taken from one or two main references they are not given parentheses. If only a few intensities are from one source, or if the listed ones are probably on a very different le from the majority used for a spectrum, parentheses are used. In general, the parentheses denote that the ensity is not the first or second choice. Table 8, Page xxvi, gives the references from which the intensities have n taken. The reader is warned not to assume that the wave-length and intensity come from the same reference. Is may be the case, but frequently it is not. The intensity column contains several types of notes discussed below under entries A to G: A The letters used to describe the intensities are as follows: - d Double - g Ghost; g coin Ghost coincident; gn Ghost near - l Shaded to longer wave-length 1 - n Diffuse (without structure) or hazy - N Very diffuse (without structure) or very hazy - p Part of band - r Narrow self-reversal - R Wide self-reversal - s Shaded to shorter wave-length (noted by "v" or "nv" in some papers)1 - tr Trace - w Wide (fine structure type), broad or complex - W Very wide (fine structure type) or very broad B The intensity column is often blank for predicted lines because most of them have not been observed in the oratory. If the predicted position is assumed to be more accurate than the measured one, the laboratory intensity iven with a predicted wave-length. C A dash indicates that the line is so faint that no laboratory intensity has been assigned, except for H, D and Π , where no intensities are listed. D "Forb" indicates that the line is forbidden but has been observed in the laboratory. Lines due to Stark Effect thus marked. E Familiar "names" of selected lines are included: Series Names: H Ha, H β etc. D Da, D β " Fraunhofer Names: He I Da Na 1 D₁ and D₂ Ca 11 H and K F When an important line is masked, "m" precedes the wave-length, the predicted position of the masked line iven, and the spectrum to which the masking line belongs, is noted by the chemical symbol in the intensity column. Roman numerals have been omitted except for masked lines of Fe III. If for example "Fe" or "Ti" appears in intensity column, the line in question is masked by Fe I or Ti I the "I" being omitted because of the limited ce in this column. Similarly, a "+" is mostly used for first spark spectra in place of "II," although
the contional use of Roman numerals is fully recognized. ¹ Recommended by the International Astronomical Union-Trans. Intern. Astr. Union 6, 100, 1938. # G Symbols in the intensity column: - * Blended Intensity - Predicted line of Fe I present in the solar spectrum; •? denotes that the solar identification as Fe I is subject to some question. - 35. Columns four and five give the low and high excitation potentials (E P) of the levels involved in the production of the line (see § 27). Some E P's are given in parentheses in the R M T to denote that they are not accurately known. In analyzing a spectrum it often happens that two or more sets of terms of different multiplicity exist that are unconnected, since no intersystem combinations have been detected. If long series, whose correctness is unquestionable, can be found, the limits furnish a fairly accurate determination of the relative positions of the different types of terms. This is the case for Be 1, B 11, C 111, O 111, and O 11, but no symbol has been introduced to indicate that intersystem combinations have not been observed. The limits are less accurate for N 11, N 1v, O 11, O v and F 11. The E P's affected by this are in parentheses. For Ce II, two sets of terms are well known but they are unconnected. For this reason the lines are listed in two Groups, I and II. Within each group the relative values of the E P's are correct, but the terms in Group I are believed to be lower than those in Group II by about 0.6 volt. In Group II all values are, therefore, enclosed in parentheses. For Ce III parentheses are used because the lowest level may not have been found. For Si II, P III and Mn II some terms are established by their internal separations, but are entirely unconnected with the rest of the terms. Here the E P columns contain question marks. In the earlier Multiplet Table all E P's were obtained by multiplying the term values in cm-1 by the factor 0.00012345. An improved value of this factor, 0.00012336, was published by Birge 2 in 1929. Since then he has announced that 0.00012395 is more nearly correct 3. This last change deserves serious consideration—it involves a change in "e", the charge on the electron, which will doubtless be carefully checked experimentally in the near future. The change is surprisingly large and affects many calculations of an astrophysical nature. Although it is wrong, in principle, to perpetuate the use of an incorrect value of a fundamental physical constant, the old value 0.00012345 has been used throughout the R M T in calculating the E P's (and I P's for which the limits were known. See § 23). The reason is threefold: - 1. The errors in stellar temperatures and other quantities based on observational data far exceed those introduced by the change in this factor. - 2. Until a definitive value of the constant is available it has seemed an unjustifiable expenditure of time and money to revise the extensive calculations, many of which had already been done with the oldest value. - 3. The change in the value of "e" enters into so many calculations, that to recalculate the E P's and I P's is far from sufficient. As soon as the new value is confirmed without likelihood of further change, it should be used in all calculations of astrophysical importance. The last two columns contain J-values and Multiplet Designations. These have already been discussed in § 28, but a few comments are in order. When levels of a term are so close that they are unresolved, all the J-value for the term should be listed. This is impossible because of limited space, and consequently the column headed J is frequently blank or has the J-value of only one level entered. The multiplet numbers which appear in parentheses under the Multiplet Designation are reference number to be used in locating any line. (See §6). In each spectrum the numbers start with "1." All lines in a multiple have the same multiplet number. These numbers are entered in the Finding List. # VII. SPECTROSCOPIC NOTATION The notation used in the column headed "Multiplet Designation" differs for spectra which contain conspicuous series and for the complex spectra which do not. # A. Series Spectra 36. For many elements the spectra become more complex as the degree or ionization decreases. The terms of each spectrum are the parent terms or "limits" of the terms in the spectrum of the next lower degree of ionization The addition of s, p, d, f, etc. electrons to each limit produces arrays of terms accurately predictable from theory. Harrison, Albertson and Hosford, Journ. Opt. Soc. Am. 31, 439 (No. 6), 1941. Phys. Rev. Suppl. 1, 62 (No. 1), 1929. Rev. Mod. Phys. 13, 237 (No. 4), 1941; Reports on Progress in Physics 8, 131, 1941. The simplest case is illustrated by O vi. Here the lowest term of O vii, $1s^2$ ¹S, is so much lower than any other no other limit need be considered. The addition of a "running" s, p, d, f... electron to this state produces s of doublet S, P°, D, F°... terms in O vi. In this case the electron and the terms are of the same type. For aple, the ground term of O vi is $1s^22s$ ²S, and the next term $1s^22p$ ²P°. The term type and total quantum number of the running electron suffice to define the configuration. In the R M T the notation 2^2 S, 2^2 P° etc. is used in tra of this type. To illustrate, Multiplet No. 1 of Li i has the designation 2^2 S- 2^2 P°. (Other features of the tion are discussed in §28 and in Table 3). The case of O v is more complicated because 2^2P° of O vi is not much higher than 2^2S and terms from both ts are important. The addition of a running electron to these limits gives the following terms: | Limit | 1s ² 2s | 2 | S | 1s²2p | ²P | | | | | | |-------------------|--|---|-----------|-------------------------------|--|-----------------------------------|------|-----|-----|-----| | Added
Electron | Config | Ter | ms | Config | Ter | ms | | | | | | 3s
3p
3d | 1s ² 2s3s
1s ² 2s3p
1s ² 2s3d | ¹ S
¹ P°
¹ D | 3D
3B, | 1s²2p3s
1s²2p3p
1s²2p3d | ¹ P°
¹ S
¹ P° | ¹ P
¹ D° | ¹D , | 3P° | ³D° | ³F° | configuration is 1s²2s² gives only ¹S; and 1s²2p² only ¹S ¹D ³P. It appears from this array that if the terms having the limit 22S in O vi are labeled 31S, 33S, 31P°, 33P°, 31D, 33D, those from 22P° are labeled 3s1P°, 3s2P°, 3p1S 3d1P° no ambiguity occurs. This notation has been sted in the R M T for a number of spectra in which two limits, one odd and one even, had to be considered. When two or more of the effective limits are all even or all odd an addition to this notation is necessary. For is derived from the lowest of such a group of limits, the running electron is given as before; for those derived the next higher limit a prime is affixed; and for those from the limit above this a double prime. Where the st limit is an S term, the type of the electron and of the term itself are the same, and the former is omitted. example, the limiting terms in O II are 'S', 2D' and 2P' in order. The addition of a 3p electron to these gives ong others) the terms in O I here called 3°P from 4S', 3p' 3D from 2D' and 3p" 3D from 2P°. In several spectra there remain terms which cannot be described by this scheme: but it has been found possible ive a special abbreviated form of the configuration notation, etc. which make their nature intelligible to one ed in the theory of spectral structure. There is at present no general agreement regarding the use of abbreviated notation of this sort. The notation adopted has been largely influenced by the limitations of the photographic process—and is not presented as an l system—but it illustrates the glaring need for the preparation and general adoption of a better one. # 37. Special Cases. The notation used in the R M T for Ne 1, Na 11, A 1, K 11 and Ca 111 deserves special mention. Paschen's notaformerly used for spectra of this type defined the total quantum number and the type of electron, but introduced cripts that were not inner quantum numbers. A revised notation which is given in detail by Bacher and Goud1 is adopted here. The levels with "s" electrons were called by Paschen s2, s3, s4 and s5; those with "p" electrons 1 p1 to p10 etc. In this book the subscripts used by Paschen have been omitted but the rest of his notation is 1 ined with numbers assigned to the levels, in order of increasing values for the lowest group of levels of each type. 1 the members of a series have the same number, but with this arrangement homologous levels which have the 2 I-values for different elements are not always assigned the same index number. Ne 1 illustrates the changes: Ne I NOTATION | Paschen | Revised | Paschen | Revised | |-----------------|---------|---------|---------| | | | | | | 3s5 | 3s ·1° | | | | 3s4 | 3s 2° | 4d6 | 4d 1° | | | | 4d5 | 4d 2° | | 3p10 | 3p 1 | 4d'4 | 4d 3° | | 3p ₉ | 3p 2 | 4d4 | 4d 4° | | 3p ₃ | 3p 3 | | | Atomic Energy States, McGraw Hill, New York, London, 1932. Most of the levels for spectra of this type are not grouped into terms and consequently multiplets in the ordinary sense cannot be listed. Arbitrary groups of lines have been formed and numbered to facilitate the search for a given line. In Ne 1 for example, all important lines from the level 3s 1° combining with "3p" levels have multiplet number 1; those from 3s 1° combining with 4p levels have multiplet number 2 etc. #### B. Complex Spectra 38. In the majority of complex spectra the terms are so numerous that it is impracticable to designate them by their configurations. For these spectra the prefixes a, b, c, d are assigned to the low terms of each type and z, y, x etc. to those which combine with them. In Fe I, for example, the lowest 3F term is 3F , the next higher one 3F etc. There are ten ${}^3G^\circ$ terms. They are
labeled ${}^2G^\circ$, ${}^3G^\circ$ ${}^3G^\circ$. In Multiplet No. 449 the designation is 3G - ${}^3G^\circ$. Here the low term is the second 3G term as indicated by the prefix "b". The high term is the seventh odd 3G term, as indicated by "t". 39. In many complex spectra it is impossible to group all known levels into spectroscopic terms. These miscellaneous levels are assigned numbers, and the superscript "o" if they belong to the odd set. Many combinations between terms and miscellaneous levels are given in the R M T and assigned multiplet numbers. For example, the designation of multiplet number 450 of Fe 1 is b^3G-12° . Numbered levels are numerous in spectra of the rare earths. The arrangement is similar to that described ir § 27, i.e. the lines from a given low term are listed in order of increasing E P of the numbered levels. In Sm 11 only the low levels have been grouped into terms. All high levels are numbered odd levels. In the RMT the combinations of the separate components of the low terms with arbitrarily grouped odd levels are assigned multiplet numbers. For example, the combinations of a^8F_{34} with the levels labeled 1°, 2°, 5°, 23°, 35°, 37° have multiplet number 1. The E P's increase for the various groups similarly to those in spectra with regular terms, as discussed in §27. # VIII. SPECIAL NOTES ON INDIVIDUAL SPECTRA 40. H The wave-lengths listed for these spectra have been calculated for the center of gravity of the lines taking into account the fine structure, and using the values of R_H, R_D and R_{He} respectively, giver by Birge in 1941. These computations were made by Dr. J. E. Mack for inclusion here. The writer is deeply indebted to Dr. Mack for his cordial cooperation in furnishing this unpublished material. No intensities have been included for these spectra. O II Improved term values are needed. The writer has constructed the multiplets from Edlén's term list. Measures by different investigators are discordant, and considerable editing has been done especially in the interpretation of blends. For the sextet terms the configuration in abbreviated form is used to indicate that the terms are from the high limit sp³ ⁵S° in O III, namely: sp³3p ⁶P, sp³3d ⁶D°, sp³4s ⁶S°. Na 1 The fine structure components of D₁ and D₂ have been measured with the interferometer by Meissner and Luft ², as follows: | $\mathbf{D_1}$ | D_2 | |---------------------|-------------------| | 5895.9316 | 588 9.9579 | | 5895.9103 | 5889.9380 | | Center of 5895.9236 | 5889.9504 | The measures listed in the R M T are taken from a source where the lines appeared as impurities, since it was thought that for astrophysical purposes these measures might be preferable to those of the fine structure components. The two lines $\lambda 11403$ and $\lambda 11381$ were also measured as impurities. Improved laboratory intensities are needed for Na 1. ¹ Rev. Mod. Phys. 13, 233 (No. 4), 1941. ² Ann. der Phys. (5) 29, 698, 1937. - Na II The changes made in the Paschen notation for Na II have been discussed in § 37. Some terms are also known in this spectrum, and two types of notation appear. The lines are listed in order of increasing low level and these levels combine with the terms. Although no complete multiplets are listed, multiplet numbers have been assigned as usual. For example, multiplet No. 17 is 3p 9-4s³P°. In spectra of this type no attempt has been made to indicate omitted lines by the use of a "†". The "List D" indicates that only the leading lines are listed. - Mg I Two sets of series, 31D-1F° and 33D-3F° have been extended by the use of infra-red solar wave-lengths from Babcock's Table (see § 15)1. This has been done on the assumption that the 1F° and 8F° terms are coincident, as Paschen suggested for the first members of the series. The predicted wave-lengths in the R M T are obtained from solar term values. The series appear to be so well confirmed that the solar wave-lengths are preferable to the predicted ones, but for uniformity, no exception has been made for these series lines of Mg 1. In Multiplets 7, 8 and 9 the J-values and designation apply to all three lines entered. In each case singlet combinations are involved. Normally one one line is observed in a combination of this type, but the fine structure components of each line are listed. - Al II The G and H terms given by Paschen and Ritschl 2 are in both cases assumed to be coincident singlet and triplet terms. When combinations of these terms with singlet terms are listed in the R M T, ¹G or ¹H° has been used in place of ^{1,3}G or ^{1,3}H°. Similarly, the last three entries are given as singlet combinations, but in reality they are probably singlet and triplet combinations. Double multiplicities for unresolved terms have not been used in the R M T. - Si II Owing to the use of the photographic method of publication, it has been impossible to add lines without retyping one or more pages. One predicted multiplet of Si 11 has been omitted which should possibly have been inserted. | I A | Ref | E | E P | J | Multiplet | |---------|-----|------|-------|-----------|-----------| | | | Low | High | | Desig | | 4075.81 | P | 9.80 | 12.82 | 21/2-11/2 | 3°D-5°P° | | 4077.09 | P | 9.79 | 12.82 | 11/2-1/2 | | | 4073.05 | P | 9.79 | 12.82 | 11/2-11/2 | | - P III The multiplets are listed slightly out of order, but it was thought unnecessary to retype the page on this account. - S II The measures by different observers are very discordant. This spectrum needs thorough observation. Accurate wave-lengths, intensity estimates and term values, and further analysis are desirable. - A 11 This spectrum is fairly well analyzed but needs careful editing before a definitive analysis can be published. Rosenthal's has measured many lines and from his measures alone a consistent set of term values could probably be calculated. The lists of classified lines are not homogeneous and a larger residual in the observed minus calculated wave number must be permitted than for most spectra. The multiplets listed in the R M T appear to be fairly satisfactory in spite of the inaccurate term values. One term, labeled a²P by de Bruin is puzzling because it has no configuration assignment. It has been retained, but needs to be checked carefully when the analysis is carried further. This is the only case where both the running electron notation and the prefix "a" appear in a given spectrum. Ca 1 Although the analyses of these spectra are almost completed, the spectra require further laboratory observation. Accurate wave-lengths, especially of the fainter lines are urgently needed. It is surprisingly difficult to obtain accordant term values. The interferometer measures made at Allegheny furnish an excellent starting point, but these spectra still invite the attention of the laboratory investigator, from the violet through the infra-red. ncock and Moore, Ap. J. 101, 374, 1945. n. der Phys. (5) 18, 867, 1933. n. der Phys. (5) 4, 49, 1930. - Sc II Multiplet No. 9. Enter intensity 2 for \(\lambda 3923.503. \) - 41. Fo I The rigorous arrangement of multiplets described in § 27 applies only approximately to Fo I. In this spectrum the multiplet numbers reach 1352 but this figure is not definitive. Owing to an extension of the analysis which altered some term assignments, a number of multiplets were rearranged after the lines and multiplet numbers had been entered and checked in the Finding List. All the revisions were entered in the RMT. For unchanged multiplets the original multiplet numbers were retained. The revised multiplets were inserted as nearly as possible in the correct place and assigned the available numbers, or to avoid duplication, a number followed by "a". As a result of these changes the multiplets do not always have consecutive numbers and some numbers are omitted. The renumbering of all the multiplets entailed so many changes in the Finding List that it was not undertaken. In three multiplets of Fe 1, Nos. 3, 7 and 81, an "R" is entered under the multiplet number. A line has been inadvertently omitted from each of these multiplets. The omitted lines are listed on page 65 at the end of the Fe 1 multiplets, and preceding the list of unclassified lines. In multiplet No. 78, columns one and two, \(\lambda 3497.137\) V should read 3497.15 P. Multiplet No. 1151 should be rejected; $\lambda 4618.568$ is erroneous. - Ni 1 Attention has been called to the fact that the intensities in Multiplet No. 62 are not so abnormal as indicated here. It has been impossible to insert revised estimates. - Rh II The use of the symbol "†" to denote omitted lines has not been checked owing to the lack of a complete line list. It has been assumed from the term lists that the fainter members of the multiplets thus marked have been observed. - Ce II The lack of connection between Groups I and II has been mentioned (§ 35). It is assumed that the terms in Group I are the lower set. The prefixes a, b and c etc. have been assigned to the low set of terms of each Group. There can be no ambiguity because in Group I the low set is even, while in Group II it is odd. W II All the miscellaneous levels published by Laun 1 have been numbered in order. These numbers are used in the R M T in place of Laun's notation. # IX. SPECTRA OMITTED FROM THE R M T. These may be grouped in several general classes. 42. Spectra of probable astrophysical importance for which there is no analysis to date. These spectra are mentioned in the RMT in the appropriate place with the remark "No Analysis" and the date. If A. S. King has assigned a Temperature Class to the lines, this fact is noted. For example: page 86, Ce i No Analysis May 1942 (Temperature Class). The spectra in this class are listed in Table 5. Table 5 Spectra Omitted from R M T # No Analysis | Spectrum | Ref. to
Temp. Class | Spectrum | Ref. to
Temp. Class | |----------|------------------------|----------|------------------------| | Ce
I | 215 | Dy I | 217 | | Pr 1 | 215 | Dy 11 | 217, 229 | | Nd 1 | 219 | Но 1 | 217 | | Tb 1 | 217 | Но п | 217 | | Tb 11 | 217 | Th 1 | 123 | All but Th 1 have been observed by A.S. King. The bibliography numbers of the references to the work of temperature classification are entered in column two. ¹ Bur. St. Journ. Res. 21, 207 (RP 1125), 1938. 43. Analyzed spectra having lines observed in the visible region, but omitted from the R M T as unimportant strophysically. These spectra are mentioned in the R M T with the remark "See Introduction". They are listed in Table 6 ith numbers from the bibliography referring to the papers on analysis. Table 6 Spectra Omitted from R M T Not of Astrophysical Interest | Spectrum | Ref. to
Analysis | Spectrum | Ref. to
Analysis | Spectrum | Ref. to
Analysis | |----------|---------------------|----------|---------------------|----------|---------------------| | B 1 1 | 16, 89 | Rb 11 | 238 | Cs II | 309, 405 | | F iv | 84 | Pd 11 | 384, 24 | Та п | 192 | | F vi | 83, 87 | Ag 11 | 383, 24 | Pt 11 | 387 | | Cl iv | 31, 32 | Cd 11 | 372, 401 | Au 11 | 324 | | Ga 11 | 376 | In 11 | 317 | Hg 11 | 313 | | Se 11 | 244 | Sb 11 | 236 | Tl 11 | 106 | | Br 1 | 194 | Ir | 107, 69, 325 | Pb 11 | 80 | | Br 11 | 232 | In | 232 | Віп | 64, 115 | | Krı | 274, 276, 165 | Xe ı | 156 | Rnı | 329 | | Kr 11 | 53 | Хе п | 155 | Th III | 54 | The low abundance of these elements in celestial sources, and the high E P of the lines in the visible region have een the determining factors for omission. - 44. There are three types of spectra for which little or nothing is known: - Er, U. Lines have been observed in spectra of these elements, but the spectra of various degrees of ionization ave not been separated. - Te II, Re II, Os II, Ir II, Po, Ac, Pa. The writer has found no references to work on these spectra. - Ma, Il, 85, 87. There is nothing known about these elements. It appears doubtful whether they have been accessfully isolated. No reference is made in the body of the R M T to those spectra whose leading lines are in the region to the tolet of $\lambda 2950$, since this is a book designed for astrophysical use. Selected spectra of this type are included in the ection dealing with Forbidden Lines (see § 45 and pp. 100–110). # .. FORBIDDEN LINES 45. The author of a "Multiplet Table of Astrophysical Interest" published in 1945 is obliged to consider the robable importance of the forbidden lines of *all abundant* elements. This is indicated by the work of Bowen on ebular lines, of Edlén on coronal lines, and of Swings, Merrill and others on various astronomical spectra. Following the body of the R M T is a Table of Forbidden Lines of Astrophysical Interest (pp. 100-110). This able is arranged in detail similarly to the R M T. The lines in a multiplet are listed by diagonals and the multiplets re listed in the order described in § 27. In order to avoid duplication, all multiplets of forbidden lines have an "F" sllowing the multiplet number, 1F, 2F etc. Unlike the R M T, the headings for each spectrum contain only the ame of spectrum and the I P. No grading of analysis or list has been attempted and no date of completion of the sanuscript is given. All of this section has been written between January and May 1945. In preparing this manuscript the writer has been most cordially assisted by Dr. Swings. He has edited the lists and offered many valuable suggestions concerning the limitations of the Table. No explicit statement can be made to the principles of selection adopted, but severe restrictions have been necessary in complex spectra because of the great array of possible forbidden transitions. For simple spectra only a limited number of transitions occurs, ut as the complexity increases the number increases rapidly. The general principles followed are: A Only transitions from metastable states are forbidden. Consequently only the lowest terms in a spectrum re considered. ¹ Lines of B 1 have not been observed in the visible, but should exist. - B The lists are restricted to multiplets involving likely combinations as regards multiplicity and azimuthal quantum numbers, except for those in which the lowest terms are involved. In Fe II, for example, many more combinations and more unlikely combinations from the lowest term, a D are listed than from higher terms. - C Transitions involving $\Delta J = \pm 2$ as well as $\Delta J = 0$ or ± 1 are listed for the multiplets most likely to be important. - D The high E P is limited to about 4.0 for the most abundant elements and to about 3.5 for arc spectra of these elements. - E The lists have been extended to include lines that may be important in the red and infra red. Forbidden lines of neutral atoms are included only for the most abundant elements. The multiplets listed must be interpreted with caution, because of these restrictions. If complete multiplet arrays are written up from Table 3, lines omitted from any multiplet among the forbidden lines can be detected. Those interested in longer lists must construct them from the term lists given in the papers on the analysis of each spectrum (Table 10 p. xxix). The great majority of forbidden lines are predicted from the term values. If accurate measures have been obtained, they are entered with a letter indicating the source, as follows: - N Nebular N II, O II, O III, Ne III, Ne v, S II - L Laboratory O 1 - A Auroral O 1 - C Coronal Entered under the predicted positions of lines of highly ionized F_{ℓ} and N_i When term values permit, the wave-lengths of predicted lines have been calculated to two decimal places. For some spectra the term values are not accurately known, but the internal separations are well established. For these the position is given to 0.1 A. For the most inaccurate wave-lengths no decimals are recorded and in very dubious cases a "?" follows the wave-length. Some I P's and some predicted wave-lengths have been obtained by interpolation or extrapolation along the isoelectronic sequences. These are: | | Te | rm | | I P | | |---|--|--|---|--|---| | Sp | Term | Sp | Term | Sp | Sp | | Cl II
S xII
A III
A XI
A XIV
K V
K VI | ¹ S
² P
¹ S
³ P
² P°
² P° ² D° | Ca vii
Ca xv
Fe xv
Ni xii
Ni xiii
Ni xv
Ni xvi | 1S
3P
3P°
2P°
2P°
3P, 1D
3P | Ca v Sc vi V viii Cr viii Cr ix Mn ix Mn x | Fe x Fe xi Fe xiii Fe xiv Fe xv Co xi Ni xiii | As in the body of the RMT, EP's in parentheses denote that the terms involved do not have observed connections with the rest of the terms of the spectrum. Dr. Swings has pointed out that forbidden lines are essentially emission lines, and therefore, astrophysically the high E P is the important one. For this reason the multiplets of a spectrum should be listed by high E P rather than by low E P (§ 27). It is fully recognized that emission lines are better handled in this order and it is hoped that all multiplets having the same high term can be readily selected in any spectrum. The arrangement by low terms has been adopted merely for the sake of uniformity. Another highly significant comment has been made by Dr. Swings 1, namely, that "certain forbidden transitions that are not directly observable may play a role in astronomy, for example, by flourescence excitation, ionization or dissociation." ¹ Letter, May 1945. The importance of lines in the extreme violet such as $\lambda 303.7$ of He II, $\lambda 303.7$ and $\lambda 374.4$ of O III and the pair at 374.4 of N III, in producing the nebular lines has been fully discussed by Bowen ¹. The violet limit, $\lambda 2950$, imposed this book has excluded both permitted and forbidden lines in the violet that are extremely important in the interretation of forbidden lines observed in astronomical spectra. Readers are, therefore, urged to consult the individual apers on this subject, as it has been regarded as beyond the scope of the present work. # II DETAILS OF PUBLICATION The preparation of the manuscript of this book has covered such a long period of time that the typing has been one as various spectra were finished, which is not in the order of increasing atomic number. It has been practically npossible to terminate every section of the manuscript at the end of a typed page. Some important insertions have lso broken the continuity of typing. Consequently, the pages are frequently unequal in length and some have large aps. No serious effort has been made to avoid irregularities of this kind, for two reasons: first, the retyping and echecking of these large pages in order to adjust spacing has seemed an unjustifiable procedure, particularly since here is always the chance of introducing new errors in handling so much tabular data; second, the blank spaces may rove to be useful for notes. Doubtless there are more serious irregularities, namely inconsistencies in notation of similar spectra. During he course of the work the manuscript has been widely distributed to interested investigators. To date it has never all een assembled in one place. The writer has been unable to remember all the details connected with each spectrum, ut has proceeded on the assumption that minor irregularities would not impair the value of the R M T so seriously s the delays required to correct all of them. 46. One of the purposes of this book has been to provide adequate material for fairly definitive identifications f solar lines. Mention has been made of the forthcoming publication by Babcock and others on the Infra-Red solar Spectrum λλ6600-13495 (§§ 7, 15). A similar program covering the violet
solar spectrum is being carried on t Mount Wilson by Babcock. The writer has been working on the identifications of the solar lines throughout the ntire solar spectrum, with the aid of the manuscript of the R M T. The publication of the results to the violet of 6600 has been postponed in order to complete the present book. It is planned to publish them as soon as possible. #### III. BIBLIOGRAPHY Following the text is a Bibliography in which all references used in the preparation of this book are listed in the lphabetical order of the names of the authors. Each reference is assigned a number for purposes of cross reference. 47. In the R M T (excluding the section on Forbidden Lines) each spectrum has three sets of references: one iving the sources from which the wave-lengths have been taken—Table 7; one giving the first, second, etc. choices f references for intensity estimates—Table 8; and one referring to papers on analysis—Table 9. The Tables are arranged similarly. In each, the first column gives the chemical symbol of the element and the pectrum (1=arc,11 first spark etc.), the second the number with which to enter the Bibliography. In Table 7 the letters 1, B, C, etc. are taken from column 2 of the R M T for each spectrum. In Table 8 the first choice for intensity is idicated in column one, the second in column two etc. In general, reference numbers are in italics when the intensities from the reference are in parentheses in the R M T (see § 34). Table 9 does not list choices. It contains references to papers on analysis that were used in compiling the R M T. Table 10 gives the sources used for analysis of spectra contained in the Table of Forbidden Lines. It is arranged milarly to Table 9. Following the Bibliography are an index by pages, and one by elements arranged in the alphabetical order of the semical symbols. ¹ Ap. J. 81, 1, 1935. Table 7 References—Wave-Length | | · | | | | <u> </u> | | II TEFERENCES | | , E-11E | | | | | | | | | | | |---------------|-----|-----|-----|-------|----------|---------|---------------|------|---------|------------|-----|-------|---------|-----|-----|-----|-----|-----|----| | Sp | A | В | С | D | Е | F | Sp | A | В | С | D | E | F | G | Н | I | J | K | L | | H | 243 | | | | | | Cl 11 | 195 | | | | | | | | | | | | | D | 243 | | | | | | Cl 111 | 31 | 27 | | | | | | | | | | | | He I | 263 | 299 | 319 | 174 | 275 | | Aı | 277 | 154 | 263 | | | | | | | | | | | He 11 | 243 | | | | | | Ап | 340 | 18 | 4 8 | 47 | | | | | | | | | | Liı | 206 | 175 | 149 | | | | A III | 49 | 51 | | | | | | | | | | | | Li 11 | 378 | 404 | | | | | A iv | 50 | | | | | | | | | | | | | Вег | 318 | 315 | 149 | | | | Кı | 149 | 403 | 263 | 259 | 88 | 116 | 108 | 380 | | | | | | Веп | 318 | | | | | | KII | 46 | | | | | | | | | | | | | Вп | 81 | | | | | | Kın | 47a | 51a | L | | | | | | | | | | | Вш | 81 | | | | | | Ca 1 | 403 | 66 | 259 | 369 | 373 | 241 | 374 | | | | | | | Сі | 185 | 300 | 160 | 160 | 370 | | Сап | 168 | 403 | 66 | 375 | 390 | | | | | | | | | CII | 122 | 81 | 89 | | 370 | | Ca III | 11 | | | | | | | | | | | | | Cm | 81 | 121 | 6) | | | | Sc 1 | 245 | 253 | 349 | | | | | | | | | | | Civ | 81 | 121 | | | | | Sc 11 | 245 | 253 | | | | | | | | | | | | Nı | 93 | 70 | 160 | 370 | | | Sc 111 | 172 | | | | | | | | | | | | | | 20 | | 120 | | | | Tiı | 178 | | | | 245 | | | 348 | 199 | 172 | 177 | 21 | | N 11
N 111 | 124 | 81 | 140 | | | | Tin | 178 | 65 | 245 | 201 | 347 | 172 | | | | | | | | Niv | 124 | 81 | | | | | Ti IV | 364 | | | | | | | | | | | | | Oı | 98 | | 127 | 116 | 316 | 120 | V I | 264 | 368 | 245 | 242 | 266 | 213 | 109 | | | | | | | | l | | 301 | 110 | 310 | 140 | V II | 266 | | | | | | | | | | | | | O 11 | 20 | 110 | 301 | | | | Car | 102 | 10/ | 245 | 142 | (204 | 173 | | | | | | | | O m | 119 | | 302 | | | | Cr 1 | 183 | | | | (213) | (1/3 | | | | | | | | O iv | 81 | 126 | 86 | | | | Cr 11 | 184 | | | 110 | | | | | | | | | | 0 v | 81 | | | | | | Mnı | 260 | 245 | 246 | 131 | | | | | | | | | | O vi | 81 | | | | | | Mn 11 | (67) | 245 | 108 | | | | | | | | | | | Fі | 88 | | | | | | 11 | (68) | | | | | | | | | | | | | F 11 | 73 | | | | | | Fe 1 * | - | | | | | | | | | | | | | F III | 72 | 85 | | | | | Fe 11 | 76 | 222 | 55 | | | | | | | | | | | Ne 1 | 162 | 277 | 154 | 276 | 311 | 263 | Fe III | 103 | | 222 | | | • • • • | | | | | | | | Ne 11 | 52 | | | | | | Co 1 | 56 | 282 | 245 | 280 | 71 | 230 | 62 | 147 | | | | | | Na 1 | 149 | 116 | 263 | 298 | 259 | 338 | Co 11 | 255 | 245 | 170 | 147 | 100 | 146 | 200 | 200 | | | | | | NT | 120 | 202 | | | | | Ni I | 282 | | | | 109 | 140 | 200 | J70 | | | | | | Na 11 | 130 | 393 | | 261 | 116 | | Ni 11 | 252 | 245 | 111 | | | | | | | | | | | Mg I | 295 | 314 | 141 | 201 | 116 | | Cu 1 | 58 | | | | | | | | | | | | | Mg 11 | 116 | 215 | 116 | 210 | 210 | | Cu 11 | 137 | | | | | | | | | | | | | Alı | 403 | 377 | |) 312 | 310 | | Zn 1 | 149 | | | | | | | | | | | | | AlII | 319 | 311 | | | | | Zn 11 | 149 | 319 | | | | | | | | | | | | Al III | 312 | | | | | | Ga 1 | 402 | | | | | | | | | | | | | Si I | 186 | | | | | | Ge 1 | 188 | 245 | | | | | | | | | | | | Si 11 | 117 | | | | | | Ge 11 | 188 | 235 | | | | | | | | | | | | Si m | 117 | 101 | | | | | As I | 273 | | | | | | | | | | | | | Si 1v | 11/ | 101 | | | | | As if | 328 | | | | | | | | | | | | | Pı | 180 | | | | | | Se 1 | 189 | | | | | | | | | | | | | Рп | 133 | 181 | 70 |) | | | Rbı | | 333 | | | | | | | | | | | | P III | 133 | | | | | | Sr 1 | 399 | 245 | 116 | ; | | | | | | | | | | P iv | 133 | | | | | | Sr 11 | 399 | | | | | | | | | | | | | Ρv | 133 | | | | | | Yı | 1 | 245 | | | | | | | | | | | | Sr | 297 | 129 | 1 | | | | Y 11 | 254 | 351 | 245 | | | | | | | | | | | SII | 157 | | | 3 25 | 136 | | Zr ı | 197 | 282 | | | | | | | | | | | | S III | 157 | 159 | | | | | Zr 11 | 196 | | | | | | | | | | | | | Siv | 303 | | | | | | Cb 1 | 283 | | | | | | | | | | | | | Clı | 182 | | | | | | Cb 11 | 283 | | | | | | | | | | | | | | | | , E | | | Table 7 | | | | | | | | | | | | | | ^{*} See references for Fe 1 at end of Table 7. Table 7—Continued References—Wave-Length | Sp | A | В | С | D | Е | | Sp |) | A | | В | С | D | E | | S | , | A | 1 | В | С | D | | E | |-------------|------------|-----|-----|-----|-----|--------|--------------|-------------|-----------|-------------|------------|------------------|-----|--------------|---------------------|----------|-----|----|----------|-----------|----|-----|-----|-----| | lo 1 | 326 | 176 | 113 | | | \top | C | e 11 | 14 |
{ | 9 | 245 | | | | Ta | I | 20 | 00 | | | | | | | lo 11 | 245 | 113 | | | | | | 111 | 362 | | | | | | | W | | | 22 | | | | | | | u I | 245 | | | | | | | · 11 | 339 | | 245 | | , | | - 1 | W | | | 39 | | | | | | | u II | 272 | | | | | | N | d 11 | 10 | | 245 | 219 | | | | Re | | | 57 | | | | | | | h I | 304
150 | | | | | | Sn | n I | §221 | $\bigcup f$ | 221)
2) | • | | | | Os
Ir | ı | 2 | 45
6 | | | | | | | d 1 | 256 | 109 | | | | . | Sr | n II | 22 | | , | | | | | Pt | 1 | 1 | 09 | | | | | | | g I | 149 | | | | | | E | u I | 22: | 3 | | | | | | Aι | 11 | 3 | 24 | | | | | | | ďг | 149 | 163 | | | | | Ει | ı II | 223 | 3 | | | | | - 1 | H_{i} | 3 I | 3 | 96 | 166 | | | | | | 1 I | 402 | | | | | | G | dī | 22 | 5 | | | | | - ((| Tl | | 3 | 07 | 109 | | | | | | 1 I
1 II | 265
248 | | | | | | | d 11
m 1 | 22.
26 | Ŗ | | | | | | Pt
Bi | 1 | 2 | 14 | 135
17 | | | | | |) I
e I | 279
189 | | | | | | T | m II | 26 | 9 {:
! | 268
224 | | | | | Ra
Ra | II | | 32
31 | | | | | | | S I | 259 | 149 | | | | - 11 | Y | Ьı | 29 | | | | | | | T1 | 111 | 2 | 50 | | | | | | | a I | 400 | | | | | | \mathbf{Y} | ы | 29 | | | | | | | | . | | | | | | | | | a II | 400 | 245 | 259 | 330 | | | L | 1 I | 28 | | | | | | - 1 | | | | | | | | | | | 1 I | 258 | | | | | | | 1 11 | 28 | | | | | | | | - | | | | | | | | | 1 II | 258 | | | | | - 11 | | fı | 28 | | | | | | - 1 | | - | | | | | | | | | f 111 | 258 | | | | | | H | fıı | 28 | 9 | | | | | | | | | | | | | | | | p | A | В | С | D | E | F | G | Н | I | J | K | L | M | N | C |) Q | R | s | Т | U | V | w | X | Y | | ; 1 | 164 | 161 | 278 | 185 | 262 | 282 | 59 | 167 | 14 | 371 | 57 | ⁷ 281 | 220 | {139
{138 | $\}^{\dagger}_{28}$ | 0 15 | 227 | 77 | 391 | 247 | 55 | 171 | 379 | †74 | ⁽¹³⁰⁾ [†]These references have been used for lines to the violet of the range covered in the RMT, but are included for completeness. Table 8 References—Intensity | Sp | Reference Numbers | Sp | Reference Numbers | Sp | Reference Numbers | |-------------|-----------------------------|---------------|-------------------------------------|----------------|----------------------| | He 1 | 263 275 174 116 319 | Ап | 340 | Ru 11 | 272 | | Liı | 113 175 | Аш | 49 51 | Rhı | 105 | | Lin | 378 404 | A iv | 50 | Rh 11 | 150 | | Вел | 315 318 | Кı | 259 116 <i>88 108</i> | Pdı | 256 | | Веп | 318 | Кп | 410 46 | Agı | 389 | | Вп | 81 | Kııı | 47a 51a | Cd 1 | 173 | | Вии | 81 | Сат | 207 259 369 241 374 | In 1 | 402 | | Cı | 185 300 169 <i>160 370</i> | Ca 11 | 259 207 375 390 66 | Sn 1 | 265 | | Сп | 81 <i>122</i> | Ca III | 11 | Sn 11 | 248 | | Сш | 81 | Sc 1 | 210 253 349 367 | Sb 1 | 279 | | Civ | 81 | Sc 11 | 253 365 | Тел | 189 | | Νı | 93 78 <i>160</i> 370 | Sc 111 | 172 | Cs 1 | 259 <i>245</i> | | Nıı | 20 125 120 | Tiı | 185 282 212 203 <i>348 199 172</i> | Вал | 207 259 | | N III | 124 81 | Ti 11 | 347 | Ba 11 | 207 259 330 | | N iv | 81 | Ti IV | 364 | La 1 | 228 258 | | Οı | 98 263 127 <i>116 128</i> | V 1 | 264 213 204 | La 11 | 258 | | O 11 | 20 118 301 | V 11 | 266 | La 111 | 258 | | 111 O | 119 86 <i>302</i> | Cr 1 | 183 184 <i>204 213</i> | Ce 11 | 215 <i>144 9 245</i> | | O iv | 81 <i>126</i> | Cr 11 | 184 | Се 111 | 362 | | O v | 81 | Mnı | 260 209 131 61 113 | Pr 11 | 215 339 | | O vi | 81 | Mn 11 | 67 68 108 | Nd 11 | 219 10 | | Fі | 88 | Fei | 185 282 220 211 202 227 59 57 | Sm 1 | 221 | | Fп | 73 |] | 281 280 55 15 77 391 171 74 | Sm 11 |
221 | | Fiii | 72 85 | Fe 11 | 76 222 55 | Eu 1 | 223 | | Ne 1 | 263 276 311 | Fe 111 | 103 102 | Eu 11 | 223 | | Ne 11 | 52 | Coı | 205 208 282 280 71 56 230 62 147 | Gd 1 | 225 | | Naı | 259 172 116 | Соп | 255 | Gd 11 | 225 | | Na 11 | 130 393 | Ni 1 | 208 205 282 143 109 146 280 398 245 | Tm 1 | 268 | | Mg 1 | 261 207 <i>295 314 170</i> | Ni 11 | 252 382 | Tm 11 | 269 268 224 | | Mg 11 | 116 | Cui | 58 | Ybı | 291 | | Alı | 315 116 319 <i>310</i> | Cu 11 | 137 | Ybu | 291 | | Al 11 | 319 377 | Znı | 149 | Lui | 288 | | Al III | 312 | Zn 11 | 372 | Lun | 288 | | Si ı | 186 | Ga 1 | 402 174 | Hf I | 216 | | Si 11 | 117 | Ge 1 | 188 132 | Hf 11 | 289 | | Si 111 | 117 | Ge 11 | 188 235 | Тал | 200 | | Si 13 | 117 101 | As 1 | 273 | Wı | 218 22 | | Pı | 180 | As 11 | 328 | WII | 239 | | PII | 133 181 | Se 1 | 189 | Rei | 257 | | Рш | 133 | Rbı | 172 | Os 1 | 245 | | | | Sr t | 207 259 | | | | P IV
P v | 133
133 | C | 207 250 | Ir ı | 6 | | Si | 297 <i>129</i> | Sr 11 | 207 259 | Pti | 109 | | SII | 25 19 136 | Yı
V | 228 | Auı | 324 | | Sm | 25 19 130
157 <i>159</i> | YII | 254 351 | Hgı | 112 108 | | Siv | 303 | Zrı | 228 282 <i>197</i> | Tlı | 109 | | Cli | 182 | Zr 11 | 196 | Pb r | 109 271 | | Cl 11 | 195 | Cb 1 | 283 | Bir | 308 17 | | Clin | 31 27 | Cb 11
Mo 1 | 283
326 176 <i>113</i> | Rai | 332 | | Aı | 263 276 293 294 | Мон | 113 | Ra 11
Th 11 | 331
226 | | *** | 200 210 27J 27T | Rui | 251 <i>109</i> | 11111 | 220 | | | | Ku I | 431 107 | <u> </u> | | xxxiv Table 9 References—Analysis | ip | Reference Numbers | Sp | Reference Numbers | |-------------|-------------------------------------|--------|-----------------------| | | 243 23 116 | Sıı | 157 19 158 25 136 | | | 243 23 | Sin | 157 159 136 337 | | | · · · · · · · · · · · · · · · · · · | Siv | 303 27 29 | | еı | 16 45 319 263 275 134 | | | | e II | 243 23 | Cl 1 | 182 193 92 | | . I | 116 16 206 | Cl 11 | 195 96 | | iII | 16 81 | Cl III | 31 27 | | e. I | 318 315 | Cl iv | 31 32 | | e II | 318 | Αı | 154 276 42 16 293 294 | | I | 16 89 | A 11 | 92 42 48 47 | | II | 81 89 | A 111 | 49 51 42 44 96 | | III | 81 | A iv | 42 50 | | I | 81 300 | Kı | 116 88 | | 11 | 81 89 | Kıı | 46 28 105 | | III | 81 89 82 | Kın | 47a 92 | | IV | 81 82 | Cai | 373 369 259 116 | | I | 104 78 160 | Ca 11 | 375 346 390 | | II | 89 81 125 120 | Ca III | 28 16 | | III | 89 81 | Sc I | 365 | | | 89 81 82 | Sc 11 | 365 285 | | IV | | 11 | 364 392 | | v | 81 82 | Sc 111 | | | 1 | 98 | Tir | 348 355 282 185 178 | | II | 86 81 350 118 | Ti 11 | 347. | | III | 95 81 119 86 302 | Ti IV | 364 | | IV | 81 82 | Vı | 286 305 | | v | 81 82 | VII | 284 | | VI | 81 82 | Cr 1 | 179 183 187 346 | | I | 88 | Cr 11 | 184 | | II | 85 73 | Mnı | 61 79 260 346 | | III | 85 30 72 | Mn 11 | 67 68 | | IV | 84 | Fe I | 363a | | vi | 83 87 | Fe 11 | 75 76 94 139 | | 3 I | 154 41 276 16 311 | Fe 111 | 103 102 | | : II | 41 52 | Сол | 363 | | l I | 298 338 116 | Соп | 114 | | a II | 130 393 16 | Niı | 352 | | gı | 295 296 314 345 | Ni 11 | 382 233 | | gII | 116 16 | Cui | 381 | | I I | 315 319 | Cu 11 | 386 | | 11 | 319 377 | Zn i | 149 116 | | III | 312 16 | Zn 11 | 319 372 | | I | 186 | Ga 1 | 116 | | 11 | 117 29 16 | Ga 11 | 376 | | III | 117 29 | Ge 1 | 188 327 | | | 117 29 | Ge 11 | 188 234 | | IV | 180 335 | 31 | 273 | | I | | Ası | | | II | 26 335 336 | As II | 140 328 | | III | 29 303 336 | Se I | 343 | | IV . | 29 336 | Se 11 | 244 | | v | 336 40 | Br 1 | 194 | | [| 297 342 | Br 11 | 232 | xxxv Table 9—Continued References—Analysis | Sp | Reference Numbers | Sp | Reference Numbers | |--|---|---|--| | Kri
Krii
Rbii
Rbii
Sri
Srii
Yii
Zri
Zrii
Cbii
Moi
Moii
Rui | 274 276 165 53 116 238 116 369 399 116 259 399 285 285 197 282 196 290 290 63 191 190 394 145 | Gd 1 Gd 11 Tm 1 Tm 11 Yb 11 Lu 11 Lu 11 Hf 1 Hf 11 Ta 1 W 1 W 11 Re 1 | 2 357 358
8 358
270
270 269
291 359
291 359
288 267
288
287
289
192
192
192
237
239
257 | | Ru 11
Rh 1
Rh 11
Pd 1
Pd 11 | 272 292
395 304
150
385
384 24 | Osī
Irī
Ptī
Ptū
Auī | 1 5
6
240 148
387
324 306 | | Ag I Ag II Cd I Cd II In I In II Sn I Sn II Sb I Sb II | 388
383 24
116 16
372 401
116
317
265
248
279
236 | Au II Hg I Hg II Tl I Tl II Pb I Bi I Bi II | 324
16
313
116
106
16
80
16
64 115
329 | | Te I I I I II Xe I Xe II Cs I Cs II Ba I Ba II La I | 341
107 69 325
232
156
155
116
309 405
400 344 353
330 400
366 | Ra 1
Ra 11
Th 11
Th 111 | 332 354
331
249 250
54 | | La II La III Ce II Ce III Pr II Nd II Sm I Sm II Eu I | 366
366
144 7 9
362
339 356
10
2 4
3
361
360 | | | Table 10 References—Forbidden Lines | Sp | Reference Numbers | Sp | Reference Numbers | Sp | Reference Numbers | |--------|-----------------------|---------|-------------------|---------|-------------------| | Be 1 | 318-315 | Ca vi | 33 | Fe xiv | 97 | | Cı | 81 | Ca vii | 337 | Fe xv | 90 | | Nı | 104 | Сахи | 97 | Соп | 114 | | NII | 81 43 409 | Сахии | 97 | Co vi | 37 | | 0 I | 98 13 151 | Ca xv | 97 | Co vii | 12 | | 0 11 | 81 409 | Sc 11 | 365 | Co viii | 60 | | 0 111 | 81 409 | Sc 111 | 364 | Co xi | 92 | | Fii | 85 | Sc vi | 91 231 | Ni 1 | 352 | | Fiii | 85 | Sc vII | 231 | Ni 11 | 382 233 | | Fiv | 84 | Ti ı | 348 | Ni vii | 322 | | Ne 111 | 41 43 409 | Тіп | 347 | Ni viii | 12 | | Ne 1v | 320 | Ti III | 364 | Ni 1x | 60 | | Ne v | 100 320 35 397 | Ti vii | 231 91 | Ni xii | 97 | | Na 1v | 393 | Ti viii | 231 | Ni xiii | 97 | | Na v | 393 | V 11 | 284 | Ni xv | 97 | | Mg vi | 393 | V 111 | 407 | Ni xvi | 97 | | Al vii | 393 | Viv | 406 | Cu 11 | 386 | | Si 1 | 186 | V viii | 91 | Kriii | 152 | | Pı | 180 335 | Cr 1 | 179 183 187 | Sr 11 | 116 259 399 | | Рп | 26 335 336 | Cr 11 | 184 | Y 11 | 285 | | S 1 | 96 342 33 | Cr 111 | 36 | Υv | 321 | | Sıı | 157 19 158 25 136 409 | Cr iv | 36 38 | Zr 11 | 196 | | S III | 157 159 136 337 | Cr v | 406 | Zr III | 198 | | S viii | 97 337 | Cr vIII | 92 | Zr vi | 321 | | S x11 | 97 | Cr 1x | 91 | Xe 11 | 155 | | Cl 11 | 96 195 | Mn 11 | 67 68 | Xe III | 99 153 | | Cl III | 31 27 | Mn IV | 36 | La 11 | 366 | | Cl iv | 31 32 | Mn v | 34 38 | La III | 366 | | Аш | 96 | Mn vi | 60 | Eun | 360 | | A IV | 42 50 | Mn IX | 92 | | | | Αv | 323 334 | Mn x | 91 | | | | Ах | 97 | Fe 1 | 363a | | j | | A xı | 97 | Fe II | 75 76 94 139 | | | | A xiv | 97 | Fe III | 103 102 | | | | K iv | 96 33 | Fe v | 36 | | | | Κν | 33 | Fe vi | 34 38 | | | | K vı | 337 408 334 | Fe vII | 39 | | | | Ca 1 | 373 369 259 116 | Fe x | 92 97 | | | | Ca 11 | 375 | Fe xı | 91 97 | | | | Ca v | 96 33 91 | Fe xiii | 97 | 1 | | ## XIII. ACKNOWLEDGMENTS This book is the result of an enormous amount of cooperation for which the writer cannot express adequat appreciation. She is extremely grateful to all who have generously furnished material, offered valuable suggestions and assisted in many other ways. In spite of war conditions both M. A. Catalán of Madrid and B. Edlén of Lund have been active collaborators At home, physicists, astronomers, librarians and many others have likewise contributed. To each of these the write extends most hearty thanks. At the Mount Wilson Observatory, W. S. Adams has willingly assembled interested members of his staff fo consultation concerning the form, content and scope of the book. H. D. Babcock's unpublished solar material ha been of inestimable value. A. S. King has obligingly settled many puzzling questions about intensities. P. W. Merrill has urged the publication of the book from the start and supported the work enthusiastically. A. H. Joy ha furnished detailed material on stellar spectra observed at Mount Wilson. The writer has also been in constant communication with the Bureau of Standards. W. F. Meggers and C. C Kiess have furnished more material on analysis in advance of publication than any other contributors. Special mention should be made of the valuable work on Cr 1 and Cr 11 by Kiess. The multiplet lists of these spectra have already been in constant demand. Many intricate details have been referred to Meggers. His continued interest and work on behalf of this book will not be forgotten. In addition to the help with the forbidden lines, P. Swings together with O. Struve at the Yerkes Observator, have given most helpful assistance in the handling of the spectra of light elements from an astrophysical point of view Mention has already been made of the computations generously furnished by J. E. Mack. The writer has been privileged to use the facilities of various institutions not directly connected with this program. At Wesleyan University the late Professor Slocum welcomed her most cordially to the Van Vleck Observatory W. G. Cady, Chairman of the Department of Physics, was equally generous. Without the library privileges extende by these friends, the program would have been seriously impaired. A welcome no less cordial has been extended in Cambridge, Massachusetts. J. C. Boyce, Harlow Shapley an Mrs. C. P. Gaposchkin have taken a most personal interest in the work. It has also been an enormous advantag to have free access to the libraries at the Cruft Laboratory, at the Massachusetts Institute of Technology and at th Harvard Observatory. At Princeton this research program has been most enthusiastically supported by Henry Norris Russell over th long period of years since the publication of the first edition in 1933. The writer has had the great benefit of his wid experience in analyzing
spectra, of his detailed knowledge of spectra and above all of his keen interest—all of whic are recorded in the pages of the book itself. She expresses to him her gratitude with the hope that the readers wi find the R M T worthy of all he has contributed to it. Miss Margaret C. Shields of Fine Hall library in Princeton has cooperated so extensively that it is inadequate t express the personal gratitude of the writer in a single sentence. The same is true of Mrs. Jay Murray who ha patiently and efficiently brought to a successful conclusion the appalling task of typing the Multiplet Table fc photographic reproduction. Her painstaking care and skill are largely responsible for the completion of the wor at this time. Miss Marion Daly at Princeton and Miss Ada Spaterna of Washington, D. C., have spared no effort in typin the Finding List carefully and accurately. The personal interest and help of President John A. Eckert of the Columbia Planograph Company have been on of the greatest sources of encouragement in completing the manuscript for publication. In conclusion the writer wishes to record her appreciation of the cordial cooperation of her husband, Bancrol W. Sitterly. ### BIBLIOGRAPHY ``` 55 Burns, Lick Bull. 8, 27 (No. 247), 1913. bertson, Phys. Rev. (2) 45, 304, 1934. 56 Burns, Unpublished material. For interferometer meas. see Ref. No. 363. bertson, Phys. Rev. (2) 47, 370, 1935. 57 Burns and Walters, Jr., Publ. Allegheny Obs. 6, 159 (No. 11), 1929. bertson, Mt. Wilson Contr. No. 546; Ap. J. 84, 26, 1936. 58 Burns and Walters, Jr., Publ. Allegheny Obs 8, 27 (No. 3), 1930. bertson, Phys. Rev. (2) 52, 644, 1937. 59 Burns and Walters, Jr., Publ. Allegheny Obs. 8, 39 (No. 4), 1931. bertson, Phys. Rev. (2) 53, 940, 1938. 60 Cady, Willoughby, Phys. Rev. (2) 43, 322, 1933. bertson, Phys. Rev. (2) 54, 183, 1938. 61 Catalán, Phil. Trans. Royal Soc. A 223, 127, 1922. hertson, Unpublished material, Nov. 1941. lbertson, Bruynes and Hanau, Phys. Rev. (2) 57, 292, 1940. 62 Catalan y Antunes, Ann. de la Soc. Esp. de Fisica y Quimica 34, 207, 1930 lbertson and Harrison, Phys. Rev. (2) 52, 1209, 1937. (Some measures by Exner and Haschek included here) 63 Catalan y Madariaga, Ann. de la Soc. Esp. de Fisica y Quimica 31, 707, 193 Ibertson, Harrison and McNally, Jr., Phys. Rev. (2) 61, 167, 1943. iderson, J. A., Ap. J. 59, 76, 1924. 64 Crawford and McLay, Proc. Royal Soc. A 143, 540, 1934. iderson, E. E. and Mack, Phys. Rev. (2) 59, 717, 1941. 65 Crew, Ap. J. 60, 108, 1924. bcock, Mt. Wilson Contr. No. 259; Ap. J. 57, 209, 1923. 66 Crew and McCauley, Ap. J. 39, 29, 1914. 67 Curtie, Phys. Rev. (3) 53, 474, 1938. ibcock, Mt. Wilson Contr. No. 343; Ap. J. 66, 856, 1987. abcock, Unpublished material. 68 Curtis, Unpublished material, July 1941. se Bacher and Goudsmit, Atomic Energy States, McGraw-Hill, N. Y. and 69 Deb, Proc. Royal Soc. A 139, 380, 1933. London, 1932. 70 Déjardin, Canadian Journ. Res. 7, 556, 1932. ack und Goudsmit, Zeit. f. Phys. 47, 174, 1928. 71 Dhein, Zeit. f. Wiss. Ptg. 19, 289, 1920. aly, de Bruin, Bloch, L., Bloch, E., meas. quoted by Rosenthal, 72 Dingle, Proc. Royal Soc. A 122, 144, 1929. Ann. der Phys. (5) 4, 49, 1930. 73 Dingle, Proc. Royal Soc. A 128, 600, 1930. 74 Dingle, Mon. Not. Royal Astr. Soc. 94, 866, 1934. artelt und Eckstein, Zeit. f. Phys. 86, 77, 1933. eals, Publ. Dom. Ap. Obs. 6, 17, 1931. 75 Dobbie, Phys. Rev. (2) 45, 76, 1934. ehner, Zeit. f. Wiss. Ptg. 23, 325, 1925. 76 Dobbie, Ann. Solar Phys. Obs. 5, 1 (Part I), 1938. 77 Dobbie, Unpublished material. elke, Zeit. f. Wiss. Ptg. 17, 132 and 145, 1918. irge, Rev. Mod. Phys. 13, 233 (No. 4), 1941. 78 Duffendack and Wolfe, Phys. Rev. (2) 34, 409, 1929. lair, Phys. Rev. (2) 36, 173, 1930. 79 Dunham, T. Jr., Unpublished material, 1926. loch, L. et Bloch, E., Annales de Physique (10) 12, 5, 1929. 80 Earls and Sawyer, Phys. Rev. (2) 47, 115, 1935. owen, Phys. Rev. (2) 29, 510, 1927. 81 Edlen, Nova Acta Regiae Societatis Scientiarum Upsaliensis, Ser. IV, owen, Phys. Rev. (2) 31, 34, 1928. 9 (No. 6), 1933. owen, Phys. Rev. (2) 31, 497, 1928. 82 Edlén, Zeit. f. Ap. 7, 378, 1933. owen, Phys. Rev. (2) 39, 8, 1932. 83 Edlén, Zeit. f. Phys. 89, 179, 1934. owen, Phys. Rev. (2) 45, 82, 1934. 84 Edlén, Zeit. f. Phys. 92, 19, 1934. owen, Phys. Rev. (2) 45, 401, 1934. 85 Edlén, Zeit. f. Phys. 93, 433, 1935. owen, Phys. Rev. (2) 46, 377, 1934. 86 Edlén, <u>Zeit. f. Phys</u>. <u>93</u>, 726, 1935. owen, Phys. Rev. (2) 46, 791, 1934. 87 Edlén, Zeit. f. Phys. 94, 47, 1935. owen, Phys. Rev. (2) 47, 924, 1935. 88 Edlén, Zeit. f. Phys. 98, 445, 1936. owen, Rev. Mod. Phys. 8, 55 (No. 2), 1936. 89 Edlén, Zeit. f. Phys. 98, 561, 1936. owen, Phys. Rev. (2) 52, 1153, 1937. 90 Edlén, Zeit. f. Phys. 103, 536, 1936. owen, Phys. Rev. (2) 53, 889, 1938. 91 Edlén, Zeit. f. Phys. 104, 188, 1937. owen, see Pasternack, Ap. J. 92, 140, 1940. 92 Edlén, <u>Zeit. f. Phys</u>. <u>104</u>, 407, 1937. owen and Edlen, Nature 143, 374, 1939. 93 Edlén, <u>Festskrift Tillägnad</u>, Östen Bergstrand p. 135, 1938. owen and Millikan, Phys. Rev. (2) 25, 295, 1925. 94 Edlén, Unpublished material, Feb. 1940. oyce, Phys. Rev. (2) 46, 378, 1934. 95 Edlén, Naturwiss. 30, 279, 1942. oyce, Phys. Rev. (2) 48, 396, 1935. 96 Edlén, Phys. Rev. (2) 62, 434, 1942. oyce, Mon. Not. Royal Astr. Soc. 96, 690 (No. 7), 1936. 97 Edlén, Zeit. f. Ap. 22, 30, 1942; see Swings, Ap. J. 98, 116, 1943. oyce, Phys. Rev. (2) 49, 351, 1936. 98 Edlén, Kungl. Svenska Vetenskapsakademiens Handlingar, Tredje Serien, oyce and Robinson, Journ. Opt. Soc. Am. 26, 143, 1936. 80 (No. 10), 1945. e Bruin, Zeit. f. Phys. 38, 94, 1926. 99 Edlen, Phys. Rev. (2) 65, 248, 1944. e Bruin, Zeit. f. Phys. 51, 108, 1928. 100 Edlén, Unpublished material. e Bruin, Zeit. f. Phys. 53, 658, 1929. 101 Edlén und Söderqvist, Zeit. f. Phys. 87, 217, 1933. e Bruin, Zeit. f. Phys. 61, 307, 1930. 102 Edlén and Swings, Unpublished material, Dec. 1941. e Bruin, Proc. Amsterdam Acad. 36, 724 (No. 7), 1933. 103 Edlén and Swings, Contr. McDonald Obs. No. 49; Ap. J. 95, 532, 1942. e Bruin, Physica 3, 809 (No. 8), 1936. 104 Ekefors, Zeit. f. Phys. 63, 437, 1930. e Bruin, Proc. Amsterdam Acad. 40, 340 (No. 4), 1937. 105 Ekefors, Zeit. f. Phys. 71, 53, 1931. e Bruin, see Edlén, Zeit. f. Phys. 104, 407, 1937. 106 Ellis and Sawyer, Phys. Rev. (2) 49, 145, 1936. e Bruin und Bakker, Zeit. f. Phys. 69, 19, 1931. 107 Evans, Proc. Royal Soc. A 133, 417, 1931. e Bruin, Humphreys and Meggers, Bur. St. Journ. Reg. 11, 409 (RP 599) 1933. 108 Exner und Haschek, see Kayser, Handbuch der Sp. 5, 1910. e Bruin, Klinkenberg und Schuurmans, Zeit. f. Phys. 118, 58, 1941. 109 Exner und Haschek, see Kayser, Handbuch der Sp. 6, 1912. ``` ### RTRI.TOGRAPHY | | | BIBLIC | XIRAPHY . | | |---|-----|--|----------------|--| | : | 10 | Exner und Haschek, see Kayser und Konen, Handbuch der Sp. 7, Part 1, 1924. | 166 | Jackson, Proc. Royal Soc. A 130, 395, 1931. | | : | 111 | Exner and Haschek, see Shenstone, Phys. Rev. (2) 30, 255, 1927. | 167 | Jackson, Proc. Royal Soc. A 133, 553, 1931. | | | | Exner und Haschek, see Kayser und Konen, Handbuch der Sp. 7, Part 3, 1930. | 168 | Jackson, Mon. Not. Royal Astr. Soc. 93, 98 (No. 1), 1932. | | | | Exner und Haschek, see Kayser und Konen, Handbuch der Sp. 7, Part 3, 1934. | 169 | Johnson or Merton and Johnson, see Kayser und Konen, Handbuch der S | | | | Findlay, Phys. Rev. (2) 36, 5, 1930. | | Part 1, 1932. | | | 115 | Fisher and Goudsmit, Phys. Rev. (2) 37, 1057, 1931. | 170 | See Kayser, Handbuch der Sp. 5, 1910. | | | | See Fowler, Report on Series in Line Spectra, Fleetway Press, London, 1922. | 171 | Kayser, Handbuch der Sp. 6, 893, 1912. | | | 117 | Fowler, Phil. Trans. Royal Soc. A 225, 1, 1935. | 172 | See Kayser, Handbuch der Sp. 6, 1912. | | | | Fowler, Proc. Royal Soc. A 110, 476, 1936. | 173 | See Kayser und Konen, Handbuch der Sp. 7, Part 1, 1924. | | | 119 | Fowler, Proc. Royal Soc. A 117, 317, 1928. | 174 | See Kayser und Konen, Handbuch der Sp. 7, Part 2, 1930. | | | | Fowler and Freeman, Proc. Royal Soc. A 114, 663, 1927. | 175 | See Kayser und Konen, Handbuch der Sp. 7, Part 3, 1934. | | | 121 | Fowler and Selwyn, Proc. Royal Soc. A 120, 312, 1928. | 176 | Kiess, Sci. Papers Bur. St. 19, 113 (No. 474), 1923. | | | 122 | See Fowler and Selwyn, Proc. Royal Soc. A 120, 312, 1928. | 177 | Kiess, Unpublished material, 1924?. | | | 123 | Fred, Ap. J. 87, 176, 1938. | . 178 | Kiess, Bur. St. Journ. Res. 1, 75 (RP 4), 1928. | | | 124 | Freeman, Proc. Royal Soc. A 121, 318, 1928. | 179 | Kless, <u>Bur. St. Journ. Res</u> . <u>5</u> , 775 (RP 229), 1930. | | | 125 | Freeman, Proc. Royal Soc. A 124, 654, 1939. | 180 | Kless, Bur. St. Journ. Reg. 8, 393 (RP 425), 1932. | | | 126 | See Freeman. Proc. Royal Soc. A 127, 330, 1930. | 181 | Kiess, Unpublished material, May 1932. | | | 127 | Frerichs, Phys. Rev. (2) 34, 1239, 1929. | 182 | Kless, Bur. St. Journ. Res. 10, 827 (RP 570), 1933. | | | 128 | Frerichs, <u>Naturwiss</u> . <u>21</u> , 849, 1933. | 183 | Kless, Bur. St. Journ. Res. 15, 79 (RP 812) 1935. | | | 129 | Frerichs, Zeit. f. Phys. 80, 150, 1933. | 184 | Kiess, Unpublished material, Jan. 1936, June 1940, Mar. 1941, Apr. | | | 130 | Frisch, Zeit. f. Phys. 70, 498, 1931. | 185 | Kiess, Bur. St. Journ. Res. 20, 33 (RP 1062), 1938. | | | 131 | Fuchs, see Kayser und Konen, Handbuch der Sp. 7, Part 3, 1934. | 186 | Kless, <u>Bur. St. Journ. Res</u> . <u>21</u> , 185 (RP 1124), 1938. | | | 132 | Gartlein, Phys. Rev. (2) 31, 782, 1928. | 187 | Kiess, Unpublished material, Feb. 1939, June 1940, Feb. 1941. | | | 133 | Geuter, Zeit. f. Wiss. Ptg. 5, 1, 1907. (See Kayser, Handbuch der | 188 | Kless, Bur. St. Journ. Res. 24, 1 (RP 1266), 1940. | | | | sp. <u>6</u> , 1912.) | 189 | Kiess, Letter, June 1942. | | | 134 | Gibbs and Kruger, Phys. Rev. (2) 37, 1559, 1931. | 190 | Kiess,
Unpublished material, Aug. 1942. | | | 135 | Gieseler und Grotrian, Zeit. f. Phys. 34, 374, 1925. | 191 | Kiess, Unpublished material, Oct. 1942. | | | 136 | Gilles. Annales de Physique (10) 15, 267, 1931. | 192 | Kiess, Unpublished material, Dec. 1942. | | | 137 | Green, L.C., See Shenstone, Phil. Trans. Royal Soc. A 235, 195 (No. 751), 193 | s6. 193 | Kiess and de Bruin, <u>Bur. St. Journ. Res</u> . <u>2</u> , 1117 (RP 73), 1929. | | | 138 | Green, L.C., Unpublished material, 1937. | 194 | Kiess and de Bruin, Bur. St. Journ. Res. 4, 667 (RP 173), 1930. | | | 139 | Green, L.C., Phys. Rev. (2) 55, 1209, 1939. | 195 | Kiess and de Bruin, Bur. St. Journ. Res. 23, 443 (RP 1244), 1939. | | | 140 | Green, J.B. and Barrows, Jr., Phys. Rev. (2) 47, 131, 1935. | 196 | Kiess, C. C. and Kiess, H. K., Bur. St. Journ. Res. 5, 1205 (RP 255) | | | 141 | Gremmer, see Paschen, Sitz. der Preuss. Akad. der Wiss., PhysMath. | 197 | Kiess, C. C. and Kiess, H. K., Bur. St. Journ. Res. 6, 621 (RP 296) | | | | <u>Klasse</u> 32, 709, 1931. | 198 | Kiess and Lang, <u>Bur. St. Journ. Res</u> . <u>5</u> , 305 (RP 202), 1930. | | | 142 | Hall, see Kayser und Konen, Handbuch der Sp. 7, Part 1, 1924. | 199 | Kiess and Meggers, Sci. Fapers Bur. St. 16, 54 (No. 372), 1920. | | | 143 | Hamm, Zeit. f. Wiss. Ptg. 13, 105, 1913. | 300 | Kiess and Stowell, <u>Bur. St. Journ. Res</u> . <u>12</u> , 459 (RP 671), 1934. | | | 144 | Harrison, Albertson and Hosford, Journ. Opt. Soc. Am. 31, 439, 1941. | 201 | Kilby, Ap. J. 30, 243, 1909. | | | 145 | Harrison and McNally, Jr., Phys. Rev. (2) 58, 703, 1940. | 202 | King, A. S., Mt. Wilson Contr. No. 66; Ap. J. 37, 239, 1913. | | | 146 | Hasselberg, see Kayser, Handbuch der Sp. 6, 1912. | 203 | King, A. S., <u>Mt. Wilson Contr</u> . No. 76; <u>Ap. J</u> . <u>39</u> , 139, 1914. | | | 147 | Hasselberg or Exner und Haschek, see Kayser, Handbuch der Sp. 5, 1910. | 204 | King, A. S., Mt. Wilson Contr. No. 94; Ap. J. 41, 86, 1915. | | | 148 | Haussmann, Ap. J. 66, 333, 1927. | 205 | 5 King, A. S., Mt. Wilson Contr. No. 108; Ap. J. 42, 347, 1915. | | | 149 | Hetzler, Boreman and Burns, Phys. Rev. (2) 48, 656, 1935. | 206 | King, A. S., Mt. Wilson Contr. No. 122; Ap. J. 44, 169, 1916. | | | 150 | Hitchcock, W. J., Unpublished material, Nov. 1942. | | 7 King, A. S., Mt. Wilson Contr. No. 150; Ap. J. 48, 13, 1918. | | | 151 | Hopfield, Phys. Rev. (2) 37, 160, 1931. | 208 | King, A. S., <u>Mt. Wilson Contr.</u> No. 181; <u>Ap. J. 51</u> , 179, 1920. | | | 152 | Humphreys, Phys. Rev. (2) 47, 712, 1935. | 209 | Fing, A. S., Mt. Wilson Contr. No. 198; Ap. J. 53, 133, 1931. | | | 153 | Humphreys, Bur. St. Journ. Res. 16, 639 (RP 898) 1936. | 210 | King, A. S., Mt. Wilson Contr. No. 211; Ap. J. 54, 28, 1921. | | | 154 | Humphreys, <u>Bur. St. Journ. Res</u> . <u>20</u> , 17 (RP 1061) 1938. | 211 | King, A. S., Mt. Wilson Contr. No. 247; Ap. J. 58, 318, 1922. | | | 155 | Humphreys, Bur. St. Journ. Res. 22, 19 (RP 1164) 1939. | 212 | Ring, A. S., Mt. Wilson Contr. No. 274; Ap. J. 59, 155, 1924. | | | 156 | Humphreys and Meggers, Bur. St. Journ. Res. 10, 139 (RP 521), 1933. | | 3 King, A. S., Mt. Wilson Contr. No. 283; Ap. J. 60, 282, 1924. | | | 157 | | | King, A. S., Unpublished material, 1927?. | | | 158 | Ingram, Phys. Rev. (2) 32, 172, 1938. | | 5 King, A. S., Mt. Wilson Contr. No. 368; Ap. J. 68, 194, 1938. | | | 159 | | | King, A. S., Mt. Wilson Contr. No. 384; Ap. J. 70, 105, 1929. | | | 160 | Ingram, Phys. Rev. (2) 34, 421, 1929. | | 7 King, A. S., Mt. Wilson Contr. No. 414; Ap. J. 72, 221, 1930. | | | 161 | International Standard, see <u>Trans. Intern. Astr. Union</u> 3, 86, 1928. | | King, A. S., Mt. Wilson Contr. No. 448; Ap. J. 75, 379, 1932. | | | 162 | International Standard, see <u>Trans. Intern. Astr. Union</u> <u>5</u> , 85, 1935. | | King, A. S., Mt. Wilson Contr. No. 470; Ap. J. 78, 9, 1933. | | | 163 | International Standard, see <u>Trans. Intern. Astr. Union</u> 6, 79, 1938. | 220 |) King, A. S., Mt. Wilson Contr. No. 496; Ap. J. 80, 124, 1934. | | | 164 | | | King, A. S., Mt. Wilson Contr. No. 523; Ap. J. 82, 140, 1935. | | | 165 | International Standard, see Trans. Intern. Astr. Union 6, 89, 1938. | 222 | King. A. S., Mt. Wilson Contr. No. 584; Ap. J. 87, 109, 1938. | 222 King, A. S., Mt. Wilson Contr. No. 584; Ap. J. 87, 109, 1938. 165 International Standard, see <u>Trans. Intern. Astr. Union</u> 6, 89, 1938. ``` BIBLIOGRAPHY King, A. S., Mt. Wilson Contr. No. 608; Ap. J. 89, 377, 1939. King, A. S., Mt. Wilson Contr. No. 651; Ap. J. 94, 226, 1941. King, A. S., Mt. Wilson Contr. No. 678; Ap. J. 97, 323, 1943. King, A. S., see Sitterly and King, Proc. Am. Phil. Soc. 86, 339 (No. 3), 1943. King, A. S., Unpublished material. King, A. S. and Carter, Mt. Wilson Contr. No. 326; Ap. J. 65, 86, 1927. King, A. S. and Moore, Mt. Wilson Contr. No. 681; Ap. J. 98, 33, 1943. Krebs, Zeit. f. Wiss. Ptg. 16, 292, 1917. Kruger and Pattin, Phys. Rev. (2) 52, 621, 1937. Lacroute, Annales de Physique (11) 3, 1, 1935. Lang, Phys. Rev. (2) 31, 773, 1928. Lang, Proc. Nat. Acad. Sci. 14, 32, 1928. Lang, Phys. Rev. (2) 34, 697, 1929. Lang and Vestine, Phys. Rev. (2) 42, 233, 1932. Laporte and Mack, Phys. Rev. (2) 63, 246, 1943. Laporte, Miller and Sawyer, Phys. Rev. (2) 38, 843, 1931. Laun, Bur. St. Journ. Reg. 21, 207 (RP 1125), 1938. Livingood, Phys. Rev. (2) 34, 185, 1929. Lorenser, see Kayser und Konen, Handbuch der Sp. 7, Part 1, 1924. Ludwig, Zeit. f. Wiss. Ptg. 16, 157, 1917. Mack. Unpublished material, June 1942. Martin, Phys. Rev. (2) 48, 938, 1935. Mass. Inst. Tech., Wave Length Tables, Wiley, New York, 1939. Mass. Inst. Tech., Unpublished material, May 1941. Mass. Inst. Tech., Unpublished material, June 1942. McCormick and Sawyer, Phys. Rev. (2) 54, 71, 1938. McNally, Jr., Unpublished material, May 1944. McNally, Jr., Harrison and Park, Journ. Opt. Soc. Am. 32, 334, 1942. Meggers, Sci. Papers Bur. St. 20, 19 (No. 499), 1925. Meggers (Bureau of Standards), see Shenstone, Phys. Rev. 30, 255, 1927. Meggers, Sci. Papers Bur. St. 22, 61 (No. 549), 1927. Meggers, see Meggers and Russell, Bur. St. Journ. Res. 2, 733 (RP 55), 1929. Meggers, see Findlay, Phys. Rev. (2) 36, 5, 1930. Meggers, see Shenstone, Phys. Rev. (2) 36, 669, 1930. Meggers, Bur. St. Journ. Res. 6, 1027 (RF 322), 1931. Meggers, see Russell and Meggers, Bur. St. Journ. Res. 9, 625 (RP 497), 1932. Meggers, Bur. St. Journ. Res. 10, 669 (RP 558), 1933. Meggers, Bur. St. Journ. Res. 10, 757 (RP 564), 1933. Meggers, Unpublished material, Feb. 1934. Meggers, Bur. St. Journ. Res. 14, 33 (RP 755), 1935. Meggers, Bur. St. Journ. Res. 14, 487 (RP 781) 1935. Meggers, see Meggers and Russell, Bur. St. Journ. Res. 17, 125 (RP 906), 1936. Meggers, Bur. St. Journ. Res. 24, 153 (RP 1275), 1940. Meggers, see Meggers and Moore, Bur. St. Journ. Hes. 25, 83 (RF 1317), 1940. Meggers, Journ. Opt. Soc. Am. 31, 39, 1941. Meggers, see King, A.S., Mt. Wilson Contr. No. 651; Ap. J. 94, 226, 1941. Meggers, Unpublished material, Nov. 1941. Meggers, Rev. Mod. Phys. 14, 96, 1942. Meggers, Unpublished material, Jan. 1943. Meggers, Unpublished material. Meggers and de Bruin, Bur. St. Journ. Res. 3, 765 (RP 116), 1929. ``` Meggers, de Bruin and Humphreys, Bur. St. Journ Res. 7, 643 (RP 364), 1931. Meggers and Dieke, <u>Bur. St. Journ. Res</u>. 9, 121 (RP 462), 1932. ``` 276 Meggers and Humphreys, Bur. St. Journ. Res. 10, 427 (RP 540), 1933. 277 Meggers and Humphreys, Bur. St. Journ. Res. 13, 293 (RP 710), 1934. 278 Meggers and Humphreys, Bur. St. Journ. Res. 18, 543 (RP 992), 1937. 279 Meggers and Humphreys, Bur. St. Journ. Res. 28, 463 (RP 1464), 1948. 280 Meggers and Kiess, <u>Sci. Papers Bur. St.</u> 14, 637 (No. 324), 1918. 281 Meggers and Kiess, <u>Sci. Papers Bur. St</u>. <u>19</u>, 273 (No. 479), 1934. 282 Meggers and Kless, Bur. St. Journ. Res. 9, 309 (RP 473), 1932. 283 Meggers and King, Bur. St. Journ. Res. 16, 385 (RP 881), 1936. 284 Meggers and Moore, Bur. St. Journ. Res. 25, 83 (RP 1317), 1940. 285 Meggers and Russell, Bur. St. Journ. Res. 2, 733 (RP 55), 1929. 286 Meggers and Russell, Bur. St. Journ. Res. 17, 125 (RP 906), 1936. 287 Meggers and Scribner, Bur. St. Journ. Res. 4, 169 (RP 139), 1930 288 Meggers and Scribner, Bur. St. Journ. Res. 5, 73 (RP 187), 1930. 289 Meggers and Scribner, Bur. St. Journ. Res. 13, 625 (RP 732), 1934. 290 Meggers and Scribner, Bur. St. Journ. Res. 14, 629 (RP 793), 1935. 291 Meggers and Scribner, Bur. St. Journ. Res. 19, 651 (RP 1053), 1937. 292 Meggers and Shenstone, Phys. Rev. (2) 35, 868, 1930. 293 Meissner, Zeit. f. Phys. 39, 172, 1926. 294 Meissner, Zeit. f. Phys. 40, 839, 1927. 295 Meissner, Ann. der Phys. (5) 31, 505, 1938. 296 Meissner, Ann. der Phys. (5) 31, 518, 1938. 297 Meissner, Bartelt und Eckstein, Zeit. f. Phys. 86, 54, 1933. 298 Meissner und Luft, Ann. der Phys. (5) 29, 698, 1937. 299 Merrill, Bull. Bur. St. 14, 159, 1918. 300 Merton and Johnson, see Fowler and Selwyn, Proc. Royal Soc. A 118, 34, 1928. 301 Mihul, Annales de Physique (10) 9, 294, 1928. 302 Mihul, Annales de Physique (10) 9, 301, 1928. 303 Millikan and Bowen, Phys. Rev. (2) 25, 600, 1925. 304 Molnar and Hitchcock, Journ. Opt. Soc. Am. 30, 523, 1940. 305 Moore, C. E., Phys. Rev. (2) 55, 710, 1939. 306 Moore, C. E. and King, A. S., Publ. Astr. Soc. Pacific 55, 27 (No. 323), 1943. 307 Narayan, Kodaikanal Obs. Bull. 4, 311 (No. 99), 1932. 308 Offermann, see Kayser und Konen, Handbuch der Sp. 7, Part 1, 1924. 309 Olthoff and Sawyer, Phys. Rev. (2) 42, 766, 1932. 310 Paschen, Ann. der Phys. (4) 29, 642, 1909. 311 Paschen, Ann. der Phys. (4) 60, 405, 1919. 312 Paschen, Ann. der Phys. (4) 71, 142, 1923. 313 Paschen, Sitz. der Preuss. Akad. der Wiss., Phys.-Math. Klasse, 32, 536, 1928. 314 Paschen, Sitz. der Preuss. Akad. der Wiss., Phys.-Math. Klasse, 32, 709, 1931. 315 Paschen, Ann. der Phys. (5) 12, 509, 1932. 316 Paschen und Back, Ann. der Phys. (4) 39, 897, 1912. 317 Paschen und Campbell, Ann. der Phys. (5) 31, 29, 1938. 318 Paschen und Kruger, Ann. der
Phys. (5) 8, 1005, 1931. 319 Paschen und Ritschl, Ann. der Phys. (5) 18, 867, 1933. 320 Paul and Polster, Phys. Rev. (2) 59, 424, 1941. 321 Paul and Rense, Phys. Rev. (2) 56, 1110, 1939. 322 Phillips and Kruger, Phys. Rev. (2) 54, 839, 1938. 323 Phillips and Parker, Phys. Rev. (2) 60, 301, 1941. 324 Platt and Sawyer, Phys. Rev. (2) 60, 866, 1941. 325 Price, Phys. Rev. (2) 48, 477, 1935. 326 Puhlmann, Zeit. f. Wiss. Ptg. 17, 97, 1917. 327 Rac, Proc. Royal Soc. A 124, 465, 1929. 328 Rao, Indian Journ. Phys. 7, 561, 1932. 329 Rasmussen, Zeit. f. Phys. 80, 726, 1933. ``` BIBLTOGRAPHY 369 Russell and Saunders, Ap. J. 61, 38, 1925. 330 Rasmussen, Zeit. f. Phys. 83, 404, 1933. 370 Ryde, Proc. Royal Soc. A 117, 164, 1927. 331 Rasmussen, Zeit. f. Phys. 86, 24, 1933. 371 St. John and Babcock, Mt. Wilson Contr. No. 202; Ap. J. 53, 260, 19 332 Rasmussen, Zeit. f. Phys. 87, 607, 1934. 372 von Salis, Ann. der Phys. (4) 76, 145, 1925. 333 Reinheimmer, Ann. der Phys. (4) 71, 162, 1923. 373 Saunders, Ap. J. 52, 265, 1920. 334 Robinson, Nature 137, 992, 1936. 374 Saunders, Unpublished material. 335 Robinson, Phys. Rev. (2) 49, 297, 1936. 336 Robinson, Phys. Rev. (2) 51, 726, 1937. 375 Saunders and Russell, Ap. J. 62, 1, 1925. 376 Sawyer and Lang, Phys. Rev. (2) 34, 712, 1929. 337 Robinson, Phys. Rev. (2) 52, 724, 1937. 377 Sawyer und Paschen, Ann. der Phys. (4) 84, 1, 1927. 338 Rood and Sawyer, Ap. J. 87, 68, 1938. 339 Rosen, Harrison and McNally, Jr., Phys. Rev. (2) 60, 723, 1941. 378 Schüler, Zeit. f. Phys. 42, 487, 1927. 379 Schumacher, Zeit. f. Wiss. Ptg. 19, 149, 1919. 340 Rosenthal, Ann. der Phys. (5) 4, 49, 1930. 341 Ruedy, Phys. Rev. (2) 41, 588, 1932. 380 Segre und Bakker, Zeit. f. Phys. 72, 724, 1931. 342 Ruedy, Phys. Rev. (2) 44, 757, 1933. 381 Shenstone, Phys. Rev. (2) 28, 449, 1926. 343 Ruedy and Gibbs, Phys. Rev. (2) 46, 880, 1934. 382 Shenstone, Phys. Rev. (2) 30, 255, 1927. 344 Russell, Mt. Wilson Contr. No. 286; Ap. J. 61, 223, 1925. 383 Shenstone, Phys. Rev. (2) 31, 317, 1928. 345 Russell, Publ. Astr. Soc. Pacific 38, 236, 1926. 384 Shenstone, Phys. Rev. (2) 32, 30, 1928. 385 Shenstone, Phys. Rev. (2) 36, 669, 1930. 346 Russell, Mt. Wilson Contr. No. 342; Ap. J. 66, 233, 1927. 347 Russell, Mt. Wilson Contr. No. 344; Ap. J. 66, 283, 1927. 386 Shonstone, Phil. Trans. Royal Soc. A 335, 195 (No. 751), 1936. 348 Russell, Mt. Wilson Contr. No. 345; Ap. J. 66, 347, 1927. 387 Shenstone, Phil. Trans. Royal Soc. A 237, 453, 1938. 349 Russell, see Russell and Meggers, Sci. Papers Bur. St. 22, 329 388 Shenstone, Phys. Rev. (2) 57, 894, 1940. (No. 558), 1927. 389 See Shenstone, Phys. Rev. (2) 57, 894, 1940. 350 Russell, Phys. Rev. (2) 31, 27, 1928. 390 Shenstone, Unpublished material. 351 Russell, see Meggers and Russell, Bur. St. Journ. Res. 2, 733 391 Smith, Sinclair, Unpublished material. (RP 55), 1929. 392 Smith, Stanley, Proc. Nat. Acad. Sci. 13, 65, 1927. 352 Russell, Phys. Rev. (2) 34, 821, 1929. 393 Söderqvist, Nova Acta Regiae Societatis Scientiarum Upsaliensis (IV 353 Russell, see Meggers, Bur. St. Journ. Res. 10, 676, 684 (RP 558), 1933. 9 (No. 7), 1934. 354 Russell, Phys. Rev. (2) 46, 989, 1934. 394 Sommer, Zeit. f. Phys. 37, 1, 1926. 355 Russell, Unpublished material, May 1940. 395 Sommer, Zeit. f. Phys. 45, 147, 1927. 356 Russell, Unpublished material, Nov. 1941. 396 See Stiles, Ap. J. 30, 48, 1909. 357 Russell, Mt. Wilson Contr. No. 663; Ap. J. 96, 11, 1942. 397 Stoy, Lick Bull. 17, 179 (No. 480), 1935. 398 Stüting, see Kayser, Handbuch der Sp. 6, 1912. 358 Russell, Unpublished material, 1943. 359 Russell, Unpublished material. 399 Sullivan, Univ. Pittsburgh Bull. 35, 1 (No. 1), 1938. 360 Russell, Albertson and Davis, Phys. Rev. (2) 60, 641, 1941. 400 Sullivan and Burns, Science Studies 9, 7 (No. 3), 1941. 361 Russell and King, A. S., Mt. Wilson Contr. No. 611; Ap. J. 90, 155, 1939. 401 Takahashi, Ann. der Phys. (5) 3, 27, 1929. 362 Russell, King, R. B. and Lang, Phys. Rev. (2) 52, 456, 1937. 402 Uhler and Tanch, Ap. J. 55, 291, 1922. 403 Wagman, Univ. Pittsburgh Bull. 34, 1 (No. 1), 1937. 363 Russell, King, R. B. and Moore, Phys. Rev. (2) 58, 407, 1940. 363a Russell, Moore and Weeks, Trans. Am. Phil. Soc. 34, 111 (Part 2), 1944. 404 Werner, see Kayser und Konen, Handbuch der Sp. 7, Part 3, 1934. 364 Russell and Lang, Mt. Wilson Contr. No. 337; Ap. J. 66, 13, 1927. 365 Russell and Meggers, Sci. Papers Bur. St. 22, 329 (No. 558), 1927. 368 Russell or Moore, see Meggers and Russell, Bur. St. Journ. Res. 17, 125 366 Russell and Moggors, Bur. St. Journ. Ros. 0, 635 (RP 497), 1933. (RP 906) 1936. 367 Russell and Meggers, Unpublished material. 407 White, <u>Phys. Rev.</u> (2) <u>33</u>, 672, 1020. 408 Whitford, <u>Phys. Rev.</u> (2) <u>46</u>, 793, 1934. 409 Wright, <u>Publ. Lick Obs.</u> <u>13</u>, 193, 1918. 410 Zeeman und Dik, see de Bruin, <u>Zeit. f. Phys.</u> <u>38</u>, 94, 1926. 405 Wheatley and Sawyer, Phys. Rev. (2) 61, 591, 1942. 406 White, Phys. Rev. (2) 33, 538, 1929. # INDEX-By Pages | Page | Sp | Mult
No Sp | Mult | Page | Sp | Mult
No | Sp | | Mult
No | Page | Sp | Mult Sp | Mult
No | |------|--------|---------------|------|------------|--------|------------|--------------|-----|-----------------|------|---------|--------------|--------------| | 1 | н | 1 - He II | 5 | 40 | Cr I | 115 | - Cr | I | 173 | 79 | Y II | 9 - Zr I | 17 | | 2 | He II | 6 - C II | 21 | 41 | Cr I | 174 | - Gr | I | 243 | 80 | Zr I | 18 - Zr II | 23 | | 3 | C II | 32 - N I | 6 | 43 | Cr I | 244 | - Cr | I | Inclass. | 81 | Zr II | 24 - Zr II | 108 | | 4 | N I | 7 - X I | 24 | 43 | Cr I 1 | Jnclass. | 3911.95 - Cr | II | 36 | 82 | 2r II | 109 - Mo II | 2 | | 5 | N I | 25 - N II | 68 | 44 | Cr II | 37 | - Cr | II | 116 | 83 | Mo II | 3 - Ag II | | | 6 | N II | 69 - 0 I | 11 | 45 | Cr II | 117 | - Mn | I | 4 | 84 | Cd I | 1 - La II | 4 | | 7 | ΟI | 12 - 0 I | 44 | 46 | Mn I | 5 | - Mn | 1 | 59 | 85 | La II | 5 - La II | 86 | | 8 | 0 I | 45 - 0 II | 62 | 47 | Mn I | 60 | - Min | II | 21 | 86 | La II | 87 - Ce I | | | 9 | OII | 63 - 0 III | 35 | 48 | Fe I | 1 | - Fe | I | 36 | 87 | Ce II | 1 - Ce II | 99 | | 10 | o III | 36 - F II | 4 | 49 | Fe I | 37 | - Fe | I | 91 | 88 | Ce II | 100 - Ce II | 233 | | 11 | F II | 5 - Ne I | 32 | 50 | Fe I | 90 | - Fe | I | 159 | 89 | Ce II | 234 - Nd II | 7 | | 12 | Ne I | 33 - Ne II | 70 | 51 | Fe I | 160 | - Fe | I | 223 | 90 | Nd II | 8 - Sm I | 3 | | 13 | Ne II | 71 - Mg II | 9 | 52 | Fe I | 224 | - Fe | I | 308 | 91 | Sm II | 1 - Sm II | 58 | | 14 | Mg II | 10 - Al II | 65 | 53 | Fe I | 309 | - Fe | I | 368 | 92 | Sm II | 59 - Gd II | 1 | | 15 | Al II | 66 - S1 I | 28 | 54 | Fe I | 369 | _ Fe | I | 443 | 93 | Ga II | 2 - Gd II | 49 | | 16 | S1 I | 29 - Si III | 8 | 55 | Fe I | 444 | - Fe | Ĭ. | 549 | 94 | Gd II | 50 - Gd II | 98 | | 17 | S1 III | 9 - P V | 1 | 56 | Fe I | 550 | - Fe | I | 613a | 95 | Gđ II | 99 - Tb II | | | 18 | SI | 1 - S II | 48 | 5 7 | Fe I | 613 | - Fe | I | 693 | 96 | Dy I | - Hf II | 17 | | 19 | s II | 49 - C1 II | 8 | 58 | Fe I | 694 | - Fé | I | 815 | 97 | Hf II | 18 - Ta I | 2 | | 20 | C1 II | 9 - C1 III | 8 | 59 | Fe I | 816 | - Fe | I | 918 | 98 | Ta I | 3 - Tl II | | | 21 | C1 III | 9 - A II | 43 | 60 | Fe I | 919 | - Fe | I | 1012 | 99 | Po I | - U | | | 22 | A II | 44 - A II | 123 | 61 | Fe I | 1013 | - Fe | I | 1084 | | | | | | 23 | A II | 124 - Ca I | 13 | 63 | Te I | 1085 | - Fe | I | 1156 | | | | | | 24 | Ca I | 14 - Ca III | 4 | 63 | Fe I | 1157 | - Fe | I | 1232 | | | | | | 25 | Sc I | 1 - Sc III | 1 | 64 | Fe I | 1233 | - Fe | | 1296 | | | | | | 26 | T1 I | 1 - Ti I | 54 | 65 | Fe I | 1297 | - er | d o | f Unclass. Fe I | | | | | | 27 | Ti I | 55 - T1 I | 140 | 66 | Fe II | 1 | - Fe | II | 54 | | | | | | 28 | T1 I | 141 - T1 I | 192 | 67 | Fe II | | - Fe | | | | | lden Lines | | | 29 | Ti I | 193 - T1 I | 268 | 68 | Fe II | | - Fe | | | 100 | Be I | 1F - Cl IV | 3F | | 30 | T1 I | 269 - T1 II | 22 | . 69 | Fe II | | - Fe | | | 101 | A III | if - Ti I | 15F | | 31 | T1 II | 23 - Ti II | 93 | 70 | Fe II | | - Co | | 9 | 102 | Ti I | 16F - Ti II | 3 7 F | | 32 | T1 II | 94 - V I | 31 | 71 | Co I | 10 | - Co | | 63 | 103 | Ti II | 38F - V VIII | 1F | | 33 | A I | 33 - A I | 78 | 72 | Co I | 64 | - Co | | 149 | 104 | Cr I | 1F - Cr II | 26F | | 34 | VI | 79 - V I Un | | 73 | Ço I | 150 | - Co | | | 105 | Cr II | 27F - Fe I | 3F | | 35 | A 11 | 1 ~ V II | 61 | 74 | N1 I | 1 | - N | _ | 88 | 106 | Fe I | 4F - Fe I | 41F | | 36 | V II | 62 ~ V II | 162 | 75 | N1 I | 89 | - N: | | 155 | 107 | Fe II | 1F - Fe II | 38F | | 37 | VII | 163 - Cr I | 18 | 76 | N1 I | 156 | - Ni | | 250 | 108 | Fe II | 39F - Fe XV | 1F | | 38 | Cr I | 19 - Cr I | 52 | 77 | N1 I | 251 | - 'Zr | | | 109 | Co II | 1F - N1 XII | | | 39 | Cr I | 53 - Cr I | 114 | 78 | Ga I | 1 | - Y | 11 | 8 | 110 | N1 XIII | 1F - Eu II | 2F | INDEX -- By Elements | | | | | | INDEX | -By Elements | | | | | |-------------------|---------|--------|------------|-----------|-------|--------------|-------|---------|---------|----------------| | Sp | Page | Sp | Page | g2 | Page | Sp | Page | Sp | Page | Sp | | AI | 21 | Dy II | 96 . | N III | 6 | S1 I | 15,16 | VIX A | 101 | Mn V | | A T.T | 21,23 | Er | 96 | N IV | 6 | S1 II | 16 | Al VII | 100 | Mn VI | | A III | 23 | Eu I | 92 | ич | 6 | \$1 III | 16,17 | Be I | 100 | Mn IX | | A IV | 23 | Eu II | 92 | Na I | 13 | S1 IV | 17 | CI | 100 | Mn X | | Ag I | 83 | F I | 10 | Na II | 13 | Sm I | 90 | Ca I | 101 | NI | | Ag II | 83 | F II | 10,11 | Nd I | 89 | Sm II | 91,92 | Ca II | 101 | N II | | Al I | 14 | F III | 11 | Nd II | 89,90 | Sn. I | 84 | Ca V | 101 | Na IV | | Al II | 14,15 | F IV | 11 | Ne I | 11,12 | Sn II | 84 | Ca VI | 101 | Na V | | Al III | 15 | F VI | 11 | Ne II | 12,13 | Sr I | 78 | Ca VII | 101 | Ne III | | As I | 78 | Fe I | 48-65 | Ni I | 74-77 | Sr II | 78 | Ca XII | 101 | Ne IV | | As II | 78 | Fe II | 6669 | N1 II | 77 | Ta I | 97,98 | Ca XIII | 101 | Ne V | | Au I | 98 | Fe III | 69,70 | . o I |
6- 8 | Ta II | 98 | Ca XV | 101 | ni i | | Au II | 98 | Ge I | 78 | OII | 8, 9 | Th I | 95 | cr ii | 100 | N: II | | BI | 3 | Ga II | 78 | o III | 9,10 | Tb II | 95 | C1 III | 100 | N1 VII | | BII | 2 | Gd I | 92 | o IV | 10 | Te I | 84 | CJ IA | 100 | N1 AIII | | B III | 2 | Gd II | 92-95 | O A | 10 | Th I | 99 | Co II | 109 | Ni IX | | Ba I | 84 | Ge I | 78 | O AI | 10 | Th II | 99 | Co VI | 109 | N1 XII | | Ba II | 84 | Ge II | 78 | Os I | 98 | Th III | 99 | Co VII | 109 | N1 XIII | | Be I | 2 | н | 1 | PΙ | 17 | T1 I | 26-30 | Co VIII | 109 | N1 XV | | Be II | 2 | He I | 1 | P II | 17 | T1 II | 30-32 | Co XI | 109 | Ni XVI | | Bi I | 99 | He II | 1, 2 | P III | 17 | Ti IV | 32 | Cr I | 104 | OI | | B1 II | 99 | Hf I | 96 | P IV | 17 | Tl I | 98 | Cr II | 104,105 | 0 11 | | Br I | 78 | Hf II | 96,97 | PΥ | 17 | TL II | 98 | Cr III | 105 | O III | | Br II | 78 | Rg I | 98 | Pb I | 99 | Tm I | 96 | Cr IV | 105 | PI | | Сİ | 2 | Hg II | 98 | Pb II | 99 | Tm II | 96 | Cr V | 105 | PII | | C II | 2, 3 | Ho I | 96 | Pd I | 83 | ט | 99 | Cr VIII | 105 | SI | | C III | 3 | Ho II | 96 | Pd II | 83 | νı | 32-34 | Cr IX | 105 | s II | | C IV | 3 | II | 84 | Pr I | 89 | A II | 35–37 | Cu II | 110 | s III | | Ca I | 23,24 | I II | 84 | Pr II | 89 | WI | 98 | Eu II | 110 | s VIII | | Ca II | 24 | In I | 84 | Pt I | 98 | W II | 98 | F II | 100 | <u>\$</u> .XII | | Ca III | 1 24 | In II | 84 | Pt II | 98 | Xe I | 84 | F III | 100 | Sc II | | СР І | 82 | Ir I | 98 | Ra I | 99 | Xe II | 84 | F IV | 100 | Sc III | | CP II | 82 | K I | 23 | Ra II | 99 | ΥI | 78 | Fe I | 105,106 | Sc VI | | Cđ I | 84 | K II | 23 | Rb I | 78 | A 11 | 78,79 | Fe II | 107,108 | Sc VII | | ca II | 94 | K III | 23 | Rb II | . 78 | Yh I | 96 | Fe JTJ | 108 | Si I | | Ce I | 86 | Kr I | 78 | Re I | 98 | AP II | 96 | Fe V | 108 | Sr II | | Ce II | 87-89 | Kr II | 78 | Rh I | 83 | Zn I | 77 | Fe VI | 108 | Ti I | | Ce II | | La I | 84 | Rh II | 83 | Zn II | 77 | Fe VII | 108 | Ťi II | | ClI | 19 | La II | 84-86 | Rn I | 99 | Zr I | 79,80 | Fe X | 108 | T1 III | | C1 II | 19,20 | La III | 86 | Ru I | 83 | Zr II | 80-82 | Fe XI | 108 | Ti VII | | Cl II | 1 20,21 | IA I | 2 | Ru II | 83 | | | Fe XIII | 108 | T1 VIII | | C1 IV | 21 | L1 II | 2 | S I | 18 | | | Fe XIV | 108 | A II | | Co I | 70-73 | Lu I | 96 | s II | 18,19 | | | Fe XV | 108 | A III | | Co II | 73 | Lu II | 9 6 | s III | 19 | | | K IV | 101 | A IA | | Cr I | 37-43 | Mg I | 13 | s IV | 19 | | | K V | 101 | A AIII | | Cr II | | Mg II | 13,14 | Sb I | 84 | | | K VT | 101 | Xe II | | Cs _. I | 84 | Mn I | 45-47 | Sb II | 84 | Forbidder | • | Kr III | 110 | Xe III | | Cs II | | Mn II | 47 | Sc I | 25 | A III | 101 | La II | 110 | Y II | | Cu I | 77 | Mo I | 82 | Sc II | 25 | VI A | 101 | La III | 110 | YV | | Cu II | | Mo II | 82,83 | Sc III | 25 | ΑV | 101 | ME AI | 100 | Zr II | | D | 1 | N I | 3- 5 | Se I | 78 | ΑX | 101 | Mn II | 105 | 2r III | | Dy I | 96 | N II | 5, 6 | Se II | 78 | A XI | 101 | Mn IV | 105 | Zr VI | | | | | | | | | | | | | REVISED MULTIPLET TABLE EP J Multiplet E P Low High Laboratory I A Ref Int J Multiplet (No) Laboratory I A Ref Int tory ef Int E P Low High He I continued Anal A List A June 1942 He I continued 21.13 24.09 1-0 2¹p°-6¹8 (52) 21.13 24.11 1-2 2¹p°-6¹D (53) 21.13 24.19 1-0 2¹p°-7¹8 10.15 12.04 10.15 12.69 10.15 13.00 10.15 13.16 10.15 13.26 4168.971 D (1) 21.13 24.09 4143.759 B (2) 4023.986 D (1) 31.13 34.31 1-2 3¹P°-7¹D 3964.727 B (4) 3964.727 B 28pe_88Detc (2) 98Detc 3613.641 B 108Detc 10.15 13.33 10.15 13.37 10.15 13.40 10.15 13.43 10.15 13.45 4009.270 D (1) 31.13 34.31 1-1 31po_71po (3) 4007.81 112Detc 3447.594 D 122Detc (56) 21.13 24.26 1-0 3¹P°-8¹S 20.53 24.11 0-1 2¹8-6 (2) 3935.914 D (1) (1) 21.13 24.27 1-2 31po-p1s (1) 21.13 24.27 1-2 32po-p1s (1) 21.13 24.31 1-0 31po-p1s (2) 20.53 24.21 0-1 215-3354.550 D 10.15 13.46 10.15 13.47 10.15 13.48 10.15 13.49 10.15 13.49 3354.550 D 3²P°-13²D etc (3) 14²D etc 3296.786 D 15²D etc 20.53 24.27 0-1 215-81 (9) 3926.530 D (1) 3878.180 D (1) 21.13 24.31 1-8 21pe_91D (60) (1) 21.13 24.34 1-0 21pe_101s 15²D etc 16²D etc 17²D etc 7065.188 7065.719 2³P°_3³g (10) (5) (1) 20.87 22.62 2,1-1 20.87 22.62 0-1 3871.819 D B 7065.715 2²P°-18²D etc (4) 19²D etc 5875.618 20²D etc 5875.650 21²D etc 5875.989 22²D etc 4713.143 1-0 21pg-101s (61) 21.13 24.35 1-2 21pg-101b 21.13 24.35 10.15 13.50 10.15 13.50 10.15 13.51 10.15 13.51 10.15 13.51 3838.094 D _ (10)D₃ 20.87 22.97 (1) 20.87 22.97 (1) 20.87 22.97 2³P°-3³D 1-2 3¹P⁰-10¹D 21.13 24.37 1-2 2¹P⁰-11¹D 21.13 24.30 3833.574 D (1) ñ 3805.765 D (1) 22²D etc 4713.143 2²P°-23²D etc 4713.373 (5) 24²D etc 4517.43 26²D etc 27²D etc 4471.477 2²P° 22²D etc 4471.688 2³P°_4³S (12) B D {3} 20.87 23.49 2,1-1 20.87 23.49 0-1 1-2 2¹P°-12¹D 21.13 24.40 1-2 2¹P°-13¹D 21.13 24.41 10.15 13.51 10.15 13.52 10.15 13.52 10.15 13.52 10.15 13.52 (1) 3784.886 D _ 1-2 31p0-131D (65) 31.13 34.41 1-2 31p0-141D 2³pe_4³pe 2³pe_4³p (14) P Forb 20.87 23.61 2-3768.81 D (1) (66) (6) (1) 20.87 23.63 2,1-20.87 23.63 0-3756.10 (1) B 2²P°-28²D sto (6) 28²D sto 4469.92 30²D sto 4469.92 31²D sto 4130.812 32²D sto 4130.993 33²D sto 4120.993 10.15 13.52 10.15 13.52 10.15 13.52 10.15 13.53 10.15 13.53 10.15 13.53 3³5-5³pe (67) 3³S-6³pe (68) 3³S-7³pe (69) 2³pe_4³pe 2³pe_5³S P 20.87 23.63 2-9463.57 С 60 22.62 23.92 -Forb (3) (1) 20.87 23.87 2,1-1 20.87 23.87 0-1 22.62 24.10 8361.77 (4) B (16) 7816.16 (4) 22.62 24.20 -2³P°-5³P° (17) 2³P°-5³D (18) P Forb 20.87 23.92 2-10.15 13.53 10.15 13.53 10.15 13.53 10.15 13.53 10.15 13.53 10.15 13.54 4045.16 2²Po-34²Detc (7) 35²Detc 4086.189 36²Detc 4086.362 37²Detc 38²Detc 4025.49 (5) (1) 11013.97 6 9603.50 Forb 20.87 23.94 2-23po_53po 2³p°-6³s (20) 20.87 24.07 2,1-1 20.87 24.07 0-1 3³P°-5³D 11969.07 33pe_53p (72) 33pe_63g (73) 33pe_63p (74) 32D-52F° etc (8)52F° etc 3829.47 72F° etc 28F° etc 3819.606 92F° etc 3819.761 3867.631 12.04 13.00 13.04 13.16 12.04 13.36 13.04 13.33 13.04 13.37 10667.60 30 22.91 24.07 A a³P°-6³P° (21) a³P°-6³D 20.87 24.10 3-(22.91 24.11 (22.91 24.11 <u>c</u>) 40 $\binom{4}{1}$ 20.87 24.11 2,1-20.87 24.11 0-(22) 33pe_73g 9702.66 E 10 22.91 24.18 3²D-10²F° etc 3819.25 (9)11²F° etc 12²F° etc 3732.861 13²F° etc 3705.003 12.04 13.40 12.04 13.43 12.04 13.45 12.04 13.46 12.04 13.47 (75) 3³pe_7³p (76) 23P0-63F0 P Forb 20.87 24.11 2-(22.91 24.21 20.87 24.18 2,1-1 20.87 24.18 0-1 $\binom{1}{1}$ (24) E 6 22.91 24.27 ---9063.40 2³P°-7³D (25) 3705.003 3²D-15²P° etc 3705.140 (10)16²P° etc 17²P° etc 3704.79 18²P° etc 3651.971 3652.119 $\binom{3}{1}$ 20.87 24.21 2,1-20.87 24.21 0-12.04 13.48 12.04 13.49 12.04 13.49 12.04 13.50 3³D_6³P° (78) 3³D_6³F° 10996.55 22.97 24.10 -2³P°-7³F° (36) 2³P°-8³S (27) P Forb 20.87 24.21 2-10912.92 100 22.97 24.11 20.87 24.25 2,1-1 20.87 24.25 0-1 {1} (1) 3652.119 32p-202re etc (11)2re etc 3634.235 222re etc 3634.373 232re etc 342re etc 3634.10 10072.10 22.97 24.20 12.04 13.51 12.04 13.51 12.04 13.51 12.04 13.51 13.04 13.53 A A A 23pe_83p (80) 3³D-7³F (2) (1) 20.87 24.27 2,1-20.87 24.27 0-10027.73 40 (81) 33D_83Fe (82) 33D_93Fe (83) 9526.17 10 3³Pe_8³Fe (39) 3³Pe_9³S (30) ₽ 3_ Forb 30.87 34.37 9210.28 6 3²D-25²F° etc 3599.304 (12)26²F° etc 3599.442 27²F° etc 28²F° etc 3587.252 29²F° etc 3587.396 12.04 13.52 12.04 13.52 12.04 13.52 12.04 13.52 {1 1} 20.87 24.30 2,1-1 20.87 24.30 0-1 22.97 24.11 2-3 3¹D-6¹F° (84) 22.97 24.21 2-3 3¹D-7¹F° 22.97 24.27 2-3 3¹D-8¹F° (86) 50 10916.98 2³P°-9³D (2) 10031.16 15 3²D-30²F° etc 3587.16 (13)31²F° etc 32²F° etc 3562.950 33²F° etc 3554.394 34²F° etc 3554.524 2³pe₋9³pe (32) 2³pe₋₁₀³s (33) 2³pe₋₁₀³p (34) 12.04 13.52 12.04 13.53 12.04 13.53 12.04 13.53 12.04 13.53 (1) 22.99 24.09 1-0 3¹P°-6¹S (87) 22.99 24.11 1-2 3¹P°-6¹D 11225.83 12.04 13.53 12.04 13.53 12.04 13.53 12.04 13.53 12.04 13.54 3554.524 3²D-35²F° etc (14)36²F° etc 3536.820 37²F° etc 3530.487 22.99 24.21 1-2 3¹P°-7¹D 2³P°-11³S (35) 2³P°-11³D 10138.50 E 10 20.87 24.36 (89) 1-3 3¹P°-9625.80 22.99 24.27 (1) 2³P°-12³S (37) 23p°-123p (38) 23p°-122 (1) 23po_ 3.54 Anal A List B June 1942 He II I P 54.17 Anal A List A June 1942 23pe-2²P°-3²Detc 3498.641 D (1) 4²Detc 5²Detc 3490.62 D 6²Detc 3487.721 D 6²Detc 7²Detc 7²D 10.16 12.04 -10.16 12.70 -10.16 13.00 -10.16 13.17 -10.16 13.27 -10.16 13.33 --4685.682 3203.104 3³P°-14³S (41) 8³P°-14³D (42) 2³P°-15³D (43) 2³P°-16³D 4²F°-5²G e (2) 6²G e 7²G e 10123.61 6560.099 5411.524 4859.323 50.80 52.02 50.80 52.68 50.80 53.08 50.80 53.34 20.87 24.41 3478.97 D (1) 20.87 24.42 3²D-5²F° etc 3471.80 D (2)6²F° etc 7²F° etc 8²F° etc 7281.349 B 4541.59 12.04 13.00 12.04 13.17 12.04 13.27 12.04 13.33 4²F°-10²G (3) 11²G 12²G 4338.67 4199.83 4100.04 4025.60 3968.43 50.80 53.64 50.80 53.74 50.80 53.81 50.80 53.86 50.80 53.91 21.13 22.82 1-0 21po-31s 1-2 21po-31p 6678.149 B 21.13 22.97 1-0 21P0-41S 4²F°-15²G (4) 16²G 17²G 18²G 19²G 3923.48 3887.44 3858.07 3833.80 50.80 53.94 50.80 53.97 50.80 54.00 50.80 54.02 5047.736 B 1-2 21po_ P 24.48 Anal A List B Jan 1943 4921.929 B (4) 2500 1500 500 19.73 20.87 1-2 33S-33P° 19.73 20.87 1-1 (1) 19.73 20.87 1-0 4920.35 P Forb 1-3 21po-41F0 3796.33 3781.68 3644.47 50.80 54.05 50.80 54.06 50.80 54.18 = 19.73 22.91 1-1 235-33P° (2) | 3 . | | REVI | S E D M | ULTIPLET | TABLE | | | | | |---|---|-------------------------------------|-------------------------|--|--|---------------------------------------|---|---|--| | Laboratory
I A Ref Int | EP J Multiplet
Low High (No) | Labor
I A | atory
Ref Int | E P
Low High | J Multiplet (No) | Labor
I A | atory
Ref Int | E P
Low High | J Mul1 | | He II continued | | <u>B II</u> I P | | nal B
List D | Feb 1943 | C I conti | | 0.07 0.60 | | | 9344.93 A | 52.02 53.08 — 5 ² G-7 ² H° etc
52.02 53.34 — (6) 8 ² H° etc
52.02 53.51 — 9 ² H° etc | 3451.41
4121.95 | A 10 | 9.06 12.64
18.60 21.59 | 1-2 2 ¹ P°-2p ² ¹ D
- 3 ³ D-4 ³ F° | 13164.1 | D (100) | 8.73 9.67
8.73 9.72 | 1-1 3p ³ ;
1-1 3p ³ ; | | 7592.74 A — | 52.02 53.51 — 9°H° etc
52.02 53.64 — 10°2H° etc
52.02 53.74 — 11°2H° etc | 4151.00 | | | (2) | *11667.1 | D (100) | 8.73 9.79
8.73 9.79 | 1-2 3p ³ ;
1-1 (; | | 6890.88 A | 52.02 53.81 — 5 ² G-12 ² H° etc
52.02 53.86 — (7) 13 ² ₂ H° etc | | | | | 11656.0 | D (500) | | _ | | 6527.10 P —
6406.3 A — | 52.02 53.91 — 142H° etc
52.02 53.94 — 152H° etc | B III I | | Anal A List B | Feb 1943
— 4 ² P°-5 ² D | 12614.8
*12565.0 | D (200)
D (30)
D (40) | 8.81 9.79
8.81 9.79
8.81 9.79 | 2-2 3p ³ :
1-1 (:
2-1 | | 6310.8 A —
6233.8 A — | 52.02 53.97 — 16 ² H° etc
52.02 54.00 — 17 ² H° etc | | A 3d | 29.98 32.89 | (1) | 12602.6
*12565.0
12582.3 | D (30)
D (40) | 8.81 9.79
8.81 9.79 | 1-0
1-2 | | 6170.6 A —
6118.2 A — | $52.03 54.02 - 5^2 G-18^2 H^{\circ} ext{ etc}$ $52.02 54.03 - (8) 19^2 H^{\circ} ext{ etc}$ | | A 5d | 30.14 32.89 | - 4 ² D-5 ² F° (2) | 12551.0 | D (50)
E (1d) | 8.81 9.79
8.81 10.35 | 0-1
3p ³ : | | 6074.1 A —
6036.7 A —
5694.46 A — | 52.02 54.05 — 302H° etc
52.02 54.06 — 312H° etc
53.03 54.18 — Limit | 4497.58 | A 10d | 30.15 32.89 | - 4 ² F°-5 ² G
(3) | 8018
7850 | E (1d) | 8.81 10.38 | 3p ³ | | Wide Fine Structure | | | | REVISED | | · · · · · · · · · · · · · · · · · · · | | DESTRUCTO | | | | | See N | | BS 3, Sect | tion 3, 197 | O See N | SRDS-NB | | ion 3, | | <u>L1 I</u> I P 5.37 Ana | l A List B Jan 1943 | 10691.36
10683.18 | A 50
A 25 | 7.46 8.61
7.45 8.61 | 2-3 38 ³ P°-3p ³ D
1-2 (1) | C II I I
4744.90 | P 24.28 Ar
B 1 | al A List A | Feb 194 | | 6707.74 // A) 1000R | $\begin{pmatrix} 0.00 & 1.84 & \frac{1}{2} - 1\frac{1}{2} & 2^2 S - 2^2 P^2 \\ 0.00 & 1.84 & \frac{1}{2} - \frac{1}{2} & (1) \end{pmatrix}$ | 10685.44
10729.59 | A 10
A 8 | 7.45 8.60
7.46 8.61 | 0-1
3-3 | 4738.11 | в о | 13.66 16.26 | -
- | | 3232.61 B 50R | 0.00 3.82 — 2 ² s-3 ² P° (2) | 10707.44
10754.09 | A 8
P | 7.45 8.60
7.46 8.60 | 1-1
2-1 | 6578.03
6582.85 | A 10
A 9 | 14.39 16.26
14.39 16.26 | 1-11 3 ² 8. | | 8126.52 B (500) | 1.84 3.36 — 2 ² P°-3 ² S | 9638.49
9620.86 | A 8 | 7.46 8.73
7.45 8.73 | 8-1 3s ³ F°-3p ³ S
1-1 (2) | 7236.19 | A 8d | 16.26 17.97 | | | 6103.642 C 500R | (3)
1.84 3.86 2 ² P°-3 ² D | 9603.09
9094.89 | A 0
A 25 | 7.45 8.73
7.46 8.81 | 0-1
2-2 3s ³ P°-3p ³ P | 7231.12 | A 7d | 16.26 17.97 | 1 1 2 3 3 2 P | | 4971.92 B 10r | 1.84 4.32 — $3^{2}P^{0}-4^{2}S$
1.04 4.50 — $9^{2}P^{0}-4^{2}D$ | 9078.32
9111.85
9088.57 | A 6
A 10
A 8 | 7.45 8.81
7.46 8.81
7.45 8.81 | 1-1 (3)
2-1
1-0 | 3920.677
3918.977 | A 10
A 9 | 16.26 19.41
16.26 19.41 | 11- 1 3 ² P | | 4608.99 B 100R | 1.84 4.50 — p ² P ³ -4 ² D (6) | 9061.48
9062.53 | A 15
A 10 | 7.45 8.81
7.45 8.81 | 1-2
0-1 | 5889.97 | A 4 | 17.97 20.06 | -
21-11 3 ² D
11-1 | | | | 5041.66 | в з | 7.46 9.90
(7.45 9.90 | 2-3 3s ³ P°-4p ³ D | 5891.65
4267.27 | A 3
A 20 | 17.97 20.06
17.97 20.86 | 21-31 3 ² D
11-21 | | | nal A List D Jan 1943 | *5039.05 | B 3 | 7.45 9.90 | 0-1 | 4267.02
3361.09 | A 19
A 3 | 17.97 20.86
17.97 21.64 | | | 5483.55 to)A 10 | 58.77 61.02 — 205-207 | 4826.73
4817.33
4812.84 | B 1
B 1
E (1) | 7.46 10.01
7.45 10.01
7.45 10.01 | 2-1 3s ³ P ⁶ -4p ³ S
1-1 (5)
0-1 | 3361.75 | A 2 | 17.97 21.64 | 15- 5 | | 3684.1 B 2 | 68.48 71.83 — 3 ³ S-4 ³ P° | 4771.72
4766.62 | B 4 | 7.46 10.04
7.45 10.04 | 2-2 3s ³ P°-4p ³ P | 2992.63 | A 5d | 17.97 22.09 | — 3 ² D | | 4156.3 B 0.5 | (2)
68.98 71.95 0-1 3 ¹ S-4 ¹ P° | 4775.87
4770.00 | B 2
B 3
B 2 | 7.46 10.04
7.45 10.04 | 2-1
1-0 | 3165.51
3167.95 | A 4
A 3 | 18.57 22.47
18.58 22.47 | 21-11 2p ³
11-1 | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | •4762.41 | B 4 | (7.45 10.04
7.45 10.04 | 1-2
0-1 | 3165.99 | B 1 | 18.58 22.47 | 1½-1½
 | | 4881.3 B 2.5
4325.7 B 3 | 69.07 71.92 — 3 ³ P°-4 ³ D | 4065.1 | C 2 | 7.46 10.49
(7.45 10.49 | 2-37 3s ³ P°-5p ³ I
1-27 (7) | 5536.0 | B 1d | 19.41 21.64 | _ ¹ 2- 4 ² s | | Very wide fine struct | ure (5) | *4064.2 | | 7.45 10.49 | 0-17 | 5336.7 | B Odd | 20.06 22.38 | 1½- ½ 4 ² P | | | · · · · · · · · · · · · · · · · · · · | 10653.6 | D (50) | 7.65 8.81 | 1-1 3s ¹ Pe-3p ³ I | | A 1 | 20.06 22.47 | 1 2 4 2 P | | <u>Be I</u> I P 9.28 Ana | al A List C Feb 1943 | 9405.77
8335.19 | A 20
A 10 | 7.65 8.96
7.65 9.13 | 1-2 3s ¹ p°-3p ¹ ;
(9)
1-0 3s ¹ p°-3p ¹ ; | 3836.10 | B 2d
B 1d | 20.06 23.28
20.06 23.28 | $\frac{1\frac{1}{2}-2\frac{1}{2}}{\frac{1}{2}-1\frac{1}{2}}$ (| | 3321.347 A 30
3321.086 A 20 | 2.71 6.43 2-1 2 ³ P°-3 ³ S
2.71 6.43 1-1 (1) | 5380.242 | в 8 | 7.65 9.95 | (10)
1-1 3s ¹ P°-4p ¹
(11) | | A (6)
A (4) | 20.63 22.44
20.61 22.44 | | | 3321.013 A 10 | 2.71 6.43 0-1 | 5052.122 | в 6 | 7.65 10.09 | 1-2 3s ¹ p ⁰ -4p ¹ 1
(12) | 6780.27
6800.50 | {2
A {3} | 20.61 22.43 20.62 22.44 | 23-23 | | 8254.10 B 10
4572.671 C 15 | 5.25 6.75 1-0 2 ¹ P°-3 ¹ S
5.25 7.95 1-2 2 ¹ P°-3 ¹ D | 4932.00
4371.33 | B 5
C 4 | 7.65 10.15
7.65 10.47 | 1-0 3g ¹ P°-4p ¹ ;
(13)
1-1 3g ¹ P°-5p ¹ ; | 6787.09 | A (2)
A (3)
A (2)
A (0)
A (1) | 20.61 22.43
20.61 22.43
20.62 22.43 | } - } | | 4407.911 B 10 | 5.25 8.05 1-0 21P -41s | 4352.1 | C 1 | 7.65 10.49 | 1-2? 3s ¹ P°-5p ³ | 6798.04 | | 20.61 22.43 | 1출~ 출 | | 3813.402 B 15 | 5.25 8.49 1-2 2 P°-41D
. (5) | 4268.99 | с з | 7.65 10.54 | 1-2 3s ¹ pe-5p ¹ | 5662.51
5648.08
5640.50 | A (4)
A (2) | 20.61 22.80 | 1출-1출 (| | 3736.280 B 10 | 5.25 8.56 1-0 2 ¹ P°-5 ¹ S | 4231.35 | C 1 | 7.65 10.57 | (16)
1-0 3s ¹ P°-5p ¹
- (17) | 5145.16 | A (5)
A (1) | 80.68 83.08
20.61 23.02 | a}-a} 3e⁴ | | 3515.538 B 12 | 5.25 8.77 1-2 2 ¹ P°-5 ¹ D (7) | 5793.51
5801.17 | E (3)
E (2)
E (1) | 7.91 10.04
7.91 10.04 | 3-2 2p ^{3 3} p°-4;
2-1 (18) | 5139.21
5137.26
5151.08 | A (0)
A (3d? | 20.61 23.01 | }- } | | | | 5805.76 | E (1) | 7.91 10.04 | 1-0 | 5143.49
5133.29 | A (2)
A (2)
A (3) | 20.61 23.01
20.61 23.02
20.61 23.02 | 1 3 -23 | | | Anal A List D Feb 1943 | 11330.36 | A 1 | 8.50 9.59 | 1-2 3p ¹ P-3a ¹ D
(19) | | | | | | 3130.416// A 50
3131.064 A 30 | 0.00 3.94 $\frac{1}{2}$ -1 $\frac{1}{2}$ 2 2 S-2 2 P° 0.00 3.94 $\frac{1}{2}$ - $\frac{1}{2}$ (1) | 10548.0 | E (60) | 8.50 9.67 | 1-1 3p ¹ P-4s ¹ P
(20) | 5037.0 | B 1d
B 0d | 20.83 23.28
20.83 23.28 | - 1 - 1 - (| | 3274.640 A 10 | 10.89 14.66 — 3 ² 5-4 ² P° | 6828.5
6587.75 | C 0 | 8.50 10.31
8.50 10.37 | (21)
1-1 3p ¹ P-4d ¹ P | 3871.62
3868.84 | B 2
B 1 | 20.83 24.02
20.83 24.02 | $\frac{1}{2}$ - $\frac{1}{2}$ $2p^3$ (| | 5270.843 A 12 | 11.91 14.25 $1\frac{1}{2}$ $\frac{1}{2}$ $3^2P^2-4^2S$ | | - (200) | (8.61 9.65 | _ (22)
 | | A 0 | 22.00 24.02 | | | 5270.322 A 10 | 11.91 14.25 1 (3) | *11894.9
11880.4 | D (200) | 18.61 9.64
8.60 9.64 | 2-1 (23)
1-07 | | | | (| | 4361.025 A 10
4360.690 A 9 | 11.91 14.74 $\frac{1}{2}$ $\frac{3^2P^0-4^2D}{4}$ 11.91 14.74 $\frac{1}{2}$ (4) | 11849.3
11863.0 | D (10) | 8.61 9.65
8.61 9.64 | 3-2
1-1 | *7119.45
7115.13 | A (2)
A (2)
A (1) | 22.44 24.17
(22.43 24.17
(22.43 24.17 | 31-41 3p4
21-31 (
11-21 | | 3241.835 A 10 | 11.91 15.78 1½- ½ 3 ² P°-5 ² S† | *11754.0
11747.5 | D (600) | (8.61 9.66
8.61 9.66
8.60 9.65 | 3-4 3p ³ D-3d ³ F
2-3 (24)
1-2 | • •7112.36
7133.52
7125.49 | A (0)
A (0)
A (2) | 22.43 24.17
22.44 24.17
22.44 24.17 | 3 1-31 | | 4673.462 A 20 | 12.10 14.75 — 3 ² D-4 ² F° (6) | 11801.8 | D (10) | 8.61 9.66 | 3-3 | *7119.45 | | 22.43 24.17 | 1 2 -1 2 | | B I See introduction | | _*11667.1
11631.59?
11609.91? | D (100)
P
P | 8.61 9.67
8.61 9.67
8.60 9.67 | 3-3 3p ³ D-3d ³ D
2-2 (25)
1-1 | 6750.22
6738.36
6730.79 | A (2)
A (1)
A (0) | 22.44 24.27
22.44 24.27
22.43 24.27 | 2 } -2 } (. | | | - | _ 11676.997
11638.607 | P
P | 8.61 9.67
8.61 9.67 | 3-2
2-1 | *6726.84
6754.75 | A (0) | 22.43 24.26
22.44 24.27 | | | | | 11619.0
11602.94? | P (30) | 8.61 9.67
8.60 9.67 | 2-3
1-2 | 6742.05
*6733.56 | A (0) | 22.44 24.27
(22.43 24.26
(23.44 24.27 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | 7118.5 | E (6d | 8.61 10.34 | 3p ³ D-4d ³ F
(26) | •6726.84 | A (0) | 22.43 24.27 | 12-37 | | | | | | | | | | | | | Library Libr | | | | | | REVI | SE | D M | ULTIPL: | ET T | ABLE | | | | | | | 3 |
--|-------------|-------------------|---|--|---|--------------------|-------------|----------|----------------------------|--------------------------------|--|--------------------|--------|---------|----------------|----------------|---|--| | A | | | | J | Multiplet
(No) | Labor
I A | ator
Ref | y
Int | | J | | | | | | | J | | | A (1) | tinue | đ | | | | C II cont | inue | đ | | | | C III co | ntinu | ed | | | | | | A (1) Co. 4. Ser. 1. S | A
A
A | (1)
(0)
(0) | 22.44 24.55
22.43 24.55
22.44 24.55 | 13- 3
23-23 | | 5914.92
5919.60 | A | | 24.55 26.64
24.55 26.64 | 23-13
13-13
2-13
2-13 | 3d ⁴ P°-4p ⁴ S
(44) | 5871.6
5857.9 | P | = | 39.87
39.87 | 41.98
41.98 | 2-1
1-0 | (20) | | A (3) 25.00 25.00 1.25 | A | (0) | 32.43 24.55
22.44 25.88 | | • | 4372.49
4371.59 | A
A | 4
3 | 24.55 27.37
24.55 27.37 | 13-2
13-2
2-1 | (45) | 4156.50 | A | 4 | 39.87 | 42.84 | 2-3 | (21) | | 3 000 000 000 000 000 000 000 000 000 0 | | | 22.43 25.87 | 15- 5 | | 4376.78 | С | 2đ | 24.55 27.37 | 1 ½ - 2 ½ | 3d ⁴ P°-4f ² D | 5827.1 | A | 1 | 40.02 | 42.14 | 2-3 | | | \$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \alpha \be | A | (2) | 22.43 25.87 | 11-11 | | 3059.24 | В | οđ | 24.55 28.58 | 2] -3 | 3d4P0-5f4D | 5249.6 | A | 0 | 40.02 | 42.37 | 2-1 | 4 ¹ D-5 ¹ P° | | ### 441.0 20.0 | | 0. | 22.43 25.88
22.43 25.87 | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | ł | | | | | 3-3
2-3
2-2 | | 4056.06 | A | 5 | 40.02 | 43.07 | 2-3 | 4 ¹ D-5 ¹ F° | | ### 441.0 20.0 | | | 22.47 24.50 | 1 2 2 3 | 3p ² P-3d ² D° | | | | | 3 1-4 | 3d ² F°-4f ⁴ G
(49) | Lines att | ribut | ed to ! | C IIIC | Classif | icatio: | n dubious | | A (in) 25.50 26.55 1-2 30 56.55
1-2 30 56.55 | | | 22.1. 21.0. | -2 -2 | • | | | 5d | | - ' | 3d ² F°-4f ² G | *4368.1400 | A
A | 4d | | | | | | A (in) 25.50 26.55 1-2 30 56.55 | | | 22.47 24.96
22.47 24.96 | 13-13 | 3p4P-3d4P°
(25) | | | | |
 | | 4001.56 | A | Ōđ | | | | | | (12) 23.00 24.55 1-1 10.52.45* A (13) 23.00 24.55 1-1 10.52.45* A (10) B 4 23.00 24.55 24-1 10.52.45* B 6 24 23.00 24.55 24-1 10.52.45* B 7 2 24.00 24.55 24-1 10.52.45* B 8 2 (23.00 24.55 24-1 10.52.45* B 9 2 (23.00 24.55 1-1 | В | Ođ | (22.47 34.96
22.47 34.96 | 13-12 | | | | | 24.96 27.38 | 1 2 -21 | (51) | 3999.92 | Α | | דוזים ס | מעט | | | | A (2) 32.00 3.50 8 1-3 20 5-4 59 40-4 59 40-4 10 20 20 30 33.05 1-2 35 35 35 99 505.1 A (3) 22.00 3.50 7 1-1 4651.35 A 18 20.50 35.07 40.50 1 4661.50 4 40.50 40.50 1 40.50 40.50 1 40.50 40.50 1 40.50 40.50 1 40.50 40.50 1 40.50 40.50 1 40.50 40.50 1 40.50 40.50 1 40.50 40.50 1 40 | Ā | (1n) | 22.80 24.55
22.80 24.55
22.80 24.55 | 13-2
13-1
13-1 | 3p ⁴ S-3d ⁴ P° (26) | | | | 3, Sec | | | | | | 3, | Sect | Feb | 1943 | | 8 4 33.00 25.60 34.17 4.14 (20) 6651.35 A 18 29.30 25.05 1-0 (1) 3936 P 54.08 55.12 \$\frac{1}{2} \cdot \frac{2}{2} \frac{2} \cdot \frac{2}{2} \cdot \frac{2}{2} \cdot \frac{2}{2} \cdot \f | A | (2) | | | | 4647.40 | | 20 | | 1-2 | 3 ³ S-3 ³ P° | | | | | | \$-1\$
\$- \$ | 3°S-3°P°
(1) | | B 2 20.00 5.07 3.1-14 (ab) 5.00 5.00 5.00 5.00 5.00 5.00 5 | Α. | (1)
 | | - | | 4651.35 | | 18 | 29.39 32.05 | 1_1 | (1) | 3936 | P | | 54.98 | 58.12 | - , | 5 ² S-6 ² P° | | \$\begin{array}{c c c c c c c c c c c c c c c c c c c | | | 23.02 25.87 | 15-11 | (28) | 5696.0 | A | 8 | 31.97 34.13 | 1-2 | 3 ⁺ P°-3 ⁺ D
(2) | | | | 55.41 | 57.87 | 1글- 글 | 5 ² P°-6 ² S | | S 2 23.01 25.07 3-15 672.1 P 38.04 39.07 0-1 1.0 25.08 27.36 39.08 27.36 | _ | | (23.02 25.87 | 17- 7 | Ļ | 6744.2 | P | | 38.05 39.88 | 2-3 | 3s ³ pe_3p ³ D | | | Ωđ | | | \$- \$ | | | 8 0d 23.28 27.34 | | | | 2-1 | | | | | | | | 4111.01 | Α. | | | | - | (4) | | (a) 24.17 26.52 4-5 344*-4p4*D 465.90 A 6 38.05 40.69 2-2 3n ³ p*-5p ³ p 4855 P 55.54 58.19 — 5 ² p*-6 ² p 6 A (3) (24.17 26.51 34-4) 4653.53 A 4 38.05 40.69 1-0 4658.64 A 5d 55.54 58.20 — 5 ² p*-6 ² p 6 (5) (7) 4855 (14.17 26.52 34-5) 4855.54 A 5d 55.54 58.20 — 5 ² p*-6 ² p 6 (5) (8) (8) (10) 24.17 26.53 34-54 342*-4p*-4f*P 3255.44 A 0 38.19 41.98 1-0 (8) (8) (10) 24.17 26.53 34-54 342*-4f*P 447*P 4357.90 A 0 38.19 41.98 1-0 (9) 24.17 27.29 24-3 24.54 24.00 38.19 41.98 1-0 (9) 24.17 27.29 24.27 27.29 24. | В | Ođ | 23.28 27.34 | | 3p2D-4d2F | 5253.55 | | 1 | 38.04 40.39 | 1-1 | 3s ³ P°-3p ³ S
(4) | | - | | | | _ | /5\ | | (24.17 28.52 34-24 (30) 4673.91 A 4 38.05 40.69 B-1 (5) 4665 P 55.54 56.19 — 5°7°-6°0° CP A (0) 34.17 36.52 34-25 4663.53 A 4 38.05 40.69 B-1 (6) 4658.64 A 5d 55.54 56.20 — 5°7°-6°0° CP A (0) 34.17 36.52 34-25 34-25 329.44 A 0 38.19 41.97 1-2 438-34^2P C 0 24.17 27.39 34-25 (31) 329.44 A 0 38.19 41.97 1-2 438-34^2P C 0 24.17 27.39 34-25 (31) 329.44 A 0 38.19 41.97 1-2 438-34^2P C 0 24.17 27.39 34-25 (31) 329.44 A 0 38.19 41.97 1-2 438-34^2P C 0 24.17 27.39 34-25 (31) 3170.16 A 1d 38.48 42.37 0-1 448-34 (31) 34.17 27.39 34-25 (31) 3170.16 A 1d 38.48 42.37 0-1 448-34 (31) 34.17 27.39 34-25 (31)
34.17 27.39 34-25 (31) 34.17 27.39 34-25 (31) 34.17 27.39 34-25 (31) 34.17 27.39 34-25 (31) 34.17 27.39 34-25 (31) 34.17 27.39 34-25 (31) 34.17 27.39 34. | | | | | | | | - | | | a 3no a 3n | 4647 | P | | 55.54 | 58.19 | | | | A (0) 24.17 26.52 34-34 328.22 4 A 1 38.19 41.97 1-2 4 ³ S.34 ³ Pe C 0 24.17 27.89 34-34 36 ⁴ Pe-44 ² F 3287.80 A 0 38.19 41.97 1-2 4 ³ S.34 ³ Pe C 0 24.17 27.89 34-34 52.37 52.34 1 2 1.2 38.19 41.97 1 2 38.19 2 38.19 1 2 38.19 2 38.19 1 2 38.19 2 38.19 1 2 38.19 2 38.1 | | | (24.17 26.52 | 3-2-2- | (30) | 4673.91 | A | 4 | 38.05 40.69 | 2-1 | (5) | 4665 | P | | 55.54 | 58.19 | - | 5 ² F°-6 ² D | | C 0 24.17 27.28 3-3 34°s-44°F 3857.90 Å 0 38.19 41.98 1-1 (6) 4660 P 55.55 58.19 5°c-6°p° (7) C 0 24.17 27.28 3-3 34°s-44°F 3857.90 Å 0 38.19 41.98 1-1 (6) 4660 P 55.55 58.19 5°c-6°p° (9) C 0 24.17 27.28 3-3 34°s-44°F 3857.90 Å 0 38.19 41.98 1-0 (7) 4217 P 57.87 59.74 1-2 6°2-6°p° (9) C 0 24.17 27.30 3-3 5 1 25 1 25 1 25 1 25 1 25 1 25 1 25 1 | | | (24.17 26.51 | 15-
35-3 | | 4000100 | ^ | | | | | 4658.64 | A | 5đ | 55.54 | 58.20 | _ | | | 8 28.27 41.12 1-2 3a ¹ pe_3pi 8 1 24.17 27.30 34-3½ 8 1 24.17 27.30 34-3½ 8 1 24.17 27.30 34-3½ 8 1 24.17 27.30 34-3½ 8 1 24.17 27.30 34-3½ 8 1 24.17 27.30 34-3½ 8 1 24.17 27.30 34-3½ 8 28.17 27.30 34-3½ 8 28.17 27.30 34-3½ 8 28.17 27.30 34-3½ 8 28.17 27.30 34-3½ 8 28.17 27.30 34-3½ 8 28.17 27.30 34-3½ 8 28.17 27.35 34-12½ | | | 24.17 26.52 | | | 3259.44 | A | 0 | 38.19 41.98 | 1-1 | | 4660 | P | | 55.55 | 58.19 | _ | 5 ² G-6 ² F° | | 3 2 24.17 27.30 3 2 3 26 (52) 3170.16 A 1d 38.48 42.37 0.1 4 1 5.5 1 5 | C | ō | 24.17 27.29 | 21-2 | (31) | 3257.90 | A | | 38.19 41.98 | | | 6502 | Ф | | 57 87 | 59.74 | -
1. | | | B 1 24.17 27.30 3 3-3 (32) C 0 24.17 27.30 2 5-3 27.35 3 4-4 (33) C 0 24.17 27.35 3 4-4 (33) C 0 24.27 26.52 3 2-3 (32) C 0 24.27 27.30 3 2-4 (32) C 0 24.27 27.30 3 2-4 (32) C 0 24.27 27.30 3 2-4 (32) C 0 24.27 27.37 3 2-3 | | - | | | - | 4325.70 | A | . 8 | 38.27 41.12 | 1-2 | | | - | | | | | (10)
625_82pe | | A 8 24.17 27.36 44-54 34**P-44**Q 4516.93 A 4 39.22 41.95 1.0-1 (9) | B | 1 | 24.17 27.30
24.17 27.30 | | _ | 3170.16 | A | 1d | 38.48 42.37 |
0_1 | | | • | | | | | (11) | | A 6 24.17 27.35 24-25 | - | - | | | | | | | | | | 4737 | P | | 58.19 | 60.80 | - | | | A 6 24.17 27.35 14-25 3608.96 A 4 5 39.22 42.64 2-3 4 2.65 | A | 7 | 24.17 27.35 | 45-5 | 3d F0-41 G | | | | | | | | | | | | <u>-</u> | | | B 1 24.17 27.35 2\$\frac{3}{2}\$-2\$\frac{3}{2}\$ 4247.56 A 1 39.47 42.37 1-1 3p\frac{1}{2}p-5\frac{1}{2}p 8880.24 A 10 10.28 11.71 2\$\frac{1}{2}\$-3\$\frac{1}{2}\$-5\frac{1}{2 | A | 6 | 24.17 27.35 | 13-2 | Į | | | | | | | ит т | 14.4 | .9 An | Bla | List R | Feb | 1944 | | A (0) 24.27 26.52 3\frac{1}{2}-3\frac{1}{2} 3d^4p^-4p^4 3703.58 A 2 39.47 42.87 1-1 3p^4p-5tp^8 8686.13 A 7 10.28 11.70 \frac{1}{2}-12 \frac{1}{2} \text{ (1)} \\ B 1 24.27 26.52 3\frac{1}{2}-3\frac{1}{2} 3d^4p^-4p^4 3703.58 A 2 39.47 42.80 1-1 3p^4p-3d^4p 8718.82 A 6 10.28 11.70 \frac{1}{2}-12 \\ B 1 24.27 27.30 3\frac{1}{2}-2\frac{1}{2} \text{ (35)} \\ A 6 24.27 27.30 3\frac{1}{2}-4\frac{1}{2} \text{ (35)} \\ A 5 24.27 27.30 2\frac{1}{2}-3\frac{1}{2} \text{ (35)} \\ A 5 24.27 27.30 2\frac{1}{2}-3\frac{1}{2} \text{ (35)} \\ B 1 24.27 27.37 3\frac{1}{2}-2\frac{1}{2} \text{ (35)} \\ A 5 24.27 27.37 3\frac{1}{2}-2\frac{1}{2} \text{ (35)} \\ A 7 24.27 27.30 2\frac{1}{2}-3\frac{1}{2} \text{ (36)} \\ A 8 3 24.27 27.30 - 4388.24 A 2 39.67 42.48 3-2 4^3p-5^3p^6 8210.84 A 2 10.28 11.79 12-12 \\ A 8 3 24.27 27.37 3\frac{1}{2}-2\frac{1}{2} \text{ (37)} \\ A 1 24.27 27.37 3\frac{1}{2}-2\frac{1}{2} \text{ (37)} \\ A 24.27 27.37 3\frac{1}{2}-2\frac{1}{2} \text{ (37)} \\ A 24.27 27.37 3\frac{1}{2}-2\frac{1}{2} \text{ (37)} \\ A 5 24.27 27.37 3\frac{1}{2}-2\frac{1}{2} \text{ (37)} \\ A 7 24.27 37
3\frac{1}{2}-2\frac{1}{2} \text{ (37)} \\ A 8 3 24.27 27.37 3\frac{1}{2}-2\frac{1}{2} \text{ (37)} \\ A 8 3 24.27 27.37 3\frac{1}{2}-2\frac{1}{2} \text{ (37)} \\ A 9 3 24.27 27.37 3\frac{1}{2}-2\frac{1}{2} \text{ (37)} \\ A 1 24.27 27.37 3\frac{1}{2}-2\frac{1}{2} \text{ (37)} \\ A 2 3 24.27 27.37 3\frac{1}{2}-2\frac{1}{2} \text{ (37)} \\ A 2 3 24.27 27.37 3\frac{1}{2}-2\frac{1}{2} \text{ (37)} \\ A 3 24.27 27.37 3\frac{1}{2}-2\frac{1}{2} \text{ (37)} \\ A 5 24.27 27.37 3\frac{1}{2}-2\frac{1}{2} \text{ (37)} | | | 24.17 27.35 | $3\frac{1}{2} - 3$ | | | | | | | | | | | | | | | | B 1 24.27 28.71 34_21 3d ^{1pe} _sp ⁴ P | | | | | 14 4- | | | _ | | | 3p ¹ P-5 ¹ P° (11) | 8686.13 | A | 7 | 10.28 | 11.70 | 13-25 | (1) | | B 7 24.27 27.30 3 4-4 3 4 5 24.27 27.30 3 2-3 4 6 554.4 P 35.66 41.87 1-1 8216.28 A 6 10.29 11.79 12-12 12 12 12 12 12 12 12 12 12 12 12 12 1 | | | | 31-2 | 34)
(34)
3d4Do-4n4b | 3703.52 | A | | 39.47 42.80 | 1-1 | 3p-P-3d-P°
(12) | 8711.69 | A | 7 | 10.29 | 11.70 | | | | B 7 24.27 27.30 3 34-4 38 29-46 41 P 39.66 41.67 1-1 A 6 24.27 27.30 24-32 (36) A 5 24.27 27.30 24-32 (36) A 3 24.27 27.37 34-32 34 34 A 1 39.67 42.48 3-2 43p-53p 8210.64 A 2 10.29 11.79 14-12 (2) B 1 2 24.27 27.37 34-32 34 34 A 1 39.67 42.48 2-1,2 (14) 8200.31 A 1 10.29 11.79 14-12 (2) C 0 24.27 27.37 14-12 (37) C 0 24.27 27.37 14-12 (37) C 0 24.27 27.37 14-12 (38) 27.38 24-12 344p-4f ² D 4070.30 B 10 39.74 42.77 4-5 43p-5 ³ C 7442.88 A 8 10.29 11.94 14-12 (3) C 0 24.27 27.38 24-12 342p-4f ² D 408.97 B 9 39.74 42.77 4-5 43p-5 ³ C 7442.88 A 8 10.29 11.94 14-12 (3) C 0 24.27 27.38 24-12 342p-4f ² D 408.97 B 9 39.74 42.77 2-3 (46) A 5 24.50 27.29 14-22 (38) C 4 24.50 27.39 24-32 362p-4f ⁴ D 4120.05 A 3 39.80 42.79 1-2 4 ¹ Pc-5 ¹ D (17) 4223.04 B 5 10.29 13.19 14-22 (5) C 1 24.50 27.37 24-22 362p-4f ⁴ D 4120.05 A 3 39.80 42.79 1-2 4 ¹ Pc-5 ¹ D (17) 4223.04 B 5 10.29 13.21 24-12 (6) C 1 24.50 27.37 24-22 362p-4f ⁴ D 4120.05 A 3 39.88 41.67 3-3 3p-3da ³ De B 1 24.50 27.37 24-22 362p-4f ⁴ D 6862.9 P 39.87 41.67 2-2 (19) 4151.48 B 12 10.29 13.21 14-12 (6) B 1 24.50 27.37 24-22 362p-4f ² D 6871.7 P 39.88 41.67 3-3 3p-3da ³ De B 1 24.50 27.38 12-12 (42) 6862.9 P 39.87 41.67 2-2 (19) 4151.48 B 12 10.28 13.26 12-12 364p-4f ⁵ C 6862.9 P 39.87 41.67 2-2 (19) 4151.48 B 12 10.28 13.26 12-12 364p-4f ⁵ C 6657.3 P 39.87 41.67 1-1 413.42 P 10.28 13.26 12-12 (6) | В | ō | 24.27 26.71 | 22-1 | (35) | | | | 39.67 41.67
39.67 41.67 | 3-3
2-2 | | 8747.35 | A | 0 | 10.29 | 11.70 | 25-15
15-5 | | | A 3 24.27 27.37 34-21 34 ⁴ pe-4f ⁴ p 4379.97 A 0 39.66 42.46 1-0,1 8242.34 A 4 10.29 11.79 24-14 12 12 12 12 12 12 12 12 12 12 12 12 12 | | | 24.27 27.30 | $3\frac{1}{2}-4$ | 3d ⁴ D°-4f ⁴ F
(36) | | P | | 39.66 41.67 | 1-1 | | 8216.28 | | | 10.29 | 11.79 | | 3s ⁴ P-3p ⁴ P° | | C 0 24.27 27.37 12-12 3885.99 B 3 39.67 42.84 2-3 (15) 8187.95 A 4 10.29 11.79 12-12 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2 | | | | _ | | 4383.24 | A | 1 | 39.67 42.48 | 2-1 | ,2 (14) | 8200.31 | A | 1 | 10.29 | 11.79 | ত− ড | (2) | | C 0 24.27 27.38 2\frac{1}{2}1\frac{1}{2}36\frac{1}{2}883.80 | В | 1 a | 24.27 27.37 | 25-21 | (37) | | | - | | | | 8223.07 | A | 4 | 10.29 | 11.79 | 25-15 | | | C 00 24.27 27.38 24.14 3d4pc-4f2p 4070.30 B 10 39.74 42.77 4.5 43pc-53q 7442.28 A 8 10.29 11.94 24.14 3 (3) C 0 24.27 27.38 24.17 37.37 32.22 (38) | C | 00 | 24.27 27.37 | 21-3
11-2 | | 3885.99 | В | 3 | 39.67 42.84 | 2-3 | (15) | | | | | | - 1 - 1 - 1 - 2 | | | 39.74 42.77 3-4 (16) | | | 24.26 27.37 | 2 -1 | 2 | | •• | | | _ | | | | | | | 2 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | 3s ⁴ P-3p ⁴ S° | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | 24.27 27.38 | | | 4068.97 | В | 9 | 39.74 42.77 | 3-4 | 4 ³ F°-5 ³ G
(16) | 7423.63
4253.28 | A | 7 | 10.28 | 11.94 | 출-1출
2년-3년 | 3s ⁴ P-4p ⁴ D° | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | 2 1 -3:
1 2 -2: | 3d ² D°-4f ² F
(39) | 4122.05 | A | 3 | 39.80 42.79 | —
1-2 | 4 ¹ P°-5 ¹ D | *4254.7 | D | 4 | (10.28 | 13.18 | 2 −12 | | | B 1 $24.50 \ 27.37 \ 2\frac{1}{2}-2\frac{1}{2} \ 3a^{\frac{1}{2}-4}r^{2}D$ 6871.7 P 39.88 41.67 3-3 $3p^{3}D-3d^{3}D^{6}$ B 1 $24.50 \ 27.38 \ 1\frac{1}{2}-1\frac{1}{2}$ (42) 6862.9 P 39.87 41.67 2-2 (19) 4151.46 B 12 10.29 13.26 $2\frac{1}{2}-1\frac{1}{2} \ 3s^{4}P-4p^{4}s^{6}$ B 1d $24.50 \ 28.54 \ - \ 3d^{2}D^{6}-51^{2}F$ 6857.3 P 39.87 41.67 1-1 4143.42 P 10.29 13.26 $\frac{1}{2}-1\frac{1}{2} \ (6)$ | С | 4 | 24.50 27.30 | | 3d ² D°-4f ⁴ F | | | | | | (17) | 4230.35 | E | 4 | 10.29 | 13.21 | 23-23
23-13 | 3s ⁴ P-4p ⁴ P° (5) | | B 1 $24.50 \ 27.37 \ 2\frac{1}{2}-2\frac{1}{2} \ 3a^{\frac{1}{2}-4}r^{2}D$ 6871.7 P 39.88 41.67 3-3 $3p^{3}D-3d^{3}D^{6}$ B 1 $24.50 \ 27.38 \ 1\frac{1}{2}-1\frac{1}{2}$ (42) 6862.9 P 39.87 41.67 2-2 (19) 4151.46 B 12 10.29 13.26 $2\frac{1}{2}-1\frac{1}{2} \ 3s^{4}P-4p^{4}s^{6}$ B 1d $24.50 \ 28.54 \ - \ 3d^{2}D^{6}-51^{2}F$ 6857.3 P 39.87 41.67 1-1 4143.42 P 10.29 13.26 $\frac{1}{2}-1\frac{1}{2} \ (6)$ | c, | 1 | 24.50 27.37 | 21-2 | 330 no_4+4n | 4187.05 | A | 10 | 39.84 42.78 | 3–4
 | | 4214.73 | В | 5 | 10.29 | 13.21 | 13-22 | | | B 1d 24.50 28.54 — 3d ² D°-5f ² F (43) B 1d 24.50 28.54 — 3d ² D°-5f ² F (43) B 1d 24.50 28.54 — 3d ² D°-5f ² F (5) | | | | 21-2-1-1 | 3d ² D ² -4f ² D
(42) | 6871.7
6862.9 | P
P | | 39.88 41.67
39.87 41.67 | | 3p ³ D-3d ³ D° | | | - | | | 2-12 | | | (43) | В | 1đ | | • | 3d ² D°-5f ² F | | ₽ | | | | (20) | 4143.42 | P | | 10.29 | 13.26 | 15-15 | (6) | | | | | | - | (43) | | | | | | | | - | | | | | | | 4 | | REVISED | MULTIPLET | TABLE | | | |---|--|---|-------------------------------------|----------------------------------|--|--| | Laboratory | EP J Multiplet | Laboratory | E P. | J Multiplet | Laboratory | EP J Mul | | I A Ref Int | Low High (No) | I A Ref In | t Low High | (No) | I A Ref Int | Low High (| | N I continued | | N I continued | | N | I continued | | | 9392.80 A 1
9386.79 A 0
9460.66 P (25) | 10.64 11.96 $1\frac{1}{2}-2\frac{1}{2} 3s^{2}p-3p^{2}p^{6}$
10.63 11.95 $\frac{1}{2}-1\frac{1}{2}$ (7)
10.64 11.95 $1\frac{1}{2}-1\frac{1}{2}$ | 5328.70 B
5356.77 B
5372.66 B | 5 10.88 13.19 1 \f | -21 (13) 66
-11 66 | 644.96 B 9
653.41 B 5
656.61 B 1 | 11.71 13.57 3\frac{1}{2} 3p^4 11.71 13.56 2\frac{1}{2} (11.70 13.56 1\frac{1}{2} \frac{1}{2} (11.71 13.57 2\frac{1}{2} 2\frac{1}{2} | | 8629.24 A 8
8594.01 A 6
8655.88 A 3 | 10.64 12.07 12-12 3s ² P-3p ² P° 10.63 12.07 2-2 (8) 10.64 12.07 12-2 | 5281.18 B | | }-2½ sp4 4P-4p4P*† 66
(14) 66 | 637.01 B 4
646.52 B 2 | 11.70 13.56 $1\frac{1}{2} - 1\frac{1}{2}$ 11.70 13.56 $\frac{1}{2} - \frac{1}{2}$ | | 8567.74 A 4
4935.03 B 10 | 10.64 12.07 12- 12
10.63 12.07 12- 12
10.64 13.14 12- 2 38 ² P-4p ² S° | 9028.9 C (| 50) 11.55 12.92 2 | } ₹ (15) 64 | 482.74 B 9
484.88 B 9
483.75 B 3 | 11.71 13.62 $3\frac{1}{2}$ $4\frac{1}{2}$ $3p^4$
11.71 13.61 $2\frac{1}{2}$ $3\frac{1}{2}$ (
11.70 13.61 $1\frac{1}{2}$ $3\frac{1}{2}$ | | 4914.90 B 5
4109.98 B 12 | 10.63 13.14 $\frac{1}{2}$ $\frac{1}{2}$ (9)
10.64 13.65 $1\frac{1}{2}$ $3s^{2}P$ $3p^{2}$ | 5999.47 B | 10 11.55 13.61 1
6 11.55 13.61 1 | 16) 61
64 | 481.73 B 2
506.45 B 0
499.52 B 3 | 11.70 13.60 | | 4099.94 B 9
4114.00 B 6
3830.39 B 9 | 10.63 13.64 1-13 (10)
10.64 13.64 12-13 38 ² P-3p ^{1/2} | 11294.0 C (1
11313.8 C (
P°11329.0 C (2 | 30) 11.71 12.80 2] | -23 3p4p0-4s4P
-13 (17) | 491.28 B 3
468.32 B 4 | 11.70 13.60 12-12
(11.71 13.62 32-32 3p ⁴
(11.71 13.62 22-23 (| | 3822.07 B 6
3834.24 B 4 | 10.63 13.86 1-12 (11)
10.64 13.86 12-12
10.63 13.87 2-12 | 11227.5 C (| 10) 11.71 12.81 2 | 1-2 1 6- | 457.93 B 3 | 11.70 13.61 $1\frac{1}{2}-1\frac{1}{2}$ | | 3818.27 B 2 | | • | (11.71 12.93 2
(11.70 12.92 1 | }_3ੇ ₂ ੇ? (18) 6- | 441.70 B 5
437.01 B 4
420.47 B 3 | 11.71 13.63 31-21 3p ⁴
11.70 13.63 11-1 (
11.71 13.63 21-21 | | 11564.8 C (50)
11628.0 C (80)
11656.0 C (200) | 10.88 11.94 2-13 sp4 4P-3p4;
10.88 11.94 13-13 (12)
10.88 11.94 2-13 | 10164.5 C (| 30) 11.71 12.93 3 | -3-7
-2-7
5-2-7
5-8-7 | 616.54 B 5
623.20 B 4
625.43 B 2 | 11.71 13.91 31-21 3p4
11.71 13.90 21-11 (
11.70 13.90 12-12 | | | | 9862.5 C (
9821.8 C (| | 1-31 3p4D°-3d4D
1-21 (19) | ODJ. 73 D D | 11.10 10.00 15- 5 | | | REVISED MULTIPLET TABLE 5 | | | | | | | | | | | | | | | | |-------------|---------------------------|---|--|--|-----------------------------------|-------------|----------------|---|-------------------|--|--------------------------------------|-------------|----------------|---|-------------------|--| | | | n n | J | 15:1+4m1 o+ | R E V l | | | ULTIPLE | T T | A B L E
Multiplet | Labor | et.or | v | E P | J | 5
Multiplet | | ato:
Ref | Int | E P
Low High | | Multiplet
(No) | IA | Ref | Int | Low High | ٠ | (No) | I A | Ref | Int | Low High | • | (No) | | nue | | | | 4 4 | N II cont | | | | | - 13 | N II cont | | | 07 10 00 10 | | 13 | | B
B | 9 | 11.71 13.93
11.71 13.92 | 3 2 - 4
2 ?
2 2 - 3 2 ? | 3p ⁴ D°-5d ⁴ F
(25) | 4564.78
4447.033 | C
A | 1 | 20.32 23.02 | 1-2 | 3p1p_3d3pe
(14)
3p1p_3d1pe | 4110.00 | С | On | 23.10 26.10 | 2–2 | 3d ¹ D°-4f ³ :
(44) | | В | 3 | 11.71 13.94 | 3 } _2 } | 3p ⁴ D°-5d ⁴ P
(26) | 4375.00 | C | 0 | 20.32 23.14 | 1-2 | (15)
3p1p-3d3pe | 6504.9
6533.0 | C | 2 | 23.15 25.04
23.14 25.03 | 3-3
2-2 | .3d ³ D°-4p ³
(45) | | C | (100) | 11.79 12.81 |
3 | 3p4P0-4s4P | 3919.005 | A | 6 | 20.32 23.47 | 1-1 | (16)
3p1P_3d1P0 | •6545.2 | C | 0 | (23.14 25.03
(23.15 25.03 | 1-1 | | | 000 | (8)
(75)
(20) | 11.79 12.80
11.79 12.80
11.79 12.81 | 13-13
23-13
13-23 | 3p ⁴ P°-4s ⁴ P
(27) | 3006.86 | C | 7 | 20.32 24.43 | 1-1 | (17)
3p1p_4s1pe
(18) | 6492.0
6522.3 | C | 0 | 23.14 25.04
23.14 25.03 | 2-3
1-2 | | | č | (75) | 11.79 12.80 | -1·- | | *5005.140 | 6 | 10 | 20.58 23.04 | -
3–4 | 3p3p_3d3pe | .6340.67
•6357.0 | 0 | 4 3 | 23.15 25.09 | 3-2
2-1 | 3d ³ D°-4p ³
(46) | | 0 | (125)
(70) | 11.79 12.96
11.79 12.96 | 12-22 | აp ⁴ P°-პq ⁴ D
(28) | 5001.469 | 000 | 8
7 | 20.56 23.03 | 2-3
1-2 | (19) | 6328.6 | C | 1 | 23.14 25.08 | 1-0
2-2
1-1 | | | C
B | (60)
4 | 11.79 12.96
11.79 13.57 | 25-25 | | 5025.665
5016.387
5040.76 | 000 | 6
5
0 | 20.58 23.03
20.56 23.02
20.58 23.02 | 3-3
2-2
3-2 | | 6347.1
*4241.787 | A | *
8n | 23.14 25.08 | 2-3 | 3d3D0_4f1 | | B | i | 11.79 13.56
11.79 13.57 | 3 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 3p ⁴ P°-5s ⁴ P†
(29) | 4803.272 | C | 6 | 20.58 23.15 | 3-3 | 3p3D-3d3D° | *4241.787 | A | 8n | 23.15 26.06 | 3-4 | 3d3D°-4f3 | | ВВ | 4 | 11.79 13.62
11.79 13.62 | 21-31 | 3p ⁴ P°-4d ⁴ D
(30) | 4788.126
4779.710
4810.286 | 000 | 5
4
3 | 20.56 23.14
20.56 23.14
20.58 23.14 | 2-2
1-1
3-2 | (20) | 4237. 049
4236. 930 | A | 5 | 23.14 26.05
23.14 26.05 | 2-3
1-2 | (48) | | В | 9 | 11.79 13.63 | 23-23 | 3p ⁴ P°-4d ⁴ P
(31) | 4793.656
4781.168 | 0 | 8 | 20.56 23.14
20.56 23.15 | 2-1
2-3 | | 4181.17 | С | On | 23.15 26.10 | 3-4 | 3d ³ D°-4f ¹
(49) | | B
B | 6
4
3 | 11.79 13.63
11.79 13.63
11.79 13.63 | 12-2 | (31) | 4774.222 | C | 3 | 20.56 23.14 | 1-2 | op³p-oa³p° | 4179.667
4173.51
*4156.8 | A
C
G | In
On
Ou | 23.15 26.10
23.14 26.10
23.14 26.11 | 3-3
2-2
1-1 | 3d ³ D°-4£ ³
(50) | | В | 6 | 11.79 13.91 | 2 3 -2 3 | 3p ⁴ P°-6s ⁴ P†
(32) | | G
C | 2 | 20.56 23.32
20.56 23.32 | 2-1
1-0 | (21) | *4160.8
4173.75 | C | Onn
On | 23.14 26.11
23.14 26.10 | 2-1 | | | B | 2 | 11.79 13.90
11.79 13.90 | w2-+2 | (32) | 4488.15
4465.54 | C | 0 | 20.56 23.31
20.56 23.32 | 2-2
1-1 | | *4160.8 | Ç | Onn | 23.14 26.11 | 2-2 | 3d3D0-4f1 | | В | 2
4 | 11.79 13.91
11.79 13.94 | 1 2- 3 2
3 1 -3 1 | 3p4P0-5d4P | 3328.79
3331.32 | C | 4
3 | 20.58 24.28
20.56 24.27 | 3-2
2-1 | 3p ³ D-4s ³ P° (22) | *4156.8 | C | Onn | 23.14 26.11 | 1-2 | (51) | | | | | - | (33) | 3330.30
3318.14 | C | 2 | 20.56 24.26
20.56 24.28 | 1-0
2-2 | \ / | 7139.8
7217.0 | В | 3
2 | 23.31 25.04
23.32 25.03 | 2-3
1-2 | 3d ³ P°-4p ³
(52) | | COC | (100)
(75)
(150) | 11.94 12.96
11.94 12.95
11.94 12.95 | 13-25 | 3p ⁴ s°-3d ⁴ P
(34) | 3324.58 | C - | 8 | 20.56 24.27 | 1-1
- | | 7259.3
7188.7 | B | 0 | 23.32 25.03
23.31 25.03 | 0-1
2-2 | | | В | 2 | 11.94 14.00 | 1출- 호
1출-3출 | 3p480_7s4P | 5383.82 | C | 0 | 20.85 23.14 | 1-2 | 3p ³ S-3d ³ p°
(23)
3p ³ S-3d ³ p° | 6942.9
7003.0 | В | 3
0n | 23.31 25.09 | 2-2
1-1 | 3d ³ p°-4p ³
(53) | | . c | (350) | 11.96 13.95 |
21_31 | (35)
3p2pe_3d2p | 5007.316
*4994.358
4987.377 | 000 | 7
6
4 | 20.85 23.31
20.85 23.32
20.85 23.32 | 1-2
1-1
1-0 | (24) | 6976.8
•7015.3
6967.6 | B
B
B | 2
1
1 | 23.31 25.08
23.32 25.08
23.32 25.09 | 2-1
1-0
1-2 | | | ç | (200) | 11.96 12.95
11.95 12.94
11.96 12.94 | 13-25
25-25 | (36) | 4709.45 | C | 1 | 20.85 23.47 | 1-1 | 3p3s-3d1pe | *7015.3 | В | 1 | 23.32 25.08 | 0-1 | 2 7 | | C | (60)
(30) | 11.96 12.98
11.95 12.98 | 21-21
11-11 | 3p ² D°-3d ² D | 3593.60
3609.09 | C | 3 | 20.85 24.28
20.85 24.27 | 1-2
1-1 | (25)
3p38_4s3P°
(26) | 6812.26
6836.2 | C | 2 | 23.31 25.13
23.32 25.13 | 2-1
1-1 | 3d ³ P ^e -4p ³
(54) | | Č | (10) | 11.96 12.98 | 13-13
23-13 | ,, | 3615.88 | Ċ | 1 | 20.85 24.26 | 1-0 | •••• | 4432.739
4441.99 | A. | 6n
3n | 23.31 26.10
23.32 26.10 | 2-3
1-2 | 3d ³ P°-4f ³
(55) | | Unc | lassifi | ed Lines Attr | ibuted ' | to <u>N I</u> | 6065.5 | C | 0 | 21.06 23.10 | 1-2 | 3p ³ p-3d ¹ D° | 4433.48
4431.82
4427.97 | 000 | 8n
8 | 23.32 26.11
23.31 26.10
23.32 26.11 | 0-1
2-2
1-1 | | | B
B | 4
5 | | | | 5941.67
5931.79 | C
C | 8
7 | 21.07 23.15
21.06 23.14 | 2-3
1-2 | (27)
3p3p_3d3pe
(28) | 4427.21 | G | 2 | 23.32 26.11 | 1-2 | 3d3p0_4f1 | | B | 7
10
5 | | | | 5927.82
5952.39
5940.25 | 000 | 4
3
2 | 21.06 23.14
21.07 23.14
21.06 23.14 | 0-1
2-2
1-1 | | 6242.52 | C | 5 | 22 22 05 25 | - , , | (56)
3d ¹ F°-4p ¹ | | B | 5 | | | | 5960.93 | č | 0 | 21.07 23.14 | 2-1 | | 4552.536 | A | 4 | 23.37 25.35 | 3-2
3-4 | (57)
3d1F°_4f3 | | B
B
B | 4
6
4 | | | | 5495.70
5462.62
5480.10 | 0 | 5
3
3 | 21.07 23.31
21.06 23.32
21.07 23.32 | 2-2
1-1
3-1 | 3p ³ P_3d ³ P•
(29) | 4530.403 | A | 5 | 23.37 26.10 | 3-4 | (58)
3d1F0_4f1
(59) | | B
B | 4
5 | | | | 5454.26
5478.13 | Ċ | 2 | 21.06 23.32
21.06 23.31 | 1-0
1-2 | | *6167.82 | С | 4 | 23.47 25.47 | -
1-0 | 3d1po_4p1 | | В | 4 | | | | 5452.12
3838.39 | · C | 2
5 | 21.06 23.32
21.07 24.28 | 0-1
2-2 | 3p3p_4s3pe | 4694.55 | C | 3n | 23.47 26.10 | 1-3 | 3d1P0_4f3 | | | | | | | 3847.38
3856.07 | 000 | 3 | 21.06 24.27
21.07 24.27 | 1-1
2-1 | (30) | 4677.93 | C | 3n | 23.47 26.11 | 1-2 | 3d1P6_4f1
(62) | | P 29 | .49 A | nal B List .
17.80 20.32 | | 1943
2p ³ 1p ^e -3p ¹ | 3855.08
3829.80 | 000 | 3
3 | 21.06 24.26
21.06 24.28
21.06 24.27 | 1-0
1-2
0-1 | | *5535.39
5530.27 | C | 5
4 | (25.38 27.61)
(25.37 27.61) | 3-4
2-3 | 3s5p_3p5p | | · | | | _ | (1) | | ٠. | <u> </u> | | - | | 5526.26
5551.95 | 900 | 2 3 | (25.37 27.60)
(25.38 27.61) | 1-2 | (63) | | C | 5
0 | 18.39 20.32
18.38 20.32 | 1-1
0-1 | 3s ³ p°-3p ¹ p
(2) | 6610.58 | C
C | 6 | 21.51 23.37 | 2-3 | 3p ¹ D-3d ¹ F°
(31)
3p ¹ D-3d ¹ P° | 5543.49
*5535.39 | C | 3
5 | (25.37 27.60)
(25.37 27.60) | 2-2 | | | o
o | 10
8 | 18.40 20.58
18.39 20.56 | 2-3
1-2 | 3s ^{3po} -3p ³ p | 6284.30
4227.749 | A | 3
3n | 21.51 23.47
21.51 24.43 | 2-1
2-1 | (32)
3p1D-4s1pe | 5565.30
5552.54
5540.16 | C
B
C | 0
0
1 | (25.38 27.60)
(25.37 27.60)
(25.37 27.59) | 3-2
2-1
1-0 | | | C | 6 | 18.38 20.56
18.40 20.56 | 0-1
2-2 | | | - | | | - | (33) | 5012.026 | C | 8 | (25.38 27.84)
(25.37 27.84) | 3-3 | 3s ⁵ p-3p ⁵ F | | C | 8 | 18.39 20.56
18.40 20.56 | 1-1
2-1 | | 5104.45
3023.80 | C | 2
2 | 22.01 24.43 | 0-1
0-1 | 3p1g_4s1pe
(34)
3p1g_4d1pe | *5005.140
4997.23
5023.11 | CCC | 10
0
2 | (25.37 27.84)
(25.37 27.84)
(25.38 27.84) | 2-2
1-1
3-2 | (64) | | 000 | 8 | 18.40 20.85
18.39 20.85 | 2-1
1-1 | 3s ³ P°-3p ³ S
(4) | | - | | | - | (35) | 5011.24
•4994.358 | B | 6 | (25.37 27.84)
(25.37 27.84) | 2-1
2-3 | | | C
A | 10 | 18.38 20.85 | 0-1
2-2 | 38 ³ P°-3p ³ P | *6167.82
6173.40
6170.16 | 000 | 4
3
1 | 23.04 25.04
23.03 25.03
23.02 25.03 | 4-3
3-2
8-1 | 3d ³ F°-4p ³ D
(36) | 4991.22
4145.764 | C A | 2 | (25.37 27.84)
(25.38 28.36) | 1-2
3-2 | 3s ⁵ P-3p ⁵ S | | A
A | 6
8
7 | 18.40 21.07
18.39 21.06
18.40 21.06 | 1-1
2-1 | (5) | 6136.9
6150.9 | O | 0 | 23.03 25.04
23.02 25.03 | 3-3
2-2 | | 4133.669
4124.081 | Ā | 2 | (25.37 28.36)
(25.37 28.36) | 3-2
1-2 | (65) | | A
A
A | 8
7 | 18.39 21.06
18.39 21.07
18.38 21.06 | 1-0
1-2
0-1 | | 6114.6
4087.35 | c
c | 0
0n | 23.02 25.03 | 2-3
3-3 | 3d3F0_4f1F | *5179.50 | C | 5 | (27.61 29.99) |
45 | 3p ⁵ D°-3d ⁵ | | A | 6 | 18.39 21.51 | | 3s ³ p°-3p ¹ D | 4095.92 | P | | 23.04 26.06 | 4-4 | (37)
3d ³ F°-4f ³ F | 5175.89
5173.37 | go | 3 2 | (27.61 29.99)
(27.60 29.99) | 3-4
2-3 | (66) | | C | 3 | 18.39 22.01 | 1-0 | (6)
3s ^{3pe} -3p ¹ s
(7) | 4082.85
4076.83
4082.280 | G
G
A | 00
0n
2n | 23.03 26.05
23.02 26.05
23.03 26.06 | 3-3
2-2
3-4 | (38) | *5172.32 | C | 1 | (27.60 29.98)
(27.59 29.98) | 1-2 | | | С | 8 | 18.42 20.32 |
1-1 | 3s1p0_3n1p | 4073.055 | Å | 2n | 23.02 26.05 | 3-4 | | 5190.42
5184.97
5180.34 | C
B | 2
2
1 | (27.61 29.99)
(27.61 29.99)
(27.60 29.98) | 4-4
3-3
2-2 | | | ç | 4 3 | 18.48 80.56
18.48 20.56 | 1-8 | (8)
3e ¹ P°-3p ³ D
(9) | 4041.321
4043.537 | A
A | 5n
3n | 23.04 26.10
23.03 26.08 | 4-5
3-4 | 3d ³ F°-4f ³ G
(39) | 5199.50 | В | 00 | (27.61 29.99) | 4-3 | 2-5mp ~-5 | | c | 3 | 18.42 20.85 | 1-1 | 3a1po_3n3a | 4035.087
4057.00
4044.75 | A
C
C | 4n
1
1 | 23.02 26.08
23.04 26.08
23.03 26.08 | 2-3
4-4
3-3 | | 4860.35
4718.43 | C | 2
2 | (27.61 30.15)
(27.61 30.23) | 4-3
4-4 | 3p ⁵ D°-3d ⁵
(67)
3p ⁵ D°-3d ⁵ | | Ç | 8 | 18.42 21.07 | 1-3 | (10)
3elpe_3p3p | 4026.080 | A | 3n | 23.03 26.10 | 3-4 | 3d3F0-4f1G | 4709.45
4702.57 | C | 0 | (27.61 30.23)
(27.60 30.22) | 3-3
2-2 | (68) | | C | 2 | 18.42 21.06
18.42 21.06 |
1-1 | (11) | 6630.5 | c - | 2 | 23.10 24.96 |
2-1 | (40)
3d ¹ D°-4p ¹ P | 4721.59
4712.13
4704.33 | 000 | 0 | (27.61 30.23)
(27.61 30.22)
(27.60 30.22) | 4-3
3-2
2-1 | | | A | 10 | 18.42 21.51 | 1-2 | 3s ¹ P°-3p ¹ D | 4176.164 | A | 3n | 23.10 24.96 | 2-1
2-3 | (41)
3d ¹ D°-4f ¹ F | 4698.62
4706.41 | BC | 000 | (27.60 30.22)
(27.61 30.23) | 1-0
3-4 | | | С | | 18.42 32.01 | 1-0 | 3sipe_3pis
(13) | 4171.608 | A | 2n | 23.10 26.05 | 2-3 | (42)
3d ¹ D°-4f ³ F | 4700.12
4695.91 | C | 0 | (27.60 30.23)
(27.60 30.22) | 2-3
1-2 | | | | | | | | | | | | | (43) | | | | | - | | | 6 | | | | | | | R E V | ISI | E D M | ULTI | PLE | т т | ABLE | | | | | | | | |--------------------------------|--------------|--------------------|------------------|----------------------------|---|---|-------------------------------|--------------|----------------|-------------------------|----------------------------|------------------------|--|---------------------------------|-------------------|-------------------|----------------------------|------------------|-------------------------------------|-------------------------| | Labo
I A | rator
Ref | | | P
High | J | Multiplet (No) | Labo
I A | rator
Ref | ry
Int | E
Low | P
High | J | Multiplet (No) | Lat
I A | oratory
Ref In | ıt | Low E | | J | Mul
(| | N II cor | | | | | | | N III co | | | | | | 3 . 6 | | ntinued | | | | | • | | 5351.21
5327.45
5313.43 | B | 4
0
0 | (27.84 | 30.15)
30.16)
30.16) | 3-3
2-2
1-1 | 3p ⁵ P° -3d ⁵ P
(69) | 4544.80 | В | (0) | | | - | 4 ² P°_5 ² 5
(12) | 5561
5571 | P
P | | (60.19 6 | | 1-2
1-1 | 3p ² | | 5340.20
•5320.96 | B
B
B | 1 3 | (27.84
(27.84 | 30.16)
30.16) | 3-2
2-1 | | 4546.36
4535.11 | A
A | 3 2 | 38.79
38.79 | 41.51
41.51 | 12-22 | 3p ⁴ S-3d ⁴ P° (13) | 4183
4174 | P
P | | (60.19
(60.19 | 63.14)
63.14) | 1-2
1-1 | зр ³
(| | 5338.66
*5320.96 | B
B | 3 | | 30.15)
30.16) | 2-3
1-2 | | 4527.86 | A | | | | _ | | 5846 | P - | | (61.03 | 63.14) | 2-2 | 3p ² | | *5179.50
5171.46
5168.24 | 000 | 5
1
1 | (27.84 | 30.23)
30.23)
30.22) | 3-4
2-3
1-2 | 3p ⁵ pe_3d ⁵ p
(70) | 6466.86
6453.95
6445.05 | A
A
A | 4
3
2 | 39.18
39.18
39.17 | 41.09
41.09 | 23-33
13-23
3-13 | 3p ⁴ P-3d ⁴ D° (14) | 5794
5828
5812 | P
P
P | | (61.01
(61.03
(61.01 | 63.14) | 1-1
2-1
1-2 | - (| | 5183.21
5174.46 | C | 2 | (27.84
(27.84 | 30.23)
30.22) | 3-3
2-2 | | 6478.69
6463.03 | A
A | 2 | 39.18
39.18 | 41.09
41.09 | 23-23
13-13 | | | | | | | | 1 | | 5170.08
5186.17 | C
B | 0 | 27.84 | 30.22) | 1-1
3-2 | | 6450.78
6487.55
6468.77 | A
A
A | 2
0
00 | 39.18 | 41.08
41.09
41.08 | 23-13
13- 3 | | 6125 | Р — | | 61.52 | | 2-2 | (| | 6888.7
6870.8 | ВВ | 2 | | 30.15) | 2-3
2-2 | 3p ⁵ g•-3d ⁵ P
(71) | 5314.45
5282.52 | A
A | 2 | | 41.51
41.51 | | 3p ⁴ P-3d ⁴ P* | 5073 | P | | 61.69 | | 2-1 | 3p1 | | 6857.6 | B | ī | | 30.16) | 2-1 | · · - / | 5260.91
5298.93 | A | 1n
1 | 39.17
39.18 | 41.52
41.51 | 2 - 1 | (/ | See N | ISRDS- | | REVIS | | on | 4 | | | | | | | | | 5272.60
5297.86
5270.59 | A
A
A | 1
1
1 | 39.18 | 41.52
41.51
41.51 | 15-25
15-25
2-15 | •
• | <u>n v</u> I | P 97.47 | | lA L | | Dec | 1944 | | N III
4097.31 | I P 47 | 10 | Anal A
27.32 | List
30.33 | | or 1943
3 ² 8-3 ² P° | 4003.64 | A | (4đ) | 39.23 | 42.31 | | 4 ² D-5 ² F• | 4603.2
4619.4 | P | | 56.31
56.31 | 58.99
58.98 | $\frac{\frac{1}{2}-1}{\frac{1}{2}}$ | 3 ²² E | | 4103.37 | Ā | 9 | 27.32 | 30.33 | - 2 1 | (1) | 3998.69 | Ā | (34) | 39.23 | 42.31 | 1 ½ – 3 ½
 | 4 ² D-5 ² F•
(16) | 3161 | P | | 83.74 | 87.64 | -] | 5 ² F | | 4640.64
4634.16 | A
A | (10)
(9)
(7) | 30.33
30.33 | 32.99
32.99 | 11-2 | (3)
(3)
(3) | 4379.09 | A | (10d) | 39.54 | 42.36 | | 4 ² F°-5 ² G
(17) | 4335 | P | | 87.64 | 90.49 | <u>}</u> _ | 6 ² 5 | | 4641.90 | A | | | | - | | Unclassii | led | Lines of | N'III | | | | 5273 | P | | 87.95 | 90.30 | _ 1 | 6 ² F | | 4514.89
*4510.92 | A
A | 7
6 | 35.52
(35.50 | 38.25
38.24
38.23 | 2 1 2 - 2 | 3s ⁴ P°-3p ⁴ D
(3) | 4294.76
4290.80
4290.55 | A
A | On
3n | | | | | 4751 | P | | 87.95 | | _ * | 62p | | 4534.57
4523.60 | A | 3 | 35.52
35.50 | 38.24 | 23-2
13-1 | } | 4288.72
4288.21 | A
A
A | in
in
On | | | | | 5067 | Р — | | 88.05 | 90.49 | _ | 6 ² D | | 4518.18
4547.34
4530.84 | A
A
A | 3
0
1 | 35.52 | 38.23
38.23
38.23 | 23-1
13- | | 4284.51
3172.97 | A
A | 1n
2 | | | | | 4933 | P | | 88.05 | 90.56 | _ | 62 D | | 3771.08
3754.62 | A
A | 7
6 | 35.52
35.50 | 38.79 | 23-1: | 3s ⁴ p°-3p ⁴ s
(4) | 3171.14 | A | 1 | 17 17 17 T | CED | | | 4952 | P - | | 88.06 | 90.55 | _ | 6 ² F | | 3745.83 | A | 4 | 35.50 | 38.79 | 2-1 | Ž. | See N | SRD | S-NBS | REVI | Sect | ion | 4, 1971 | 4943 | P | | 88.06 | 90.56 | _ | 6 ² F | | 3367.36
3361.90
3358.72 | A
A
A | 7
2
1 | 35.50
35.50 | 39.18 | 1 2-1 | } | <u>N IV</u> I
3478.69 | P 77 | .09 Ai | nal B
(46.57 | 50.11) | | 3 ³ S-3 ³ P° | 4945 | P | | 88.06 | 90.56 | _ | 6 ² 0 | | 3374.06
3365.79
3354.29 | A
A
A | 6
3
4 | 35.50 | 39.18
39.17
39.18 | 23-1
13-
13-2 | 1 2 | 3482.98
3484.90 | A
A | 5
3 | (46.57
(46.57 | 50.11 | 1-1
1-0 | (1) | 6719 | P | | 90.30 | 92.13 | } - | 7 ² ş | | 3353.78 | Ā | 4 | | 39.18 | - 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | 2 | 6383 | P | | 48.00 | 49.94 | 0-1 | 3 ¹ 8-3 ¹ P° | 7330 | P | | 90.49 | 92.17 | | 7 ² P | | 4200.02
4195.70 | A
A | 6
5 | 36.70
36.68 | 39.64 | 1 2-2 | 3s ² P°-3p ² D
(6) | 4057.80 | В | <u> </u> | 49.98 | 52.98 | -
1-3 | (2)
3 ¹ P°-3 ¹ D | | | | | | | | | 4215.69
3355.47 | B
B | (3)
(2)
(1) | 36.70 | 39.02 | 12-17 | 2 3e ² p°-3p ² s
(7) | 7123.10 | A | 5 | (50.11 | 51.85) |
2-3 | (3)
3 ³ P°-3 ³ D | <u>01</u> I | P 13.56 | Ans | lA L | ist B | Apr | 1944 | | 3342.77 | В | (1) | 36.68 | | | | 7109.48
7103.28
7127.21 | A | 3
1
1 | (50.11 | 51.85)
51.85) | 1-2
0-1 | (4) | 7771.96 | Α : | 27 | 9.11 | 10.69 | 2-3 | _ | | 3938.52
3934.41 | A | 3 | 38.16 | 41.30
41.30 | 1 2-3 | 3p ² P-3d ² D° (8) | 7111.28
7129 | A
A
P | 1 | (50.11 | 51.85)
51.85)
51.85) | 1-1 | | 7774.18
7775.40 | | 26
25 | 9.11
9.11 | 10.69 | 2-2
2-1 | | | 3942.78 | В | (1) | | | - 2 2
 | 2 | 5245 | P | | <u> </u> | 59.81) | - | 3e ³ P°-3p ³ D | 6726.25
6726.50 | A | 5
2 | 9.11
9.11 | 10.94
10.94 | 2-2
2-1 | 3 ⁵ 8' | | *4867.18
4861.33
4858.88 | A
A
A | 5
4
3 | 38.24 | 40.79
40.78
40.77 | 33-4 | 3p ⁴ D-3d ⁴ F° (9) | 5236
5281 | P
P | | (57.44 | 59.80) | 1-2 | (5) | 3947.30:
3947.48 | 9 E | 10
7 | 9.11
9.11 | 12.23 | 2-3
2-2 | 3 ⁵ 8' | | 4858.74
4884.14
4873.58 | A | 2 | 38.23
38.25 | 40.77 | 21 2 | 7 | 4528
4495 | P | | (57.44 | 60.19) | 1-1 | 3s ^{3pe} -3p ³ s | 3947.59 | | 4 | 9.11 | | 2-1 | 2 | | *4867.18
4896.71 | A
A
A | 2
5
0 | 38.23
38.25 | 40.77 | 2-2-2-1
1-1
3-2-2 | | 4479
3463.36 | P
B | 1 | | 60.19) | | 3s ³ p°-3p ³ p | *8446.35
8446.76
*8446.35 | A : | 25
23
25 | 9.48
9.48
9.48 | 10.94 | 1-2
1-1
1-0 | 3 ³ 8' | | 4881.81
4348.36 | A | 0
5 | 38.24 | 40.77 | 65-13 | 2 | 3454
3474.56
3461.34 | P
B | 0 | (57.44
(57.46 | 61.01) | 1-1
3-1 | (7) | 4368.30 | | 10) | 9.48 | | 1-0 | 3 ³ 5 | | 4335.53
4328.15
*4323.93 | A | 4 | 38.24
38.23 | 41.09 | 31-3
21-2
11-1 | (10) | 3443
3445 | B
P
P | 0 | (57.44 | 61.01)
61.03
61.01) | 1-0
1-2
0-1 | | 3098.44 | D | (7) | 9.48 | 18.88 | 1- | 3 ³ 5 (| | 4353.66
4339.52 | A
A
A | 2
2
3 | 38.25
38.24 | 41.08
41.09
41.09 | 3 -2
2 -1 | | 3747.66 | В | 0 | 58.44 | 61.69 |
1-2 | 3s ¹ p°-3p ¹ D | 11302.22
11297.54 | | 15
10 | 10.69 | | 3-2
2-2 | 3 ⁵ P- | | 4330.44
4330.14
*4323.93 | A
A
A | 2 2 2 | 38.23
38.24 | 41.08
41.09
41.09 | 13-
23-3 | | 5734 | Þ | | | | - | (8) | 11294.97 | В | 5 | 10.69 | 11.79 | 1-2 | -5- | | 4321.37
3792.87 | A | ĩ | 38.23 | 41.09 | 2-1 | 1 m.4n4 | 3824 | P | | | 62.59 | 1-0
1-1 | 3p ¹ r-3d ¹ p-
(9)
3p ¹ P-4 ¹ pe | 9262.73
9260.88 | A | 16
15
14 | 10.69
10.69 | 12.03 | 3-
2-
1- | 3 ^h P- | | 3771.45
3757.66 | A
P
P | 1 | 38.24
38.23 | 41.51
41.51
41.52 | 15- 5 | 3p ⁴ D-3d ⁴ P° (11) | 4752 | P | | | 62.41) | 3-3 | (10)
3p ³ D-3d ³ D° | 6456.01 | A : | 17 | 10.69 | 12.61 | 3-2 | 3 ⁵ P- | | 3779.23
3762.62
3752.65 | P
P
P | | 38.24
38.23 | 41.51
41.51
41.52 | 2 1 -2
1-1 | ŧ | 4733
4762 | P
P | | (59.80
(59.81 | 62.41)
62.41) | 2-2
3-2 | (11) | 6454.48
6453.64 | A : | 16
15 | 10.69 | 12.61 | 2-2
1-2 | _ (| | 3770.37
3757.60 | P
P | | 38.23 | 41.51 | 1 2 - 2
2 - 1 | | 4740
4723 | P | | | 62.40)
62.41) | 2-1
2-3 | | 6158.19
6156.78
6155.99 | A : | 18
17
16 | 10.69
10.69
10.69 | 12.70 | 3-
2-
1- | 3 ⁵ P_
(1 | | | | | | | - ' | | 3714
3689
3696 | P
P
P | | (59.80 | 63.14)
63.14) | 2-1 | 3p ³ D-3d ³ P°
(12) | 5436.83 | | | 10.69 | 12.96 | 3-2 | 3 ⁵ P- | | | | | | | | | 5555 | r | | | 63.14) | <i>ಒ</i> –ದ
– | | 5435.76
5435.16 | D (| (8)
(6)
(5) | 10.69 | 12.96
12.96 | 2-2
1-3 | (1 | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | REVI | 3 B | D H | ULTIPLE | r i | ABLE | | | | | 7 | | |-------------|--------------------|---|-------------------|--|--|---------------|----------------------|--|--------------------------|--|--|--------------|--------------------|--|---|--| | ator
Ref | y
Int | E P
Low High | Ţ | Multiplet
(No) | Labor
I A | ratory
Ref | Int | E P
Low High | J | Multiplet
(No) | Labore
I A 1 | atory
Ref | Int | E P
Low High | J Multiplet (No) | | | nued | 1 | | | | OI cont | inued | | | | | O I contin | nued | | | | | | D | (10)
(7)
(6) | 10.69 13.01
10.69 13.01
10.69 13.01 | 3-
3-
1- | 3 ⁵ P-5 ⁵ D* | *5958.63
5958.46
*5958.63 | A
A
A | 9
7
9 | 10.94 13.01
10.94 13.01
10.94 13.01 | 2-
1-
0- | 3 ³ P_5 ³ D°
(23) | 7947.56
7950.83
7952.18
7943.15 | A
A
A | 12
10
9
6 | 12.49 14.04
12.49 14.04
12.49 14.04
12.49 14.04 | 3-4 3s ¹ 3D ⁹ -3p ¹ ²
2-3 (35)
1-2
3-3 | | | D | (5)
(4) | 10.69 13.15
10.69 13.15 | 3-2
2-2 | 3 ⁵ P_7 ⁵ g°
(13) | 5554.94 | D | (£6) | 10.94 13.16 | 2-1 | 3 ³ P-7 ³ S°
(24)
3 ³ P-6 ³ D° | 7947.204
7939.49 | Ċ
A | 3 | 12.49 14.04
12.49 14.04 | 2–2
3–2 | | | D
D | (3)
(6) | 10.69 13.15 | 1-2
3 | 3 ⁵ P-6 ⁵ De | 5512.71
5299.00 | D
D | (5d)
(5) | 10.94 13.18 | 2-
2-1 | g(25 <u>)</u> | 3823.469
3824.425 | O | 10
3 | 12.49 15.71
12.49 15.71 | 3-3 3s ¹ ³ po-3p ⁴ ²
2-2 (36) | | | D | \{5\
4\ | 10.69 13.18
10.69 13.18 | 2-
1- | (14) | 5275.08 | D | (4) | 10.94 13.28 | 2- | 3 ³ P-7 ³ D° | 3825.090
3822.63
3825.249 | CAC | 3 | 12.49 15.71
12.49 15.71
12.49 15.71
13.49 15.71 | 1-1
3-2 | | | D
D | (4)
(3) | 10.69 13.26
10.69 13.26 | 3-2
2-2 | 3 ⁵ P-8 ⁵ S ⁶
(15) | *5146.06 | D | (5) | 10.94 13.34 | 2-1 | (27)
3 ³ P_9 ³ S°
(28) | 3825.249
3825.530 | C | 1 | 12.49 15.71
12.49 15.71 | 2-3
1-2 | | | Ď | (3) | 10.69 13.26 | 1-2 | | •5130.53 | D | (3) | 10.94 13.35 | 2- | (28)
3 ³ P_8 ³ De
(29)
3 ³ P_38* ³ Pe | 8820.45 | Α. | 15 | 12.67 14.07 | 2-3 3s' ¹ D°-3p' : | | | 999 | (5)
(4)
(3) | 10.69 13.28
10.69 13.28
10.69 13.28 | 3-
2-
1- | 3 ⁵ P-7 ⁵ D°
(16) | 3954.687
3952.982
*3953.056 | 0000 | 10
1
2
3 | 10.94 14.06
10.94 14.06
10.94 14.06 | 2-2
1-1
2-1 | 3 ³ P-3 ₈ * ³ Pe
(30) | 7156.80 | A . | 12 | 12.67 14.40 | (37)
2-2 3s' 1po_3p'
(38) | | | D | (3d) | 10.69 13,34
(10.69 13.34
(10.69 13.34 | 3-2
2-2
1-2 | 3 ⁵ P-9 ⁵ S°
(17) | 3951.987
3954.596
*3953.056 | 000 | 5
2 | 10.94 14.06
10.94 14.06
10.94 14.06 | 1-0
1-2
0-1 | | *5146.96
*5130.53 | D
D | (5)
(3) | 13.82 15.22
12.82 15.23 | -2 5 ³ P-3d ¹ ³ F
-1 (39) | | | D
D | (4)
(3)
(2) | 10.69 13.35
10.69 13.35
10.69 13.35 | 3-
2-
1- | 3 ⁵ P-8 ⁵ D° (18) | •6324.84
6323.39 | A
A | 3 | 18.03 13.99
18.03 13.99 | (-3
-2
-1 | 3 ³ D°-3p' 3D | 5750.424
5731.103
5720.613 | 000 | 5
3
1 | 13.07 15.22
13.07 15.23
13.07 15.23 | -2 6 ³ P-3d ¹³ F
-1 (40)
-0 | | | A | 9
7 | 10.94 12.49
10.94 12.49 | 2-3
1-2 | 3 ³ P_3s ¹ ³ De (19) | 7025.52 | A | 3 | 12.31 14.06 | -2 | 4 ³ p_3s" ³ pe | 9156.02 | A | 4 | 13.99 15.33 | 3-4 3p' 3p-3a' 3 | | | A
A
A | 5
4
4 | 10.94 12.49
10.94 12.49
10.94 12.49 | 0-1
3-2
1-1 | (10) | 4233.32
4222.78
4217.09 | D
D | 7
5
4 | 12.31 15.22
12.31 15.23
12.31 15.23 | -2
-1
-0 | (32)
4 ³ P-3d; 3pe
(33) | *7706.77
7663.45
7639.99
*7706.77 | A
A
A | 5
3
1
5 | 13.99 15.59
13.99 15.60
13.99 15.60
13.99 15.59 | 3-2 3p ¹ 3D-sp ⁵
2-1 (42) | | | A
A
A | 17
15
17 | 10.94 12.64
10.94 13.64
10.94 12.64 | 2-1
1-1
0-1 | 3 ³ P-5 ³ S°
(20) | *8221.84
*8230.01 | A
A | 15
10 | 12.49 13.99
12.49 13.99 | -
3-3
2-2 | 3s ¹ 3pq_3p ¹ 3p | 7665.48 | A
A | 1 | 13.99 15.60 | 2-2
1-1 | | | A
A
A | 17
15
17 | 10.94 18.70
10.94 13.70
10.94 13.70 | 8-
1-
0- | c ³ P-4 ³ D°
(21) | 8232.99
*6881.64
8227.64
*8230.01 | A
A
A | 13
15
11
10 | 12.49 13.99
12.49 13.99
12.49 13.99
12.49 13.99 | 1-1
3-8
2-1
2-3 | • • | 6106.25
*5995.26
5991.93
5991.34 | A
A
A | 4
3
3
1 | 13.99 16.01
13.99 16.04
13.99 16.05
13.99 16.05 | 3-4 3p' 3D-4d'
(43)
3-2 3p' 3D-4d'
2-1 (44)
1-0' | | | A
A
A | 10
8
10 | 10.94 13.98
10.94 13.98
10.94 12.98 | 3-1
1-1
0-1 | 3 ³ P-6 ³ S°
(22) | 8235.31 | A | | 12.49 13.99 | 1-2 | | *5995.28
5993.18 | A
A | 3
1 | 13.99 16.04
13.99 16.05 | 2-2
1-1 | | • | REVISED MULTIPLE | T | ABLE | |------------------|---|------| |------------------|---|------| | E Labo | ratory
Ref | | E P
Low High | J Multiplet (No) | Labo: | ratory
Ref | Int | E P
Low High | J | Multiplet
(No) | Labor
I A | ratory
Ref | | E P
Low High | J Mul1 | |----------------------------------|---------------|---------------|---|--|---|------------------|-----------------------|---|---|---|----------------------------------|---------------|----------------|---|---| | O I cont | inued | | | | O II con | tinued | | | | | O II con | tinued | ı | | | | 9522.01
9499.39 | A
A | 4
0 | 14.04 15.33
14.04 15.34 | 4-4 3p' 3F-3d' 3
(45)
4-4 3p' 3F-3d' 1 | F° 3926.58
3896.30
G° 3872.45 | P
B
B | 1 | 25.55 28.70
25.54 28.71
25.53 28.71 | 31-21
21-15
15-5 | 3p ⁴ D°-3d ⁴ P
(11) | 4943.06
4941.12
4955.78 | B
B
B | 7
5
3 | 26.45 28.94
26.44 28.94
26.45 28.94 | 1 1 2 2 3 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 | | 9505\67
•9498.04 | Ā | .5
8 | 14.04 15.34
14.04 15.34 | 3-4 (46)
4-5 3p' 3r-3d' 3 | 3907.45
3882.45 | B
B
C | 4
1
1 | 25.54 28.70
25.53 28.71
25.52 28.71 | 21-21
11-11
2-11 | | 3803.14
3821.68 | ВВ | 61
41 | 26.45 29.69
36.44 29.67 | 13-13 3p21
3-3 (3 | | 9487.49
•9498.04 | Ā | 8 | 14.04 15.34
14.04 15.34 | 3-4 (47)
2-3 | 3893.53
3874.10 | B
B | 3 | 25.53 28.70
25.52 28.71 | 1 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 | | 3830.45
3794.48 | B
B | 41
31 | 26.45 29.67
26.44 29.69 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 6266.89
6264.55 | A
A | 3 | 14.04 16.01
14.04 16.01 | (48) | 7882.197
3864.45
3851.04 | A
B
B | 7
5
3 | 25.55 28.73
25.54 28.73
25.53 28.73 | 31-31
21-21
11-11 | 3p4D°-3d4D
(12) | 4448.21
4443.05 | ВВ | 6
5 | 28.24 31.01
28.24 31.01 | 3 3 3 3p' 3p' 3p' 3p' 3p' 3p' 3p' 3p' 3p | | *6261.55
6256.84 |
A | 6 | 14.04 16.01
14.04 16.01 | (49) | 3847.89
60°† 3883.15
3864.68 | B
B
B | 3
3
1 | 25.52 28.73
25.55 28.73
25.54 28.73 | 31-21
31-21
31-15 | | 4189.788
4185.456 | A
A | 10
8 | 28.24 31.18
28.24 31.18 | 31-41 3p' | | *6261.55
*5410.76 | Ā | 6 (4) | 14.04 16.01
14.04 16.32 | 2-3
4-4 3p ^{1 3} F-5d ^{1 3} | 3856.16
3863.50
F° 3850.81 | B
B
B | 5
3
2 | 25.53 28.73
25.54 28.73
25.53 28.73 | 11-1
21-31
15-21 | | 4113.82
4110.20 | B
B | 1 | 28.24 31.24
28.24 31.24 | 31-21 3p | | *5410.76 | F | (4) | 14.04 16.32 | (51)
3-4 3p' 3F-5d' 1 | 3842.82 | В | 3 | 25.52 28.73
25.55 28.76 | -1-1-1 | - 4 2 | 3741.69 | C | 0 | 28.24 31.54 | | | 5408.59
5404.87 | D
F | {4}
3} | 14.04 16.38
14.04 16.38 | 3-4 (53) | 3857.18
3875.83
3833.10 | C
B
B
B | 0
4
4
3
3 | 25.55 26.76
25.54 28.74
25.55 28.74
25.54 28.76
26.63 28.74 | 25-25
25-25
25-35
15-25 | 3p ⁴ D°-3d ² F
(13) | 3273.52
3270.98 | В
В | 71
71 | 28.24 32.01
28.24 32.01 | | | 8426.326
8428.342
8429.128 | 000 | 4
2
1 | 14.06 15.53
14.06 15.53
14.06 15.53 | 2-3 3s" ³ P°-4p'
1-2 (54)
0-1 | 3134.82
3138.44 | B
B | 101
81 | 25.55 29.49
25.54 29.47 | 31-21
31-21 | 3p ⁴ D°-4s ⁴ P
(14) | *4699.21
4703.18
4698.48 | B
B
C | 7
3
1 | 28.39 31.01
28.39 31.01
28.39 31.01 | 1물-2물 (4 | | 8420.968
8424.780 | C | 1 | 14.06 15.53
14.06 15.53 | 2-2
1-1 | 3139.77
3122.62
3129.44 | B
B
B | 41
61
71 | 25.53 29.46
25.54 29.49
25.53 29.47 | 13- 3
23-23
13-13 | , | 4327.48
4331.89 | В | 3 2 | 28.39 31.24
28.39 31.24 | 21-21 3p1 | | 7476.45
7479.06
7480.66 | A
A
A | 12
8
8 | 14.06 15.71
14.06 15.71
14.06 15.71 | 2_3 3e ⁿ 3pe_3p ⁿ
1-2 (55)
0-1 | 3D 3134.32
3113.71
3124.02 | B
B | 31
11
21 | 25.52 29.46
25.53 29.49
25.52 29.47 | 13-25
13-25
2-12 | | 4327.89
4331.47 | B | ŏ. | 28.39 31.24
28.39 31.24 | 3}-1 } | | 7473.23
7477.21
7471.36 | A
A
A | 5
7
2 | 14.06 15.71
14.06 15.71
14.06 15.71 | 2-2
1-1
2-1 | 4590.971 | A | 9 | 25.55 28.24 | | 3e' 2n_3n : 2g | 4192.50
4196.72
• 4196.26 | B
B | .1
00 | 28.39 31.33
28.39 31.33
28.39 31.33 | 1출- 출 (4 | | 9760.65 | A | | 14.07 15.34 | | 4596.174 | Ā | 8 | 25.55 28.24
25.55 28.39 | | 3s' 2p_3p' 2F
(15) | | В | ٥ | 28.39 31.60 | | | 9741.49 | A | 4 | 14.07 15.34 | (56)
3-4 3p' 1F-3d' :
(57) | 4347.425
3ge | Ā | 5 | 25.55 28.39
25.55 28.71 | 12-12 | 3e ¹ ² D-3p ¹ ² D
(16) | 3407.38
3409.84 | B
B | 71
61 | 28.39 32.01
28.39 32.01 | | | 9677.41 | A . | 1 | 14.07 15.35 | 3-3 3p' 1F-3d' 1
(58) | 3912.088 | A
A
B | 10
6
2 | 25.55 28.70
25.55 28.71 | 12-12
12-12 | 3s' ² D-3p' ² P' (17) | 0095.29 | Ç. | 5 | 28.58 30.37 | | | 6374.31
6366.33 | A
A | 4
3 | 14.07 16.01
14.07 16.01 | 3-4 3p' 1F-4d' (59)
3-4 3p' 1F-4d' | 3G° *4357.25 | В | 0 | 25.74 28.57 |
2 1 -3÷ | 3p4P0-3d4F | 6906.54
6910.75
6908.11 | CCC | 4
3
2 | 28.57 30.36
28.56 30.35
28.55 30.34 | 2 5 _1 5 | | 6351.17 | A | 0 | 14.07 16.02 | (60)
3-3 3p' 1F-4d' | 1r° 4169.230 | Ā | 4 | 25.74 28.70 | 2 } -2} | 3p4P0_3d4P | 6846.97
6869.74 | Ğ | 1 | 28.57 30.37
28.56 30.36 | 3 1 - 3 1
2 1 - 2 1 | | 5492.8 | F | (3) | 14.07 16.32 | (62) | 4140.74
1 _G ° 4121.48
4156.54 | B
B
B | 0
4
3 | 25.73 28.71
25.72 28.71
25.74 28.71 | 15-15
5-15
25-15 | (19) | 6885.07
4098.27 | C
B | 1
On | 28.55 30.35
28.55 31.56 | | | 5486.6 | F | (3) | 14.07 16.32 | (63) | ³ G° 4129.34
4153.302
4132.806 | B
A
A | 2
7
6 | 25.73 28.71
25.73 28.70
25.72 28.71 | 14-24
14-24 | • **
• | 4107.07 | В | 1n | 28.56 31.57 | (4 | | 7886.31
6653.78 | A
A | 4
5 | 14.31 15.38
14.31 16.16 | 1-2 3s" 1p°-3p"
(64)
1-0 3s" 1p°-3p" | 1D
4119.221 | A | 8 5 | 25.74 28.73
25.73 28.73 | 21-31
11-21 | 3p ⁴ P°-3d ⁴ D | 4089.295
•4097.260
4095.63 | A
A
B | 4n
4n
On | 28.58 31.60
28.57 31.58
28.56 31.57 | 43-53 304F
33-43 (4 | | | | | | (65) | *4097.260
4130.279 | A | 4n
3 | 25.72 28.73
25.74 28.73 | 3-13
23-23 | . (20) | 4087.16
4108.75 | B | 2n
On | 28.55 31.57
28.57 31.57 | 11-21
31-31 | | 0.17 | | | | | 4105.000
4103.017
4120.554 | A
A
A | 5 | 25.73 28.73
25.72 28.73
25.74 28.73 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 4096.18
4071.20 | C
B | 0a
0 | 28.56 31.57
28.57 31.60 | 31-41 344P | | 4649.139 | | 10 | nal A List A
22.90 25.55 | 21-31 384P-3p4D | | A
B | 3
1 | 25.73 28.73
25.74 28.76 | 1½- ½
2½-3½ | 3p4p0_3d2F | 4083.907
4062.90 | A
B | 2n
in | 28.56 31.58
28.58 31.62 | 43-43 344F | | 4641.811
4638.854
4676.234 | A | 9
6
8 | 22.88 25.54
22.87 25.53
22.90 25.54 | 1 2 - 2 (1) 1 2 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 4096.543
4112.029 | A | 3
4 | 25.73 28.74
25.74 28.74 | 31-31
11-21
21-22 | (21) | 4048.22
4041.31
4033.18 | B
C
C | 1n
Od
Od | 28.57 31.62
28.56 31.61
28.55 31.61 | 3 1 -3 1 (5
2 1 -3 1 | | 4661.635
4650.841
4696.36 | A. | 9
6
2 | 22.88 25.53
22.87 25.52
22.90 25.53 | 11-11 | 3967.441
3985.46 | A
C | 0 | 25.72 28.83
25.72 28.82 | 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | 3p4pe_3d2p
(22) | *4054.10
4046.15 | ç | 500
500 | 28.57 31.61
28.57 31.62 | 3 5 -2 5 | | 4673.75
4349.426
4336.865 | B | 4
8
6 | 22.90 25.74
22.88 25.73 | 12-12
12-21 3s4P-3p4P
13-12 (3) | 3287.59
3295.13
3301.56
3305.15 | B
B
B | 91
41
31
61 | 25.74 29.49
25.73 29.47
25.72 29.46
25.74 29.47 | 21-21
11-11
2-11
2-11 | 3p4pe_4s4p
(23) | 4044.96
4035.09
4026.40 | C
B | 04
04
0n | 28.57 31.62
28.56 31.62
28.55 31.62 | : 2 5 –2 5 (5 | | 4325.77
4366.896
4345.562 | A | 3
7
7 | 22.87 25.72
22.90 25.73
22.88 25.72 | 23-13
13-13
13-3 | 3306.60
3277.69
3290.13 | B
B
B | 61
71
51 | 25.73 29.46
25.73 29.49
25.72 29.47 | 13-23
13-23
2-12 | | 3371.85
3375.77
3360.15 | B
B
B | 2n
0
00n | 28.58 32.24
28.57 32.23
28.57 32 24 | 3 1 -2 1 (5 | | 4319.631
4317.139 | Α (| 8 | 22.88 25.74
22.87 25.73 | 1\$-2\$
\$-1\$ | 4754 74 | -
B | 4 | 26.14 28.73 | | . 3n2no_3a4n | 3367.00
3370.23 | B | 00n
00n | 28.57 32.24
28.56 32.23
28.55 32.22 | 21-21
11-11 | | 3749.49
3727.33
3712.75 | B
B
B | 9
8
7 | 22.90 26.19
22.88 26.19
22.87 26.19 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 4710.04
4752.70 | B | 5 | 26.11 28.73
26.14 28.73 | | 3p ² D°-3d ⁴ D
(24) | 4317.65
4307.31 | C
B | 0
1n | 28.71 31.58
28.71 31.58 | | | 6721.35 | В | Б | 33.34 35.10 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 4705.355
*4699.21
* 4741.71 | A
B
B | 8
7
3 | 26.14 28.76
26.11 28.74
26.14 28.74 | 23-23
13-23
23-23 | 3p ² D°-3d ² F
(25) | 4303.82
4294.82 | В | 5n
3n | 28.70 31.57
28.71 31.58 | | | 6640.90
4414.909 | | 4
10 | 23.32 25.18
23.34 26.14 | $\begin{array}{ccc} \frac{1}{2} - \frac{1}{2} & (4) \\ & & \\ &$ | | B
B | 7 |
26.14 28.94
26.11 28.94 | | 3p ² D°-3d ² D
(26) | 4281.40
4282.82
4288.83 | B
C
B | On
2d
1n | 28.70 31.58
28.71 31.59
28.71 31.59 | 19-19 | | 4416.975
4452.377 | ' A | 8 | 23.32 26.11
23.34 26.11 | 15-15 | 4359.38 | B
B | 1 | 26.14 28.94
26.11 28.94 | 12-32 | | *4276.71
4291.25 | В | in
in | 28.71 31.59
28.70 31.57 | 1] -] | | 3973.263
3954.372
3982.719 | A | 10
7
5 | 23.34 26.45
23.32 26.44
23.34 26.44 | 물-물 (6)* | 9 3470.81
3470.42
3447.98 | B
B
B | 8
5
5 | 26.14 29.69
26.11 29.67
26.11 29.69 | 23-13
13-3
12-12 | 3p ² D°-4s ² P
(27) | 4305.53 | В | 0 | 28.71 31.57
28.70 32.79 | 1 1 -2 1 (5) | | 3945.048 | B A | 5 | 23.32 26.45 | \$-1 \$
 | 4004 00 | -
B | | 26.19 28.70 | | | 3013.37 | В | 3 | | (5) | | 3496.27
3488.18 | C | 0 | 25.18 28.71
25.18 28.71 | 3-12 3p2s°-3d4
2-2 (7) | P 4906.88
4890.93 | B
B | 5 | 26.19 28.71
26.19 28.71 | 12-12
12-12
12-2 | 3p ⁴ s°-3d ⁴ P
(38) | 4871.58
4861.03 | B
B | 3 | 28.70 31.24 | | | 3474.94
3390.25 | B
B | 1
8 | 25.18 28.73
25.18 28.82 | 2-2 3p ² 5°-3d ⁴ (8)
2-13 3p ² 5°-3d ² 2-2 (9) | D 4856.49
4856.76
P 4864.95 | B
C
B | 2
2
3 | 26.19 28.73
26.19 28.73
26.19 28.73 | 11-21
11-11 | 3p ⁴ 5°-3d ⁴ D
(29) | 4701.23
4691.47
4701.76 | B
B | 2
1
0 | 28.71 31.33
28.70 31.33
28.71 31.33 | . 13- 3 (5) | | 3377.20 | В | 7 | 25.18 28.83 | | 4040.01 | В | 1 | | | _ | 4690.97
*4469.32 | В | 0
3 | 28.70 31.33
28.71 31.47 | 41 01 701 8 | | 4075.868
4072.164
4069.897 | Â | 10
8
6 | 25.55 28.58
25.54 28.57 | 31-41 3p4D°-3d4
31-31 (10)
11-21 | F 3739.92
3762.63 | B
B | 61
51 | 26.19 29.49
26.19 29.47 | 13-21 | 3p45°-3d ² r
(30)
3p45°-4s4p
(31) | 4414.37 | C | 1 | 28.71 31.50 | 12-12 3pt 2 | | 4069.636
4092.940 | A | 4
5 | 25.53 28.56
25.52 28.55
25.55 28.57 | $3\frac{1}{2}$ $3\frac{1}{2}$ | | В - | 41 | 26.19 29.46 | _ | | 4328.62
4319.93 | B
B | 2 | 28.71 31.56
28.70 31.56 | 15- 5 3p 3 | | 4085.124
4078.862
4106.03 | B A | 3
4
0 | 25.54 28.56
25.53 28.55
25.55 28.56 | 21-21
11-11 | 5206.73
5160.02
5176.00 | B
B
B | 5
4
3 | 26.45 28.82
26.44 28.83
26.45 28.83 | 11-11 | 3p ³ p•_3d ³ p | 3735.94
3729.34 | B
B | 3
2 | 28.71 32.01
28.70 32.01 | 1월-2월 30' 집
월-1월 (62 | | 4094.18 | B . | Ō | 25.54 28.55 | 2 } 1 1 | 5190.56 | B | รั | 26.44 28.82 | 1,1 | | | , | | | _ | | | יצי | ΕP | J | Multiplet | Lab | orator | y = | EI | ь
Б | J | Multiplet | Leb | orator | y | E | | J | Multiplet | |---|-----------------|---|--|--|-------------------------------|-------------|---------------|----------------------------|------------------|----------------------------|---|-------------------------------|-------------|---------------|-------------------------|----------------|-------------------|---| | | Int | Low High | - | (No) | IA | Ref | Int | Low | High | | (No) | IA | Ref | Int | Low | High | | Multiplet
(No) | | | eđ. | 00 55 54 50 | 01 41 | 744n 423nn | | ntinue | | 31.01 3 | 74.05 | 71 41 | 7.41 2m 4.41 2mg | | ontinu | | 37 00 | 40.40 | | 3p ³ p-3d ³ D° | | | On
O | (28.73 31.58
28.73 31.58
28.73 31.56 | 15-15 | 3d ⁴ D-4f ² D°
(63) | 4060.58
4060.98 | B
B | 3n
2n | 31.01 | | | 3d ¹ 2 F_4f ¹ 2Ge
(97) | | A
A
A | 3
2
1 | 37.09
37.07
37.09 | 40.40 | 2-2
1-1
2-1 | (14)
cont | | | 0 | 28.73 31.57 | | | *4054.10
4054.55 | C | ъ0
Б00 | 31.01 3
31.01 | 34.06
34.06 | 31-31
21-21 | 3d' 2F_4f' 2F0
(98) | 3444.10 | A | 5 | 37.09 | | 2-2 | 3p3p-3d3p0 | | | On
in | 20 77 74 50 | 31-31
21-21
2-21 | (64) | 4024.04 | В | 1n | 31.01 | | | 3d1 3F_4f1 3p4 | 3415.29 | A | 3
4 | 37.07
37.09 | 40.69
40.69 | 1-1
3-1 | (15)` | | | 0d. | 28.73 31.59
28.73 31.57 | 12-32-32-32-12 | | 4800 04 | | | | | - | (99) | 3408.13
3428.67 | Ā | 3 | 37.07
37.07 | 40.67 | 1-0 | | | | ·0d | | | | 4302.81
4303.06 | C | 0đ | 31.18 :
31.18 : | | 32-32 | 3d' 2g_4g' 2ge
(100) | 3405.74 | A | | 37.06 | 40.68 | 0-1 | | | | in
On | 28.73 31.58
28.73 31.57 | | 3d ⁴ D-4f ⁴ G°
(65) | 4253.74
4253.98 | C | 4d.
4d. | 31.18
31.18 | 34.09
34.09 | 43-53
33-45 | (101)
3a' ag⊷er' an' | 5508.11 | A | 1 | 37.85 | 40.09 | 8-8 | 3p ¹ D-3a ¹ D*
(16) | | | 0₫ | 28.73 31.58 | . a] -3] | 3d ⁴ D-4f ² G°
(66)
3d ⁴ D-4f ⁴ F° | | | | | | - | | 3961.59 | A | 8 | 37.85 | 40.96 | 2-3 | (16)
3p ¹ D-3d ¹ F°
(17) | | | 4n
1n | 28.73 31.62
28.73 31.62 | 31-41
21-31 | 3d4D-414F°
(67) | 4378.41
4378.01 | C | 0 | 31.24
31.24 | 34.06
34.06 | 21-31
12-22 | 3d' 2p_4g' 2pe
(102) | 3816.75 | A | 1 | 37.85 | 41.08 | 2-1 | 3p ¹ D-3d ¹ P°
(18) | | | in
in | 28.73 31.61
28.73 31.61 | 13-23 | | *4343.36 | C | Ф. | 31.24 | 34.08 | 2 } -2} | 3d' 2D_42' 2D'
? (103) | 5268.06 | A | 2 | 38.74 | 41.08 | 0-1 | 3p1s-3d1p0 | | | in
Od | 28.73 31.62
28.73 31.61 | 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - | | 4342.83 | С | 1d | 31.24 | 34.08 | 1 <u>‡</u> -1 <u>‡</u>
 | ? (103) | | | | | | | (19)
3d ¹ P°-4p ¹ P | | | 0n
00d | 28.73 31.61
28.73 31.62 | 1 | . 244n 408po | 4488.09
4487.72 | B
B | 2n
On | 31.33
31.33 | 34.08 | 11-21 | 3d1 2p_4f1 2p1
(104) | 3034.32 | A | <u> </u> | 41.08 | 45.15 | 1-1 | (20) | | | Od | 28.73 31.62
28.73 31.62 | 31-21
31-21 | 3d ⁴ D-4f ² F*
(68) | 4401.12 | | | | | | | 3698.70 | A | 5
5 | 41.78 | 45.11
45.10 | 3-4
3-3 | 3s ⁵ P-3p ⁵ D° | | | On
Od | 28.73 31.62
28.73 31.62 | 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - | •
• | 4843.26 | В | in | 31.56 | 34.10 | 12- | 3d 2g_4r 2p | 3695.37
3720.86 | Ā | 4 3 | 41.74 | 45.08 | 1-2
3-3 | ,, | | | On | 28.73 32.24 | 31-31
31-21 | | 4146.09 | В | 3 | (33.06 | 36.03) | 3] -4] | sp33p6p | 3712.48
3704.73 | A | 3 | 41.76 | 45.08 | 3-3
1-1 | | | | 00n | 28.73 32.23 | | | 4143.77 | B | 9 | (33.06 | 36.03)
36.03) | 14-24 | sp33d6pe
(106) | 3734.80
3721.95 | Ā | 1 | 41.78
41.76 | 45.08 | 3-2 | | | | On
On
OOn | 28.73 32.26
28.73 32.25
28.73 32.26 | 21-11 | 3d ⁴ D-5p ⁴ P ⁶
(70) | 4145.90
4143.52
4141.96 | B | 0
1
1 | 33.06
33.06
33.06 | 36.03) | 31-31
21-21 | | 3709.52 | A | 2
4 | 41.74 | | 1-0
3-3 | 38 ⁵ P-3p ⁵ Pe | | | 00n | 28.73 32.25 | | | 4142.08 | č | i | 33.06 | 36.04) | 13-13 | | *3344.26
*3336.78 | Ā | 2
3 | 41.76 | 45.45 | 2-2
1-1 | (SS) | | | On | 28.73 32.31 | | 3d ⁴ D-5p ² D ⁶
(71) | 3218.10
3216.76 | C | 3 | (33.06
(33.06
(33.06 | 36.89)
36.89) | 31-21 | sp33p6p_
sp34s6se
(107) | 3362.38
3350.68 | Ā | 4
3 | 41.78
41.76 | 45.45 | 3-2 | | | | 1 | 28.73 32.79
28.73 32.79 | 3) 3)
2) 3) | 734 ⁴ D 5x ⁴ D° (72) | 3216.08 | C | ō | | | | | *3330.40 | A | 4 | 41.76 | 45.46 | 3-3
1-2 | | | | 1 | 28.73 32.81 | 31-41 | 3d4D-5f4G° | Stronges | E Uncl | .ass111
2n | ed Lines | Attri | Duted | to <u>0 11</u> | 4081.10 | | | 47.24 | 46 07 | | 3e ³ p_3p ³ p° | | | 3
3dd | 28.73 32.84
28.73 32.84 | 31-41
21-31 | 3d ⁴ D-5f ⁴ G°
(73)
3d ⁴ D-5f ⁴ F°
(74) | 4506.50
3420.61
3419.87 | B
B | 3n
2n | | | | | 4073.90 | Ā | 0 | 43.24
43.22 | | 2-3
1-2 | (83) | | | i | 28.73 32.84 | 32-32 | (1.27 | 3081.46 | B | 2n | | | | | 3556.92 | A | 1 | 43.24 | 46.71 | 2-2 | 3a ³ P-3p ³ Pe
(24) | | | οđ | 28.74 31.58 | | 73d ² F-41 ⁴ D°
(75) | 3006.82
3006.04 | B
B | 3 | | | | | 3455.12 | A | 5 | 45.11 | 48.68 | 4-5 | 3p5p-3d5F | | | 04 | 28.74 31.59 | | | 3005.62 | В | 2 | | | | | 3450.94
m3448.05 | A
P | 4 | 45.10
45.08 | 48.67 | 3-4
2-3 | (25) | | | 2n
1n | 28.76 31.58
28.74 31.57 | 34-44
21-31 | 3d ² F_4f ⁴ G°
(76) | | | | | | | | 3446.73 | A | . 1 | 45.08
45.07 | 48.65 | 1-2 | | | | 4n
2n | 28.76 31.60
28.74 31.58 | 3}_4}
2}_3 | 3d ² F_4f ² G° (77) | <u>0 III</u> | I P 54 | . 71 | Anal B | List | A Se | pt 1943 | 3466.15
3459.98
3454.90 | A
A
A | 2
2
2 | 45.11
45.10
45.08 | 48.66 | 4-4
3-3
3-2 | | | | 1n | 28.76 31.62 | | | 4239.5 | A | 00 | 33.01 | 35.92 | 1-1 | 3s ³ pe_3p ¹ P | 3451.33
3466.90 | Ā | 1 | 45.08
45.10 | 48.65 | 1-1
3-2 | | | | 3n
00d | 28.74 31.62
28.76 31.62 | | (78) | 3759.87
3754.67 | A | 9
7 | 33.04
33.01 | 36.29 | 2-3
1-2 | 3s ³ pe_3p ³ D
(2) | 3459.52 | Ā | ŏ | 45.08 | 48.65 | 2-1 | | | | On | 28.74 31.61 | 25-25 | | 3757.21
3791.26 | Ā | 5
6 | 32.99
33.94 | 36.29 | 0-1
3-3 | | 3088.04
3083.65 | A
B | 2 | 45.11
45.10 | 49.10 | 4-4
3-3 | 3p ⁵ D°-3d ⁵ D
(26) | | | On
Od | 28.76 31.62
28.76 31.62 | 3 5 -3 5 | 3d ² F-4f ² F°
(79) | 3774.00
3810.96 | A | 8 | 33.01
33.04 | | 1-1
2-1 | | 3075.19
3095.81 | B | 00 | 45.08
45.11 | 49.10 | 2-2
4-3 | | | | 00n | 28.74 32.26 | 3 } -3 } | 3d ² F-5p ⁴ P° | 3340.74
3312.30 | A | 6
5 | 33.04
33.01 | 36.73 | 3-1
1-1 | 3s ³ p°-3p ³ S
(3) | 3084.63
3074.68 | B
B
B | 900 | 45.10
45.08 | 49.10 | 3-3 | | | | in
On | 28.76 32.33
28.74 32.31 | 3-23
3-12 | 3d ² F-5p ⁴ P°
(80)
3d ² F-5p ² D°
(81) | 3299.36 | Ã | 3 | | 36.73
36.73 | 1-1
0-1 | | 3068.06
3075.95
3074.15 | B | 00 | 45.08
45.10
45.08 | 49.10 | 1-0
3-4
2-3 | | |
| oaa | 28.76 32.81 | 3 }-4} | 3d2F-514G* | 3047.13
3035.43 | A
A | 8
4 | 33.04 | 37.07 | 2-2
1-1 | 3s ³ p°-3p ³ p
(4) | 3068.68
3065.01 | B
B | 00 | 45.08
45.07 | 49.10 | 1-3
0-1 | | | | 2
1 | 28.76 32.83
28.74 32.81 | 31-41 | 3d ² F-51 ⁴ G°
(82)
3d ² F-51 ² G°
(83) | 3059.30
3043.02
3023.45 | Ā | 6
5 | 33.04 | 37.06 | 3-1
1-0 | | | | | | <u>-</u> | | - 56- | | | 1 | 28.76 32.84 | 21_41 | 3d ² F-51 ⁴ F° | 3024.57 | A | 5
4 | 33.01
32.99 | 37.09 | 1-2
0-1 | | 3384.95
3382.69 | A | 3 | 45.46
45.45 | 49.10 | 3-4 | 3p ⁵ p°_3d ⁵ p
(27) | | | | | | (84) | 5592.37 | | | 33.71 | 35.92 | -
1-1 | 3s1po_3n1p | 3394.26
3383.85
3376.82 | A | 1
2
(1) | 45.45
45.44 | | 3-3
2-2
1-1 | | | | 3
0 | 28.82 30.68
28.83 30.68 | 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | 3d ² P-4p ² P° (85) | 2983.78 | A | 9 | 33.71 | | 1-2 | 3s ¹ p°-3p ¹ p
(5)
3s ¹ p°-3p ¹ D | 3355.92 | A | 3 | 45.46 | | 3-3 | 3p5p0_3d5p | | | 1 | 28.82 30.67 | | | | | | | | - | (6) | *3336.78
3326.16 | Ā | 3 | 45.45
45.44 | 49.15 | 2-2
1-1 | (28) | | | 3n
1n | 28.82 31.56
28.83 31.58 | 1\$-2\$
\$-1\$ | 3d ² P_4f ² D°
(86) | 2983.66 | A | 1 | 35.92 | 40.05 | 1-8 | 3p ¹ p-3d ³ F° (7) | 3348.05
3332.49 | A
A | 2 | 45.46
45.45 | 49.15 | 3-2
2-1 | | | | 2n
Od | 28.82 31.58
28.83 31.59 | 11-21 | 3d ² P-4f ⁴ D° (87) | 3265.46 | A | 10 | 36.32 | 40.10 | 3-4 | 3p3p-3d3Fe | *3344.26
*3330.40 | A | 2
4 | 45.45
45.44 | 49.14
49.15 | 2-3
1-2 | | | | 3n | 28.83 31.57 | | 3d2P-4r4g* | 3260.98
3267.31
3884.57 | A
A | 8
5
4 | 36.29
36.28
36.32 | 40.05 | 2-3
1-2
3-3 | (8) | 3279.97 | c | (1) | 46.05 | 49.82 | 0 -1 | 4p1S-5d1P* | | | | | - | (88) | 3281.94
3305.77 | Ā | 3 | 36.39 | 40.05 | 2-2
3-2 | | | | | | | | (39) | | | 0 | 28.94 31.56
28.94 31.58 | 21-21
12-12 | 30°D-41°D°
(89) | 3252.94 | A | 2 | 36.29 | 40.09 | 2-2 | 3p ³ p-3d ¹ p° | 3728.82
3728.49 | С | (1) | 46.27
46.25 | 49.56 | 3-4
2-3 | 3p ³ D°-3d ³ F
(30) | | | 0 | 28.94 31.58 | 1] -2] | 3d ² D-4f ⁴ D° | 3238.57 | Α . | 5 | 36.28 | | 1-2 | (9) | 3729.70 | A | 1 | 46.24 | | 1-2 | | | | 0 | 28.94 31.58 | 2 } _3 | (90)
3d ² D-4f ² G°
(91) | 3017.63
3004.35
2996.51 | A
A
A | 5
4
3 | 36.32
36.29
36.28 | 40.40 | 3-3
2-2
1-1 | 3p ³ D-3d ³ D° (10) | 3215.97
3207.12 | B
P | 1 | 46.27 | 50.10 | 3-3 | 3p ³ D°-3d ³ D
(31) | | | 1đ
3n | 28.94 31.62
28.94 31.61 | 21-31
11-21 | 3d2D_4f4F0 | 3024.36
3008.79 | A
A | 1 3 | 36.32 | 40.40 | 3-2
2-1 | | 3200.95 | A | 1 | 46.24 | 50.10 | 1-1 | | | | Οđ | 28.94 31.61 | 2 1 -2 1 | 3d ² D_4f ² G•
(91)
3d ² D_4f ⁴ F•
(92) | 2997.71
2992.11 | Ä | 2 2 | 36.29 | 40.41 | 2-1
2-3
1-2 | | 4529.7 | A | 00 | 46.37 | | 2-3 | 3p5g0_3d5p
(32) | | | 4n
2n | 28.94 31.62
28.94 31.62 | 21 31
15-25 | 34 ² D-4f ² Fe | | | | | | _ | - 2- " | 4401.56
m4447.82 | A
P | <u>0</u> + | 46.37
46.37 | 49.14
49.15 | 2-3
2-2 | (32)
3p55°-3u5p
(33) | | | | 28.94 31.62 | | | 3363.83
3369.40 | Å | 00 | 36.73
36.73 | 40.40
40.40 | 1-2
1-1 | 3p ³ S-3d ³ D°
(11) | 4440.1 | A | 0 | 46.37 | 49.15 | 2-1 | | | | 4 | (30.29 33.06)
(30.29 33.06)
(30.29 33.06) | 21-31
21-21 | sp ³ 3s6se_
sp ³ 3p6p | 3132.86
3121.71 | A
A | 6
5 | 36.73 · | 40.67 | 1-2 | 3p3s-3d3pe | 4555.30 | A | 0 | 46.71 | 49.42 | 8-8 | 3p ³ p ⁰ -3d ³ p
(34) | | i | 3 | (30.29 33.06) | 3 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | (94) | 3115.73 | Ã | 4 | 36.73 | | 1-1
1-0 | (12) | 3638.70
3646.84 | A
A | 3 | 46.71
46.72 | 50.11 | 2-3
1-3 | 3p ³ p°-3d ³ p
(35) | | : | On | 30.68 33.94 |
1-3-2-1 | 14p2p0_4d: 2r | 3440.39 | A | 4 | 36.82 | 40.41 | -
2-31 | 2p4 1p_3d3pe | 3653.00 | Ā | 1 1 | 46.72 | 50.10 | 0-1
2-2 | (00) | | i | 00 | 30.68 34.34 | 1 1 2 3 3 | (95)
4p2po_5s: 2p | , | | | | | - | (13) | 3650.70-
3649.20 | Ā | ô | 46.72
46.71 | 50.10 | 1-1
3-1 | | | | | | | (96) | 3715.08 | A
A | 6
6 | 37.09 | 40.40 | 3-3
1-8 | 3p ³ P-3d ³ D° (14) | | | | | | | | | | | | | | 3702.75 | A | . 5 | 37.06 | 40.40 | 0-1 | 10 | | | | | | | | R E V | ISED | M | ULTI | PLE | T T | ABLE | | | | | | | |------------|----------------------------|----------------|---------------------------------|----------------|-------------------------|---|--|-------------------------|-------------------|----|----------------------------|----------------------------|---------------------------------------|--|----------------------------------|---------------|----------------|----------------|-------------------------|--| | I | Lab | orator;
Ref | /
Int | E
Low | P
High | J | Multiplet
(No) | Lai
I A | ooratory
Ref I | nt | E :
Low | P
High | J | Multiplet (No) | Labo
I A | ratory
Ref | | Low | P
High | J 1 | | <u>0 I</u> | II c | ontinu | eđ. | | | | | <u>o v</u> I | P 113.38 | Ar | al B | List A | Feb | 1943 | O VI con | ntinued | L | | | | | 456 | 9.50 | A | 1n | 52.63 | 55.33 | 2-37 | 3p ¹ D°-3d ¹ F | 5114 | P | | 69.29 | 71.70 | 0-1 | 3 ¹ S-3 ¹ P° (1) | 3509 | P | | 123.97 | 127.49 | - ' | | 447 | 4.95 | A | 1n | 52.63 | 55.39 | 2-27 | (36)
3p ¹ D°-3d ¹ D
(37) | 3144.68 | Α | 1 | 71.70 | 75.63 | 1-2 | 3 ¹ P°-3 ¹ D | 3426 | P | | 123.97 | 127.57 | ' | | | | | | | | | | | | | | | | (2) | 3438 | P | | 123.98 | 127.57 | _ 1 | | | | | | | | | | 5600
5582 | P
P | | (71.92
(71.91 | 74.12) | 2-3 | 3 ³ P°-3 ³ D | 3433 | P | | 123.98 | 127.57 | (| | 0 1 | <u>rv</u> I | P 77. | | nal B | List A | | 1943 | 5573
5606 | P
P | | (71.91
(71.92 | 74.12) | 0-1
2-3 | | ~ 4 ~ 4 | | | 107.00 | 107 57 | | | | 33.46 | B
B | 6
5 | 44.15
44.15 | 48.18
48.17 | \$-1\$
\$\$ | 3 ² S-3 ² P° (1) | 5584
5608 | P
P | | (71.91
(71.92 | | 1-1
2-1 | | 3434 | Р - | <u> </u> | 123.98 | 127.57 | ' | | | | | | | | _ | | | | | /00.67 | 02 60) | 2–3 | 38 ^{3pe} -3p ³ D | 4751 | P | | 127.25 | 129.85 | 2 - ' | | 340 | 11.76 | B | 3 | 48.18
48.17 | 51.79 | 12-22
2-12 | (2)
(2) | 4123.90
4120
4123 | A
P
P | 3 | (80.63
(80.58
(80.56 | 83.58) | 1-3
0-1 | (4) | 5602 | Р - | | 127.49 | 129.69 | _1 | | 341 | 13.71 | A | 1 | 48.18 | 51.79 | 1 2 -1 2 | | 4179
4151 | P
P | | (80.63 | 83.58) | 3-2
1-1 | | 5112 | P | | 127.49 | | ' | | | 35.55 | B
B | (6)
(4) | | 57.84
57.81 | 21-31
11-31 | 3s ⁴ p°-3p ⁴ D | 4211 | P | | (80.63 | 83.56) | 8-1 | | - | ٠. | | | | | | 338 | 81.33 | P | | 54.14 | 57.79
57.81 | 3-1 1
23-23 | (5) | 3275.67
3239 | A
P | 0 | (80.63
(80.58 | 84.39)
84.39) | 2-1
1-1 | 38 ³ P°-3p ³ S
(5) | 5410 | P | | 127.57 | 129.85 | - ' | | 339 | 96.83 | BP | (S) | 54.16
54.14 | 57.79
57.78 | 13-14 | | 3222 | Ρ | | (80.56 | 84.39) | 0-1 | • | 5279 | ₽. | | 127.57 | 129.90 | . — ' | | 342 | 25.57
05.97 | B
P | (0) | 54.19 | 57.79
57.78 | 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 | | 3058.68 | 3 A | 0 | 82.03 | 86.07 | 1-2 | 3s ¹ P°-3p ¹ D | 5298 | P | | 127.57 | 129.90 | _ ' | | | | | | | | | - 2 2- | | | | | | | (6) | 5289 | P | | 127.57 | 129.90 | - ' | | 334 | 49.11 | Ą | 3
2
0 | 55.93 | 59.62
59.59
59.59 | 13-25
3-15 | 3s ² P°-3p ² D
(4) | 4554.28 | 3 A | 0 | 83.04 | 85.75 | 1-2
- | 3p ¹ p-3d ¹ p°
(7) | 5292 | | | 127 57 | 129.90 | | | | 78.09 | | 1 | | 59.97 | 15-15 | | 3747
3717 | P
P | | (83.62
(83.58 | 86.91) | 3-3
2-2 | 3p ³ D-3d ³ D°
(8) | 5291 | P | | | 129.90 | | | | 52.54
28.04 | Â | ō | | 59.97 | 1출- 불 | (5) | 3701
3762 | P
P | | (83.56 | 86.89 | 1-1
3-2 | (0) | DB01 | • | | 251101 | 150.00 | | | • 37 | 36.78 | В | (4) | 57.84 | 61.14 | -
31-41 | 3p4D-3d4F* | 3726
3703 | P
P | | (83.58 | 86.89)
86.91) | 2-1
2-3 | | | | | | | | | 37 | 29.03 | В | (4) | 57.81 | 61.12 | 3 - 4 - 4 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - | (6) | 3692 | ř | | (83.56 | 86.90) | 1-8 | | <u>FI</u> I | P 17.3 | 5 Ar | nal C | List D | May 1 | | 37 | 25.81
58.45 | B
B | (S)
(S) | 57.84 | 61.12 | 3-13
33-33 | • | 3298
3249 | P
₽ | | (83.58 | 87.36)
87.38) | 3-2
2-1 | 3p ³ D-3d ³ P°
(9) | 7398.68 | A | 17 | | | 2] _2] : | | 37 | 44.73
36.78 | B | (0)
(4) | 57.79 | 61.11 | 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | | 3222
3264 | P
P | | (83.58 | 87.39)
87.36) | 1-0
2-3 | | 7482.72
7514.93 | Ā | 11 | 12.70 | 14.34 | 13-14 | | 37
37 | 74.38
55.82 | P
P | | | 61.11 | 3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | • | 3230
3245 | P
P | | | 87.38)
87.36) | 1-1 | | 7331.95
7425.64 | A
A | 15 | 12.68 | 14.34 | 23-13
13-3 | | | 09.64 | В | (3) | 57.84 | 61.68 | 3 1 - 3 1
2 1 - 2 1 | 3p4D-3d4D° | 4005 | P | | (04.70 | 86.90) | -
1–3 | 3p ³ s-3d ³ D° | 7552.24
7573.41 | A
A | 14
14 | 12.70 | 14.31
14.33 | 1 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | 31 | 94.75
85.72 | B | (3)
(1)
(0)
(0) | 57.79 | 61.67
61.67
61.66 | 1 1 1 | (7) | 4925
4940 | P | | | 86.89) | 1-1 | (10) | 6856.02
6902.46 | A
A | 16
15 | 12.64 | 14.44
14.46 | 2] -3] :
1] -2] | | 32 | 80.72
16.31
99.53 | B
P
B | (1) | 57.84 | 61.67 | 3 - 2 | • | 4158.76
4135.9 | S A P | 0 | (84.39 | 87.36)
87.38) | 1-2
1-1 | 3p ³ 8-3d ³ pe
(11) | 6909.82
6772.97 | Ā | 13 | 12.70 | 14.48 | 1-1 1
21-2 1 | | 31 | 88.65
88.17 | P | \-/ | 57.79 | 61.66 |
11-
21-3 | | 4121.7 | P | | | 87.39) | 1-0 | | 6834.26
6870.22 | A | 12
12 | 12.68 | 14.48
14.49 | 12-12 | | 31 | 80.98 | P
B | (0) | 57.79 | 61.67 | 1 3-2 | | 6830 | P | | (85.11 | 86.91) | 2-3 | 3p3p-3d3pe | 6708.27
6795.52 | A | 7
9 | 12.64
12.68 | 14.48
14.49 | 2}1}
1}- } | | | | | | | | — . . | | 6790
6767 | P
P | | (85.07 | 86.90)
86.89) | 1-3
0-1 | (12) | 6239.64 | Ą | 16 | 12.64 | 14.62 | 2] -1] ; | | 33 | 75.50
62.63 | B
P | (3) | 58.54 | 62.20 | 15-25 | 3p ⁴ S-3d ⁴ P* (8) | 6878
6819 | P
P | | (85.08 | 86.90)
86.89) | 2-2 | | 6348.50
6413.66 | A | 15
14 | | 14.62
14.62 | 1\$-1\$
\$-1\$ | | 33 | 54.31 | . A | | 58.54 | 62.22 | 12- 2
 | • | 6909 | P | | • | 86.89) | 2-1 | 3p3p_3d3pe | 7754 70 | | 19 | 12 07 | 14.52 | -
11 21 · | | | 98.25 | В | (5) | | 61.68 | 21-31 | 3p ⁴ P-3d ⁴ D° (9) | 5473
5376 | P
P
P | | (85.08 | 87.36)
87.38)
87.38) | 2-2
1-1
2-1 | (13) | 7754.70
7800.22
7607.17 | A
A
A | 18
15 | 12.97 | 14.55 | 13-23 ;
3-13
13-13 | | 47 | 783.43
772.57
813.07 | B
B
B | (5)
(4)
(2)
(1)
(2) | 59.08 | 61.67 | 24-2 | (8) | 5432
5352
5417 | P
P | | (85.08 | 87.39)
87.36) | 1-0
1-2 | | 7311.02 | A | 13 | | 14.62 | - T | | 47 | 794.22 | B | \2\
2\
2\ | 59.09 | 61.67 | 1 - 1 | | 5343 | P | | | 87.38) | 0_1 | | 7489.14 | Ā | 8 | | 14.62 | | | 48 | 823.93
800.77 | P
P | ,, | 59.11 | 61.67 | 24-1 | | 6329 | P | | 86.07 | 88.02 | _
2-3 | 3p ¹ D-3d ¹ F° | 7037.45
7127.88 | A
A | 15
14 | | 14.68
14.70 | 1 1 1 1 | | 39 | 95.17 | ם | (a) | | 00.00 | a}_a} | 3p4r-3d4r | 4588 | P | | 86.07 | 88.70 | D-1 | (14)
Sp ¹ D-Sa ¹ Pe | 6966.35 | A
A | 10
13 | 12.93 | 14.70
14.68 | 1 1 2 1 2 | | 39 | 56.82
30.63 | P | 4 | 59.08 | 62.21 | 13-1 | (10) | | | | | | - : _ | (15)
3d ¹ po_4 ¹ D | | | | | | | | 39 | 77.10
45.29 | B
P | (1) | | 62.22 | | | 3702 | Р | | 88.79 | 92.13 | 1-2 | (16) | | | | | | ** | | | 74.66
942.14 | P
B | (0) | | 62.20
62.21 | 11-2
2-1 | | 7438 | P | | (89.15 | 90.81) | | 435-43Pe | | [P 34. | | Anal B | List D | May 1
2_3 3 | | 53 | 862.4 | р | | 59.63 | 8 61 92 | —
ച_ച | 3n2n 3d2no | | | | | | | (17) | 3847.086
3849.98
3851.66 | 7 A | 30
15
10 | (21.81 | 25.01)
25.01) | 2-3
2-2
2-1 | | | 305.3 | P | | 59.59 | 61.91 | 12-1 | 3p ² D-3d ² D°
(11) | | | | | | | | 3051.00 | | | (22.02 | | - | | | 63.36
60.42 | A | 2
1 | | 63.08 | 21-3 | 3p ² D-3d ² F° (12) | O VI | I P 137. | 52 | Anal A | List | | eb 1943 | 4024.727
4025.49 | 7 A
5 A | 20
15 | | 25.64
25.64 | 1-2 3
1-1 | | | | | | | | | | 3811.39
3834.2 | | 2 | 79.01
79.01 | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 32 _{5_3} 2 _{pe} | 1025.010 | Ä | 10 | | 25.64 | 1_0 | | | 520.9
502.2 | P
P | | | 7 63.48
7 63.50 | 1-1
2-1 | 3p ² S-3d ² P° (13) | | _ | | | | - | | 3505.61 | 1 A | 15 | | 28.54) | 3-4 3 | | _ | | _ | | | | _ | | 3068 | P | | 123.46 | 127.49 | - } - | 6 ² S-7 ² P°
(2) | 3503.098
3502.954 | 5 A
4 A | 12 | (25.01 | 28.54)
28.54) | 2-3
2-2 | | | 189.84
192.24 | C | 0 | 64.03 | 3 67.57
3 67.57 | 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 3s ¹ 2p•_3p ¹ | 3622 | P | | 123.84 | 127.25 | - | 6 ² P°-7 ² S | 3501.416 | | 10 | (25.01 | 28.54) | 1-0 | | ΛE | 568 | P | | 60.00 | 70.91 | _ | 5 ² F°-6 ² D | 3314 | P | | 123.84 | 127.57 | _ | 6 ² P°-7 ² D | 4103.52 | 5 A | 15 | | 28.65 | 2-3 3
1-2 | | ** | | • | | اهدون | . 10.51 | _ | (15) | | | | | | - | (4) | 4103.085
4103.724
4103.871 | 1 A | 10
7
7 | 25.64 | 28.65
28.65
28.65 | 0-1
2-2 | | | | | | | | | | | | | | | | | ********* | | • | 20.01 | | | | ory | Int | E
Low | | J | Mu | ltiplet
(No) | • | IA | Lebor | ator;
Ref | | Low | E | P
High | J | Multip
(No) | | Lat
I A | orato
Ref | ry
Int | E
Low | P
High | J | Multiplet
(No) | t | |-------------|------------------------|-------------------------|---------------------------------|----------------------|---|---|-----------------|------------------------------|--------------------------------------|------------------|----------------------------|--------------|----------------|----------------------------------|--------------------------|---------------------------|----------------------------------|--|--------------|---------------------------|-------------------------|----------------------------------|--------------------------|--|------------| | ued | | | | | | | | <u>Ne I</u> | ΙP | 21.4 | 17 An | al A | : | List C | Hay | 1944 | | <u>Ne I</u> co | ntinu | eđ | | | | | | | | 8
7
7 | 26.15
26.16 | 29.16
29.16
29.16 | 3-3
2-2
1-1 | 3 | 3 _{D°} -3p' | 3 _{D†} | 7032.
6402.
6334. | 2455 | A
B | (10)
(20)
(10) | 16.5 | 5 | 18.30
18.48
18.50 | 2-1
2-3
2-2 | 3s 1°-
(1) - | | 5764.419
5748.299 | | (15)
(10) | 18.48
18.48 | | 3-4
3-3 | 3p 2-4d 3
(13)-4d 8 | 3 0 | | | 9 | | 29.64 | | | 3no_2n1 | 3 ₂₊ | 6217 | 2813 | Ā | (15) | 16.5 | 55 | 18.53
18.56 | 2-1
2-2 | - | 3p 4 | 5037.750 | 5 B | (10) | 18.48 | 20.93 | 3-4 | 3p 2-5d 3 (14) | 30 | | | 7 | 26.16 | 29.65 | 2-1 | | ³ D°-3p¹
(6) | • | 5975.
5944. | | Â | (12)
(12)
(10) | 16.5 | 55 | 18.61
18.62 | 2-1
2-2 | - | -3p 7
-3p 8 | 4788.92 | 8 B | (12) | 18.48 | 21.05 | 3-2 | 3p 2-7s 1
(15) | | | - | 10 | 26,55 | 29.42 | -
23 | 3 3e¹ | 1D0_3D1 | 1 _F | | 8950 | Ā | (30) | 16.5 | 55 | 18.65 | 2-1 | | -3p 9 | 4715.34
4712.06 | | (15)
(10) | 18.48
18.48 | 21.09 | 3-4
3-3 | 3p 2-6d 3
(16)-6d 8 | | | | 10 | | 30.40 | a_a | 3s ^t | (7)
10°_3p'
(8) | 1 D | 3369. | 5711
9081
8086 | 000 | (10)
(15)
(10) | 16.5 | 55 | 20.10
20.21
20.21 | 2-3
2-1
2-2 | 3s 1°-
(2) - | | 4540.37 | В | (10) | 18.48 | 21.19 | 3-4 | 3p 2-7d : | 3° | | | 15n | (28.54 | 31.44) | _ | 36 | 15 D°_4f !
(9) | 5F | 7245. | 1668 | B | {10}
{15} | | | 18.30
18.50 | -
1-1
1-2 | | -3p 1
-3p 3 | 8495.36
8418.42
7943.18 | 74 B | 500
400
200 | 18.50
18.50
18.50 | 19.96 | 2-3
2-2
2-3 | 3p 3-3d 4
(18)-3d 1 | 7° | | | 12n
10n | | 31.42
31.42 | 3-
2- | 36 | (10) | ³F† | 6382
6074
6029 | .9914
.3377
.9971 | A
A
A | (12)
(10)
(10) | 16.6
16.6 | 50
50
50 | 18.53
18.63
18.65 | 1-1
1-0
1-1 | | -3p 4
-3p 6
-3p 9 | 5820.15
5804.44 | 5 B | (10)
(10)
(10) | 18.50
18.50 | 20.62
20.62 | 2-3
2-3 | 3p 3-4d 4 | 40
70 | | i i | 9 8 | 29.32 | 32.71
32.71 | 4-4
-3 | 3 | ³ F-3d¹
(11) | 3 <u>r</u> 0+ | , | . 5620
. 9036 | B | (50)
(10) | | | 18.88 | 1-0
1-2 | 3 ₈ 2°.
(4) | -3p 10
-4p 8 | 5562.76
•4884.91 | | (10) | 18.50
18.50 | 20.71 | 2-3
2-3 | -4d :
3p 3-5d :
(20) | | | | | 29.32 | 32.71 | | | | | | . 4950 | | (15) | | | 18.61 | | 3s 3° | | 4752.73 | 13 B | (10) | 18.50 | 21.09 | 2–3 | 3p 3-6d (21) | 40 | | • | | | | | W | 1044 | | 6163 | . 5939 | A | (12) | 16. | - | 18.65 | 0-1
- | (5) | -3p 9 | 10798.12 | F | 150 | 18.53 | 19.68 | 1-0 | 3p 4-4s (22) | 35 | | ;
; | .39 .
12
10
8 | 39.12 | L1st
43.12
43.08
43.06 | | May :
31 3:
21 3: | s ⁴ P-3p ⁴ ;
(1) | D° | 7173 | . 4580
. 9389
. 0508
. 4678 | B
B
B | 200
(10)
(9)
(10) | 16. | 78
78 | 18.30
18.50
18.53
18.56 | 1-1
1-3
1-1
1-3 | (6) | -3p 1
-3p 3
-3p 4
-3p 5 | 8704.15
8681.92
8634.64
8136.40 | 0 B
80 B | 200
500
600
300 | 18.53
18.53 | 19.95
19.95
19.96
20.05 | 1-2
1-1
1-3
1-2 | 3p 4-3d (23)-3d (| 6°
7° | | ì | 8 | 39.16
39.12 | 43.08 | 3 | 2₹ | | | 6678
6598 | .2764
.9529 | | (9)
(15) | 16. | 78
78 | 18.62
18.65 | 1-3 | | -3p 8
-3p 9 | 5656.65 | | (10) | | 20.71 | 1-2 | 3p 4-4d 9 | | | À.
P | 8 | 39.10
39.16 | 43.05
43.06 | 23-1 | 1-} | | | | . 4878 | A | (50) | | | 18.88 | 1-0 | 38 40 | -3p 10 | 4957.03 | 34 B | (10) | 18.53 | 21.02 | 1-2 | (24)
3p 4-5d
(25) | 11 | | ٠. | 4 | | 43.05 | 1] - | _ | 2 2 | | | .5259
.4717 | C | (10) | | | 20.21 | 1-2
1-0
- | (7) | -4p 6
-4p 10 | 10844.54 | F | 200 | 18.56 | 19.69 | 2-1 | 3p 5-4s | 40 | | A
A | 12
10
6 | | 43.99
43.95
43.95 | - | | | | 9665
9486
8988
8865 | .680
.58 | D
B
D
B | 1000
500
200
500 | 18. | 30
30 | 19.58
19.60
19.68
19.69 | 1-2
1-1
1-0
1-1 | · · · - | 48 1°
48 2°
48 3°
48 4° | 8919.50
8853.86
8780.62
8266.07 | 83 B | 300
700
1200
250 | 18.56
18.56 | 19.94
19.95
19.96
20.05 | 2-1
2-2
2-3
2-3 | (26)
3p 5-3d
(27)-3d
-3d
-3d | 5° | | A
A
A | 7
6
1.5 | 46.94
46.95
46.94 | 51.00
51.01
51.01 | 23-3
13-2
23-2 | 3) 3)
2)
2)
2) | (3)
0'800-30 | ā≀ 2Ā | 5343
5341
5330 | .096 | B | (12)
(20)
(12) | 18. | 30 | 20.61
20.61
20.62 | 1-0
1-1
1-2 | 3p 1-
(9)- | | 5974.62
5719.22 | | (10)
(10) | | 20.62
20.71 | 2-3
2-3 | 3p 5-4d
(28)-4d | | | A. | 4 | 47.46 | 51.38 |
1}2 | 2] 3 | p! 2po_3 | d: 2I | | | В | (10) | | | 20.86 | 1-1 | 3p 1- | | 5005.16 | 0 B | (10) | 18.56 | 21.02 | 2-3 | 3p 5-5d
(29) | 10 | | A
B | 0 | 47.45
47.46 | 51.38
51.38
51.38 | 12-1 | 1 1
1 2 | (4) | | 4100 | • 654 | E | (10)
(12) | 18. | 30 | 20.92 | 1-0
1-1 | (10)
3p 1-
(11)- | 5d 2° | 9226.67
9201.76 | D
D | <i>200</i>
600 | 18.61 | 19.95
19.95
 1-2
1-1 | 3p ?-3d
(30)-3d | 60 | | Int | roduct | lon | | | | | | 4704
4537 | . 395
. 751 | B | (15)
(10) | | | 20.93 | 1-2 | = | 5d 5°
5d 9° | 9148.68
8591.25 | D
84 B | 600
400 | 18.61
18.61 | 19.96
20.05 | 1-2 | -3d
-3d | 7°
9° | | Int | roduct | ion | | | | | | 8377 | .6068 | В | 800 | 18. | 48 | 19.95 |
3-4 | | | 5872.82 | ВВ | (10) | | 20.71 | 1-2 | 3p 7-4d (31) | 9° | | | | | | | | | | 8376
8300 | . 41
. 3258 | D
B | 900
300 | | | 19.95
19.96 | 3-3
3-3 | (12)_
- | 3d 4°
3d 8° | 4790.21 | B B | (10) | 18.61 | 21.19 | 1-2 | 3p 7-6d (32) | 11' | | 12 | | | REV | ISED M | ULTIPLE | TABLE | | | | |-----------------------------------|--------------------------------|--|--------------------|--------------|----------------------------|--|--|----------------------------|--| | Laboratory | | J Multiplet | Labo | ratory | E P | J Multiplet | Laboratory | E P | J M | | I A Ref Int | Low High | (No) | IA | Ref Int | Low High | (No) | I A Ref Int | Low High | | | Ne I continued | | | Ne II co | ontinued | | | Ne II continued | | | | 9373.28 D 200 | | 3-1 3p 8-3d 2°
3-3 (33)-3d 4° | 3208.99 | À 3 | 30.75 34.60 | 31-31 3p4D0-3d2F
21-21 (14)
31-21 | 3336.12 A 2 | 34.11 37.81 | 1 1 -11 31 | | 9313.98 D 300
9300.85 D 600 | | 2-2 -3d 5° | 3188.74
3154.82 | A 3 | 30.79 34.66
30.75 34.66 | 23-23 (14)
33-23 | 3141.35 A 3 | 34.11 38.04 | 11-21 31 | | 9221.59 D 200
9220.05 D 400 | 18.62 19.96 2
18.62 19.96 2 | 8-8 -3d 7°
8-3 -3d 8° | 3244.15 | A 5 | 30.79 34.60 | 2 1 -3 1
13-24 | 3050.57 A 1 | 34.11 38.15 | 1출- 출 3[| | 8654.51 D 400 | 18.62 20.05 | 2-2 -3d 9° | | | | 2½-2½ 3p4D0-3d2D | *3072.68 A 1d | 34.14 38.15 | - 1 ~ | | 8654.3835 B 1500
8647.05 D 300 | | 3-3 -3d 10°
3-2 -3d 11° | 3243.34
3248.15 | A 2
A 3dr | 30.79 34.60
30.83 34.62 | 2½-3½ 3p°D°-3d°D
1½-1½ (15) | | | - | | | | 3-2 3p 8-5d 11° | 3269.86
3263.43 | A 3
A 3 | 30.83 34.60
30.84 34.62 | 11-31
3-11 | 3480.75 A 2
3479.53 A 1 | 34.16 37.70
34.16 37.70 | | | 5145.011 E (10
5144.9376 B (10 | 18.62 21.02 | 2-3 (34)-5d 10° | | | * | | 0410.00 K 1 | | | | *4884.915 B (10 |) 18.63 20.57 | 2-1 3p 8-5s 4° | 3118.02
3169.30 | A 4 | 30.75 34.71
30.79 34.69 | 31-21 3p4p°-3d4p
21-11 (16) | 3542.28 A 2 | 34.24 37.72 | 21-13 31 | | | | 2-1 3p 8-5s 4°
(35) | 3151.16
3194.61 | A 2 | 30.79 34.71
30.83 34.69 | 2] -2]
1 1 -1 1 | 3537.99 A 3
3539.94 A 3 | 34.24 37.72
34.24 37.72 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | 9425.38 D 500 | | 0-1 3p 6-3d 2° | 3176.16 | A 3 | 30.83 34.71 | 12-22 | - | | | | 9326.52 D 600 | 18.63 19.95 | 0-1 (36)-34 6° | 3209.38 | A 3 | 30.84 34.69 | 출-1출 | 3406.88 A 5
3457.16 P 4da | 34.24 37.86
34.24 37.81 | 24-24 3;
14-14 | | 8679.491 B 500 | 18.63 20.05 | 0-1 3p 6-3d 12° | 3039.65 | A 3 | 30.75 34.81 | 31-21 3p4D0-484P | 3459.38 A 2 | 34.24 37.81 | 2] -1] | | | _ | (37) | 3035.98
3030.85 | A 3
A 2 | 30.79 34.86
30.83 34.90 | $3\frac{1}{2}-1\frac{1}{2}$ (17) $1\frac{1}{2}-\frac{1}{2}$ | 3404.77 A 4 | 34.24 37.86 | 1 ۇ -2 ۇ
 | | 9547.40 D 300
9534.17 D 500 | | 1-0 3p 9-3d 1°
1-1 (38)-3d 2° | 3071.08
3059.16 | A 3 | 30.79 34.81
30.83 34.86 | 24-24
14-14 | 4219.76 A 6 | 34.46 37.38 | 3=3=3= 3t | | 9459.21 D 300 | 18.65 19.95 | 1-2 -3d 5° | 3044.16 | A 2 | 30.84 34.90 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 4231.60 A 4 | 34.47 37.39 | 2 } -2 } | | 8783.755 B 1000
8771.70 D 400 | | 1-2 -3d 11° | *3072.68 | A 1d | 30.84 34.86 | \$-1\$
 | 4239.95 A 2
4848.80 A 1 | 34.48 37.39
34.50 37.40 | | | 5965.474 B (10 |) 18.65 20.71 | 1-2 3p 9-4d 11° | 3554.39 | A 1 | 30.99 34.46 | 21-31 3p2D0-3d4D | 4217.15 A 3
4220.92 A 2 | 34.46 37.39
34.47 37.39 | | | 2202.414 D (10 | | (39) | | | | (18) | 4224.57 A 1 | 34.48 37.40 | 13-3 | | 10562.43 F 200 | 18.68 20.05 | 0-1 3p 10-3d 12° (40) | 3367.20 | A 6
A 6 | 30.99 34.65
31.05 34.69 | 21-31 3p20-3d4r
11-21 (19)
21-21 | 4250.68 A 4
4257.82 A 3 | 34.48 37.39
34.50 37.39 | 1 1 - 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | (40) | 3330.78 | Ä ä | 30.99 34.69 | 3 1 -3 1 | 4806.43 A 8 | 34.46 37.38 | | | For changes in Pas | chen's notation se | e text § 37 | 3417.71 | A 5 | 30.99 34.60 | 21-31 3p2D°-3d2F
11-21 (20) | 4080.48 A 3d | 34.48 37.51 | | | | | | 3414.82
3356.35 | A 2 | 31.05 34.66
30.99 34.66 | 13-25 (20)
25-25 | 4150.67 A 3
4098.77 A 4 | 34.50 37.47
34.46 37.47 | 5-15 | | | | | | | | | 4062.90 A 3 | 34.47 37.51 | 2 } -2 } | | Ne II I P 40.91 | Anal A List A | June 1944 | 3416.87
3453.10 | A 4
A 3 | 30.99 34.60
31.05 34.62 | 21-21 3p ² D°-3d ² D
11-11 (21)
11-21 | 4133.65 A 3 | 34.48 37.47 | 12-12 | | 3694.22 A 10 | 27.05 30.39 2 | 1_21 3e4p_3n4p0 | 3477.69 | A 3 | 31.05 34.60 | 1 1 -21 | 4118.10 A 0
4100.30 A 1d | 34.48 37.48
34.47 37.48 | 11-21 30 | | 3734.94 A 7 | 27.12 30.42 1 | \$-2\$ 3s4P-3p4P°
\$-1\$ (1) | 3314.60 | A 1 | 30.99 34.71 | 21-21 3p2pe-3d4p
11-21 (22) | 4086.69 A 1 | 34.46 37.48 | 2] - 2]
3] - 2] | | 3751.26 A 5
3664.09 A 9 | 27.15 30.44 | <u>‡.</u> ; | 3371.87 | A 4 | 31.05 34.71 | 1출-2출 (22) | | | | | 3709.64 A 7
3766.29 A 8 | 27.12 30.44 1 | } − } | 3255.39
3353.63 | S A | 30.99 34.78
31.05 34.73 | 31-11 3p2pe-3d2p
11-12 (23)
11-12 | 4412.54 A 2
4514.80 A 2 | 34.59 37.38
34.65 37.39 | | | 3777.16 A 8 | 37.15 30.48 | \$-8\$
2-12 | 3310.55 | î | 31.05 34.78 | 12-12 | 4535.47 A 3 | 34.68 37.40 | 12-2 | | 3334.87 A 10 | 27.05 30.75 2 | 3-33 384P-3p4D° | 3094.08 | A 4 | 30.99 34.98 | 21-11 3p2pe-4s2p
11-1 (24) | 4517.79 A 2
4553.16 A 4 | 34.65 37.38
34.68 37.39 | | | 3355.05 A ? | 27.12 30.79 1
27.15 30.83 | 3-3 38 ⁴ P-3p ⁴ D°
1-2 (2) | 3088.23 | A 3 | 31.05 35.05
31.05 34.98 | 13-3 (24) | 4565.49 A 1 | 34.68 37.39 | 1] _2] | | 3297.74 A 7 | 27.05 30.79 2 | 1-2-2 | 3143.74 | A 2 | 31.05 34.56 | | 4397.94 A 6 | 34.59 37.39 | | | 3327.16 A 5 | 27.12 30.83 1
37.15 30.84 | <u>1</u> 1 | 3551.52 | A 1 | 31.31 34.68 | 1-12 3p2so-344F | 4379.50 A 6
4385.00 A 3 | 34.65 37.47
34.69 37.51 | 3 \$ -3 \$
3 \$ -3 \$ | | 3270.79 A 2 | 27.05 30.83 2 | - 1 | | | | (25)
2-12 3p25°-3d2D | 4430.90 A 4 | 34.68 37.47
34.69 37.47 | 13-13 | | 3311.30 A 3 | | 2-2 | 3612.35 | A 3 | 31.21 34.62 | 2-12 3p280-3d4P | 4446.46 A 3
4502.52 A 2
4442.67 A 3 | 34.65 37.39 | 3 }-4} | | 3135.82 A 1
3187.60 A 2 | 27.05 30.99 2
27.12 30.99 1 | 1-21 3s4P-3p2D°
1-21 (3) | 3546.22 | A 1 | 31.21 34.69 | ½-1½ 3p ² 8°-3d⁴P | 4442.67 A 3
4369.77 A 5 | 34.69 37.47
34.68 37.51 | | | | | | 3456.68 | A 4dr | | 1 3p25 -3d2p | | | | | 3001.65 A 6
3028.84 A 4 | 27.12 31.23 1
27.15 31.23 | -1-1-3 38 ⁴ P-3p ⁴ S° †
-1-1- (4) | 3503.61 | A 5 | 31.21 34.73 | g- g (28) | 4290.40 A 6
4391.94 A 7 | 34.59 37.46
34.65 37.46 | | | | | | 3275.20 | A 2 | 31.21 34.98 | 1-12 3p250-4s2p | 4409.30 A 7 | 34.69 37.49 | 2 1 -31 | | 3713.09 A 10 | 27.66 30.99 1 | 1-21 3s ² P-3p ² D°
1-11 (5) | | | | (39) | *4413.20 A 4
*4428.54 A 6 | 34.68 37.48
34.69 37.48 | - 2 } - 2 } | | 3727.08 A 9
3643.89 A 5 | 27.74 31.05
27.66 31.05 1 | 1-11 (5)
2-12 | 3806.30
3790.96 | A 3
A 1 | 31.23 34.47
31.23 34.48 | 1 2 - 2 3p45° - 3d4D
12 - 12 (30) | 4365.72 A 2 | 34.65 37.48 | 3 }- 8 } | | | | | | | | | 4584.60 4 0 | 34.66 37.39 | -01 01 74 | | 3481.96 A 6
3557.84 A 4 | 27.66 31.21 1
27.74 31.21 | 3- 3 3s ² P-3p ² S° (6) | 3561.23
3571.26 | A 4 | 31.23 34.69
31.23 34.68 | 11-21 3p45°-3d4F
11-12 (31) | 4534.66 A 2 | 34.66 37.39 | | | 3323.75 A 7 | | | 3590.47 | V 3 | 31.23 34.66 | 12-22 3p45°-3d2F | 4341.42 A 8 | 34.66 37.51 | 3 } -3 } 3d | | 3378.28 A 5 | 27.74 31.39 | 1-1- 38 ² P-3p ² Pe
2-2 (7) | | | | (32) | 4384.08 A 1 | 34.66 37.48 | 2] _2] 30 | | 3309.78 A 3
3392.78 A 5 | 27.66 31.39 1
27.74 31.38 | (7) | 3659.93
3632.75 | A 3 | 31.23 34.60
31.23 34.62 | 13-23 3p45°-3d2D
13-13 (33) | | | - | | | | | 3542.90 | A 7 | 31.23 34.71 | 12-22 3p48°-304P | 4488.91 A 5
*4428.54 A 6 | 34.62 37.39
34.60 37.39 | | | 3034-48 A 5 | 30.39 34.46 2 | 1-31 3p4p0-3d4D | 3565.84 | à 4 | 31.23 34.69 | 13-13 (34) | 4456.95 A 5 | 34.62 37.39 | 19-19 | | 3047.57 A 6
3054.69 A 5 | | | 3594.18 | A 4 | 31.23 34.66 | 12- 2 | 4416.77 A 2
4439.95 A 2 | 34.60 37.39
34.62 37.40 | 23-13
12- 2 | | 3027.04 A 4
3037.73 A 4 | 30.39 34.47 2 | 1-11-11-11-11-11-11-11-11-11-11-11-11-1 | 3475.25 | A 1 | 31.23 34.78
31.23 34.73 | 12-12 3p4s0-3d3p
12-2 (35) | | 34.60 37.51 | | | 3045.58 A 4 | 30.44 34.50 | \$-1 \$ | 3522.72 | A 1 | | 12- 2 (33) | 4244.17 A 0
4339.78 A 1 | 34.62 37.47 | | | 3017.34 A 3 | 30.39 34.48 2 | 3 1 -1 1 | 3442.12
3397.90 | A 1 | 31.23 34.81
31.23 34.86 | 11-81 3p45°-484P
12-12 (36) | 4322.66 A 1 | 34.62 37.48 | 1 1-21 30 | | 2500 52 4 2 | 30 42 27 00 0 | 1 91 94 25 5-19- | | | | _ | | | | | 3568.53 A 6
3574.64 A 5 | 30.42 33.88 2
30.42 33.87 1 | 1-31 38' 3D-3p' 3F
1-31 38' 3D-3p' 3F | 3721.86 | A 2 | 31.38 34.69 | 12-82 3p3p0-3d4F | *4615.98 A 4 | 34.71 37.38 | 2 월 _3월 36 | | 3574.23 A O | | | 3753.83 | A 5 | 31.38 34.66 | 12-82 3p3P0-3d3F |
4574.49 A 1
4612.89 A 1 | 34.69 37.39
34.71 37.39 | 14-24 | | 3345.49 A 3 | 30.48 34.11 8 | 1-1- 3e' 3D-3p' 3p | 6 | | | | 4563.05 A 1 | 34.69 37.39 | 1515 | | 3319.75 A 3
*3345.88 A 1 | 30.43 34.14 1
30.43 34.11 1 | 3-13 38' 30-30' 3p
2-3 (10)
2-12 | 3829.77
3818.44 | A 7
A 6 | 31.38 34.60
31.39 34.62 | 13-83 3p2pe_3d2p
3-13 (39)
12-12 | 4498.94 A 5
4600.11 A 1 | 34.66 37.40
34.71 37.39 | | | 3230.16 A 5 | | | | à 5 | 31.38 34.62 | 12-12 | 4544.11 A 1 | 34.69 37.40 | 1 1 2 - 1 | | 3232.38 A 3 | 30.42 34.24 1 | 3-2 3e' ² D-3p' ² D
3-1 (11)
2-1 2 | 3701.81 | A 4 | 31.38 34.71 | 11-21 3n ² p°-3d ⁴ p
2-12 (40) | 4471.52 A 3 | 34.71 37.47 | 2-3-3-3 3d | | 3231.97 A 0 | 30.42 34.24 2 | l <u>\$</u> -1 § | 3744.66 | A 4 | 31.39 34.69 | 2 -1 2 (40) | 4377.95 A 2
*4413.20 A 4 | 34.69 37.51
34.71 37.51 | | | 7720 20 4 4 | 70 PE 74 40 P | 1 21 2-420 2-42 | 3628.06 | A 4 | 31.38 34.78 | 1-1-1-3p2P3d2P | 4439.30 A 3 | 34.69 37.47 | 13-13 | | 3329.20 A 4
3357.90 A 3 | 30.75 34.46 3
30.79 34.47 2 | 12-31 3p4D°-3d4D
12-31 (12) | 3697.09
3679.80 | A 2 | 31.39 34.73
31.38 34.73 | 1 1-1 3p ³ Pe-3d ³ P
1-1 (41)
1-1 (41) | 4475.23 A 1 | 34.71 37.47 | | | 3374.10 A 3
3379.39 A 1 | 30.83 34.48 1 | 1-11 | 3644.86 | Ä Ä | 31.39 34.78 | 1-1 1 | 4421.38 A 3 | 34.69 37.48 | 1출-2출 36 | | 3320.29 A 2 | 30.75 34.47 3 | 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 3428.76 | A 5 | 31.38 34.98 | 1-1-1- 3p2P0-4s2P | | | | | *3345.88 A 1
3362.89 A 2 | 30.79 34.48 2
30.83 34.50 1 | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | 3377.23
3443.70 | A 2 | 31.39 35.05
31.39 34.98 | 12-12 3p ² P ⁰ -4s ² P
2-12 (42) | 4732.53 A 1
4634.73 A 3 | 34.78 37.39
34.73 37.39 | } _1 } | | 3367.05 P | 30.79 34.46 2 | \$-3\$ | | | | | 4719.37 A 1½ | 34.78 37.39 | 1 5 -1 5 | | 3386.24 A 2
3390.56 A 2 | 30.83 34.47 1
30.84 34.48 | 1-21
1-11 | 3229.50 | A 3 | 33.88 37.70 | 31-41 3p1 3F0-3d1 25-31 (43) | *4615.98 A 4
G 4700.1 A 0 | 34.73 37.40
34.78 37.40 | 1 7 | | 3218.21 A 8 | | | 3224.82 | A 3
A 4 | 33.87 37.70 | | | 34.78 37.51 | 12 22 34 | | 3198.62 A 5
3190.86 A 2 | 30.79 34.65 8
30.83 34.69 1 | 3-43 3p4p0-3d4F
3-35 (13)
3-35 | 3097.15 | A 3
A 2 | 33.88 37.86 | | D 4508.21 A 3 | 34.73 37.47
34.78 37.47 | - 1 - 1 - 1 - 1 - 1 | | 3213.70 A 3 | 30.84 34.68 | \$-1 \$ | 3092.91 | A 2 | 33.87 37.86 | 3] - 3분 (44)
 | 4588.13 A 3 | | | | 3164.46 A 3
3165.70 A 4 | 30.75 34.65 3 | 1-31
1-21 | 3411.38 | A 1 | 34.11 37.72 | 1-1-1-30 3P°-3d' | 4569.01 A 5 | 34.78 37.48 | 1출-2출 36 | | 3198.88 P
3132.22 A 2 | 30.83 34.68 1 | -1-1-1 | 3440.80 | Ä 1 | 34.14 37.72 | 4 (45) | 4511.37 A 4 | 34.78 37.51 | 11-21734 | | 3173.58 A 3 | 30.75 34.69 3
30.79 34.68 2 | 4-3}
1-1-1- | 3413.13
3438.97 | A 3
A 2 | 34.11 37.73
34.14 37.73 | | 4511.29 A 2 | 34.73 37.46 | <u>\$</u> -1\$ | | | | - - | | | | • -• | • | | _ | | | • | |--|---| | 0 34.86 37.39 13-12 (71) 3135.483 A 5 32.87 36.81 0-1 (3) -3p 4 3938.400 A (0) 4.33 7.46 1 34.81 37.39 23-13 4 4087.60 A 0 33.18 36.80 1-1 38 4°-3p 1 3904.02 E (2r) 4.33 7.49 1 | -2 3 ¹ P°- 9 ¹ D
-2 3 ¹ P°-10 ¹ D | |---|--| | 1 34.81 37.39 25-15
0 34.86 37.40 15-15 4087.60 A 0 33.18 36.20 1-1 38 4°-3p 1 3904.02 E (3r) 4.33 7.49 1 | -2 3 ¹ P°-10 ¹ D (18) | | 1 34.81 37.39 25-15
0 34.86 37.40 15-15 4087.60 A 0 33.18 36.20 1-1 38 4°-3p 1 3904.02 E (3r) 4.33 7.49 1 | -2 3 ¹ P°-10 ¹ D
(18) | | 0 34.86 37.40 1 4 4087.60 A 0 33.18 36.30 1-1 3s 4°-3p 1 3904.03 E (3r) 4.33 7.49 1 | | | 3462.494 A 3 33.18 36.74 1-2 (4) -3p 3 | -2 3 ¹ po-11 ¹ D (19) | | 3 34.81 37.51 23-24 42 4-47 3400.110 A 2 33.18 36.91 1-1 -3p 4 3878.58 B (1) 4.33 7.51 1 4 34.86 37.47 14-14 (72) 3285.603 A 8 33.18 36.94 1-2 -3p 5 | -2 3 ¹ Po-12 ¹ D (20) | | 34.81 37.47 32-12 3212.186 A 6 33.18 37.02 1-1 -3p 7 3859.24 B (1) 4.33 7.52 1 3189.783 A 6 33.18 37.05 1-2 -3p 8 | -2 3 ¹ po_13 ¹ p
(21) | | 2 34.86 37.48 13-24 46 ⁴ P-41 ⁴ G° 3149.267 A 5 33.18 37.10 1-1 -3p 9 7657.60 B (35) 5.09 6.70 | -2 4 ³ S-5 ³ P° | | TOUS AND A C 76 74 AN OA C 2 70 3 34 ³ PP 6718 23 B 5 09 7 04 1 | -2 4 ³ \$-6 ³ p•
- (23) | | 1 37.70 40.49 $\frac{1}{4}$ = $$ | _2 4 ³ S_7 ³ pe | | | (24)
-1 4 ¹ 8-5 ¹ P° | | 3163.731 A 6 36.94 40.84 2-2 (7) | (25) | | | 3 3 ¹ D_4 ¹ F° (26) | | (\$\tilde{\tilde{B}}\til | (26)
-3 3 ¹ D-5 ¹ F*
(27) | | (8R) 0.00 3.74 1 (a) 3234.926 A 4 37.02 40.84 1-2 3p 7-3d ³ p° | (28) | | (10) 7691.57 P (-) 5.75 7.55 (| 3-3 3 ¹ D-7 ¹ F°
(29)
3-3 3 ¹ D-8 ¹ F° | | 8 2.09 3.18 2-2 (3) 3007.071 A 5 37.08 41.08 1-8 37 7-30 P () 5.73 7.44 | (30)
3-3 31D-91F° | |) (10R) 2.10 3.60 1-2-2 3 ² P°-3 ² D 3009.138 A 4 37.02 41.12 1-1 3p 7-4s ¹ P° | 31)
3_3 310_101F° | | (-) 2.10 3.60 1½-1½ 3274.220 A 5 37.05 40.82 2-1 3p 8-36 ³ P° 6965.42 P 5.73 7.50 | (32)
3-3 31D-111Fe | | ,
(or, prop 4:10 5= 5 (o) | 33)
3-3 31p-131pe
(34) | | 3053.664 A 6 37.05 41.09 2-3 3p 8-3d ³ p ⁶
) (10) 2.10 4.27 $\frac{1}{2}$ $\frac{2}{2}$ $\frac{3}{2}$ $\frac{9}{2}$ $\frac{9}{2}$ $\frac{4}{2}$ $\frac{3}{2}$ $\frac{9}{2}$ $\frac{9}{2}$ $\frac{4}{2}$ $\frac{2}{2}$ $\frac{1}{2}$ $\frac{3}{2}$ $\frac{9}{2}$ $\frac{9}{2}$ $\frac{4}{2}$ $\frac{3}{2}$ $\frac{9}{2}$ $\frac{9}{2}$ $\frac{4}{2}$ $\frac{3}{2}$ $\frac{9}{2}$ $\frac{9}{2}$ $\frac{1}{2}$ $$ | 4 ³ P°-5 ³ D | | (8) 2.09 4.27 3-13 (6) 10966.1 P (80) 5.91 7.03 (6) (-) 2.10 4.37 12-12 3327.685 A 4 37.10 40.81 1-0 3p 9-3d ³ P° 10961.2 P (10) 5.91 7.03 1, 3318.033 A 4 37.10 40.82 1-1 (16) |)_ (35) | |) (3e)Forb 2.10 4.27 1 3 3 ² / ₂ 4 ³ / ₂ 6 3 325, 978 4 4 37.10 40.92 1-2 30 9-4a ³ / ₂ 9 9987.0 D 2n 5.91 7.14 1. | 3-1 4 ³ P°-7 ³ S
3-1 (36) | |) (6n) 2.10 4.49 19-13 3P0-62 3104.396 A 4 37.10 41.07 1-0 (17) | - 3 ³ D-5 ³ F° | | (18) | | |) (5r) 2.09 4.57 ½-1½ (9) 4123.069 A 3 38.13 41.12 O-1 3p.10-4s*P° (19) 8736.0 D in 5.92 7.33 | 33D_73Fe | | ? (1a)Forb 2.10 4.57 1 36pc.58yc 4114.95 B 3 38.13 41.13 0-1 3p 10-3a3pc (20) 8346.13 P 5.92 7.40 | 3 ³ D_8 ³ F° | |) (4n) 2.10 4.69 13- 3 3 Pc-7 B For changes in Paschen notation see text 3 3 8098.72 P 5.92 7.44 | 3 ³ D_9 ³ F° | | 1900-00 F 0-96 | - 3 ³ D-10 ³ F° | | D (3r) 2.09 4.74 3-12 (12) 781 1.14 P 5.92 7.50 | 3 ³ D_11 ³ F° | | P (-)Forb 2.10 4.74 1 3Pe-6 ² Fe | 3 ³ D_1á ³ F° (44) | | B (4n) 2.10 4.81 $1\frac{1}{4}$ 3^{2} PD= 8^{2} S (1) 3627.63 B (4) 6.56 9.96 | 3-3 4 ¹ D-3p3d ¹ F° | | 5172.6843 A 80 2.70 5.09 1-1 (2) | (45)
3-3 5 ¹ D-3p3d ¹ F° | | D (2n) 2.09 4.84 ½-1½ (15) | (46) | | B (4n) 2.10 4.89 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{32}{2}$ $\frac{9}{2}$ $\frac{9}{2}$ 3832.3037 A 80r* 2.70 5.92 1-2 (3) 3895.662 B (10) 7.14 10.31 B (3) 2.09 4.89 $\frac{1}{2}$ $\frac{1}{2}$ (16) 3829.3549 A 40 2.70 5.92 0-1 3891.976 B (5) 7.14 10.31 | 3-3 3p ^{2 3} P-3p3d ³ 1
1-2 (47) | | 3838.3943 A 1000 2.70 5.92 1-1 3898.120 B (4) 7.14 10.31 B - 2.10 4.90 11- 3 ² P°-8 ² D 3838.3996 A 80°° 2.70 5.92 1-1 3898.120 B (4) 7.14 10.31 | 0-1
3-3 | | B = 2.09 4.90 (17) 3336.69 B 20 2.70 6.40 2-1 3 ³ P°-5 ³ S 3893.376 B (3) 7.14 10.31 3336.17 B 15 2.70 6.40 1-1 (4) | 1_1 | | E 4 3.18 4.33 14 4.85 50pb 3329.93 B 10 2.70 6.40 0-1 4409.84 B (1) 7.16 9.96 | 3-3 6 ¹ D-3p3d ¹ F° (48) | | $F = 3.18 \ 4.60 \ \frac{1}{2} \ 4^{2}S = 6^{2}P^{0} \ 3092.997 \ B 40 \ 2.70 \ 6.69 \ 1 - (5) Fine Structure$ | (/ | | F - 3.18 4.76 3- 485-72P° | | | (20) (20) (1828.8 B (120) 4.33 5.37 1-0 3 ¹ P°-4 ¹ S
F - 3.60 4.57 - 3 ² P-5 ² F° (6). Mg II I F 14.97 Anal A Liet A | June 1944 | | (2i) 8806.7678 A (10) 4.33 5.73 1-2 3 10 3 10 3 10 3 10 5 10 7 7 7 7 8 10 10 10 10 10 10 10 10 10 10 10 10 10 | 12 42S-42Pe
2-2 (1) | | | | | (23) 5711.0912 A (6) 4.33 6.49 1-0 3*P*-5*S 3613.80 A 4 8.62 12.03
P - 3.60 4.91 - 3*P-8*F* 5711.0831 A (1) (8) 3615.64 A 3 8.62 12.03 | 1-11 4 ² S-5 ² P°
2- 2 (2) | | F - 3.60 4.95 - 3 ^a D-9 ^a F° | 1.11 32n42pe | | | 2 (3) | | F - 3.60 5.00 - 3°D-11°F° (8.85 11.58 2 (27) 4730.0385 A (2) 4.33 6.94 1-0 3¹P°-8¹S 4481.129 A 100 (8.85 11.58 2 | 2- 2 (3)
1- 3 ² D-4 ² F°
1-2 (4) | | 4702,9909 A) 40 4.33 6.95 1-2 3 ² P°-5 ² D 3848.24 A 7 8.83 12.03 2 | 2-15 3-D-5-P | | 4702.9831 A). (11) 3850.40 A 6 8.83 12.03 1 4702.975A A) | <u>ģ</u> — ģ (5) | | 4380.38 B (5) 4.33 7.14 1-2 3 PP-3p 3 3 104.713 A 30 48.83 12.80 1 (12) | 2-23 (6) | | 1 10 70 70 70 70 0 7 (4) 7 0 17C4 E40 7 (4) 4 77 7 40 4 0 2 170 710 | 1- 1 4 ² p°-5 ² s | | 4351.8941 4/ (14) | 1 4 ² po_5 ² s
2 (7) | | A 8 32.80 36.20 1-1 36 2°-3p 1 4167.2712 A, 10n 4.33 7.29 1-2 3 ¹ p°-7 ¹ D 7877.13 A - 9.95 11.52 1 | 1- 4 ² po_4 ² p
1-11 (8) | | A 6 32.80 36.74 1-2 (2) -30 3 4167.2604 A (15)
A 6 32.80 36.81 1-1 -3p 4 4433.991 A 8 9.96 12.74 1
A 7 32.80 36.94 1-2 -3p 5 4057.5052 A 5n 4.33 7.37 1-2 3 ¹ p°-8 ¹ D 4427.995 A 7 9.95 12.74 | 1- 1 4 ² p°-6 ² s
1- 1 (9) | | A 7 32.80 36.94 1-2 -3p 5 4057.5052 A 5n 4.33 7.37 1-2 3 PP-B D 4427.995 A 7 9.95 12.74 (16) | 8. 5 /e/ | | Labor
I A | ator
Ref | y
Int | Low E | P
High | J | Multiplet
(No) | Labo
I A | rato
Ref | | Low | P
High | J | Multiplet
(No) | Labor
I A | ator
Ref | y
Int | Low | P
High | J | Ħ | |----------------------------------|-------------|-------------------|----------------------|----------------------|---|--|----------------------------------|----------------|---------------------|----------------|-------------------------|-------------------------|---|------------------------------------|-------------|------------------------------|----------------|-------------------------|-------------------|----------------| | | tinu | | | . • | | | Al I con | | | | | | | Al II cont | | | | | | | | 4390.585
4384.643 | A
A | 10
8 | 9.96
9.95 | | $\frac{1^{\frac{1}{2}}}{\frac{1}{2}-1^{\frac{1}{2}}}$ | 4 ² P°-5 ² D
(10) | 3931.97
3935.77 | B | 5
4 | 5.21
5.21 | 8.35
8.35 | 23-23
13-13 | 5 ² D-3d ¹ ² D ⁶ (18) | 6696.39
6699.46 | B
B | 0.5 | 14.83
14.83 | | 1-2
1-1 | 5 | | 3553.51 | A | 5 | 9.96 | | 11-1 | 4 ² po_7 ² 8 | | B | | | | - | | 4000 47 | P | Ū | 14.83 | | 1-1 | 5 | | 3549.61 | A . | 4 | 9.95 | | | (11) | 3087.02 | В | 5 | 5.45 | 9.45 | 3 <mark>출-1출</mark>
 | 6 ² D-4d' ² P°1
(19) | 4332.0 | В | 0.5 | 14.83 | | | 5 | | 3538.86
3535.04 | A
A | 6
5 | 9.96
9.95 | | 1 1/2
2-1/2 | 4 ² P°-6 ² D
(12) | 3203.39 | В | 4 | 5.60 | 9.45 | 3출-1출 | 7 ² D-4d 2ps
(20) | °3983.7 | В | 0.5 | 14.83 | 17.92 | _ | 5 ; | | 3175.84
3172.79 | A
A | 2 | 9.96
9.95 | | 1 출 호 | 4 ² P°-8 ² \$
(13) | | | | | | | (80) | 3774.3 | В | 0 | 14.83 | 18.09 | - | 5 | | 3168.98 | Ā | 3 | 9.96 | 13.85 | 11- | 4 ² P°_7 ² D | | | | | | | | 5388.48 | В | 1 | 14.98 | 17.27 | -
0-1 | 5 [:] | | 3165.94 | A | 8 | 9.95 | 13.85 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | (14) | <u>Al II</u> I
3900.680 | P 1
B | 8.75 Ai
10 | nal A | List
10.55 | A Ju: | ly 1944
3 ¹ P°_3 ¹ p | 4629.7 | В | 1 | 14.98 | 17.65 | 0-1 | 5: | | 9633.0 | P | | 11.52 | 12.80 | _ | 4 ² D-5 ² F° | 3300.000 | | | | | | (1) | 4240.75 | В | 3 | 14.98 | 17.89 | 0-1 | 5 | | 6346.67 | A | 5 | 11.53 | | - | 4 ² D_6 ² F° (16) | 4663.054 | В | 0 | 10.55 | 13.20 | 2-1 | 3 ¹ D-4 ¹ P°
(2) | 4009.58 | В | 1 | | 18.06 | 0-1 | 5 | | 5264.14
4739.59 | A | 5
5 | 11.52 | | | 43 <u>0</u> 72F0
(17)
43D_82F0 | 7042.06
7056.60 | Ą | 10 | 11.27 | | 1-2 | 43g_43pe | 3859.33 | В | 3 | | 18.18 | 0-1 | 5 [;] | | 4436.48 | A
A | 5 | 11.53 | | _ | (18)
48D_92F° | 7063.64 | A | 5 | 11.27 | | 11
1-0 | (3) | 3753.10 | В | 1 | 14.98 | 18.27 | 0-1
 | 5: | | 4242.47 | A | 4 | 11.53 | | - | 4 ² D-10 ² F° | 8640.70 | A | 8 | 11.77 | 13.20 |
0_1 | 4 ¹ S-4 ¹ P° | 8354.35
8359.57 | A
A | 10 [.]
9 | 15.00 | 16.47
16.47 | 3-4
2-3 | 4: | | 4109.54 | A | 3 | 11.58 | 14.58 | **** | 42D-112F0 | 3275.776 | В | 4 | 11.77 | 15.54 | 0-1 | 4 ¹ S-5 ¹ P° | 8363.52
8359.23 | A | 8 | 15.00 | 16.47
16.47 | 1-2
3-3 | | | 4013.80 | A | а | 11.58 | 14.59 | - | 42D-193*.
(33) | 10076.29 | A | 6 | 11.80 | 13.08 |
32 | (5)
3 ³ D-4 ³ Pe | 8363.30
5853.62 | A
B | 1
5 | | 16.47
17.11 | 2-2
3-4 | 4 | | 6545.80 | A | 5 | 11.58 | 13.47 | | 4 ² F°_6 ² G | 10107.19 | A | 4
0.5 | 11.80
11.80 | 13.02
13.01 | 3-1
1-0 | (6) | 5861.53
5867.81 | B | 3 | 15.00 | 17.10
17.10 | 2-3
1-2 | | | 5401.05 | A | 5 | 11.58 | 13.86 | - | 48F0_78G | 10077.32 | A | 0.5 | 11.80 | | 3-3 | | 5371.84 | В | 6 | 15.00 | 17.29 | 3,2- | 4 | | 4851.10 | A | 5 | 11.58 | 14.18 | | 4 ² F°-6 ² G
(25) | 10108.01
10108.37 | A | 0.5) | 11.80 | 13.02 | 1-1 | | 5085.02
5093.65 | В | 4
3 | 15.00 | 17.48
17.48 | 3-4
2-3 | ąŧ | | 4534.26 | A | 4 | 11.58 | | | 4 ² Fo_9 ² G | 3586.557
3587.068 | A
A | 10
9 | 11.80
11.80 | 15.24 | 3-4
2-3 | 3 ³ D_4 ³ Fe
(7) | 5100.34 | В | 1 | 15.00 | 17.48 | 1-2 | | | 4331.93
4193.44 | A | 3
2 | 11.58 | | | 4 ³ F°-10 ³ G
(37)
4 ³ F°-11 ³ G | 3587.450
3586.912
3586.936 | A
A
A | 8
4
2) | 11.80
11.80 | 15.24
15.24 | 1-2
3-3 | | 4609.7 | В | 1
6 | | 17.67 | _ | 4 ² | | 4093.90 | A | 1 | 11.58 | | _ | (28)
4 ² F°-12 ² G | 3587.309
3587.342 | A | 2.5 ₎ | 11.80 | 15.24 | 3-2 | | 4585.820
4588.194
4589.750 | B
B
B | 5
4 | 15.00 | 17.69
17.69
17.69 | 3-4
2-3
1-2 | 4. | | | | | | | | (29) | 3587.165
*3587.195 | A | 0.5 ₁) | 11.80 | | 3–2? | | 4588.082
4589.689 | B | 0.5
1 | 15.00 | 17.69 | 3-3
2-2 | | | | | | | | | | 3586.708
3586.811 | A. | 1.5Forb | 11.80 | 15.24 | 2-4
1-4 | | 4226.827 | A | 8 | | 17.92 | 3-4 | 42 | | Al I I I | P 5.9 | 96 Ans | l A I | ist B | July | 1944 | *3587.195
3313.344 | A | 1 Forb | 11.80 | | 1-3
3-2 | 3 ³ D-5 ³ P° | *4227.509
4227.999
*4227.509 | A
A
A | 4
3
4. | 15.00 | 17.92
17.92
17.92 | 2-3
1-2
3-3 | | | 3961.523//
3944.009 | A
A | 10R
10R | 0.01 | 3.13
3.13 | | 3 ² P°_4 ² 8
(1) | 3314.883
3315.608 | A | 2 | 11.80
11.80 | 15.52
15.52 | 2-1
1-0 | (8) | 4337.430
4337.945 | Ā
Ā | 4)
0.5 | 15.00 | 17.92 | 2-2 | | | 3443.651
3439.352 | ВВ | 10
8 | 0.01 | 3.60
3.59 | 11-31 | 3 ² p°_3p ² 4p | 3313.470
3314.981
3314.756 | Ā | 0.5
0
0.5Forb | 11.80 | 15.52 | 2-2
1-1
3-1 | | 4227.875
4226.918 | A
A | | 15.00 | 17.92 | 3-2
3-4 | | | 3452.670
3444.871 | B | 5
7 | 0.01 | 3.59 | 1 1 1 1 | (4) | 3315.516 | A | 0.2Forb | | | 2-0 | | 4227.545
3995.860 | A
B | 0.5Forb | | 18.09 | 1-3
3-4 | 42 | | 3458.230 | В | 8 | 0.01 | 3.58 | 1출- 출 | -99- | 6837.14 | A | 8 | 13.03 | |
21 | 4 ³ po_5 ³ 8 | 3996.159
3996.381 | B | 3 |
15.00
15.00 | 18.09
18.09 | 2-3
1-2 | | | 3092.716
3082.159
3092.843 | CCC | 10R
10R
6R | 0.01
0.00
0.01 | 4.00
4.00
4.00 | 13-23
3-13
12-12 | 3 ² P°_3 ² D | 6823.48
6816.69 | A
A | 5
1 | 13.02
13.01 | 14.83
14.83 | 1-1
0-1 | (9) | 3996.075
3996.323
3996.182 | B
B
B | 0.5
0.5Forb | 15.00 | 18.09 | 3-3
2-2
1-3 | | | 3035.643 | ٠ | | | | _ | | 6243.36
6231.78 | A
A | 10
9 | 13.02
13.02 | 15.00 | 2-3
1-2 | 4 ³ p°_4 ³ D
(10) | 43983.7 | В | 0.5 | | 18.09 | 13 | 42 | | 13123.37
13150.68 | P | (400)
(200) | 3.13
3.13 | 4.07
4.07 | 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | 4 ² 8_4 ² p° (4) | 6226.18 | A | 8 | 13.01 | 15.00 | 0-1 | | 3842.037 | В | 3. | 15.00 | 18.21 | 3-4 | 43 | | 6695.97
6698.63 | D
D | 7
6 | 3.13
3.13 | 4.97
4.97 | 1-11 | 4 ² 8-5 ² P° | 3738.003
3733.910
3731.950 | B
B
B | 3
2
1 | 13.02 | 16.32
16.32
16.32 | 2-1
1-1
0-1 | 4 ³ P%-6 ³ S
(11) | 3842.213
3842.317 | B | 2 | 15.00
15.00 | 18.21
18.21 | 2–3
1–3 | | | 5557.08 | c | in | 3.13 | 5.35 | 2- 2
-1-1-3 | 4 ² S-6 ² P° (6) | 3654.995 | A | (8) | 13.02 | | 2-3 | 4 ³ p ₆ _5 ³ D | 3734.567
3734.715 | B
B | 0.5 | | 18.30 | 3-4
2-3 | 43 | | 5557.95 | С | 1n | 3.13 | 5.35 | 2 2 | (6) | 3651.096
3651.065 | A | 7 Forb | 13.02 | 16.40 | 1-2
1-37 | (12) | 3734.805 | В | 0 | | 18.30 | 1-2 | .3 | | 3057.155
3059.047 | B
B | 10 | 3.60
3.59 | 7.63
7.62 | 21-21 | 3p ² 4p_4s ¹ 4p ⁴ | 3649.184
°†3649.232 | A | 1.5Forb
1 Forb | 13.01 | | 0-31
0-21 | | 3656.319
3597.50 | B
B | 2 | | 18.37
18.43 | 3-4
3-4 | 43
43 | | 3066.158
3064.302 | В | 4
5
5 | 3.60
3.59 | 7.62 | 14-14
24-14
14-24
14-34 | • | 3026,776
3026,781 | P) | 1.5 | 13.03 | | 2-1 | 4 ³ P°-7 ³ E
(13) | 3552.00 | В | 1 | | 18.47 | 3 | 43 | | 3050.073
3054.694 | B
B | 9
6 | 3.59
3.58 | 7.63
7.62 | 1\$-8\$
\$-1\$ | | 3024.098
3024.114 | P) | 1 | | 17.10 | 1-1 | | 3516.05 | В | 0.5 | 15.00 | 18.51 | 3- | 43 | | 11255.69 | P. | (200) | 4.00 | 5.10 |
2 1 - | 3 ² D_4 ² F° | 3022.804
2998.158 | P
P. | 0.5
a | 13.01 | 17.14 | 0-1
2- | 4 ³ P°-6 ³ D | 3463.63 | В | 0 | 15.00 | 18.56 | 3 | 43 | | 11253.81 | P) | (300) | (4.00 | 5.10 | 23-
12- | (8) | 2998.163
2995.530 | P)
P)
P) | 1.5 | 13.02 | | 1 | (14) | 9331.546 | Ą | 3) | 15.24 | 16.56 | 3- | 41 | | 8773.91
8772.88 | D | 20
15 | 4.00
4.00 | 5.41
5.41 | 3출-
1출-3출 | 3 ² D-5 ² F• | 2995.546
2994.259 | P' | 1 | 13.01 | 17.14 | 0_1 | | 9331.979
6201.52 | A. | | 15 24 | 17.23 | 3- | 41 | | 7836.15
7835.33 | D
D | 10
9 | 4.00 | 5.58
5.58 | 3출~
1출~3호 | 3 ² D-6 ² F° (10) | 6919.96 | В | 0.5 | 13.20 | 14.98 |
10 | 41po_51g | 6201.70 | A | ¹⁰ ₉) | 15.55 | 17.50 | J= | | | 7362.31 | D | 10 | 4.00 | 5.68 | 2 } _ | 3 ² D-7 ² F° | 5593.23 | В | 10 | | 15.41 | 1-2 | (15)
4 ¹ P°-5 ¹ D | 5158.187 | В | 14 | | 17.63 | 3- | 41 | | 7361.59 | D | 6 | 4.00 | 5.68 |
15-05 | | 3866.160 | В | 2 | 13.20 | 16.39 | 1-0 | (16)
4 ¹ P°-6 ¹ S
(17) | 4650.544
4650.646 | B | 2
1.5) | 15.34 | 17.90 | 4 | 41 | | 10891.21
10872.47 | P
P | | 4.07 | 5.20 | 1 = - 글 | 4 ² P°_6 ² g
(12) | 3703.217 | В | 4 | 13.20 | 16.53 | 1-3 | 4 ¹ P°-6 ¹ D | 4356.711
4356.807 | B
B | 3,5) | 15.24 | 18.07 | 3- | 41 | | 10782.12 | P | | 4.07 | 5.81 | 1=-2= | 4 ² P°-5 ² D | 3135.875 | В | 3 | | 17.13 | 10 | 4 ¹ P°_7 ¹ 8
(19) | 4168.434 | В | 1
0.5) | | 18.20 | 3-4 | 41 | | 10768.39
10786.78 | P | | 4.07
4.07 | 5.21 | -1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | • | 3088.523 | В | 3 | 13.20 | 17.19 | 1-2 | 41 pe_71 _D
(30) | 4168.511 | В | 0.5 | 45 24 | 18.30 | 3-4 | 41 | | 8923.56
8912.88 | D
D | 2 | 4.07 | 5.45
5.45 | 13-23
3-15 | 4 ³ P°-6 ³ D
(14) | 7471.41 | A | 9 | 13.59 | 15.34 | 2-3 | 4 ¹ D-4 ¹ F° | 4039.397
4039.302 | B | 0.5) | *0.04 | 10.00 | Jan-1 | | | 8841.26 | D
D | 3 | 4.07 | 5.47 | 1글-2늴 | 42po_72g | 6335.74 | A | 10 | | 15.54 | 2-1 | (21)
4 ¹ D_5 ¹ po
(22) | 3946.406 | В | 0.54 | 15.24 | 18.37 | 3 -
 | 41 | | 8828.91
8075.37 | ם | 1
4 | 4.07 | 5.47
5.60 | 2-12 | (15)
4 ³ po_7 ³ D | 4237.57
4026.5 | P
B | 5 | | 16.50 | 2-1
2-1 | 41 <u>0</u> 51 po
(33)
41 <u>0</u> 61 po | 9290.649
9290.747 | A
A | 6 ₅) | 15.34 | 16.56 | 4 | 43 | | 8065.99 | D | 3 | 4.07 | 5.60 | 2 -12 | (16) | 3428.916 | В | 6 | | 17.19 | 2-3 | 4 ¹ D-6 ¹ F° | 9288.145
9288.550 | A | 3)
2 | | 16.56 | 3 | | | 3479.78
3482.58 | B
B | 6 51 | 4.81 | 8.35 | 2 <u>}</u> -2 | 4 ² D-3d ¹ ² D° | 3351.456 | В | 3 | | 17.27 | 3-1 | (25)
41D_71P° | 9286.578
9286.794 | A | 2) | 15.24 | 16.56 | 2 | | | 3479.27 | В | , 1 | 4.81 | | 19-2 | 117) | 3074.665 | В | 6 | 13.59 | 17.60 | 2-3 | (36)
41D_71F0
(37) | 6495.45 | В | 0.5 | 15.24 | 17.14 | 4 | 43 | | | | | | | | | 3041.278 | В | 6 | 13.59 | 17.65 | 3-1 | 41D_81pe | REV: | ISE | D MI | JLTI | PLE | T T | ABLE | | | | | | | 15 | |---|--|---|---
--|--|---|--|--|---|--|---|--|---|--|--
--|---|--| | ry | · | E P | J | Multiplet | Labor
I A | rator
Ref | y | E F | P
High | J | Multiplet (No) | Labo
I A | rator
Ref | y
Tnt | E I | P
High | J | Multiplet (No) | | | | Low High | | (No) | | | | TOM | uren | | (NO) | | ontir | | LOW | uren | | (110) | | nue | | | | .3-p. o3a | Al II con | | | | | | -1 no o1 - | | | | 07.45 | ne n4 | | 5 ² G~7 ² H° | | | 10n
8
7) | 15.24 17.23
15.24 17.23 | 4
3 | 4 ³ F°-6 ³ G
(66) | 5324.61 | В | 4 | 15.54 1 | | 1-0 | 5 ¹ Pe_9 ¹ S
(101)
5 ¹ Pe_9 ¹ D | 5163.90 | Α. | 7 | 23.45 | | | (19)
52G-92H° | | | | 15.24 17.23 | 2- | | 5285.85 | В | 6 | 15.54 | | 1-2 | (102) | 3658.3 | A | (1n) | 23.45 | 86.82 | | (SO) | | | ⁵ ₆) | | | | 4918.98 | В | 3 | 15.54 | 18.05 | 1-0 | 51P°-101S
(103) | | | | REVIS | ED- | | | | | 2 | 15.24 17.57
15.24 17.57 | 4-
3- | 4 ³ F°-7 ³ D
(67) | 4898.76 | В | 5 | 15.54 | 18.06 | 1-2 | 51p°-101D
(104) | See NS | RDS | | | | on | 2, 1967 | | | ž | 15.24 17.57 | 2- | | 4666.8 | В | 11 | 15.54 | 18.18 | 1-0 | 51P°-1118 | <u> 81 I</u> I | P 8. | .1 Ans | l B L | ist A | Aug | 1944 | | | 1.5d | 15.24 17.63
15.24 17.63 | 4
3 | 4 ³ F°-7 ³ G
(68) | 4655.05 | В | 0.5 | 15.54 | 18.19 | 1-2 | (105)
5 ¹ P°-11 ¹ D
(106) | 2970.35
2987.65 | A
A | 15
25 | 0.78 | 4.93 | 2-2
2-1 | 3p ² 1D-4s ³ pe | | | 0.5 | 15.24 17.63 | 2- | (00) | 4489.87 | В | 0.5 | 15.54 | 18.29 | 1-3 | 51pe_121p
(107) | 2007100 | | | | | - | 1-7 | | | | | | 43F0_83G | C404 0F | A | 0.5 | 46.20 | | | 6 ³ 8-8 ³ P° | 4102.926 | A | 25 | 1.90 | 4.91 | 0-1 | 3p2 18-4s3pe | | | 3.5 | 15.24 17.90 | 4- | (69) | 9124.27 | A | 0.5 | 16.32 | | 1-2 | (108) | 3905.527 | A | 100 | 1.90 | 5.06 | 0-1 | 3p2 (2) | | | 1.5) | 15.24 17.90 | 3 | | 6001.18 | В | 1 | 16.39 | 18.45 | 0-1 | 618-151P° | | | | | | - | (3) | | | 0.5 | 15.24 17.90 | 2- | | | | | | | - | (109) | 12031.49
11984.20 | A | 25
20 | 4.93
4.91 | 5.96
5.94 | 2-3
1-2 | 4s ³ po_4p ³ D | | | 4 , | 15.24 18.07 | 4- | 43Fc_93G | 8119.72
8122.08 | A | 1.5
0.5 | 16.40 | | -4
-3 | 5 ³ D-9 ³ F°
(110) | 11991.57
13270.50 | A
A | 10
2 | 4.90
4.93 | 5.93
5.94 | 0-1
2-2 | | | | 3.5 | 15.24 18.07 | 3- | (70) | 8121.89
8123.52 | A
A | 0.2 | 16.40 | | -2 | | 12103.46
12395.97 | A
P | 5 | 4.91 | 5.93
5.93 | 1-1
3-1 | | | | 1.5 | 15.24 18.07 | 2- | | 6775.97 | В | 0.5 | 16.40 | | _ | 5 ³ D-11 ³ Pe | 10827.09 | A | 100 | 4.93 | 6.07 | 2-2 | 48 ³ P°-4p ³ P | | | 0.5) | | ~ | | | _ | | | | - | (111) | 10749.40 | A | 60
35 | 4.91
4.93 | 6.06 | 1-1
2-1 | (5) | | | 3
2.5) | 15.24 18.20 | 4- | 4 ³ F°-10 ³ G
(71) | 8680.31
8674.92 | A
A | 3 | 16.47
16.47 | 17.90 | 4-
3- | 5 ³ F°-8 ³ G
(112) | 10786.86 | A
A | 50
60 | 4.91 | 6.05 | 1-0
1-2 | | | 1 | 1.5 | 15.24 18.20 | 3- | (11) | 8675.28 | A | 2) | | | | (115) | 10660.98 | Ā | 50 | 4.90 | 6.06 | 0-1 | | | 1 | 1 , | 15.24 18.20 | 2- | | 8671.06
8671.28 | A
A | 0.5) | 16.47 | 17.50 | 2- | | 10585.12 | Ā | 100 | 4.93 | 6.10 | 2-1 | 48 ³ P°-4p ³ S | | ı | ō.5) | | | 2 . 7 | 7709.78 | A | 0 | 16.47 | 18.07 | 4 | 5 ³ F°-9 ³ G | 10371.23
10288.83 | A | 50
25 | 4.91
4.90 | 6.10
6.10 | 1-1
0-1 | (6) | | 1 | | 15.24 18.30
15.24 18.30 | 4
3 | 4 ³ F°-11 ³ G
(72) | 7138.81 | В | 0.5 | 16.47 | 18.20 | 4- | (113)
5 ³ F°-10 ³ G | 9768.27 | A | 5₩ | 4.93 | 6.20 | 2-2 | 483po_4p1D | | 1 | 0.5) | 15.84 18.30 | 8- - | • | 7134.66 | B | 0.5 | 16.47
16.47 | 18.20 | 3-
a- | (114) | 9585.72 | A | 4 | 4.91 | 6.20 | 1-2 | (7) | | 3 | 0.5d | 15.24 18.37 | 4 | 4 ³ F°-12 ³ G | | | | | | - | | 8435.28 | P | | 4.91 | 6.37 | 1-0 | 48 ³ P°-4p ¹ S | | 3 | 0.5d | 15.24 18.37 | 3- | (73) | 8858.39
8858.77 | A
A | 0.5) | 16.50 | 17.90 | 3- | 5 ¹ F°-8 ¹ G
(115) | 5797.912
5793.128 | A | 40
30 | 4.93
4.91 | 7.06
7.04 | 2-3
1-2 | 4s ³ P°-5p ³ D
(9) | | 3 | 0.5 | 15.24 18.43 | 4 | 4 ³ F°-13 ³ G
(74) | | | | | | _ | (==-/ | 5780.452
5859.23 | A
P | 25 | 4.90
4.93 | 7.03 | 0-1
2-2 | 1-7 | | | 1 | 15.41 17.19 |
2-3 | 5 ¹ D-6 ¹ F° | 8086.91 | A | 0.5 | 16.53 | 18.06 | 2-3 | 6 ¹ D-9 ¹ F°
(116) | 5708.437 | A | 75 | 4.93 | 7.09 | 2-2 | 48 ³ p°-5p ³ p | | | - | | | (75)
51D-71P0 | 0040 44 | | | 10 50 | 47.00 | - | 5 ¹ G-8 ¹ H° | 5690.470 | A | 40 | 4.91 | 7.08 | 1-1 | (10) | | | 0.5 | 15.41 17.27 | 2-1 | (76) | 9249.41 | A | 1 | 16.56 | | | (117) | 5754.258
5701.138 | A | 8w
25 | 4.93 | 7.08 | 2-1
1-0 | | | 3 | 3 | 15.41 17.60 | 2-3 | 5 ¹ D-7 ¹ F° (77) | 8160.15 | A | 3 | 16.56 | | _ | 51G-91H°
(118)
51G-101H° | 5645.665
5665.601 | A
A | 25
25 | 4.91
4.90 | 7.09
7.08 | 1-2
0-1 | | | 3 | 3 | 15.41 17.65 | 2-1 | 51D_81po
(78) | 7526.2 | A | 0.2 | 16.56 | 18.20 | | 51G-101H°
(119) | 5684.523 | A | 50 | 4.93 | 7.10 | 2-1 | 48 ³ P°-5p ³ S | | 3 | 3 | 15.41 17.87 | 2-3 | 51 D-81 F | | | | | | | | 5622.23 | A | 3 | 4.91 | 7.10 | 1-1 | (11) | | | | | | (79) | | | | | | | | | | | | | _ | 1/ | | 3 | 3 | 15.41 17.89 | 2-1 | 51D_91P°
(80) | Fine Stru | ctur | е | | | | | 11890.44 | P | | 5.06 | | -
1-1 | | | 3 |
3
0.5 | 15.41 17.89
15.41 18.06 | 2-1
2-3 | 51p_91po
(80)
51p_91po
(81) | Fine Stru | etur | e | | | | | | P
A | 125 | | 6.10 | | 4s ¹ po_4p ³ s | | | | | | 51D_91P0
(80)
51D_91F0
(81)
51D_101P0 | | | | A fans | List | . ДТ | [u]v 1944 | 10869.54 | A | 125 | 5.06 | 6.10 | 1-2 | 4s ¹ po-4p ³ s
(12)
4s ¹ po-4p ¹ D
(13) | | 3 | 0.5 | 15.41 18.06 | 2-3 | 51p_91pe
(80)
51p_91pe
(81)
51p_101pe
(82)
51p_111pe | Al III | I P : | 28.33 | Anal A | List | | Tuly 1944 | 10869.54
9413.59 | A
A | 125 | 5.06
5.06 | 6.10
6.20
6.37 | 1-2
1-0 | 4s ¹ po _{-4p} 3s
(12)
4s ¹ po _{-4p} 10
(13)
4s ¹ po _{-4p} 1s
(14) | | 3 | 0.5 | 15.41 18.06
15.41 18.06 | 2-3
2-1 | 51 D_91 P°
(80)
51 D_91 F°
(81)
51 D_101 P°
(82)
51 D_111 P°
(83)
51 D_101 F° | Al III
3601.623
3612.352 | I P : | 28.33
(20)
(15) | 14.31
14.31 | 17.74
17.73 | 21-11 | 32D-42P0 | 10869.54
9413.59
6067.62 | A
A
P | 200 | 5.06
5.06
5.06 | 6.10
6.20
6.37
7.09 | 1-2
1-0
1-2 | 4s ¹ po _{-4p} ³ s
(12)
4s ¹ po _{-4p} ¹ s
(13)
4s ¹ po _{-4p} ¹ s
(14)
4s ¹ po _{-5p} ³ p
(15) | | 3 3 3 | 0.5
1
3 | 15.41 18.06
15.41 18.06
15.41 18.18 | 2-3
2-1
2-1 | 51 p-94 po
(80)
51 p-94 po
(81)
51 p-101 po
(82)
51 p-111 po
(83)
51 p-101 po
(84)
51 p-121 po | Al III
3601.623 | I P : | 28.33 | 14.31 | 17.74
17.73 | | 32D-42P0 | 10869.54
9413.59
6067.62
5948.584 | A
A
P
A | 200 | 5.06
5.06
5.06
5.06 | 6.10
6.20
6.37
7.09
7.14 | 1-2
1-0
1-2
1-2 | 4s ¹ P°-4p ³ S
(12)
4s ¹ P°-4p ¹ D
(13)
4s ¹ P°-4p ¹ S
(14)
4s ¹ P°-5p ³ P
(15)
4s ¹ P°-5p ¹ D | | 3
3
3 | 0.5
1
3
0.5
3 | 15.41 18.06
15.41 18.06
15.41 18.18
15.41 18.19 | 2-3
2-1
2-1
2-3 | 51 p-91pe
(80)
51p-91pe
(81)
51p-101pe
(82)
51p-111pe
(83)
51p-101pe
(84)
51p-121pe
(85)
51p-111pe | Al III
3601.623
3612.352
3601.916
5696.47 | IP; | 28.33
(20)
(15)
1 | 14.31
14.31
14.31 | 17.74
17.73
17.74 | 21-11
11-12
11-12 | 3 ² D-4 ² P° (1) | 10869.54
9413.59
6067.62 | A
A
P | 200 | 5.06
5.06
5.06 | 6.10
6.20
6.37
7.09 | 1-2
1-0
1-2 | 4s ¹ po _{-4p} ³ s
(12)
4s ¹ po _{-4p} ¹ s
(13)
4s ¹ po _{-4p} ¹ s
(14)
4s ¹ po _{-5p} ³ p
(15) | | 3 3 3 3 3 | 0.5
1
3
0.5
3 | 15.41 18.06
15.41 18.06
15.41 18.18
15.41 18.19
15.41 18.27 | 2-3
2-1
2-1
3-3
2-1 | 51 p-34po
(81) 51p-101po
(82) 51p-101po
(82) 51p-111po
(83) 51p-101po
(84) 51p-121po
51p-111po
51p-111po
51p-131po | Al III
3601.623
3612.352
3601.916 | I P : | 28.33
(20)
(15)
1 | 14.31
14.31
14.31 | 17.74
17.73
17.74 | 21-11
11-12
11-12 | 32D-42P0 | 10869.54
9413.59
6067.62
5948.584
5772.258 | A
A
P
A
A | 200 | 5.06
5.06
5.06
5.06
5.06 | 6.10
6.20
6.37
7.09
7.14
7.20 | 1-2
1-0
1-2
1-2
1-0 | 48 ¹ P°-4p ³ 8
(12)
48 ¹ P°-4p ¹ 0
(13)
48 ¹ P°-5p ³ P
(15)
48 ¹ P°-5p ¹ D
(15)
48 ¹ P°-5p ¹ S
(17)
30 ³ P°-5p ³ D | | 3
3
3
3
3 | 0.5
1
3
0.5
3 | 15.41 18.06
15.41 18.06
15.41 18.18
15.41 18.19
15.41 18.27
15.41 18.29 | 2-3
2-1
2-1
3-3
2-1
2-3 | 5-D-91Pe
(80)
51D-91Fe
(81)
51D-101Pe
(83)
51D-101Fe
(84)
51D-101Fe
(84)
51D-121Pe
(84)
51D-131Pe
(86)
51D-131Pe
(87)
51D-131Pe
(87) | Al III
3601.623
3612.352
3601.916
5696.47
5722.65 | IP; | 28.33
(20)
(15)
1
 | 14.31
14.31
14.31 | 17.74
17.73
17.74
17.74
17.73 | 21-11-12-12-12-12-12-12-12-12-12-12-12-1 | 3 ² D-4 ² P°
(1)
(2) | 10869.54
9413.59
6067.62
5948.584
5772.258 | A
A
P
A | 200 | 5.06
5.06
5.06
5.06
5.06 | 6.10
6.20
6.37
7.09
7.14
7.20 | 1-2
1-0
1-2
1-2
1-0 | 4s ¹ po-4p ³ s
(12)
4s po-4p ¹ p
(13)
4s po-4p ¹ s
(14)
4s po-5p ³ p
(15)
4s ¹ po-5p ¹ p
(16)
4s ¹ po-5p ¹ s
(17) | | 3
3
3
3
3
3 | 0.5
1
3
0.5
3
0.5 | 15.41 18.06
15.41 18.06
15.41 18.18
15.41 18.19
15.41 18.27
15.41 18.29
15.41 18.34
15.41 18.34 | 2-3
2-1
2-1
2-3
2-1
2-3
2-1 | 5-D-91Pe
(80)
5-1D-94Fe
(82)
5-1D-101Pe
(83)
5-1D-101Fe
(83)
5-1D-101Fe
(84)
5-1D-121Pe
(85)
5-1D-131Pe
(86)
5-1D-131Pe
5-1D-151Pe | Al III
3601.623
3612.352
3601.916
5696.47
5722.65
4529.176
4512.535 | I P : | 28.33
(20)
(15)
1 | 14.31
14.31
14.31
15.57
15.57 | 17.74
17.73
17.74
17.74
17.73
20.47
20.47 | 21-11-12-12-12-12-12-12-12-12-12-12-12-1 | 3 ² D-4 ² P°
(1)
(2) | 10869.54
9413.59
6067.62
5948.584
5772.258
8417.89
8527.32 | A
A
P
A
A | 200 | 5.06
5.06
5.06
5.06
5.06
5.59 | 6.10
6.20
6.37
7.09
7.14
7.20 | 1-2
1-0
1-2
1-2
1-0 | 48 ¹ P°-4p ³ 8
(12)
48 ¹ P°-4p ¹ 0
(13)
48 ¹ P°-5p ³ P
(15)
48 ¹ P°-5p ¹ D
(15)
48 ¹ P°-5p ¹ S
(17)
30 ³ P°-5p ³ D | | 3
3
3
3
3
8
8 | 0.5
1
3
0.5
3
0.5
2 | 15.41 18.06
15.41 18.06
15.41 18.18
15.41 18.19
15.41 18.27
15.41 18.29
15.41 18.34 | 2-3
2-1
2-1
3-3
2-1
2-3
2-1
3-1 | 5-D-91Pe
(80)
51D-91Fe
(81)
51D-101Pe
(83)
51D-101Fe
(84)
51D-101Fe
(84)
51D-121Pe
(84)
51D-131Pe
(86)
51D-131Pe
(87)
51D-131Pe
(87) | Al III
3601.623
3612.352
3601.916
5696.47
5732.65
4529.176
4512.535
4528.911 | I P : | 28.33
(20)
(15)
1
 | 14.31
14.31
14.31
15.57
15.57
17.74
17.73 | 17.74
17.73
17.74
17.74
17.73
20.47
20.47
20.47 | 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | 3 ² D-4 ² P°
(1)
4 ² S-4 ² P°
(2)
4 ² P°-4 ² D
(3) | 10869.54
9413.59
6067.62
5948.584
5772.258
8417.89
8527.32
8397.96
8514.64 | A
A
P
A
A
P
P
P
P | 200
100
50 | 5.06
5.06
5.06
5.06
5.06
5.59
5.59
5.59
5.59 | 6.10
6.20
6.37
7.09
7.14
7.20
7.06
7.04
7.09 | 1-2
1-0
1-2
1-2
1-0
-
3-3
2-2
2-3
1-3
3-2 | 4s ¹ po-4p ³ s
(12)
4s ¹ po-4p ¹ D
(13)
4s ¹ po-4p ¹ s
(14)
4s ¹ po-5p ³ p
(15)
4s ¹ po-5p ³ p
(17)
3d ³ po-5p ³ D
(18)
3d ³ po-5p ³ P | | 3
3
3
3
3
8
8 | 0.5
1
3
0.5
3
0.5
2 | 15.41 18.06
15.41 18.06
15.41 18.18
15.41 18.19
15.41 18.27
15.41 18.34
15.41 18.45
15.41 18.45
15.52 17.10 | 2-3
2-1
2-1
3-3
2-1
2-3
2-1
3-1 | 5-D-9-19
(80)
5-D-9-19
5-D-9-10-19
5-D-10-19
6-D-11-19
6-D-11-19
5-D-11-19
5-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-11-19
6-D-1 | Al III
3601.623
3612.352
3601.916
5696.47
5722.65
4529.176
4512.535 | I P : | 28.33
(20)
(15)
1
 | 14.31
14.31
14.31
15.57
15.57 | 17.74
17.73
17.74
17.74
17.73
20.47
20.47
20.47
21.07 | 21-11-12-12-12-12-12-12-12-12-12-12-12-1 | 3 ² D-4 ² P°
(1)
4 ² S-4 ² P°
(2)
4 ² P°-4 ² D
(3) | 10869.54
9413.59
6067.62
5948.584
5772.258
8417.89
8527.32
8397.96
8514.64
8230.67
8306.80 | A
A
P
A
A | 100 50 |
5.06
5.06
5.06
5.06
5.06
5.59
5.59
5.59
5.59
5.59 | 6.10
6.20
6.37
7.09
7.14
7.20
7.06
7.04
7.06
7.09
7.09
7.09 | 1-2
1-0
1-2
1-2
1-0
-
3-3
2-2
2-3
1-2 | 4s ¹ po-4p ³ s
(12)
4s ¹ po-4p ¹ p
(13)
4s ¹ po-4p ¹ s
(14)
4s ¹ po-5p ³ p
(15)
4s ¹ po-5p ¹ p
(16)
(16)
4s ¹ po-5p ¹ s
(17)
3d ³ po-5p ³ p
(18) | | 3
3
3
3
3
3
8
8 | 0.5
1
3
0.5
3
0.5
2
0.5
0 | 15.41 18.06
15.41 18.06
15.41 18.18
15.41 18.19
15.41 18.27
15.41 18.29
15.41 18.34
15.41 18.45 | 2-3 2-1 2-1 2-3 2-1 2-3 2-1 2-1 2-1 | 5-D-91Pe
(80)
5-D-9+Fe
(80)
5-D-9+Fe
5-D-10-1Pe
(81)
5-D-11-1Pe
5-D-11-1Pe
5-D-11-1Pe
5-D-11-1Pe
(81)
5-D-11-1Pe
(81)
5-D-11-1Pe
(88)
5-D-11-1Pe
(88) | A1 III
3601.623
3612.352
3601.916
5696.47
5722.65
4529.176
4512.535
4528.911
3713.103
3702.086 | I P : | 88.33
(20)
(15)
1
8
6
(10)
(18)
1
(15)
(10) | 14.31
14.31
14.31
15.57
15.57
17.74
17.73
17.74 | 17.74
17.73
17.74
17.74
17.73
20.47
20.47
20.47
21.07 | 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | 3 ² D-4 ² P° (1)
4 ² S-4 ² P° (2)
4 ² P°-4 ² D (3)
4 ² P°-5 ² S (4) | 10869.54
9413.59
6067.62
5948.584
5772.258
8417.89
8527.32
8397.96
8514.64
8230.67
8337.45
8211.48 | A A PPPP AAAA | 100
50
15
4w | 5.06
5.06
5.06
5.06
5.06
5.59
5.59
5.59
5.59
5.59
5.59 | 6.10
6.20
6.37
7.09
7.14
7.20
7.06
7.04
7.09
7.08
7.09
7.09 | 1-2
1-0
1-2
1-0
3-3
2-3
1-3
3-2
2-3
1-2
3-2
2-1
1-0
2-2 | 4s1po-4p3s
(12)
4s1po-4p1s
(13)
4s1po-4p1s
(14)
4s1po-5p3p
(15)
4s1po-5p3p
(15)
(17)
3d3po-5p3s
(18)
3d3po-5p3p
(19) | | 3 3 3 3 B B A A A A | 0.5
1
3
0.5
3
0.5
2
0.5
0 | 15.41 18.06
15.41 18.06
15.41 18.18
15.41 18.19
15.41 18.27
15.41 18.34
15.41 18.45
15.41 18.45
15.52 17.10
15.52 17.10
15.52 17.10 | 2-3 2-1 2-1 2-3 2-1 2-3 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 3-1 3-1 | 5-D-91pe
(80)
5-D-91pe
5-D-91pe
5-D-101pe
(82)
5-D-111pe
(82)
5-D-111pe
5-D-121pe
5-D-121pe
5-D-121pe
5-D-121pe
5-D-121pe
5-D-121pe
5-D-121pe
5-D-121pe
5-D-121pe
5-D-121pe
5-D-121pe
5-D-121pe
5-D-121pe
5-D-121pe
6-D-121pe
6-D-121pe
6-D-121pe
6-D-131pe
5-D-151pe
5-D-151pe
5-D-161pe
5-D-162pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163pe
5-D-163 | A1 III
3601.623
3612.352
3601.916
5696.47
5732.65
4529.176
4512.535
4528.911
3713.103
3702.086 | I P : | (10)
(15)
1
(10)
(8)
1
(10)
(10)
(8) | 14.31
14.31
14.31
15.57
15.57
17.74
17.73
17.74
17.73 | 17.74
17.73
17.74
17.74
17.73
20.47
20.47
21.07
21.07
23.44
23.44 | 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | 3 ² D-4 ² P° (1)
4 ² S-4 ² P° (2)
4 ² P°-4 ² D (3)
4 ² P°-5 ² S (4) | 10869.54
9413.59
6067.62
5948.584
5772.258
8417.89
8527.32
8397.96
8514.64
8230.67
8337.45
8211.48 | A A P A A P P P P A A A A A P | 100
50
15
4w | 5.06
5.06
5.06
5.06
5.06
5.59
5.59
5.59
5.59
5.59
5.59
5.59 | 6.10
6.20
6.37
7.09
7.14
7.20
7.06
7.04
7.09
7.08
7.07
7.09 | 1-2
1-0
1-3
1-2
1-0
3-3
2-3
1-3
3-2
2-3
1-2
3-2
2-1
1-0
2-2 | 4s ¹ po-4p ³ s
(12)
4s ¹ po-4p ¹ s
(13)
4s ¹ po-4p ¹ s
(14)
4s ¹ po-5p ³ p
(15)
4s ¹ po-5p ³ s
(17)
3d ³ po-5p ³ s
(19)
3d ³ po-5p ³ s
(20) | | 3 3 3 3 B B A A A A | 0.5
1
3
0.5
3
0.5
2
0.5
0 | 15.41 18.06
15.41 18.18
15.41 18.18
15.41 18.19
15.41 18.27
15.41 18.29
15.41 18.45
15.41 18.45
15.52 17.10
15.52 17.10 | 2-3 2-1 3-1 3-3 2-1 2-3 2-1 3-1 3-1 1-1 0-1 | 5-D-91Pe
(80)
5-D-91Fe
(80)
5-D-91Fe
(81)
5-D-101Pe
(81)
5-D-111Pe
5-D-111Pe
5-D-121Pe
5-D-131Pe
(81)
5-D-131Pe
(88)
5-D-151Pe
(88)
5-D-161Pe
(89)
5-D-161Pe
(89)
5-D-161Pe
(89) | A1 III
3601.623
3612.352
3601.916
5696.47
5732.65
4529.176
4512.535
4528.911
3713.103
3702.086 | I P : | 28.33
(20)
(15)
1
8
6
(10)
(8)
1
(15)
(10) | 14.31
14.31
14.31
15.57
15.57
17.74
17.73
17.74
17.74
17.73 | 17.74
17.73
17.74
17.74
17.73
20.47
20.47
21.07
21.07
23.44
23.44 | 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | 3 ² D-4 ² P°
(1)
4 ² S-4 ² P°
(2)
4 ² P°-4 ² D
(3) | 10869.54
9413.59
6067.62
5948.584
5772.258
8417.89
8527.32
8397.96
8514.64
8230.67
8337.45
8211.48
8150.57 | A A PPPP AAAA PP | 100
50
15
4w
2w
2 | 5.06
5.06
5.06
5.06
5.59
5.59
5.59
5.59
5.59
5.59
5.59 | 6.10
6.20
6.37
7.09
7.14
7.20
7.06
7.04
7.06
7.09
7.09
7.10
7.10 | 1-2
1-0
1-3
1-2
1-0
3-3
2-2
2-3
1-3
1-0
2-2
1-1
2-2 | 4s ¹ po-4p ³ s (12) 4s ¹ po-4p ¹ p (13) 4s ¹ po-4p ¹ s (14) 4s ¹ po-5p ³ p (15) 4s ¹ po-5p ¹ p (16) 4s ¹ po-5p ¹ p (16) 3d ³ po-5p ³ p (19) 3d ³ po-5p ³ s (19) 3d ³ po-5p ³ s (20) 3d ³ po-5p ³ s | | 3 3 3 3 3 3 B B B A A A A A A A A | 0.5
1
3
0.5
3
0.5
2
0.5
0
3
1
0.5
2 | 15.41 18.06
15.41 18.06
15.41 18.18
15.41 18.19
15.41 18.27
15.41 18.34
15.41 18.45
15.41 18.45
15.52 17.10
15.52 17.10
15.52 17.10
15.52 17.14
15.52 17.14
15.52 17.14 | 2-3 2-1 2-1 2-3 2-1 2-3 2-1 2-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3 | 5-10-91pe
(80)
5-10-91pe
5-10-101pe
(82)
5-10-111pe
(82)
5-10-111pe
(82)
5-10-101pe
(82)
5-10-101pe
(82)
5-10-121pe
(86)
5-10-121pe
(86)
5-10-131pe
(86)
5-10-151pe
(86)
5-10-151pe
(86)
5-10-151pe
(86)
5-10-151pe
(86)
5-10-151pe
(86)
5-10-151pe
(86)
5-10-151pe
(86)
5-10-151pe
(86)
5-10-151pe
(86)
5-10-151pe
(86)
5-10-151pe
(86)
5-10-151pe
(86)
5-10-151pe
(86)
5-10-151pe
(86)
5-10-151pe
(86)
5-10-151pe
(86)
5-10-151pe
(86)
5-10-151pe
(86)
5-10-151pe
(86)
5-10-151pe
(86)
5-10-151pe
(86)
5-10-151pe
(86)
5-10-151pe
(86)
5-10-151pe
(86)
5-10-151pe
(86)
5-10-151pe
(86)
5-10-151pe
(86)
5-10-151pe
(86)
5-10-151pe
(86)
5-10-151pe
(86)
5-10-151pe
(86)
5-10-151pe
(86)
5-10-151pe
(86)
5-10-151pe
(86)
5-10-151pe
(86)
5-10-151pe
(86)
(90)
5-10-151pe
(90)
5-10-151pe
(90)
5-10-151pe
(90)
5-10-151pe
(90) | A1 III
3601.623
3612.352
3601.916
5696.47
5732.65
4529.176
4512.535
4528.911
3713.103
3702.086 | I P : | (10)
(15)
1
(10)
(8)
1
(10)
(10)
(8) | 14.31
14.31
14.31
15.57
15.57
17.74
17.73
17.74
17.73 | 17.74
17.73
17.74
17.73
17.74
17.73
20.47
20.47
21.07
21.07
23.44
23.44
23.44 | 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | 3 ² D-4 ² P° (1) 4 ² S-4 ² P° (2) (2) 4 ² P°-4 ² D (3) 4 ² P°-5 ² S (5) | 10869.54
9413.59
6067.62
5948.584
5772.258
8417.89
8527.32
8397.96
8514.64
8230.67
8337.45
8211.48
8150.57
7995.00
7416.00 | A A P A A P P P P A A A A A P | 200
100
50
15
4w
2w
2 | 5.06
5.06
5.06
5.06
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.5 | 6.10
6.20
6.37
7.09
7.14
7.20
7.06
7.04
7.09
7.08
7.07
7.09 |
1-2
1-0
1-3
1-2
1-0
3-3
2-3
1-3
3-2
2-3
1-2
3-2
2-1
1-0
2-2 | 4s1po-4p3s (12) 4s1po-4p1g (13) 4s1po-4p1s (14) 4s1po-5p3p (15) 4s1po-5p3p (17) 3d3po-5p3p (18) 3d3po-5p3p (19) 3d3po-5p3p (19) 3d3po-5p3p (19) 3d3po-5p1g (19) | | 3 3 3 3 3 B B B — AAAA AAAA | 0.5
1
3
0.5
3
0.5
2
0.5
0
2
10.5
2
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5 | 15.41 18.06
15.41 18.18
15.41 18.19
15.41 18.27
15.41 18.29
15.41 18.45
15.41 18.45
15.52 17.10
15.52 17.10
15.52 17.10
15.52 17.14 | 2-3 2-1 2-1 3-3 2-1 2-3 2-1 2-1 2-1 1-1 1-1 0-1 | 5-D-91Pe
(80)
5-D-94Fe
(80)
5-D-94Fe
(80)
5-D-101Pe
(82)
5-D-111Pe
6-10-101Fe
6-10-111Pe
6-10-111Pe
6-10-111Pe
(81)
10-111Pe
(81)
10-111Pe
(88)
10-111Pe
(88)
10-111Pe
(88)
10-111Pe
(88)
10-11Pe
(88)
10-11Pe
(88)
10-11Pe
(88)
10-11Pe
(88)
10-11Pe
(88)
10-11Pe
(88)
10-11Pe
(89)
10-11Pe
(89)
10-11Pe
(89)
10-11Pe
(89)
10-11Pe
(89) | A1 III
3601.623
3612.352
3601.916
5696.47
5722.65
4529.176
4512.535
4528.911
3713.103
3702.086
4149.897
4150.138
4149.917 | I P : | 288.33
(20)
(15)
1
8
6
(10)
(8)
1
(15)
(10)
(8)
1 | 14.31
14.31
14.31
15.57
15.57
17.74
17.73
17.74
17.73
20.47
20.47 | 17.74
17.73
17.74
17.73
20.47
20.47
20.47
21.07
23.44
23.44
23.32 | 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | 3°D-4°P°
(1)
4°S-4°P°
(2)
4°P°-4°D
(3)
4°P°-5°S
(4)
4°P°-5°S
(5)
4°F°-5°P° | 10869.54
9413.59
6067.62
5948.584
5772.258
8417.89
8527.32
8397.96
8514.64
8230.67
8306.80
8317.45
8211.48
8150.57
7995.00
7416.00 | A A P A A PPPP AAAAA P P A A | 200
100
50
 | 5.06
5.06
5.06
5.06
5.06
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.5 | 6.10
6.20
6.37
7.09
7.14
7.20
7.06
7.04
7.09
7.09
7.09
7.10
7.14
7.26
7.26 | 1-2
1-0
1-2
1-2
1-0
3-3
3-2
2-3
1-3
3-2
2-1
1-2
2-1
2-2
1-1
2-2
3-3
3-4 | 4s ¹ po-4p ³ s (12) 4s ¹ po-4p ¹ p (13) 4s ¹ po-4p ¹ s (14) 4s ¹ po-5p ³ p (15) 3d ³ po-5p ³ s (19) 3d ³ po-5p ³ s (19) 3d ³ po-5p ³ s (20) 3d ³ po-5p ³ s (3d | | 3 3 3 3 3 B B B AAAA AAA | 0.5
1
3
0.5
3
0.5
2
0.5
0
10
10
10
10
10
10
10
10
10 | 15.41 18.06
15.41 18.18
15.41 18.18
15.41 18.19
15.41 18.27
15.41 18.29
15.41 18.45
15.41 18.45
15.52 17.10
15.52 17.10
15.52 17.10
15.52 17.14
15.52 17.14
15.52 17.14 | 2-3 2-1 2-1 3-3 2-1 2-3 2-1 2-1 2-1 2-1 2-1 1-1 1-1 | 5-10-91pe
(80)
5-10-94 Fe
(80)
5-10-10-1pe
(82)
5-10-11-1pe
(82)
5-10-10-1pe
(82)
5-10-10-1pe
(82)
5-10-12-1pe
(83)
5-10-12-1pe
(83)
5-10-12-1pe
5-10-13-1pe
5-10-13-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
(90) | A1 III
3601.623
3612.352
3601.916
5696.47
5782.65
4529.176
4512.535
4528.911
3713.103
3702.086
4149.897
4150.138
4149.917 | I P : | (10)
(15)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10 | 14.31
14.31
14.31
15.57
15.57
17.74
17.73
17.74
17.73
20.47
20.47 | 17.74
17.73
17.74
17.73
20.47
20.47
20.47
21.07
23.44
23.44
23.32
23.32 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 3 ² D-4 ² P°
(1)
4 ² S-4 ² P°
(2)
4 ² P°-4 ² D
(3)
4 ² P°-5 ² S
(4)
4 ² D-5 ² P°
(5)
4 ² F°-5 ² D
4 ² F°-5 ² F°
(6) | 10869.54
9413.59
6067.62
5948.584
5772.258
8417.89
8527.32
8397.96
8514.64
8230.67
8306.80
8317.45
8211.48
8150.57
7995.00
7416.00
7423.54
7409.11 | A A P A A PPPPP AAAAA P P A AAA | 200
100
50
 | 5.06
5.06
5.06
5.06
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.5 | 6.10
6.20
6.37
7.09
7.14
7.20
7.06
7.04
7.09
7.08
7.09
7.10
7.26
7.26
7.26
7.26 | 1-2
1-0
1-2
1-0
1-0
3-3
2-2
3-3
1-3
3-2
2-1
1-1
2-2
2-1
1-1
2-2
2-3
3-4
2-3
3-4
2-3
3-1-2 | 4s1po-4p3s (12) 4s1po-4p1g (13) 4s1po-4p1s (14) 4s1po-5p3p (15) 4s1po-5p3p (17) 3d3po-5p3p (18) 3d3po-5p3p (19) 3d3po-5p3p (19) 3d3po-5p3p (19) 3d3po-5p1g (19) | | 3 3 3 3 3 3 5 B B B AAAA AAAAA A | 0.5
1
3
0.5
3
0.5
2
0.5
0
10
10
10
10
10
10
10
10
10 | 15.41 18.06 15.41 18.18 15.41 18.19 15.41 18.27 15.41 18.29 15.41 18.45 15.41 18.45 15.52 17.10 15.52 17.10 15.52 17.14 15.52 17.14 15.52 17.15 15.52 17.55 15.52 17.55 | 2-3 2-1 2-1 3-3 2-1 2-3 2-1 2-1 2-1 2-1 2-1 1-1 0-1 2-1 1-1 0-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2 | 5-D-91-9 (80) 5-D-91-9 (80) 5-D-91-10-10-9 (82) 5-D-10-10-10-10-10-10-10-10-10-10-10-10-10- | A1 III
3601.623
3612.352
3601.916
5696.47
5722.65
4529.176
4512.535
4528.911
3713.103
3702.086
4149.897
4150.138
4149.917 | I P : | 288.33 {20} {15} 1 8 6 (10) (8) 1 (15) (10) (8) 1 2nn Fort | 14.31
14.31
15.57
15.57
17.74
17.73
17.74
17.73
20.47
20.47
20.69 | 17.74
17.73
17.74
17.73
17.74
17.73
20.47
20.47
21.07
21.07
23.44
23.44
23.32
23.44
23.44 | 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | 3 ² D-4 ² P°
(1)
4 ² S-4 ² P°
(2)
4 ² P°-4 ² D
(3)
4 ² P°-5 ² S
(4)
4 ² D-5 ² P°
(5)
4 ² F°-5 ² D
4 ² F°-5 ² F°
(6) | 10869.54
9413.59
6067.62
5948.584
5772.258
8417.89
8527.32
8397.96
8514.64
8230.67
8337.45
8211.48
8150.57
7995.00
7416.00
7423.54
7409.11 | A A PPPPP AAAAA P P A AA | 200
100
50
 | 5.06
5.06
5.06
5.06
5.06
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.5 | 6.10
6.20
6.37
7.09
7.14
7.20
7.06
7.04
7.09
7.08
7.07
7.10
7.10
7.14
7.26
7.26 | 1-2
1-0
1-2
1-0
1-0
3-3
2-2
2-3
1-1
1-0
2-2
1-1
2-2
3-4
2-3
3-4
2-3 | 4s ¹ po-4p ³ s (12) 4s ¹ po-4p ¹ p (13) 4s ¹ po-4p ¹ s (14) 4s ¹ po-5p ³ p (15) 3d ³ po-5p ³ s (19) 3d ³ po-5p ³ s (19) 3d ³ po-5p ³ s (20) 3d ³ po-5p ³ s (3d | | 3 3 3 3 3 B B B — — — — — — — — — — — — | 0.5
1
3
0.5
3
0.5
2
0.5
0
10
10
10
10
10
10
10
10
10 | 15.41 18.06 15.41 18.06 15.41 18.18 15.41 18.19 15.41 18.27 15.41 18.34 15.41 18.45 15.41 18.45 15.52 17.10 15.52 17.10 15.52 17.14 15.52 17.15 15.52 17.55 15.52 17.55 | 2-3 2-1 2-1 3-3 2-1 2-3 3-1 2-1 2-1 2-1 1-1 0-1 2-1 1-1 0-1 | 5-10-91pe
(80)
5-10-94 Fe
(80)
5-10-10-1pe
(82)
5-10-11-1pe
(82)
5-10-10-1pe
(82)
5-10-10-1pe
(82)
5-10-12-1pe
(83)
5-10-12-1pe
(83)
5-10-12-1pe
5-10-13-1pe
5-10-13-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
5-10-15-1pe
(90) | A1 III
3601.623
3612.352
3601.916
5696.47
5722.65
4529.176
4512.535
4528.911
3713.103
3702.086
4149.897
4150.138
4149.917
4701.65
4490.90
4479.891 | I P : AAA AAA AAA AAA AAA | 288.33 (20) (15) 1 8 6 (10) (10) (10) (10) (10) (10) (10) (10 | 14.31
14.31
14.31
15.57
15.57
17.74
17.73
17.74
17.73
20.47
20.47
20.69
20.69
20.69 | 17.74
17.73
17.74
17.73
17.74
17.73
20.47
20.47
21.07
23.44
23.44
23.32
23.44
23.32
23.44 | 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | 3°D-4°P° (1) 4°S-4°P° (2) 4°P°-4°D (3) 4°P°-5°S (4) 4°P°-5°S 4°F°-5°P° 4°F°-5°S (6) | 10869.54
9413.59
6067.62
5948.584
5772.258
8417.89
8527.32
8397.96
8514.64
8230.67
8306.80
8317.45
8211.48
8150.57
7995.00
7416.00
7423.54
7409.11
7409.11
7424.63
7415.37
7289.25 | A A P A A PPPPP AAAAA P P A AAAAA A | 150
50
154w
2w
2
250
500
100
200
201
250 | 5.06
5.06
5.06
5.06
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.5 | 6.10
6.20
6.37
7.09
7.14
7.20
7.06
7.04
7.09
7.07
7.09
7.10
7.14
7.26
7.26
7.26
7.26
7.26
7.26
7.26 | 1-2
1-0
1-2
1-2
1-0
3-3
2-3
1-2
2-3
1-1
2-2
2-3
3-4
3-4
3-3
3-4
3-3
3-4
3-3
3-3
3-3
3 | 4s ¹ po-4p ³ s (12) 4s ¹ po-4p ¹
p (13) 4s ¹ po-4p ¹ s (14) 4s ¹ po-5p ³ p (15) 3d ³ po-5p ³ s (18) 3d ³ po-5p ³ s (19) 3d ³ po-5p ³ s (21) 3d ³ po-5p ³ s (30) 3d ³ po-5p ³ s (30) 3d ³ po-5p ³ s (31) 3d ³ po-4f ³ s (32) 3d ³ po-4f ³ s | | 3 3 3 3 3 3 5 B B B AAAA AAAAA AAAAA | 0.5
1
3
0.5
3
0.5
2
0.5
0
1
0.5
2
1
0.5
2
1
0.5
3
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0
0.5
1
0
0.5
1
0
0.5
1
0
0
0.5
1
0
0
0.5
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 15.41 18.06 15.41 18.18 15.41 18.19 15.41 18.29 15.41 18.45 15.41 18.45 15.41 18.45 15.52 17.10 15.52 17.10 15.52 17.14 15.52 17.14 15.52 17.15 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 | 2-3 2-1 2-1 2-3 2-1 2-3 2-1 2-1 2-1 1-1 0-1 2-1 1-1 0-1 2-1 0-1 | 5-D-91-9 (80) 5-D-91-9 5-D-91-10-19 5-D-10-19 | A1 III
3601.623
3612.352
3601.916
5696.47
5732.65
4539.176
4512.535
4539.911
3713.103
3702.086
4149.897
4150.138
4149.817
4701.65
4490.90
4479.968 | I P : | 28.33 (20) (15) 1 8 6 (10) (8) 1 (15) (10) (8) 1 | 14.31
14.31
14.31
15.57
15.57
17.74
17.73
17.74
17.73
20.47
20.47
20.69
20.69 | 17.74
17.73
17.74
17.73
20.47
20.47
20.47
21.07
21.07
23.44
23.44
23.44
23.44
23.44
23.44
23.45
24.86 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 3°D-4°P° (1) 4°S-4°P° (2) 4°P°-4°D (3) 4°P°-5°S (4) 4°P°-5°S 4°P°-5°P° (5) 4°F°-5°P° (6) 4°F°-5°P° (7) 4°F°-5°P° (8) 5°P°-6°P° (8) | 10869.54
9413.59
6067.62
5948.584
5772.258
8417.89
8527.32
8397.96
8514.64
8230.67
8337.45
8211.48
8150.57
7995.00
7416.00
7423.54
7409.11
7405.05
7424.63
7425.37 | A A P A A PPPPP AAAAA P P A AAAAA | 200
100
50
15
4w
2w
2
250
500
100
300
20
15 | 5.06
5.06
5.06
5.06
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59 | 6.10
6.20
6.37
7.09
7.14
7.20
7.06
7.04
7.09
7.09
7.10
7.11
7.26
7.26
7.26
7.26
7.26 | 1-2
1-0
1-3
1-2
1-0
3-3
3-2
2-3
1-3
1-0
2-2
1-1
2-2
2-3
3-4
2-3
3-3
3-2
2-3
3-3
3-2
2-3
3-3
3-2
2-3
3-3
3 | 4s1po-4p3s (12) 4s1po-4p1s (13) 4s1po-5p3p (15) 4s1po-5p3p (15) 4s1po-5p3s (17) 3d3po-5p3s (18) 3d3po-5p3s (19) 3d3po-5p3s (19) 3d3po-5p3s (19) 3d3po-6p1s 3d3po-6p1s (21) 3d3po-6p1s (22) 3d3po-6p1s (23) | | 3 3 3 3 3 B B B AAAA AAAA AAAA BB |
0.5
1
3
0.5
3
0.5
2
0.5
0
0
1
0.5
2
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0
0.5
1
0
0.5
1
0
0.5
1
0
0.5
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 15.41 18.06 15.41 18.18 15.41 18.19 15.41 18.29 15.41 18.34 15.41 18.45 15.41 18.45 15.52 17.10 15.52 17.10 15.52 17.14 15.52 17.15 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 | 2-3 2-1 2-1 2-3 2-1 2-1 2-1 2-1 1-1 1-1 0-1 2-1 1-1 1-1 1-1 1-1 | 5-D-91-9 (80) 5-D-91-9 (80) 5-D-91-10-10-9 (82) 5-D-10-10-10-10-10-10-10-10-10-10-10-10-10- | A1 III
3601.623
3612.352
3601.916
5696.47
5722.65
4529.176
4512.535
4528.911
3713.103
3702.086
4149.897
4150.138
4149.917
4701.65
4490.90
4479.968
4479.891 | I P : AAA AAA AAA AAA AAA AAA AAA AAA AAA | 28.33 (20) (15) 1 8 6 (10) (10) (10) (8) 1 (10) (8) 1 | 14.31
14.31
14.31
15.57
15.57
17.74
17.73
17.74
17.73
20.47
20.47
20.69
20.69
20.69
20.69
20.69
22.03
22.03
22.03 | 17.74
17.73
17.74
17.73
17.74
17.73
20.47
21.07
21.07
23.44
23.44
23.32
23.44
23.45
23.45
24.86
25.79 | 2 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 3 ² D-4 ² P° (1) 4 ² S-4 ² P° (2) 4 ² P°-4 ² D (3) 4 ² P°-5 ² S (5) 4 ² P°-5 ² P° (6) 4 ² F°-5 ² P° (7) 4 ² F°-5 ² Q (8) 5 ² P°-6 ² D (9) | 10869.54 9413.59 6067.62 5948.584 5772.258 8417.89 8527.32 8397.96 8514.64 8230.67 8306.80 8317.45 8211.48 8150.57 7995.00 7416.00 7423.54 7409.11 7405.05 7424.63 7415.37 | A A P A A PPPPP AAAAA P P A AAAAA AAAA A | 200
100
50
15
4w
2w
2
250
500
100
20
15
250
50
10
40
40 | 5.06
5.06
5.06
5.06
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59 | 6.10
6.20
6.37
7.09
7.14
7.06
7.04
7.09
7.09
7.01
7.09
7.01
7.09
7.01
7.10
7.26
7.26
7.26
7.26
7.27
7.29
7.29
7.29
7.29 | 1-2
1-0
1-3
1-0
1-0
3-3
2-2
2-2
3-1
2-2
3-1
2-2
2-3
3-4
3-3
3-3
3-4
3-3
3-3
3-3
3-3
3-3
3 | 4s ¹ po-4p ³ s (12) 4s ¹ po-4p ¹ p (13) 4s ¹ po-4p ¹ s (14) 4s ¹ po-5p ³ p (15) 3d ³ po-5p ³ s (19) 3d ³ po-5p ³ s (19) 3d ³ po-5p ³ s (21) 3d ³ po-4f ³ s (22) 3d ³ po-4f ³ s (24) 3d ³ po-4f ³ s | | 3 3 3 3 3 B B B AAAA AAAA AAAAA BBB |
0.5
1
3
0.5
3
0.5
2
0.5
0
0
1
0.5
2
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0
0.5
1
0.5
1
0.5
1
0.5
1
0
1
0.5
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 15.41 18.06 15.41 18.18 15.41 18.19 15.41 18.29 15.41 18.49 15.41 18.45 15.41 18.45 15.52 17.10 15.52 17.10 15.52 17.14 15.52 17.15 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.57 15.52 17.54 15.52 17.55 | 2-3 2-1 2-1 2-3 2-1 2-1 2-1 2-1 1-1 1-1 0-1 2- 1- 0-1 2-1 1-1 0-1 | 5-D-91-9 (80) 5-D-91-9 (80) 5-D-91-10-19 5-D-10-19 (82) 5-D-10-19 5-D-16-19 (80) | A1 III
3601.623
3612.352
3601.916
5696.47
5732.65
4539.176
4512.535
4538.911
3713.103
3702.086
4149.897
4701.65
4490.90
4479.968
4479.891
4364.59
4367.24 | I P : AAA AAA AAA AAA AAA AAA | 28.33 (20) (15) 1 8 6 (10) (8) 1 (15) (10) (8) 1 (10) (8) 1 6 2nn Fort | 14.31
14.31
14.31
15.57
15.57
17.74
17.73
17.74
17.73
20.47
20.47
20.69
20.69
20.69
20.69
22.03
22.03 | 17.74
17.73
17.74
17.73
17.74
17.73
20.47
21.07
21.07
23.44
23.44
23.32
23.44
23.45
23.45
24.86
25.79 | 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | 3 ² D-4 ² P° (1) 4 ² S-4 ² P° (2) 4 ² P°-4 ² D (3) 4 ² P°-5 ² S (5) 4 ² P°-5 ² P° (6) 4 ² F°-5 ² P° (7) 4 ² F°-5 ² Q (8) 5 ² P°-6 ² D (9) | 10869.54 9413.59 6067.62 5948.584 5772.258 8417.89 8527.32 8397.96 8514.64 8230.67 8306.80 8317.45 8211.48 8150.57 7995.00 7416.00 7423.54 7409.11 7405.05 7424.63 7415.37 7289.25 7275.28 7280.21 | A A P A A PPPPP AAAAA P P A AAAAA AAAA | 200
100
50
15
4w
2
2
250
100
200
15
250
10
100
100
100
100
100
100
10 | 5.06
5.06
5.06
5.06
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59 | 6.10
6.20
6.37
7.09
7.14
7.20
7.06
7.04
7.09
7.07
7.09
7.10
7.14
7.26
7.26
7.26
7.26
7.26
7.26
7.26
7.26 | 1-2
1-0
1-3
1-2
1-0
3-3
2-2
2-2
1-1
2-2
2-3
1-1
2-2
2-3
3-4
2-3
3-4
2-3
3-4
2-3
3-3
3-3
3-3
3-3
3-3
3-3
3-3
3-3
3-3 | 4e ¹ po-4p ³ s (12) 4e ¹ po-4p ¹ s (13) 4e ¹ po-5p ³ p (15) 4e ¹ po-5p ³ p (16) 3d ³ po-5p ³ p (19) 3d ³ po-5p ³ p (19) 3d ³ po-5p ³ p (19) 3d ³ po-5p ³ p (21) 3d ³ po-4f ³ s (23) | | 3 3 3 3 3 B B B AAAA AAAA AAAA BBB BB |
0.5
1
3
0.5
3
0.5
2
0.5
0
1
0.5
2
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0
0.5
1
0
0.5
1
0
0.5
1
0
0.5
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 15.41 18.06 15.41 18.18 15.41 18.19 15.41 18.29 15.41 18.34 15.41 18.45 15.41 18.45 15.52 17.10 15.52 17.10 15.52 17.14 15.52 17.15 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 | 2-3 2-1 2-1 2-1 2-1 1-1 1-1 0-1 2-1 1-1 1-1 0-1 2-1 1-1 1-1 1-1 0-1 2-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1 | 5-D-9-19- (80) 5-D-9-19- 5-D-9-19- 5-D-10-19- (82) 5-D-11-19- 5-D-10-19- 5-D-10-19- 5-D-10-19- 5-D-11-19- 5-D-11-19- 5-D-11-19- 5-D-15-19- 5-D-15-19- 5-D-16-19- 5-D-16-19- 5-D-16-19- 5-D-16-19- (90) 5-3-2-6-3-0 (91) 5-3-2-6-3-0 (92) 5-3-2-6-3-0 (93) 5-3-2-6-3-0 (93) 5-3-2-6-3-0 (93) 5-3-2-6-3-0 (93) | A1 III
3601.623
3612.352
3601.916
5696.47
5722.65
4529.176
4512.535
4528.911
3713.103
3702.086
4149.897
4150.138
4149.917
4701.65
4490.90
4479.968
4479.891 | I P : AAA AAA AAA AAA AAA AAA AAA AAA AAA | 28.33 (20) (15) 1 8 6 (10) (10) (10) (8) 1 (10) (8) 1 | 14.31
14.31
14.31
15.57
15.57
17.74
17.73
17.74
17.73
20.47
20.47
20.69
20.69
20.69
20.69
20.69
22.03
22.03
22.03 | 17.74
17.73
17.74
17.74
17.73
20.47
20.47
21.07
23.44
23.44
23.44
23.45
24.86
24.86
24.86
25.79
25.79 | 2 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 3 ² D-4 ² P° (1) 4 ² S-4 ² P° (2) 4 ² P°-4 ² D (3) 4 ² P°-5 ² S (4) 4 ² P°-5 ² F° (5) 4 ² F°-5 ² F° (6) 5 ² P°-6 ² D (9) 5 ² P°-7 ² D (10) 5 ² D-7 ² F° | 10869.54 9413.59 6067.62 5948.584 5772.258 8417.89 8527.32 8397.96 8514.64 8230.67 8306.80 8317.45 8211.48 8150.57 7995.00 7416.00 7423.54 7409.11 7405.05 7424.63 7415.37 7289.25 7275.28 7280.21 7250.69 7193.56 | A A P A A PPPPP AAAAA P P A AAAAA AAA A | 200
100
50
15
4w
2w
2
2
250
500
100
500
100
100
500
100
1 | 5.06
5.06
5.06
5.06
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59 | 6.10
6.20
6.37
7.09
7.14
7.20
7.06
7.04
7.09
7.09
7.10
7.14
7.26
7.26
7.26
7.26
7.26
7.26
7.26
7.27
7.29
7.30
7.30
7.31
7.31
7.31 | 1-2
1-0
1-2
1-2
1-0
1-0
3-3
3-3
3-3
1-2
2-3
1-1
2-2
2-3
3-4
4-3
3-3
3-3
3-3
3-3
3-3
3-3
3-3
3 | 4s ¹ po-4p ³ s (12) 4s ¹ po-4p ¹ p (13) 4s ¹ po-4p ¹ s (14) 4s ¹ po-5p ³ p (15) 3d ³ po-5p ³ s (19) 3d ³ po-5p ³ s (19) 3d ³ po-5p ³ s (21) 3d ³ po-4f ³ s (22) 3d ³ po-4f ³ s (24) 3d ³ po-4f ³ s | | 3 3 3 3 3 3 B B B AAAA AAAAA AAAAA BBB BBB | 0.5
1
3
0.5
3
0.5
2
0.5
0
1
0.5
2
1
0.5
3
7
5
2
7
5
7
7
5
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7 | 15.41 18.06 15.41 18.18 15.41 18.19 15.41 18.27 15.41 18.34 15.41 18.45 15.41 18.45 15.41 18.45 15.52 17.10 15.52 17.10 15.52 17.14 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.57 15.52 17.57 15.52 17.84 15.52 17.84 15.52 17.84 15.52 17.84 15.52 17.84 | 2-3 2-1 2-1 3-3 2-1 2-1 2-1 2-1 2-1 0-1 2-1 0-1 2-1 0-1 2-1 0-1 2-1 0-1 2-1 0-1 | 5-D-91-9 (80) 5-D-91-9 (80) 5-D-91-10-19 5-D-10-19 5-D-1 | A1 III 3601.623 3612.352 3601.916 5696.47 5722.65 4529.176 4512.535 4528.911 3713.103 3702.086 4149.897 4701.65 4490.90 4479.968 4479.891 4364.59 4357.24 3287.37 3283.11 | I PARA ARA ARA ARA ARA ARA ARA ARA | 28.33 (20) (15) 1 8 6 (10) (8) 1 (15) (10) (8) 1 6 2nn Fort 3 2n | 14.31
14.31
14.31
15.57
15.57
17.74
17.73
17.74
17.73
17.74
20.47
20.47
20.47
20.69
20.69
20.69
20.69
22.03
22.03
22.03 | 17.74
17.73
17.74
17.73
20.47
20.47
21.07
23.44
23.44
23.45
24.86
24.86
24.86
25.79
25.83 | 2 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 3 ² D-4 ² P° (1) 4 ² S-4 ² P° (2) 4 ² P°-4 ² D (3) 4 ² P°-5 ² S (4) 4 ² P°-5 ² F° (5) 4 ² F°-5 ² P° (6) 5 ² P°-6 ² D (10) 5 ² D-7 ² F° | 10869.54 9413.59 6067.62 5948.584 5772.258 8417.89 8527.32 8397.96 8514.64 8230.67 8306.80 7416.00 7423.54 7409.11 7406.05 7424.63 7415.37 7289.25 7275.28 7280.21 7250.69 7193.56 7184.89 | A A P A A PPPP AAAAA P P A AAAAA AAAA | 200
100
50
15
4w
2w
2
2
250
500
100
250
250
250
250
100
400
100
100
100
100
100
10 | 5.06 5.06 5.06 5.06 5.09 5.59 5.59 5.59 5.59 5.59 5.59 5.59 | 6.10
6.20
6.37
7.09
7.14
7.20
7.06
7.04
7.09
7.07
7.09
7.10
7.14
7.26
7.26
7.26
7.29
7.29
7.30
7.31
7.31 | 1-2
1-0
1-2
1-0
1-0
3-3 3-2
2-3 3-1-2
3-1-1
1-0
2-3 3-1-2
3-3 3-3
3-3 3-3 | 4s ¹ po-4p ³ s (12) 4s ¹ po-4p ¹ p (13) 4s ¹ po-4p ¹ s (14) 4s ¹ po-5p ³ p (15) 3d ³ po-5p ³ s (19) 3d ³ po-5p ³ s (19) 3d ³ po-5p ³ s (21) 3d ³ po-4f ³ s (22) 3d ³ po-4f ³ s (24) 3d ³ po-4f ³ s | | 3 3 3 3 3 B B B AAAA AAAA AAAA BBB BB |
0.5
1
3
0.5
3
0.5
2
0.5
0
1
0.5
2
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0.5
1
0
0.5
1
0
0.5
1
0
0.5
1
0
0.5
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 15.41 18.06 15.41 18.06 15.41 18.18 15.41 18.27 15.41 18.29 15.41 18.34 15.41 18.45 15.41 18.49 15.52 17.10 15.52 17.10 15.52 17.10 15.52 17.55 15.52 17.55 15.52 17.57 15.52 17.57 15.52 17.55 15.52 17.57 15.52 17.57 15.52 17.57 15.52 17.57 | 2-3 2-1 2-1 2-1 2-1 1-1 1-1 0-1 2-1 1-1 1-1 0-1 2-1 1-1 1-1 1-1 0-1 2-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1 | 5-D-91pe (80) 5-D-91pe (80) 5-D-91pe (80) 5-D-101pe (82) 5-D-101pe (82) 5-D-101pe (83) 5-D-101pe (83) 5-D-101pe (83) 5-D-101pe (83) 5-D-101pe (83) 5-D-101pe (84) 5-D-112pe (85) 5-D-121pe (85) 5-D-131pe (85) 5-D-151pe | A1 III
3601.623
3612.352
3601.916
5696.47
5722.65
4529.176
4512.535
4528.911
3713.103
3702.086
4149.897
4701.65
4490.90
4479.968
4479.891
4364.59
4364.59
4364.59
4364.59
4387.37
3283.11 | I AAA AAA AAA AAA AAP AA | 28.33 (20) (15) 1 8 6 (10) (8) 1 (15) (10) (8) 1 6 2nn Fort 4 3 2n 1 0.5 | 14.31
14.31
14.31
15.57
15.57
17.74
17.73
17.74
17.73
17.74
20.47
20.47
20.69
20.69
20.69
20.69
22.03
22.03
22.03
22.03 | 17.74
17.73
17.74
17.73
20.47
20.47
21.07
23.44
23.44
23.45
24.86
24.86
24.86
25.79
25.83 | 2 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 3 ² D-4 ² P° (1) 4 ² S-4 ² P° (2) 4 ² P°-4 ² D (3) 4 ² P°-5 ² S (4) 4 ² P°-5 ² P° (5) 4 ² F°-5 ² D (6) 4 ² F°-5 ² P° (9) 5 ² P°-6 ² D (10) 5 ² D-7 ² F° (12) | 10869.54 9413.59 6067.62 5948.584 5772.258 8417.89 8527.32 8397.96 8514.64 8230.67 8306.80 7421.48 8150.57 7995.00 7416.00 7423.54 7409.11 7406.05 7424.53 7415.37 7889.25 7275.28 7290.21 7250.69 7193.56 7184.89 7206.20 7193.56 7184.89 | A A P A A PPPP AAAA P P A AAAAA AAAAAAA | 2000
100
50
15
4w
2
2
250
100
200
100
200
100
100
100
10 | 5.06
5.06
5.06
5.09
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59
5.59 | 6.10
6.20
6.37
7.09
7.14
7.20
7.06
7.04
7.09
7.10
7.14
7.26
7.26
7.26
7.27
7.29
7.30
7.31
7.31
7.31
7.31
7.31
7.31 | 1-2
1-0
1-2
1-0
1-0
1-0
1-0
1-0
1-0
1-0
2-2
2-3
3-2
2-1
1-1
2-2
2-3
3-2
2-3
1-1
2-2
2-3
3-2
2-3
1-0
2-2
2-3
3-2
2-3
1-0
1-0
1-0
1-0
1-0
1-0
1-0
1-0
1-0
1-0 | 4e1po-4p38 (12) 4e1po-4p10 (13) 4e1po-4p13 (14) 4e1po-5p3p (15) 4e1po-5p3p (16) 3d3po-5p3p (19) 3d3po-5p3p (19) 3d3po-4f3p (23) 3d3po-4f3q (24) 3d3po-4f3p (25) | | 3 3 3 3 3 3 B B B AAAA AAAA AAAA BBBB BBB | 0.5
1
3
0.5
3
0.5
2
0.5
0
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
1 | 15.41 18.06 15.41 18.18 15.41 18.19 15.41 18.27 15.41 18.34 15.41 18.45 15.41 18.45 15.41 18.45 15.52 17.10 15.52 17.10 15.52 17.14 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.57 15.52 17.57 15.52 17.84 15.52 17.84 15.52 17.84 15.52 17.84 15.52 17.84 | 2-3 2-1 2-1 2-1 2-1 1-1 1-1 1-1 1-1 1-1 1-1 | 5-D-91-9
(80) 5-D-91-9 (80) 5-D-91-10-19 5-D-10-19 5-D-1 | A1 III
3601.623
3612.352
3601.916
5696.47
5722.65
4529.176
4512.535
4528.911
3713.103
3702.086
4149.897
4701.65
4490.90
4479.968
4479.891
4364.59
4364.59
4364.59
4364.59
4387.37
3283.11 | I AAA AAA AAA AAA AAP AA | 28.33 (20) (15) 1 8 6 (10) (8) 1 (15) (10) (8) 1 6 2nn Fort 4 3 2n 1 0.5 | 14.31
14.31
14.31
15.57
15.57
17.74
17.73
17.74
17.73
17.74
20.47
20.47
20.69
20.69
20.69
20.69
22.03
22.03
22.03
22.03 | 17. 74
17. 73
17. 74
17. 73
17. 74
17. 73
20. 47
20. 47
21. 07
21. 07
23. 44
23. 44
23. 45
24. 86
25. 79
25. 79
26. 83
26. 42 | 2 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 3°D-4°P° (1) 4°S-4°P° (2) 4°P°-4°D (3) 4°P°-5°S 4°P°-5°P° (6) 4°P°-5°P° (7) 4°P°-5°P° (8) 5°P°-7°P° (10) 5°P°-7°P° (11) 5°P°-7°P° (11) 5°P°-7°P° (12) 5°P°-7°P° (13) 5°P°-7°P° (14) 5°P°-7°P° (15) 5°P°-7°P° (16) 5°P°-7°P° (17) 5°P°-7°P° (18) 5°P°-7°P° (18) | 10869.54 9413.59 6067.62 5948.584 5772.258 8417.89 8527.32 8397.96 8514.64 8230.67 8306.80 7416.00 7423.54 7409.11 7405.05 7424.63 7415.37 7289.25 7275.28 7280.21 7250.69 7193.56 7184.89 7208.20 7193.56 7184.89 | A A P A A PPPP AAAAA P P A AAAAA AAAAAA | 200
100
50
15
4w
2w
2
250
500
100
200
15
10
40
40
40
40
40
40
40
40
40
4 | 5.06 5.06 5.06 5.06 5.59 5.59 5.59 5.59 5.59 5.59 5.59 5.5 | 6.10
6.20
6.37
7.09
7.14
7.20
7.06
7.04
7.09
7.10
7.12
7.26
7.26
7.26
7.27
7.29
7.30
7.31
7.31
7.31
7.31 | 1-2
1-0
1-2
1-0
1-0
3-3 2-2
3-1-3
1-0
2-2
1-1
1-0
2-2
2-3
3-1-3
3-2
3-3
1-3
3-2
3-3
1-3
3-3
3-3
3-3
3-3
3-3
3-3
3-3
3-3 | 4s1pe-4p3s (12) 4s1pe-4p1p (13) 4s1pe-4p1s (14) 4s1pe-5p3p (15) 3d3pe-5p3p (19) 3d3pe-5p3p (19) 3d3pe-5p3p (19) 3d3pe-fp1p (22) 3d3pe-4f3p (23) 3d3pe-4f3p (24) 3d3pe-4f3p | | 3 3 3 3 3 3 B B B AAAA AAAA AAAA AAAA BBB BBB | 0.5
1
3
0.5
3
0.5
2
0.5
0.5
108(53)
7
5
2
8
6
3
5
3
2
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5 | 15.41 18.06 15.41 18.06 15.41 18.18 15.41 18.27 15.41 18.29 15.41 18.45 15.41 18.45 15.52 17.10 15.52 17.10 15.52 17.14 15.52 17.55 15.52 17.55 15.52 17.57 15.52 17.55 15.52 17.57 15.52 17.55 15.52 17.57 15.52 17.55 15.52 17.57 15.52 17.57 | 2-3 2-1 2-1 3-3 2-1 2-3 3-1 2-1 1-1 1-1 1-1 0-1 2-1 1-1 1-1 0-1 2-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1 | 5-D-91pe (80) 5-D-91pe (80) 5-D-91pe 5-D-101pe 5-D-101pe 5-D-101pe 5-D-101pe 5-D-101pe 5-D-101pe 5-D-101pe 5-D-101pe 5-D-112pe 5-D-12pe 5-D-12p | A1 III 3601.623 3612.352 3601.916 5696.47 5722.65 4529.176 4512.535 4528.911 3713.103 3702.086 4149.897 4150.138 4149.917 4701.65 4490.90 4479.981 4364.59 4357.24 3287.37 3283.11 | I PARA ARA ARA ARA ARA ARA ARA ARA ARA AR | 288.33 (20) (15) 1 8 6 (10) (10) (10) (10) (10) (10) (10) (10 | 14.31
14.31
14.31
15.57
15.57
17.74
17.73
17.74
17.73
20.47
20.47
20.69
20.69
20.69
20.69
22.03
22.03
22.03 | 17.74
17.73
17.74
17.73
17.74
17.73
20.47
20.47
21.07
23.44
23.44
23.44
23.44
23.44
23.44
23.45
23.45
24.86
25.79
25.83
26.42
25.79 | 2 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 3°D-4°P° (1) 4°S-4°P° (2) 4°P°-4°D 4°P°-5°S 4°P°-5°S 4°P°-5°P° (6) 5°P°-7°D | 10869.54 9413.59 6067.62 5948.584 5772.258 8417.89 8527.32 8397.96 8514.64 8230.67 8306.80 7416.00 7423.54 7409.11 7405.05 7424.63 7415.37 7889.25 7275.28 7280.21 7250.69 7193.89 7208.20 7193.89 7235.36 7184.84 7235.32 | A A P A A PPPP AAAA P P A AAAAA AAAAAAA AA | 2000 1000 500 115 4w 2 2 2500 1000 2000 115 2500 10 1 115 200 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | 5.06 5.06 5.06 5.06 5.59 5.59 5.59 5.59 5.59 5.59 5.59 5.5 | 6.10
6.20
6.37
7.09
7.14
7.20
7.06
7.04
7.09
7.10
7.14
7.26
7.26
7.26
7.27
7.27
7.30
7.31
7.31
7.31
7.31
7.31
7.31
7.31
7.31 | 1-2
1-0
1-2
1-0
1-0
1-0
1-0
1-0
1-0
1-0
2-2
3-3
3-2
2-1
1-1
2-2
2-3
3-2
2-3
3-2
3-2
3-3
3-3
3-3
3-3 | 4e1po_4p38 (12) 4e1po_4p10 (13) 4e1po_4p10 (14) 4e1po_5p3p (15) 4e1po_5p10 (16) 3d3po_5p3p (19) 3d3po_5p3p (19) 3d3po_4f1F 3d3po_4f3p (25) 3d3po_4f3p (25) 3d3po_4f3p (25) 3d3po_4f3p (25) | | 3 3 3 3 B B B AAAA AAAA AAAA BBB BBB BBB | 0.5
1
3
0.5
3
0.5
2
0.5
0.5
108(53)
7
5
2
8
6
3
5
3
2
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5)
108(5 | 15.41 18.06 15.41 18.18 15.41 18.19 15.41 18.27 15.41 18.34 15.41 18.45 15.41 18.45 15.41 18.45 15.52 17.10 15.52 17.10 15.52 17.14 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.84 15.52 17.84 15.52 17.84 15.52 17.86 15.52 17.86 15.52 18.04 15.52 18.04 | 2-3 2-1 2-1 3-3 2-1 2-1
2-1 2-1 2-1 1-1 0-1 2-1 0-1 2-1 0-1 2-1 0-1 2-1 0-1 2-1 0-1 2-1 0-1 2-1 0-1 2-1 0-1 2-1 0-1 | 5-D-9-1p- (80) 5-D-9-1p- (80) 5-D-9-1p- 5-D-10-1p- (82) 5-D-10-1p- (83) 5-D-10-1p- (83) 5-D-10-1p- (83) 5-D-10-1p- (83) 5-D-10-1p- (85) 5-D-10-1p- (85) 5-D-10-1p- (89) 5-D-16-1p- (89) 5-D-16-1p- (89) 5-D-16-1p- (89) 5-D-16-1p- (89) 5-D-16-1p- (89) 5-D-10-1p- (90) | A1 III 3601.623 3612.352 3601.916 5696.47 5722.65 4529.176 4512.535 4528.911 3713.103 3702.086 4149.897 4150.138 4149.917 4701.65 4490.90 4479.981 4364.59 4357.24 3287.37 3283.11 4903.71 3980.56 | I P AAA AA AAA AA AA AA AA AA AA AA AA AA | 288.33 (20) (15) 1 8 6 (10) (10) (10) (10) (10) (10) (10) (10 | 14.31
14.31
14.31
15.57
15.57
17.74
17.73
17.74
17.73
20.47
20.47
20.69
20.69
20.69
20.69
22.03
22.03
22.03
22.03
23.32
23.34 | 17.74
17.73
17.74
17.73
17.74
17.73
20.47
20.47
21.07
23.44
23.44
23.44
23.45
23.45
24.86
25.79
25.83
26.42
25.79
25.83 | 2 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 3°D-4°P° (1) 4°S-4°P° (2) 4°P°-4°D 4°P°-5°S 4°P°-5°S 4°P°-5°P° 4°P°-5°P° 4°P°-5°P° 4°P°-5°P° 4°P°-5°P° 4°P°-7°D 5°P°-7°D | 10869.54 9413.59 6067.62 5948.584 5772.258 8417.89 8527.32 8397.96 8514.64 8230.67 8306.80 7416.00 7423.54 7409.11 7405.05 7424.63 7415.37 7889.25 7275.28 7280.21 7250.69 7193.89 7208.20 7193.89 7208.20 7193.89 7235.36 7184.64 | A A P A A PPPP AAAAA P P A AAAAA AAA AA | 2000 100 50 15 4w 2 2 500 100 200 15 250 10 40 8 10 1 5 10 1 15 20 10n 5n | 5.06 5.06 5.06 5.06 5.59 5.59 5.59 5.59 5.59 5.59 5.59 5.5 | 6.10
6.20
6.37
7.09
7.14
7.20
7.06
7.04
7.09
7.10
7.14
7.26
7.26
7.26
7.27
7.27
7.30
7.31
7.31
7.31
7.31
7.31
7.31
7.31
7.31 | 1-2
1-0
1-2
1-0
1-0
3-3
3-2
2-3
3-2
2-1
1-1
2-2
2-3
3-4
2-3
3-3
2-3
3-4
2-3
3-3
3-3
3-3
3-3
3-3
2-2
1-1
1-0
1-0
1-0
1-0
1-0
1-0
1-0
1-0
1-0 | 4e1po-4p38 (12) 4e1po-4p10 (13) 4e1po-4p10 (14) 4e1po-5p3p (15) 4e1po-5p3p (16) 3d3po-5p3p (19) 3d3po-5p3p (19) 3d3po-5p3p (19) 3d3po-4f1p 3d3po-4f3p (23) 3d3po-4f3p (23) 3d3po-4f3p (23) 3d3po-4f3p (23) 3d3po-4f3p (23) | | 3 3 3 3 3 3 B B B AAAA AAAA AAAAA BBB BBB | 0.5
1
3
0.5
2
0.5
0
3
10.5
108
108
108
108
108
108
108
108 | 15.41 18.06 15.41 18.06 15.41 18.18 15.41 18.27 15.41 18.29 15.41 18.34 15.41 18.45 15.52 17.10 15.52 17.10 15.52 17.14 15.52 17.15 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.84 15.52 17.86 15.52 17.86 15.52 17.86 15.52 17.86 15.52 17.86 15.52 18.04 15.52 18.04 15.52 18.04 15.52 18.18 15.52 18.18 | 2-3 2-1 2-1 3-3 2-1 2-3 3-1 2-1 1-1 1-1 1-1 1-1 0-1 2-1 1-1 1-1 1-1 0-1 2-1 1-1 1-1 1-1 1-1 0-1 2-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1 | 5-D-91pe (80) 5-D-91pe (80) 5-D-91pe (80) 5-D-101pe 5-D-101pe 5-D-101pe 5-D-101pe 5-D-101pe 5-D-101pe 5-D-101pe 5-D-101pe 5-D-112pe 5-D-12pe (90) 5-D-12pe 5-D-12p | A1 III 3601.623 3612.352 3601.916 5696.47 5722.65 4529.176 4512.535 4528.911 3713.103 3702.086 4149.897 4150.138 4149.917 4701.65 4490.90 4479.968 4479.968 4479.981 13887.37 3283.11 4903.71 3980.56 5260.91 5150.86 | I P AAA AA AAA AA AA AA AA AA AA AA AA AA | 288.33 (20) (15) 1 8 6 (10) (10) (10) (10) (11) 6 2nn Fort 4 3 2n 0 0n 6n | 14.31
14.31
14.31
15.57
15.57
17.74
17.73
17.74
17.73
20.47
20.47
20.69
20.69
20.69
20.69
22.03
22.03
22.03
22.03
23.32
23.44
23.44 | 17. 74
17. 73
17. 74
17. 73
20. 47
20. 47
21. 07
23. 44
23. 44
23. 44
23. 44
23. 45
24. 86
25. 79
25. 83
26. 42
25. 79
25. 84
26. 39 | 2 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 3°D-4°P° (1) 4°S-4°P° (2) 4°P°-4°D 4°P°-5°S 4°P°-5°S 4°P°-5°P° 4°P°-5°P° 4°P°-5°P° 4°P°-5°P° 4°P°-5°P° 4°P°-7°D 5°P°-7°D 5°P°-7°D 5°P°-7°D 5°P°-7°D 5°P°-7°D 5°P°-7°D 5°P°-7°D 5°P°-7°D 5°P°-8°P 5°P°-8°P 5°P°-8°P 5°P°-8°P 5°P°-8°P 5°P°-8°P 5°P°-8°P | 10869.54 9413.59 6067.62 5948.584 5772.258 8417.89 8527.32 8397.96 8514.64 8230.67 8306.80 7416.00 7423.54 7409.11 7405.05 7424.63 7415.37 7889.25 7275.28 7280.21 7250.69 7193.89 7208.20 7193.89 7208.20 7193.89 7235.86 7184.54 7235.32 7226.20 6244.56 6237.62 | A A P A A PPPP AAAA P P A AAAAA AAA AAA | 2000 100 50 15 4w 2 2 500 100 200 15 250 10 1 5 10 1 15 20 10n 5n | 5.06 5.06 5.06 5.06 5.59 5.59 5.59 5.59 5.59 5.59 5.59 5.5 | 6.10
6.20
6.37
7.09
7.14
7.20
7.06
7.04
7.07
7.09
7.10
7.14
7.26
7.26
7.26
7.27
7.28
7.30
7.31
7.31
7.31
7.31
7.31
7.31
7.31
7.31 | 1-2
1-0
1-2
1-0
1-0
3-3
3-2
2-3
3-2
2-1
1-1
2-2
2-3
3-2
2-3
1-1
2-2
2-3
3-3
3-3
3-2
2-2
1-1
2-2
2-3
3-2
2-3
3-1
2-2
2-3
3-2
2-3
3-2
2-2
3-1
3-2
2-2
3-2
3-2
3-2
3-2
3-2
3-2
3-2
3-2 | 4e1po_4p38 (12) 4e1po_4p10 (13) 4e1po_4p10 (14) 4e1po_5p3p (15) 4e1po_5p10 (16) 3d3po_5p3p (19) 3d3po_5p3p (19) 3d3po_4f1F 3d3po_4f3p (25) 3d3po_4f3p (25) 3d3po_4f3p (25) 3d3po_4f3p (25) | | 3 3 3 3 3 3 B B B AAA AAA AAAA AAAA BBB BBB | 0.5
1
3
0.5
2
0.5
0
2
10
10
10
10
10
10
10
10
10
10 | 15.41 18.06 15.41 18.18 15.41 18.18 15.41 18.27 15.41 18.29 15.41 18.34 15.41 18.45 15.51 17.10 15.52 17.10 15.52 17.10 15.52 17.14 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.57 15.52 17.84 15.52 17.84 15.52 17.86 15.52 17.86 15.52 17.86 15.52 17.86 15.52 17.86 15.52 17.86 15.52 17.86 15.52 17.86 15.52 17.86 15.52 17.86 15.52 17.86 15.52 17.86 15.52 18.81 15.52 18.81 | 2-3 2-1 2-1 3-3 3-1 2-1 2-1 2-1 1-1 1-1 1-1 1-1 1-1 1-1 1 | 5-D-9-19- (80) 5-D-9-19- (80) 5-D-9-19- 5-D-10-19- (82) 5-D-10-19- (83) 5-D-10-19- 5-D-10-19- 5-D-10-19- 5-D-10-19- 5-D-11-19- (86) 5-D-13-19- 5-D-15-19- (86) 5-D-15-19- 5-D-15-19- (90) 5-3-P-7-3- (90) 5-3-P-6-3- (91) 5-3-P-8-3- (92) 5-3-P-9-3- (93) 5-3-P-9-3- (94) 5-3-P-9-3- (95) 5-3-P-10-3- (96) 5-3-P-10-3- (97) 5-1-10-3- (97) | A1 III 3601.623 3612.352 3601.916 5696.47 5722.65 4529.176 4512.535 4528.911 3713.103 3702.086 4149.897 4150.138 4149.917 4701.65 4490.90 4479.968 4479.968 4479.968 4479.968 5260.91 5150.86 4188.88 | I P : | 288.33 (20) (15) 1 8 6 (10) (10) (10) (10) (10) (10) (10) 4 3 2n 0.5 4 2n 0.5 2n | 14.31
14.31
14.31
15.57
15.57
17.74
17.73
17.74
17.73
20.47
20.47
20.69
20.69
20.69
22.03
22.03
22.03
22.03
23.32
23.44
23.44
23.44 | 17.74
17.73
17.74
17.73
17.74
17.73
20.47
21.07
21.07
23.44
23.44
23.44
23.44
23.44
23.44
23.44
23.44
23.45
25.79
25.83
26.42
25.79
25.83
26.42
26.39
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49 | 2 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 3°D_4°P° (1) 4°S_4°P° (2) 4°P°_4°D 4°P°_5°S 5°P°_7°D 5°P°_7°D 5°P°_7°D 5°P°_7°D 5°P°_7°D 5°P°_7°D 5°P°_7°D 5°P°_7°D 5°P°_7°D 5°P°_8°D | 10869.54 9413.59 6067.62 5948.584 5772.258
8417.89 8527.32 8397.96 8514.64 8230.67 8306.80 7416.00 7423.54 7409.11 7406.05 7424.63 7415.37 7289.25 7275.28 7280.21 7250.69 7193.56 7184.89 7208.20 7193.56 7184.89 7235.36 7286.20 6244.56 6237.62 | A A P A A PPPPP AAAAA P P A AAAAA AAAA AAAAAA | 2000 1000 500 15 4w 2w 2 2 2500 5000 1000 500 11 5000 1000 1000 1 | 5.06 5.06 5.06 5.06 5.59 5.59 5.59 5.59 5.59 5.59 5.59 5.5 | 6.10
6.20
6.37
7.09
7.14
7.06
7.04
7.08
7.07
7.10
7.10
7.14
7.26
7.26
7.26
7.27
7.28
7.29
7.30
7.31
7.31
7.31
7.31
7.31
7.31
7.31
7.31 | 1-2
1-0
1-2
1-0
1-0
3-3
3-2
2-3
3-2
2-1
1-1
2-2
2-3
3-4
2-3
3-3
3-3
3-2
2-3
3-3
3-3
3-3
3-3
3-3 | 4s1po-4p3s (12) 4s1po-4p1p (13) 4s1po-4p1p (13) 4s1po-4p1s (14) 4s1po-5p1p (15) 3d3po-5p3p (19) 3d3po-5p3p (19) 3d3po-5p3p (21) 3d3po-4f1p (22) 3d3po-4f3p (24) 3d3po-4f1p (25) 3d3po-4f1p (26) 3d3po-4f1p (26) 3d3po-5p3p (27) 3d3po-4f1p (28) 3d3po-4f1p (28) 3d3po-4f1p (28) 3d3po-4f1p (28) 3d3po-4f1p (28) 3d3po-4f1p (28) | | 3 3 3 3 3 3 B B B AAA AAAA AAAA AAAA BBB BBB | 0.5
1
3
0.5
2
0.5
2
0.5
2
0.5
2
0.5
108
3
108
3
108
3
108
108
108
108
108
108
108
108 | 15.41 18.06 15.41 18.18 15.41 18.19 15.41 18.27 15.41 18.34 15.41 18.45 15.41 18.45 15.52 17.10 15.52 17.10 15.52 17.14 15.52 17.57 15.52 17.55 15.52 17.57 15.52 17.57 15.52 17.57 15.52 17.57 15.52 17.57 15.52 17.57 15.52 17.57 15.52 17.84 15.52 17.84 15.52 17.84 15.52 17.86 15.52 17.86 15.52 17.86 15.52 17.86 15.52 17.86 15.52 17.86 15.52 17.86 15.52 18.81 15.52 18.18 15.52 18.18 | 2-3 2-1 2-1 3-3 2-1 2-3 3-1 2-1 1-1 1-1 1-1 1-1 0-1 2-1 1-1 1-1 1-1 0-1 2-1 1-1 1-1 1-1 1-1 0-1 2-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1 | 5-10-91-9 (80) 5-10-91-9 (80) 5-10-91-9 (80) 5-10-10-19 (80) | A1 III 3601.623 3612.352 3601.916 5696.47 5732.65 4529.176 4512.535 4528.911 3713.103 3702.086 4149.897 4150.138 4149.917 4701.65 4490.90 4479.968 4479.891 4364.59 4357.24 3287.37 3283.11 4903.71 3980.56 5260.91 5150.86 4188.88 4142.15 | I P : AAA AAA AAA AAA AAA AAA AAAA AAAA | 288.33 (20) (15) 1 8 6 (10) (10) (10) (10) (10) (10) (10) 4 3 2n 0.5 4 2n 0.5 2n | 14.31
14.31
14.31
15.57
15.57
17.74
17.73
17.74
17.73
20.47
20.47
20.69
20.69
20.69
22.03
22.03
22.03
22.03
23.32
23.44
23.44
23.44 | 17.74
17.73
17.74
17.73
17.74
17.73
20.47
21.07
21.07
23.44
23.44
23.44
23.44
23.44
23.44
23.44
23.44
23.45
25.79
25.83
26.42
25.79
25.83
26.42
26.39
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49
26.49 | 2 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 3°D-4°P° (1) 4°S-4°P° (2) 4°P°-4°D 4°P°-5°S 4°P°-5°S 4°P°-5°P° (8) 5°P°-7°D 5°P°-8°D 5°P°-8°D 5°P°-8°D 5°P°-8°D 5°P°-8°D 5°P°-8°D 5°P°-8°D | 10869.54 9413.59 6067.62 5948.584 5772.258 8417.89 8527.32 8397.96 8514.64 8230.67 8306.80 8317.45 8211.48 8150.57 7995.00 7416.00 7423.54 7409.11 7405.05 7424.63 7415.37 7289.25 7275.28 7280.20 7416.00 | A A P A A PPPP AAAA P P A AAAAA AAA AAA | 200
100
50
15
4w
2w
2
250
200
200
200
15
100
100
100
100
100
100
10 | 5.06 5.06 5.06 5.06 5.09 5.59 5.59 5.59 5.59 5.59 5.59 5.59 | 6.10
6.20
6.37
7.09
7.14
7.20
7.06
7.04
7.09
7.09
7.10
7.14
7.26
7.26
7.29
7.30
7.31
7.31
7.31
7.30
7.31
7.31
7.30
7.31
7.31
7.30
7.31
7.31
7.31
7.31
7.31
7.31
7.31
7.31 | 1-2
1-0
1-2
1-2
1-0
1-0
3-3
3-3
3-3
1-2
3-3
1-1
2-3
3-4
3-3
3-3
3-3
3-3
3-3
3-3
3-3
3-3
3 | 4s1po-4p3s (12) 4s1po-4p1p (13) 4s1po-4p1p (13) 4s1po-4p1s (14) 4s1po-5p1p (15) 3d3po-5p3p (19) 3d3po-5p3p (19) 3d3po-5p3p (21) 3d3po-4f1p (22) 3d3po-4f3p (24) 3d3po-4f1p (25) 3d3po-4f1p (26) 3d3po-4f1p (26) 3d3po-5p3p (27) 3d3po-4f1p (28) 3d3po-4f1p (28) 3d3po-4f1p (28) 3d3po-4f1p (28) 3d3po-4f1p (28) 3d3po-4f1p (28) | | 3 3 3 3 3 3 B B B AAA AAA AAAA AAAA BBB BBB | 0.5
1
3
0.5
2
0.5
0
2
10
10
10
10
10
10
10
10
10
10 | 15.41 18.06 15.41 18.18 15.41 18.18 15.41 18.27 15.41 18.29 15.41 18.34 15.41 18.45 15.51 17.10 15.52 17.10 15.52 17.10 15.52 17.14 15.52 17.55 15.52 17.55 15.52 17.55 15.52 17.57 15.52 17.84 15.52 17.84 15.52 17.86 15.52 17.86 15.52 17.86 15.52 17.86 15.52 17.86 15.52 17.86 15.52 17.86 15.52 17.86 15.52 17.86 15.52 17.86 15.52 17.86 15.52 17.86 15.52 18.81 15.52 18.81 | 2-3 2-1 2-1 3-3 3-1 2-1 2-1 2-1 1-1 1-1 1-1 1-1 1-1 1-1 1 | 5-D-91-9- (80) 5-D-91-9- (80) 5-D-91-9- 5-D-10-19- (82) 5-D-11-19- (83) 5-D-10-19- 5-D-11-19- 5-D-1 | A1 III 3601.623 3612.352 3601.916 5696.47 5722.65 4529.176 4512.535 4528.911 3713.103 3702.086 4149.897 4150.138 4149.917 4701.65 4490.90 4479.968 4479.891 4364.59 4357.24 3287.37 3283.11 4903.71 3980.56 5260.91 5150.86 4188.88 | I P : AAA AAA AAA AAA AAA AAA AAAA AAAA | 288.33 (20) (15) 1 8 6 (10) (10) (10) (10) (10) (10) (10) 4 3 2n 0.5 4 2n 0.5 2n | 14.31
14.31
14.31
15.57
15.57
17.74
17.73
17.74
17.73
20.47
20.47
20.69
20.69
20.69
22.03
22.03
22.03
22.03
23.32
23.44
23.44
23.44 | 17. 74
17. 73
17. 74
17. 73
20. 47
20. 47
20. 47
21. 07
21. 07
23. 44
23. 44
23. 45
24. 86
25. 79
25. 83
26. 42
25. 78
26. 42
26. 42
27. 44
28. 44
28. 45
28. 46
28. 47
28. 48
28. 48
48
48
48
48
48
48
48
48
48
48
48
48
4 | 2 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 3°D_4°P° (1) 4°S_4°P° (2) 4°P°_4°D 4°P°_5°S 5°P°_7°D 5°P°_7°D 5°P°_7°D 5°P°_7°D 5°P°_7°D 5°P°_7°D 5°P°_7°D 5°P°_7°D 5°P°_7°D 5°P°_8°D | 10869.54 9413.59 6067.62 5948.584 5772.258 8417.89 8527.32 8397.96 8514.64 8230.67 8306.80 7416.00 7423.54 7409.11 7406.05 7424.63 7415.37 7289.25 7275.28 7280.21 7250.69 7193.56 7184.89 7208.20 7193.56 7184.89 7235.36 7286.20 6244.56 6237.62 | A A P A A PPPPP AAAAA P P A AAAAA AAAA AAAAAA | 200
100
50
15
4w
2w
2
250
200
200
200
15
100
100
100
100
100
100
10 | 5.06 5.06 5.06 5.06 5.59 5.59 5.59 5.59 5.59 5.59 5.59 5.5 | 6.10
6.20
6.37
7.09
7.14
7.06
7.04
7.08
7.07
7.10
7.10
7.14
7.26
7.26
7.26
7.27
7.28
7.29
7.30
7.31
7.31
7.31
7.31
7.31
7.31
7.31
7.31 | 1-2
1-0
1-2
1-0
1-0
3-3
3-2
2-3
3-2
2-1
1-1
2-2
2-3
3-4
2-3
3-3
3-3
3-2
2-3
3-3
3-3
3-3
3-3
3-3 | 4s1po-4p3s (12) 4s1po-4p1p (13) 4s1po-4p1p (13) 4s1po-4p1s
(14) 4s1po-5p1p (15) 3d3po-5p3p (19) 3d3po-5p3p (19) 3d3po-5p3p (21) 3d3po-4f1p (22) 3d3po-4f3p (24) 3d3po-4f1p (25) 3d3po-4f1p (26) 3d3po-4f1p (26) 3d3po-5p3p (27) 3d3po-4f1p (28) 3d3po-4f1p (28) 3d3po-4f1p (28) 3d3po-4f1p (28) 3d3po-4f1p (28) 3d3po-4f1p (28) | | | | | | | | | | | | | | | | | | | REVIS | SED | | |--|------------------|----------------------|----------------------|------------------------------|--------------------------|--|---|------------------|----------------------|----------------------|------------------------------|--------------------------|--|----------------------------------|-------------|----------------|----------------|-------------------------|--| | 16 | | | | | | | REVI | S E | ט א מ | LTI | PLE | T T | ABLE | See N | SRI | | s 3, | Sect | | | Labo
I A | rator;
Ref | | E F
Low | High | J | Multiplet
(No) | Labor
I A | atory
Ref | Int | Low E F | H1gh | J | Multiplet
(No) | Labor
I A | ator
Ref | y
Int | Low
Low | P
High | J | | <u>Si I</u> con | | | | | | | Si I cont | inue | ι | | | | | Si II I | P 16 | 3.27 A | nal B | List A | . Au | | 6155.22
6145.08
6155.73 | A
A
A | 20n
10n
2n | 5.59 | 7.60
7.60
7.60 | 3-4
2-3
3-3 | 3d ³ D°-5f ³ G
·(39) | 9689.41
9789.24
9913.16
9839.58 | A
A
A | 8w
2n
1w
2w | | 7.35
7.32
7.32
7.31 | 2-2
1-1
2-1
1-0 | 4p ³ P-6s ³ P°
(65) | 3856.021
3862.592
3853.657 | A
A
A | 8
6
3 | 6.83 | 10.03
10.02
10.03 | 21-11
12-12
12-12 | | 6142.53
6131.54
6134.85 | A
A
A | 5n
4n
2n | | 7.60
7.60
7.60 | 3-3
2-2
1-1 | 3d ³ D°-5f ³ D
(30) | *9570.08
9758.08 | A · | 4
2n
4 | | 7.35
7.32
7.40 | 1-2
0-1
2-2 | 4p3p-5d3pe | 6347.091
6371.359 | A
A | 10
8 | | 10.03
10.02 | 1-11
2-12
2- 2 | | 6131.86
6125.03
6142.21
6131.30 | A
A
P
P | 5n
4n | | 7.60
7.60
7.60
7.60 | 2-3
1-2
3-2
3-1 | | 9318.24
9238.60
*9103.37
9208.55
*9103.37 | A
A
A
A | 2n
3w
5w
3w | | 7.41
7.41
7.40
7.41 | 2-1
1-0
1-2
0-1 | (66) | 4130.884
4128.053 | A
A | 10 8 | | 12.78 | 2 1 -
1 1 -2 1 | | 10844.02 | A | 25w | 5.84 | 6.98 | 1-2 | 4p ¹ p _{-4d} 1p° (31) | 8070.64
8086.18 | P
P | | 6.07
6.06 | 7.60
7.58 | 2-3
1-2 | 4p ³ P-6d ³ D° (67) | 5978.970
5957.612 | A
A | 7
5 | 10.03
10.02 | 12.09
12.09 | 1 - 글 | | 10627.81
8179.43 | A
P | 20w | 5.84
5.84 | 7.00 | 1-2 | 4p1p_4d3pe
(32)
4p1p_6s3pe | 7912.55 | A | 3w | 6.07 | 7.63 | 2-2 | 4p ³ P-7s ³ P°
(68)
4p ³ P-6d ³ P° | 5056.020
5041.063 | A
A | 10
8 | 10.03 | 12.47 | 1 1 - 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 | | 8338.43
8093.32 | A
A | 5w
25w | 5.84
5.84 | 7.32 | 1-1 | (33)
4p ¹ P-6s ¹ P° | 7898.38
7105.34 | P
P | | 6.07
6.06 | 7.63 | 2-3 | (69)
4p3p_8s1pe | 5056.353
3339.84 | A
A | 3 | 10.03 | 13.73 | 12-12
12- 2
2- 2 | | 7013.47 | A | 10w | 5.84 | 7.40 | 1-2 | (34)
4p1p_5d3p0
(35) | 7089.03 | Ρ. | | 6.05 | 7.79 | 0 -1 | (70) | 3333.16
3210.04 | A
A | 2 | 10.02 | | 호- 호
1호 | | 7680.35 | A | 100w | 5.84 | 7.44 | 1-2 | 4p ¹ P-5d ¹ D° (36) | 9891.90 | A | 5₩ | 6.10 | 7.35 | 1-2 | 4p ³ S-6s ³ P° (71) | 3203.89 | Â | ž | | 13.87 | 12-12 | | 6848.65 | A . | 4w | 5.84 | | 1-1 | 4p1P-7s1Pc
(37) | 9505.28
9421.82 | A
A | 5
4 | 6.10 | 7.40
7.41 | 1-2 | 4p3s-5d3P°
(72) | 5868.404 | A | 3 | ? | ? | 21-21 | | 6722.67 | A | -2w | 5.84 | 7.67 | 1-2 | 4plP-6dlD°
(38) | 9393.40
8046.78 | A
P | 2# | 6.10
6.10 | 7.41
7.63 | 1-0 | 4p ³ S-7s ³ P° | 5846.12
5827.80
5915.266 | A
A
A | 0 | ?
? | ?
? | 15-15
3- 5
25-15 | | 11018.00 | A | 70 | 5.85 | 6.97 | | 3d ¹ D°-5p ¹ P
(39) | 8009.39 | P | | 6.10 | 7.64 | 1-1 | (73)
4p3s_7s1pe | 5867.497
5800.48 | A | 1 | ? | ? | 12-22
12-22 | | 10153.13 | P
A | 1 | 5.85
5.85 | 7.06 | 2-3
2-1 | 3d ¹ D°-5p ³ D
(40)
3d ¹ D°-5p ³ P | 7392.18
7455.47 | P
P | | 6.10
6.10 | 7.77 | 1-2
1-1 | (74)
4p ³ 8-8s ³ pe
(75) | 5806.75
5639.492 | A | 2 | 7 | ?
? | 2-12
21-11 | | •9570.08 | A | 4 | 5.85 | 7.14 | 2-2 | 3d ¹ D°-5p ¹ D | | | | | | - | | 5576.61
5540.74 | A
A | 0 | ? | ? | 21-12
13-13
2-12 | | 8752.17 | Å | 200 | 5.85 | 7.26 | 2-3 | (42)
3d ¹ D°-4f ¹ F
(43) | 11468.54
11202.02
11308.45 | A
A
A | 1w
1w
2w | 6.18
6.15
6.16 | 7.26
7.26
7.26 | 4-4
2-2
3-2 | 3d ³ F°-4f ³ F
(76) | Strongest | line | lassifi | ed Line | s of Si | TI | | 8742.60
87 51.18 | A
P | 100 | 5.85
5.85 | 7.26
7.26 | 2-3
2-2 | 3d ¹ D°-4f ³ F
(44) | 11290.01
11187.74 | Ā | 10w
20w | 6.16 | 7.26 | 3-4 | | 6671.88 | A | 3 | | | | | 8556.64 | A | 100w | 5.85 | 7.29 | 2-3 | 3d ¹ D°-4f ³ G
(45) | 11130.37
10982.28 | A | 7₩
7₩ | 6.18 | 7.29
7.29 | 4-5
3-4 | 3d ³ F°-4f ³ G
(77) | 6660.49
5785.64
5706.375 | A
A | 2
1
1 | | | | | 8502.38
8444.00 | A
A | 30w
15w | 5.85
5.85 | 7.30
7.31 | 2-3
2-2 | 3d ¹ D°-4f ³ D
(46) | 10885.16
10984.24 | A
A
A | 10w
3w | 6.15 | 7.29 | 2-3
3-3 | (11) | 5701.375 | Â | 1 | | | | | 8444.48
8501.50 | A
A | 3₩
20₩ | 5.85
5.85 | 7.31 | 2-1
2-2 | 3d ¹ D°-4f ¹ D | 10893.72
10796.52 | P
A | On | 6.16
6.15 | 7.30
7.30 | 3-2 | 3d ³ F°-4f ¹ D | 5688.856
5669.590
5496.24 | A
A
A | 2
4
1 | | | | | 7165.62 | A | 100w | 5.85 | 7.57 | 2-2 | (47)
3d ¹ D°-5f ¹ D | *8898.97 | A | 3w | 6.18 | 7.57 | 4-4 | 3d ³ F°-5f ³ F | 5468.92
5456.11 | A
A | 2 2 | | | | | *7164.75 | A
P) | 2w | (5.85
(5.85 | 7.57
7.57 | 2-3
2-2 | (48)
3d ¹ D°-5f ³ F
(49) | *8790.88
8729.02 | A
A | 4w
5w
3w | 6.16
6.15
6.18 | 7.57
7.57
7.57 | 3-3
2-2
4-3 | (79) | 5438.41
5294.97 | A | 1
1 | | | | | 7165.09
7034.96 | A. | 50w | 5.85 | 7.60 | 2-3 | 3d ¹ D°-5f ³ G | 8899.50
8791.28
•8790.88 | A
A
A | 5w
4w | 6.16 | 7.57 | 3-2
3-4 | | 5202.51
5192.75 | Ā | 3 | | | | | 7017.98 | A | 4w | 5.85 | 7.60 | 2-3 | (50)
3d ¹ D°-5f ³ D | 8728.38
8596.02 | A
P | 10w | 6.15 | 7.57 | 2-3
3-4 | 3d ³ F°-5f ³ G | 5185.09 | A | 1 | | | | | 7017.68
7016.90 | P | 10w | 5.85
5.85 | 7.60
7.60 | 2-2
2-1 | (51) | 8536.38
8597.00 | A
A | 3w
2nl | 6.16
6.15
6.16 | 7.60
7.60 | 2-3
3-3 | (80) | 4921.69 | A
A
A | 1
1n | | | | | 6527.20 | P | | 5.85 | 7.74 | 2-2
- | 3d ¹ D°-6f ³ F
(52) | 7850.5
7800.0 | A
A | 2N
4N | 6.16
6.15 | 7.74
7.74 | 3-2
2-2 | 3d ³ F°-6f ³ F
(81) | 4859.28
4656.80 | A | 1 | | | | | 10727.21
10694.14 | A
A | 75₩
50₩ | 5.96
5.94 | 7.11
7.09 | 3-4
2-3 | 4p ³ D-4d ³ F°
(53) | | • | | | | - | | 4198.174
4190.738 | A
A | 2
3 | | | | | 10689.52
10882.66 | A | 20w
5w
5w | 5.93
5.96
5.94 | 7.08
7.09
7.08 | 1-2
3-3
2-2 | | 11607.42 | A | Ow
2w | 6.20 | 7.26 | 2-1
2-3 | 4p ¹ D-4d ¹ P°
(82)
4p ¹ D-4d ¹ F° | 4076.78
4075.45
3998.00 | A
A
A | 1
2
1n | | | | | 10784.33
8892.97 | A
A | 25w | 5.96 | 7.35 | 3-2 | 4p ³ D-68 ³ P | 10582.66 | A | 1 | | 7.36 | 2-1 | (83)
4p1D-6s1P | 3991.77 | A | an | | | | | 8949.33
8925.55
8766.68 | A
A
A | 15w
8w
3w | 5.94
5.93
5.94 | 7.32
7.31
7.35 | 2-1
1-0
2-2 | (54) | 9886.92 | A | 2w | 6.20 | 7.44 | 2-2 | (84)
4p ¹ D-5d ¹ D•
(85) | 3199.54
3193.10
3188.95 | A
A | 1
1
1 | | | | | 8883.84 | Ã | 4w | 5.93 | 7.32 | 1-1 | _ | *8898.97 | A | 3w | 6.20 | 7.58 | 2-3 | 4p ¹ D-5d ¹ F° (86) | | | | REVIS | SED- | | | 8667.40
8606.43 | P
A | 1W | 5.94
5.93 | 7.36
7.36 | 2-1
1-1 | 4p ³ D-6s ¹ P°
(55) | 8576.46
8550.34 | P
P | | 6.20 | 7.63
7.64 | 2-2
2-1 | 4p ¹ D-6d ³ P°
(87)
4p ¹ D-7s ¹ P° | See NS | | S-NBS
33.32 | 3, S | | | | 8579.15 | A | 2w | | 7.40 | 3-2 | 4p ³ D-5d ³ P°
(56)
4p ³ D-5d ³ F° | 7431 . 17 | P | | 6.20 | 7.86 | 2-3 | (88)
4p1D-7d1F° | 3086.225 | A | 7 | 17.63 | 21.63 | 3-2 | | 7943.94
7932.20
7918.38 | A
A | 500w
300w
200w | 5.96
5.94
5.93 | 7.51
7.49
7.49 | 3-4
2-3
1-2 | 4p3D-5d3F°
(57) | 11611 10 | | | 6.23 | 7.30 | -
2-3 | 3d ³ P°-4f ³ D | 3093.423
3096.786
3086.429 | A
A
A | 6
.4
3 | 17.64 | 21.62
21.63
21.63 | 3-1
1-0
2-2 | | 8035.39
7970.26 | A
A
A | 7w
10w | | 7.49 | 3-3 | | 11611.49
*11591.98
11640.58 | A
A
A | 5w
4w
2w | 6.25 | 7.31
7.31 | 1-2 | (90) | 3093.613
3086.620 | Ā | 3
1 | 17.64 | 21.63 | 1-1 | | 7373.02 | A
P | 10w | 5.96 | 7.63 | 3-2 | 4p ³ D-7s ³ P° (58) | 11502.94
*11591.98 | A | 3w
4w | 6.23
6.24 | 7.31
7.31 | 2-2
1-1 | | 4552.654 | | 9 | 40.00 | 21.63 | -
1-2 | | 7285.94
7255.28 | P | | 5.94
5.94 | 7.63
7.64 | 2-2
2-1 | 4n3n_7g1pe | *9009.04
9064.06 | A
A | 5nl
Owl | 6.23
6.24 | 7.60
7.60 | 2-3
1-2 | 3d ³ P°-5f ³ D
(91) | 4567.872
4574.777 | A
A
A | 7 | 18.92 | 21.62 | 1-1
1-0 | | 7005.84
7003.58 | A | 50w | 5.96 | 7.72 | 3-4 | (59)
4p3D-6d3F° | •9009.04 | A | 5nl | 6.23 | 7.60 | SS | | 4338.52 | A | 1 | 10.04 | 21.79 | _
0_1 | | 6976.53
7084.33 | A
A
A | 50₩
25₩
2₩ | 5.94
5.93
5.96 | 7.70
7.70
7.70 | 2-3
1-2
3-3 | (60) | 10015.33 | A | 1 | 6.37 | 7.60 | 0-1 | 4p1s-7s3pe
(92) | 4336.55 | A | | | | _ | | 6813.85
6730.38
 P
P | | 5.96
5.93 | 7.77 | 3-3
1-1 | 4p ³ D-7d ³ D° | Strongest | t Unc | lassifie | d Line | of Si | ı | | 5739.762 | A | 8 | | 21.79 | 0-1
 | | 6842.35
6729.80 | P
P | | 5.96
5.93 | 7.76
7.76 | 3-2
1-2 | / | 9770.10 | A | 4w | | - 23 | | | 3806.56
3796.11 | A | 5
4
3 | 21.62 | 24.88
24.88
24.88 | 2-
1-
0-1 | | 6527.49
6555.20 | A
A | 3n
2n | 5.96
5.94 | 7.85
7.82 | 3-4
2-3 | 4p ³ D-7d ³ F° (62) | 9738.60
9254.59
8648.89 | A
A
A | 6w
4n
100nl | | | | ٠ | 3791.41
3241.67 | A | 6 | 21.63 | 25.44 | 2-1 | | 6560.68 | Ā | 2n | 5.93 | 7.81 | 1-2
- | | 8503.17
7743.2 | Ā | 5
4n | | | | | 3234.00
3230.55 | A | 5 | 21.62 | 25.44
25.44 | 1-1
0-1 | | 10262.49 | P | | 6.06 | 7.26 | 1-1 | 4p ³ P-4d ¹ P°
(63)
4p ³ P-5d ³ D° | 7742.7 | A | 5n
4w | | | | | 3590.46 | A | 8 | 21.79 | 25.22 | 1-2 | | 10067.84
10025.80
9967.46 | . P
A | 4₩
1 | 6.07
6.06
6.05 | 7.30
7.29
7.29 | 2-3
1-2
0-1 | 4p3p_5d3p°
(64) | 6415.24 | A | 4w | | | | | 3185.16 | A | 3 | 21.79 | 25.66 | 1-0 | | 10155.88
10001.35 | Ã
P | î | 6.07
6.06 | 7.29 | 2-2 | | | | | | | | | | | | | | _ | ator
Ref | y
Int | E
Low | P
High | J | Multiplet
(No) | Labora
I A I | tory
Ref | Int | E
Low | P
High | J | Multiplet
(No) | Labor
I A | atory
Ref I | nt | . E
Low | P
High | J. | Multiplet (No) | |-------------|-------------------|----------------------|-------------------------------|---|--|--|-------------|---------------------|----------------------------------|----------------------------------|--------------------------|--|-------------------------------|----------------|------------------|-------------------------|-------------------------|---|---| | ntin | ued | | | | 2 2 | P II cont | | | | | | 7 1 1 | P II cont | | | | | | | | A
A
A | 4n
3n
2n | 25.86 | 28.42
28.42
28.42 | 4 <u>-</u>
3-
2-3 | 4 ³ F°_5 ³ G
(9) | 3308.86
6043.10 | А
В | 6 w | 9.59 | 13.32 | 2-2
·
2-3 | 3s3p ³ 1D°-4p ¹ D
(4)
4s ³ P°-4p ³ D | 3827.46
5588.25 | A — | 71
—
51 | 13.08 | | 2-2
-
1-2 | 3d ¹ D°-11
(26)
4p ³ S-5s ³ P° | | A | 1 | 25.86 | 29.92 | 4-
3- | 4 ³ F°-6 ³ G
(10) | 6024.15
6034.01 | B
B | (3) | 10.71 | 12.76
12.74 | 1-2
0-1 | (5) | 5727.69 | A | 21 | 13.09 | 15.24 | 1-1 | (27) | | Α . | | | 29.92 | - 2-
 | 22.a3ma 243n | 6165.56
6087.76 | B | (1) | 10.76 | 12.74 | 2-2 | 48 ³ P°-4p ³ P | 4554.81
4628.71
4678.95 | A
A
A | 617
417
61 | 13.09
13.09
13.09 | 15.75 | 1-2
1-1
1-0 | 4p ³ S-4d ³ P° (28) | | Ā | 0 | 26.68 | 30.62
30.60 | 2-3
2-1 | 3p3d ³ P°-3p4p ³ P
(11) | 5425.93
5386.87
5499.72 | A
A | 7w
?w
? | 10.76
10.71
10.76 | 13.00
13.00 | 2-2
1-1
2-1 | (6) | 4558.04 | A | 61 | 13.09 | 15.79 | 1-1 | 4p ³ S-4d ³ D° (29) | | A
A | 1 | 26.83 | 30.62 | 2-1 | 3p3d ³ D°-3p4p ³ P
(12) | 5409.66
5316.07
5344.73 | A
A
A | 7₩
7₩
7₩ | 10.71
10.71
10.69 | 13.03 | 1-0
1-2
0-1 | | 4244.55
4109.19 | A
A | 3
5 | 13.25
13.25 | 16.25 | 3-2
3- | 3d ¹ F°-4
(30) -10 | | A | -00
 | 26.83 | 30.59 | 1-0
2-3 | | 5296.09
5191.41
5152.20 | A
A
A | 8\
6
4 | 10.76
10.71
10.69 | 13.09 | 2-1
1-1
0-1 | 4s ³ P°-4p ³ S
(7) | 4044.49
4019.45 | A
A | ?₩
4
 | 13.25 | 16.31 | 3-2
3-3 | -11
-15 | | A
A
A | 2
0
2 | 27.95
27.95 | 30.62
30.60
30.59 | 1-1
1-0 | 3p4g3p4=3p4p3p
(13) * | 14720.26 | A | 3 | 10.71 | 13.32 | 1-2 | 48 ³ P°-4p ¹ D† | 4452.45
4423.9
4160.56 | A
A
A | 61
3d
3 | 13.38
13.38
13.38 | 16.17 | 1-
1-1
1-2 | 3d ¹ P ⁶ -3
(31) -6
-18 | | A | 1 | 27.94 | 30.60 | 0-1 | | 4612.84
4581.77 | A
A | 3
3n | | 13.38
13.38 | 1-1
0-1 | 48 ³ pe_4p1p
(9) | 6460.1 | c — | 3 | 13.38 | 15.29 | 1-2 | 4p ¹ P-5s ³ P° | | | ines of | Si II | Ī | | | 5253.49 | A - | 8W | 10.97 | 13.32 | 1-2 | 48 ¹ P°-4P ¹ D | 4288.53 | A | 4 | 13.38 | | 1-1 | (32)
4p1p_4d1pe | | A
A
A | 5
4
6
0n | | | | | 4499.18 | A _ | 71 | 10.97 | 13.73 | 1-0 | (10)
4s ¹ pe_4p ¹ s
(11) | 3372.70 | A | 4 | 13.38 | 17.04 | 1-1 | (33)
4p1p-6e1pe
(34) | | A
A | 3
3 | | | | | *3551.16
3470.83
*3404.34 | A
A
A | 3n
4
5 | 12.69 | 16.25 | 1-2
1-
1-2 | -13 | *4530.78 | Å | 8₩
71 | 13.62 | | 2-2
2- (| 1°-11
35)-16 | | A | 12.1
12.1 | EVIS | FD | | | 3377.52 | A _ | 4n | 12.69 | 16.34 | 1-2
- | -18 | 4792.06
4622.71 | A
A | 51
4n | 13.64
13.64 | | -2 (| 2°- 7
36) -11 | | DS | -NBS | 3, | Secti | | 1, 1965 | 4943.42
4969.65 | A
A | 71
71 | 12.76 | 15.29
15.24 | 3-2 | 4p ³ D-5s ³ P° (13) | 4589.79
4565.22 | A
A | 8 W
61 | 13.64
13.64 | 16.32 | -3 \ | -15
-16 | | A
A | 1.95 A
10
8 | 23.95 | List
26.97
26.95 | | 15 1944
1 4 ² S-4 ² P°
(1) | 4954.33
4864.38
4927.17
4823.84 | A
A
A | 51
41
41
0 | 12.76 | 15.23
15.29
15.24
15.29 | 1-0
2-2
1-1
1-2 | | 3710.46 | A - | 3n · | 13.72 | 17.04 |
0-1 | 4p ¹ S-6s ¹ P° (37) | | A
A | .8) | 26.97 | 30.86 | - | 4 ² pe_4 ² D | 4739.49
4700.80 | A
A | 31
41 | | 15.36
15.36 | 2-1
1-1 | 4p ³ D-5s ¹ P° (14) | | | | | | | | | A | (7) | | | _ | | 4601.97 | A | 8 W17 | 12.80 | 15.48
15.45 | 3-4
2-3 | 4p ³ D-4d ³ F° (15) | <u>PIII</u> I | P 30.0 |)3 A | nal B | List | | g 1944 | | A | (5)
(4) | 30.86 | 34.14 | 3 1 2 - 1 :
1 2 - 1 : | 4 ² D-5 ² P° (3) | 4658.12
4626.61 | A
A
A | 61 | 12.76
12.74
12.80
12.76 | 15.45 | 1-2
3-3
2-2 | ,, | 4059.27
4080.04
4057.39 | A
A
A | 6
7
4 | 14.43
14.43
14.43 | 17.47
17.45
17.47 | 23-13
13-3
13-12 | 3 ² D-4 ² P° (1) | | B
B | (4)
(3) | 34.14
34.13 | 37.00
37.00 | 13- | 5 ² P°-6 ² S
(4) | 4224.43
4072.13
4036.23 | A
A
A | 2
3
2n | 12.76 | 15.72
15.79
15.79 | 3-3
2-2
1-1 | 4p ³ D-4d ³ D°
(16) | 4222.15
4246.68 | A
A | 7w
7w | 14.55 | 17.47
17.45 | _ | 4 ² S-4 ² P° (3) | | A | (4) | 35.99 | 38.92 | | 5 ² D-6 ² F°
(5) | 4127.49
4064.64
4166.73 | A
A
A | 5 13
3 13
2n | 12.80
12.76 | 15.79 | 3-2
2-1
2-3 | | 3233.62 | A | 6w | | | _ | | | A | (5) | 36.26 | 38.92 | | 5 ² F°-6 ² G | 4117.09
4130.78 | A
A | 4
2 n | 12.80
12.76 | 15.80
15.75 | 3-2
2-1 | 4p ³ D-4d ³ P° | 3219.32 | A | 6 w | | 21.29 | _ | | | A | (6) | 36.27 | 38.93 | | 5 ² G-6 ² H° (7) | 4130.77
4063.08
4091.53
4033.68 | A
A
A | 2 n | 12.74
12.76 | 15.80 | 1-0
2-2
1-1 | | 3277.82
3283.22 | Å | 3 2 | 14.43 | 18.19 | 23-23
13-13 | (S) (S) 2De | | | | | | | | | ^ - | | | | | _ | 5203.86 | A | . 5 | 21.29 | 23.66 | -1 2 | 4 ² D-5 ² P° | | 0. | 9 Ans | 1 0 | List B | Sep | t 1944 | 3604.80
3570.34
3507.37 | A
A
A | 6w
3d
6w4? | 12.79 | 16.16
16.25
16.31 | 2-2
2-3 | 3d ³ P*-4
(18) -9
-12 | 3880.88 | A _ | 3n | 21.29 | 25.05 | _ | (5)
(6) | | A
A | 8
5 | 6.98 | 8.10 | 21-3
12-2 | 4e ⁴ P-4p ⁴ D° (1) | *3478.74 | A | 3 | 12.79 | 16.34 | 2-1 | -17 | *4587.91 \$ | A | 8W | | 24.74 | - | 4 ² F°-5 ² D | | A
A
A | 3
0
1 | 6.91
6.96 | 8.10 | 23-2
13-1 | } | 3775.03
3676.27
3490.45 | A
A | 3
6w
5 | 12.81 | 16.08
16.17
16.34 | 1-2
1-2
1-3 | 3d ³ P°-2
(19) -5
-18 | 3978.28 | A _ | 8W | | 25.16 | - - | 4 ² F°_5 ² G
(8) | | A
A | 1
50 | 6.9 | | 2 } -2 | } 4s ⁴ P_4p ⁴ P° | 3706.06 | A - | 7w | 12.83 | 16.16 | -
1–2 | 3d ³ D°-4 | 3957.64
3933.38
3922.72 | A
A
A | 6
4
4 | ?
?
? | †
?
? | 23-23 | 3p4s ⁴ P°-3p4p ⁴ F
(9) | | A | 20
3 | 6.92 | 8.19 | 15-1 | (2) | 3536.30 | A | 3 | | 16.32 | 1-2 | | 3997.17
3951.51 | A
A | 5 | ? | 7 | 3 - 1 - 1 - 1 - 1 | | | A
A
A | 5
25
12 | 6.98
6.92
6.92 | 8.19 | 21-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | | 3559.93
3556.49
*3551.16 | A
A | 3
6
3n | 12.85 | 16.31
16.32
16.32 | 2-2
2-2 | 3d ³ D°-12
(21) 13
-14 | 3895.03
3904.79 | A
A | 6 | 3 | 7 | 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | A
A | 2 5
30 | 6.9 | | 2 −1 | Ź | 3533.67
3530.25
3527.11 | A
A | 2
5 | 12.85
12.85 | 16.34
16.34 | 2-1 | -16
-17 | 3802.08
3744.22 | A
A | 6 | ? | 7 | 23-13
13-13
2-12 | 3p4s ⁴ P°-3p4p ⁴ S
(10) | | Ä
A | 3 0 | 6.92 | 8.25 | 13-1 | 4s ⁴ P-4p ⁴ S°
(3) | *3404.34 | A | 5 | 12.85 | 16.34
16.47 | 2-2
2-1 | -18
-20 | *3717.6300 | | 5 | | 7 | <u></u> \$−1 <u>\$</u> | 7 | | A
A | 25
8 | 7.18 | 8.41 | 1 1-1 | 4s ² P-4p ² P° (4) | *3728.6755
3723.63
3631.41 | A
A
A | 4A
3
4 | | 16.16
16.17
16.25 | 3-2
3-2
3-2 | 3d ³ D°_4
(22) -5
1 -9 | PIV II | 51.15 | 5 An | al B | List E | Ang | 1944 | | A
A | 3 | 7.18 | | 1 2 1 | } | 3566.43
3562.48 | A
A | 5 | 12.85 | 16.31
16.32 | 3-
3-2 | -12
-13 | 3347.72 | A | 6 | 28.01 | 31.70 | 1-2 | 435-43pe | | | | | | | | 5450.66 | Α - | 61 | 13.03 | 15.29 | -
2-2 | 4p ³ p _{-5s} 3pe
(23) | 3364.44
3371.10 | A
A | 6
5 | | 31.68
31.67 | 1-1
1-0 | (1) | | 19 | .57 A | | List E | | g 1944 | 5507.15
5583.33 | A
A | 61
51
51
4 | 13.03
13.00 | 15.29
15.24
15.24
15.23 |
1-1
3-1
1-0 | (23) | 4249.57 | Α | 6 | 28.89 | 31.79 | 0-1 | 4 ¹ S-4 ¹ P° (2) | | A
A | 4 3 | 9.44 | 3 12.80
3 12.76
8 12.74 | 1-2
0-1 | | 5483.56 | A
A | 31
51 | 12.99 | 15.29
15.24 | 1-2
0-1 | | *3728.67§§ | A
A | 4đ
5 | | 39.51
39.52 | 2-1
2-2 | 4 ³ D-5 ³ Pe
(3) | | A
A
A | 3
3
2 | 9.4 | 3 12.76
3 12.74
3 12.74 | 2-2
1-1
2-1 | | *4589.79
4425.95
4401.97 | A
A
A | 8 W
2
1 n | | 15.72
15.79
15.79 | 2-3
1-3
0-1 | 4p ³ P-4d ³ D°
(24) | 3717.00 | | 5 | | 39.52 | 1-2 | | | A | 5 | 9.4 | 8 13.03 | 2-2 | 3e3p3 3pe_4p3p | 4475.27
4417.31 | A
A | 71
3 | 13.03 | 15.79
15.79 | 2-2
1-1 | | | | | | | | | | A
A
A | 5
4nd
3 | 7 9.4 | 8 13.00
8 12.99
8 13.03 | 2-1
1-0
1-2 | (2) | 4466.11 | A. | 3
5 | | 15.79 | 2-1
2-2 | 4p ³ P-4d ³ P° | PV IP
3175.16 | | | | 11st A | Aug
1_11 | 1944
- 4 ² 5-4 ² P° | | A | 6 | 9.4 | 8 13.09 | 2-1 | 3e3p ³ 3pe_4p ³ 8 | | A
A | 3 2 | 13.00 | 15.80
15.75
15.75 | 2-2
1-1
2-1 | (25) | 3204.06 | Å | 3 | 33.70 | 37.58
37.55 | 5- 5
3-13 | (1) | | A.
A | 4 | | 8 13.09
8 13.09 | 1-1
0-1 | (3) | *4530.78
4414.29
4467.98 | A
A
A | 71
6
4 | 13.00 | 15.72
15.80
15.75 | 1-0
1-2
0-1 | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | 18 | | | | | | | R E V | 7 9 F | ν E | 0 11 1 | _ | | | | | | | _ | | | |-------------------------------|---------------|--------------------------|-----------------------|-------------------------|-------------------|---|--|---------------|--------------------|-------------------------|----------------------------------|--|--|---|---------------|---------------|-------------------------|----------------------------------|---|-----------------| | LAbo
I A | rator;
Ref | Int | Low | P
High | J | Multiplet
(No) | IA | rator.
Ref | Int | E
Low | P
High | | Multiplet
(No) | Labo
I A | ratory
Ref | Int | Low | P
High | J | Mu | | | 10.3 | | 6.50 | 1st B
7.84 | Sept
2-3 | 1944
4 ⁵ 5°-4 ⁵ P | <u>S II</u> I
5027.19 | P 23. | 3 Ana
3 | | 16t A | Sept | 1944
3e3p ⁴ ² P-4p ² 5° | 8 II con | tinued
B | | 14 23 | 15.88 | 3] -3 | 1 74 | | 9212.91
9228.11
9237.49 | B
B
B | (10)
(10)
(10) | 6.50
6.50 | 7.83 | 2-3
2-1 | (1) | 5142.33 | D
A | î
00 | 13.04
13.09
13.04 | 15.49 | 13-13 | (1)
3e3n4 3p_4n4po | C070 00 | D
D | 0 | 14.23 | 16.07 | 31-21 | -
} 3đ | | 4694.13
4695.45
4696.25 | A
A
A | 10
8
6 | 6.50
6.50
6.50 | 9.12
9.12
9.12 | 2-3
2-2
2-1 | (3)
4 ⁵ 8°–5 ⁵ Þ | 3906.95 | A | 1 | 13.04 | 16.20 | 11-21 | 343b ₇ 3b ⁻ 4b ₃ b ₀
343b ₇ 3b ⁻ 4b ₃ b ₀ | 6521.39 | D
D | 10 | 14.23 | 16.30 | 3 12-2 | } 3a | | 10455.47 | В | (8)
(8) | 6.83 | 8.01 | 1-2 | 4 ³ 8°-4 ³ p | 3595.991
3672.14
3613.03 | A
A | 20 | 13.04
13.09
13.04 | 16.45
16.45 | 1====================================== | (4) | 6102.26 | D
D | 10 | 14.17 | 16.13 | 21-1
22-2 | - | | 10459.46
10456.79 | B | (8)
(4) | 6.83
6.83 | 8.01
8.01 | 1-1
1-0 | (3) | 3654.51 | A | 1 | 13.09 | | 출-1출
-
 | 4 0 | 6161.84
6314.29 | D
D | 1 | 14.23 | 16.18 | 31-15
31-22- | 3d. | | 5278.99
5278.70
5278.10 | A
A
A | 3
1
0 | 6.83
6.83 | 9.17
9.17
9.17 | 1-2
1-1
1-0 | 4 ³ 5°-5 ³ p
(4) | 6386.48
5453.81 | D
C | 2
15 | 13.56 | 15.88 | 2 }-3 } | 4s ⁴ P-4p ² S ⁶
(5)
4s ⁴ P-4p ⁴ D ⁶ | 6128.21
3993.526 | D
A | 0
4 | 14.23 | 16.19 | 3 1 - 3 1 - 3 1 - 3 1 - 3 1 - 3 1 - 3 1 - 3 1 - 3 1 1 1 1 | } 3₫ | | 4411.34 | A | 3 | 6.83 | 9.63 | 1 | 4 ³ s°-6 ³ P
(5) | 5432.77
5428.64
5564.94
5509.67 | 0000 | 12
9
8 | 13.53
13.61 | 15.83
15.80
15.83 | 1 1 - 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | (6) | 3931.938
4007.78
3918.19 | A
A
A | 00 | 14,23 | 17.31
17.31
17.38 | 3 - 2
3 - 2
2 - 3 | | | 8694.70
8680.47
8671.37 | A
A
A | 10
8
1 | 7.84
7.83
7.83 | 9.25
9.25
9.26 | 3-4
2-3
1-2 | 4 ⁵ P-4 ⁵ D°
(6) | 5473.59
5645.62
5556.01 | C
D
C | 15
15
4
5 | 13.53
13.61 | 15.80
15.78
15.80
15.78 | 14-14 | | 3932.30
3853.09
3859.26 | A
A
A | 2
2
0 | 14.17 | 17.37
17.38
17.37 | 31-2
21-1
21-2 | } 3d | | 8693.98
8679.70 | A | 3 | 7.84
7.83 | 9.25 | 3-3
3-2 | | 5032.41 | С | 2 | 13.61 | 16.07 | 12- 2
22-22 | 4s4P-4p4P0 | | - | | | | - [] | | | 8670.65
8693.24
8679.00 | A
A
A | 2
1
1 | 7.83
7.84
7.83 | 9.26
9.26
9.26 | 1-1
3-2
3-1 | | 4991.94
4942.47
5103.30 | 000 | (1)
1 | 13.53 | 16.03
16.03
16.03 | 15-15
5-15
25-15 | (7) | 7821.47
8086.67
8273.46 | B
B | 000 | 14.30
14.31 | 15.88
15.83
15.80 | 23-3
13-2
2-1 | } | | 8670.19
7696.73 | A
A | 1
10 | 7.83
7.84 | 9.26 | 1-0
3-2 | 4 ⁵ P-6 ⁵ S* | 5009.54
4924.08
4925.32 | C | 1
9
10 | 13.56 | 16.02
16.07
16.03 | 15-25 | | 8051.91
8258.27
8377.79 | B
B
B | 0
2
1 | 14.30 | 15.83
15.80
15.78 | 2-2-2-1
1-1 | 3 | | 7686.13
7679.60 | A
A | 8
5 | 7.83
7.83 | 9.44
9.44 | 2-2
1-2 | (7) | 4779.11
4804.12 | A
A | 8
00 | 13.61
13.61 | 16.20
16.13 | 23-23
13-14
13-23 | 4s ⁴ P-4p ² D° (8) | 8221.63
8361.95 | B | 0 | 14.30 | 15.80
15.78 | 21-1
12- | 2 | | 6757.16
6748.79
6743.58 | A
A
A | 10
8
6 | 7.84
7.83
7.83 | 9.66
9.66
9.66 | 3-
2-
1- | 4 ⁵ P-5 ⁵ D°
(8) | 4681.32
4742.4 | A
A | 00 | 13.53 | 16.20
16.13 | <u> </u> | | 4431.08 | A | 1 | | 17.37 | 11-2 | _ | | 6415.50
6408.13 | A
A | 3 2 | 7.84
7.83 | 9.76
9.76 | 3-2
2-2 | 4 ⁵ P_7 ⁵ 8°
(9) | 4815.515
4716.226
4656.74 | A
A
A | 10
8
4 | 13.56 | 16.18
16.18
16.18 | 25-15
15-15
2-15 | 4s ⁴ P-4p ⁴ S°
(9) | 3924.05
3945.06 | Ē. | (0) | | 17.73
17.71 | 13-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | 3d
27 | | 6403.58
6052.66 | A
A | 1
10 | 7.83 | 9.76 | 12
3 | 4 ⁵ P-6 ⁵ D° | 4193.51 | A | 1 | 13.56 | 16.45 | 1호 | 48 ⁴ P_4p ² Pe
(10) | 8520.23 | В | 1 | | 16.18 | 2] -1 | | | 6046.04 | A | 3 | 7.83
7.83 | 9.87 | 2-
1- | (10) | 5606.11
5640.32 | o
o | 15
10 | 13.64 | 15.88
15.83 | 41-31
31-21 | 3d ⁴ F-4p ⁴ D° | 4755.12
4763.38 | A | 1 | 14.72 | 17.32
17.31 | 23-3
12-2 | 2 | | 5706.11
5700.24
5696.63 | A
A
A | 6
4
2 | 7.83 | 10.00
10.00
10.00 | 3-
2-
1- | 4 ⁵ P-7 ⁵ D° (11) | 5659.95
5664.73
5526.22
5578.85 | 0000 | 12
10
6
7 | 13.60
13.64 | 15.80
15.78
15.88
15.83 | 35-15
15- 3
35-35
25-25 | | 4668.58
4648.17 | A
A | 3
2
——— | | 17.37
17.38 | 2 1 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | <u>≱</u> 3d | | 5507.01
5501.54
5498.18 | A
A
A | 4
3
2 | 7.83 | 10.08
10.08
10.08 | 3
2
1 | 4 ⁵ P-8 ⁵ D° (12) | 5616.63
5466.55
5536.77 | G
E
D | (ö)
1 | 13.60
13.62 | 15.80
15.88
15.83 | 15-15
25-35
15-25 | ? | 8422.39
8515.48 | B
B | 0 | | 16.47
16.45 | 21-1-
12- | 48
2 | | 9035.92 | В | (6) | 8.01 | 9.38 | 2-3 | 4 ³ P-4 ³ D° | 8314.73 | В | 10 | | 15.49 | - " - | 4e2p_4n2ge | 5320.70
5345.67 | C | 3
4 | | 17.33
17.31 | 2] -3
1 2 -2 | 1 48
2 | | 9036.32
9038.72
9039.27 | B
B | (4)
(3)
(3)
(2) | 8.01
8.01
8.01 | 9.38
9.38
9.38 | 1-2
0-1
2-2 | (13) | 7967.43
5996.16 | B | 10 | 13.94 | 15.49 | 1}-2} | 48 ² P-4p ² S° (12)
48 ² P-4p ⁴ P° | 5212.61
5201.00
5201.32 | C | 3
2
(2) | 15.00 | 17.37
17.38
17.38 | 23-2
13-1
23-1 |] | | 9036.73
8452.14 | B
A | 5 | 8.01
8.01 | 9.47 | 2-1 | 4 ³ P6 ³ S° | 5909.25
6097.12
5932.95 | D
D | 2
1
1 | 13.94
14.01
13.94 | 16.03
16.03
16.03 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | (13) | 4524.946
*4552.378 | A
A | 6 | 15.00
15.00 | 17.73
17.71 | 3 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | _ | | 8449.54
8451.55 | A
A | 3
1 | 8.01
8.01 | 9.47 | 1-1
0-1 | (14)
4 ³ P-5 ³ D* † | 6123.41
5639.96 | D
C | 10 | 14.01 | 16.20 | 1출- 호
1출-2출 | 4s ² P-4p ² D° | 4524.68 | | | | 17.73 | 12-1;
 | Ź
1 4 | | *7244.77 | A | 4 | (8.01 | 9.71 | 2-3
2-2 | (15) | 5646.98
5819.22
5014.03 | o
o | 10
1 | 14.01 | 16.13
16.13 | 13-13 | (+*/ | 3783.16
3860.15
3317.70 | A
A
D | 2
2 | 15.49 | 18.75
18.69 | 2-1:
1-1: | ⊉ 41
} 41 | | *9949.84
9932.26 | В | (8)
(8) | (8.37
8.37
8.37 | 9.62
9.61
9.62 | 3-2
1-0
2-2 | 3 ³ D°-4p' ³ P†
(16) | 4917.15
5047.28
4885.63 | Č | (0)
2 | 13.94
14.01 | 16.45
16.45
16.47 | 14-15 | 4s ² P-4p ² P° (15) | 4463.582 | A | 7 | | 18.64 | - | | | +9033.78 | Ð | (5) | (8.37
(8.37 | 9.66
9.65 | 3-4
2-3 | 3 ³ D°-4D' 3F
(17) | 3669.049
3594.462 | A | 5 3 | 14.01
13.94 | 17.37
17.38 | 13-25 | 48 ² P_4p ¹ 2D° | 4483.424
4486.66
4391.84 | A
A
A | 6
3
3 | 15.83
15.80
15.83 | 18.58
18.55
18.64 | 23-1-
13-
23-2 | \$ | | 9672.34
9649.94
9680.80 | B
B | (10)
(12)
(10) | 8.37
8.37
8.37 | 9.65
9.65
9.65 | 1-2
3-3
2-3 | | 3663.47
3314.50 | A | 0 | 14.01 | 17.73 | 12-12 | 4 ₈ 2 _{P-4p} , 2pe | 4432.41
4456.43
4342.84 | A
A
A |
3
00 | 15.78
15.80 | 18.58
18.55
18.64 | 14-1 | 1/2 | | 9697.33
9413.46 | В | (8)
(8) | 8.37 | 9.65 | 3-2
3-3
2-2 | 3 ³ p°-4p¹ ³ p† | 3272.25
3329.3
3257.83 | D
A
D | 00
2 | 14.01 | 17.71
17.71
17.73 | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | (17) | 4402.86
*4163.698 | A
A | 0
10 | 15.88 | 18.58 | \$-1.
3-4 | 2 41 | | 9421.93
*9437.11 | B | (8) | 8.37
(8.37
8.37 | 9.68
9.68
9.68 | 1-1
3-2 | (18) | 6981.40 | D | 4 | 14.11 | 15.88 |
3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3- | 3d ⁴ D-4p ⁴ D° | 4153.098
4145.100
4142.291 | A
A
A | 10
9
8 | 15.80
15.78 | 18.80
18.78
18.76 | 33-4
23-3
13-2 | 2 | | 11453 | В | (1) | 8.38 | 9.46 | 4- | 3 ⁵ p°-4 ⁵ F | 7139.79
7256.96
7317.03 | B
B
B | 1
1
0 | 14.10
14.09 | 15.83
15.80
15.78 | 12-12 | : | 4217.23
*4189.71
4168.409 | A
A
A | 3
6n
5 | 15.83 | 18.80
18.78
18.76 | 3 3 - 3
2 3 - 2
1 3 - 1 | 1 | | 11472
11454
9693.68 | В)
В | (1n)
(10) | (8.38
8.38 | | 3-
0-
33 | (19)
3 ⁵ D°-4p; ³ F | 7164.63
7273.20
7337.61 | D
B
B | 1 0 | 14.10 | 15.83
15.80
15.78 | 31-21
21-11
11-11 | • | 4255.01
4213.5 | B
A | 。
。 | 15.88
15.83 | 18.78
18.76 | 3 2-2 | 2 | | 9739.74
9741.93 | B
B | (8)
(5) | 8.38
8.38 | 9.69 | 2-2
3-2 | (80) | 7124.28
7236.91 | D
D
B | 1
1
0 | 14.10 | 15.88
15.83
15.80 | 23-35
15-25
2-15 | ;
; | 4028.791
3990.94
3963.13 | A
A | 7
3
2 | 15.83
15.80 | 18.94
18.92
18.91 | 3 - 3
2 - 2
1 - 1 | to 41 | | 8874.53
8884.23
8882.47 | B
B
B | (9)
(7)
(5)
(3) | 8.38
8.38 | 9.77 | 4
3
2 | 3 ⁵ p°-5 ⁵ f†
(21) | 6305.51
6397.30
6413.71 | D
D | 10
8
9 | 14.11
14.10 | 16.07
16.03
16.02 | 31-21
21-11
11-11 | 3d ⁴ D_4p ⁴ P° (19) | 3946.98
4050.11
4003.89
*3970.69 | A
A
A | 1
1
1 | 15.88
15.83 | 18.91
18.92
18.91
18.91 | 3 - 2
3 - 1
1 - 1 | | | 8880.70
7923.95 | B | (3)
15 | 8.38 | 9.77 | ĩ-
4- | 3 ⁵ p°_6 ⁵ F † | 6286.35
6384.89
6398.05 | D
D | 8 8 | 14.10
14.10 | 16.07
16.03
16.03 | 21-21
11-1 | ·
· | 3950.42
3939.49 | A
A | 00 | 15.80 | 18.92 | 13-3 | 3 } | | 7931.70
7930.33
7928.84 | A
A
A | 10
8
6 | 8.38
8.38
8.38 | | 3-
2-
1 | (32) | 6274.34
6369.34 | D | 3 | 14.10
14.09 | 16.07
16.03 | 13-25
3-15 | | 4792.02
4835.85 | A
A | 3 | 16.07 | 18.64 |
2 1 -2-
1 1 -1- | <u>}</u> 4₁ | | Stronges | st Uncl | Lassifie | a Line | s of <u>8</u> | I | | 6092.13
5895.89
6080.85 | D
D | 0 | 14.10 | 16.13
16.20
16.13 | 21-11
21-21
15-14 | 3d ⁴ D-4p ² D°
(20) | 4883.73
4901.30
4900.47 | BCC | 1 2 | 16.02
16.07 | 18.55
18.58
18.55 | 23-1
13-1 | 2 | | 9958.90
8585.60 | B
A | (8)
10 | | | | | 5951.30
5940.69 | D
D | 3
1 | 14.10 | 16.18
16.18 | 21-11
11-11 | 3d ⁴ D-4p ⁴ 5° (21) | 4729.45
*4819.60 | Ā | 0
2n | 16.03 | 18.64
18.58 | 13-2
2-1 | | | 7639.83
7578.96
4993.51 | A
A | 10
10
8 | | | | | 5927.15
3845.21 | D
A | ī
00 | 14.09 | 16.18 | 23-23 | 344D-4p1 2F0 | 4590.8
4533.3
4518.9 | A
A
A | 00
00 | 16.03 | 18.75
18.75
18.75 | 20-1
1-1
2-1 | · 2 | | 3867.56 | A | 8 | | · | | | 3782.6 | A | 00 | | 17.37 | | (23)
3d ⁴ D-4p ¹ 2D°
(23) | | A
A | 7 | 16.07 | 18.78
18.78 | 21-2 | 3 41 | | | | | | | | | | | | | | _ | | 4509.0 | Ā | 00 | | 18.76 | 1 2-2
2-1 | 5 | | | | | | | REV | 1 S E 1 | וע מ | ULTIPLE | T T | ABLE | | | | | | | 19 | |------------------|----------------------------|--|--|--|--|-----------------------|----------------------------------|--|---------------------------------|--|---|------------------|---------------------------------------|--|----------------------------------|--|---| | tor;
ef | Int | E P
Low High | J
1 | Multiplet
(No) | Labo
I A | ratory
Ref : | Int | E P
Low High | J | Multiplet
(No) | Labo
I A | rator
Ref | y
Int | E F | High | J | Multiplet
(No) | | nue | 1 | | | 44 | | P 34.9 | | al C List A | | 1944 | <u>Cl I</u> con | | | | | -1 -1 | . 4 4 | | A A A A A A A | 6
5
3
4
3
0 | 16.07 18.9
16.03 18.9
16.03 18.9
16.07 18.9
16.03 18.9
16.03 18.9 | 1 2-1
3 23-2
1 13-1
1 3-1 | | 3632.022
3709.371
3747.90
3710.42
3750.74 | A
A
A
A | 6
5
3
0
1 | 17.67 21.07
17.67 20.99
17.67 20.96
17.67 20.96
17.67 20.96
17.67 21.38 | 3-3
1-2
0-1
2-3
1-1 | 3d ³ P°-4p ³ P | 8375,95
8585,96
8575,25
8212,00
8333,29
8428,25
7980,58 | A
A
A
A | 150
100
75
100
100
100 | 8.88 i
8.95 1
8.99 1
8.88 1
8.95 1
8.98 1 | 10.43
10.39
10.43
10.45 | 25-15-15-15-25-15-25-15- | 48 ⁴ P-4p ⁴ D° (2) | | A
B
A
A | 1
5
5
3 | 16.03 18.9
16.07 19.2
16.03 19.2
16.07 19.2
16.03 19.2 | 4 23-23
8 3-1
6 23-1
8 13- | 4p ⁴ P°-4d ⁴ P
(50) | 3369.49
3370.38
3387.13
3324.01
3367.18 | A
A
A
A | 2 2 2 | 17.67 21.33
17.67 21.33
17.67 21.31
17.67 21.38
17.67 21.33 | 1-1
2-1
1-0
1-3
0-1 | (3) | 8194.35
7878.22
7997.80
7672.44
8221.73 | A
A
A
A | 75
50
25
75 | 8.95 1
8.88 1
8.95 1
8.88 1
8.95 1 | 10.45
10.49
10.49 | 12- 2
21-21
13-13
24-13
13-23 | 48 ⁴ P-4p ² D° (3) | | A
A | 00 | 16.03 19.2
16.03 19.3
16.07 19.3 | 6 2-1 | 4p ⁴ P°-4d ² F
(51) | 3234.17
3233.24
3231.10 | B
B
B | (4)
(3)
(3) | 17.67 21.48
17.67 21.48
17.67 21.48 | 2-1
1-1
0-1 | 3d ³ P°-4p ³ g
(3) | 8230.40
7414.10
7717.57
7924.62 | A
A
A | 90
100
100 | 8.99 1
8.88 1
8.95 1
8.99 1 | 10.55 | 호 -1호 | 4s ⁴ P-4p ² P° † (4) | | A
A
A | 3
2n
00 | 16.20 18.7
16.13 18.6
16.13 18.7 | 5 23-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | 4p ² D°-5s ² P
(52) | 4253.593
4284.991
4332.71
4361.53 | A
A
A | 9
5
4
2 | 18.17 21.07
18.11 20.99
18.11 20.96
18.17 20.99 | 2-3
1-2
0-1
2-2 | 4s ³ P°-4p ³ D
(4) | 7256.63
7547.06
7744.94 | A
A
A | 125
100
125 | 8.88
8.95
8.99 | 10.58
10.58 | 2-+2 | 48 ⁴ P-40 ⁴ 50 | | A
D | 00
00 | 16.20 18.9
16.13 18.9 | 4 23-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3- | 4p ² D°-4d ⁴ D
(53) | 4340.30
4418.84 | A | 00 | 18.11 20.96
18.17 20.96 | 1-1
3-1 | . 3 3 | 4438.48
4403.03 | A | 20
15 | 8.88
8.88 | | 25-15 | 48 ⁴ P-5p ⁴ P°† | | A
A
A | 00
1
9 | 16.20 19.2
16.13 19.2
16.20 19.3 | 4 23-2
4 13-2 | 4p ² D°-4d ⁴ P
(54) | 3838.316
3837.80
3899.09
•3860.64
3778.90 | A
P
A | 6
3
3 | 18.17 21.38
18.11 21.33
18.17 21.33
18.11 21.31
18.11 21.38 | 2-2
1-1
2-1
1-0
1-2 | 4s ³ P ⁶ -4p ³ P
(5) | 4389.76
4475.31
4379.90 | A
A
A | 25
15
20 | 8.88
8.95
8.95 | 11.71 | 15-15 | 48 ⁴ P-5p ⁴ D° † (7) | | Ā | 7 | 16.13 19.2
16.20 19.2 | 7 11-2
7 21-3 | 4p ² D°-4d ² F
(55) | 3831.85
3717.775 | A | 2
6 | 18.11 21.33
18.17 21.48 | 0-1
2-1 | 48 ³ P°-4p ³ 8 | 4363.30
4369.52 | A
A | 20
15 | 8.95
8.99 | | | 48 ⁴ P-5p ² D°† (8) | | A | 5
3 | 16.20 19.6 | | 4p ³ D°-4d ³ D (56) | 3662.005
3656.61 | Ä
Ä | 1 | 18.11 21.48
18.11 21.48 | 1-1
0-1
- | (6) | 4226.44
4323.35 | A
A | 15
20 | | 11.80 | 15~15
- | | | C
B
B | (2)
2
1 | 16.18 18.6
16.18 18.5
16.18 18.5 | | \$ 4p ⁴ S°-5s ⁴ P
(57)
\$ 4p ⁴ S°-4d ⁴ D | 4364.73
4467.83
4499.29
4478.48
4527.96 | A
B
B
A
B | (1)
(0)
(0) | 18.24 21.07
18.23 20.99
18.22 20.96
18.24 20.99
18.23 20.96 | 3-3
3-2
1-1
3-2
3-1 | 3d ³ D°-4p ³ D
(7) | 10091.64
10392.45
9744.33
9592.20 | A
A
A | 40
5
30
75 | 9.16
9.24
9.16
9.16 | 10.43
10.43 | | 4s ² p_4p ⁴ D°† (10) | | A | 7 | | | | 4354.56
4439.87 | Ā | 3 | 18.23 21.07
18.22 20.99 | 2-3
1-2 | | 9875.95
9288.82 | A
A | 50
60 | 9.24
9.16 | 10.49 | \$-1\frac{1}{2}
1\frac{1}{2}-1\frac{1}{2} | 4s ² p_4p ² D° (11) | | A | 3 | 16.18 19.2 | 8 12-1 | 4p48°-4d4P
\$ (59) | 3928.615
3983.77 | A
A | 6
3 | 18.24 21.38
18.23 21.33 | 3-2
3-1 | (8) | 9073.15
9632.37 | A
A | 50
20 | 9.16
9.24 | 10.52
10.52 | 1출- 글
출- 글 | 4s ² P-4p ² S° (12) | | A
E | 00 | 16.19 19.3 | | 27°-4d ² F
(60)
40 ² P°-5s ² P | 3985.97
3920.37
3961.55 | A
A
A | (0)
2
2 | 18.23 21.31
18.23 21.38
18.22 21.33
10.38 21.48 | 1-0
2-2
1-1
2-1 | 3d ³ D°-4p ³ S | 8912.88
9045.40
8550.46
9452.06 | A
A
A | 40
40
20
75 | 9.16
9.24
9.16
9.24 | 10.61
10.61 | 13-13-
3- 3-
13- 3-
5-15 | 4s ² P_4p ² P°
(13) | | D
D
B | 3
2
1 | 16.45 18.6
16.47 18.6
16.45 18.7 | 9 1 | 4p ² P°-5s ² P
(61) | 3774.52 | A | 00 | 10.37 21.48 | 1-1
 | (9) | 8686.28
9197.49 | A | 30
25
 9.16
9.24 | 10.58 | | 48 ² P-4p ⁴ S° (14) | | В | | | | 1 ami 200 aa4m | 4613.47
4677.67 | A
A | 00 | 18.32 20.99
18.32 20.96 | 1-2
1-1 | 4s ¹ P°-4p ³ D
(10) | 4526.20
4601.00 | A | 30
20 | 9.16
9.24 | 11.89 | 1출-1출 | 4s ² P-5p ² P° | | В | ō | | | 1 4p' 3F9-4d ⁴ F
2 (62) | | A
A | 00
00 | 18.32 21.33
18.32 21.31 | 1-1
1-0 | 4s ¹ pe_4p ³ p
(11) | 4469.37
4661.22 | A
A | 18
18 | 9.16
9.24 | 11.92 | 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 | 4s ² p-5p ² p° (15) | | D | 00 | 17.32 19.3
17.32 19.3 | | 2 4p' 2F0-4d2F
2 (63) | | A | 00 | 18.32 21.48 | 1-1 | 4s ¹ p°-4p ³ s
(12) | | | | | | | | | A
A
A | 6n
1
00 | 17.32 20.2
17.31 20.2
17.32 20.2 | 17 2] ⊸2 | 4p' 2F0_4d' 2
(64) | 3136.00
3185.16 | ВВ | {3}
3} | 21.38 25.32
21.38 25.26 | 2-3
2-2 | 4p ³ P-4d ³ F° (13) | Cl II | IРа | 3.70 | Anal A | List | B No | v 1944 | | A
A
A | 10
3
2 | 17.31 20.2
17.32 20.2
17.31 20.2
17.32 20.2 | | }
4p' 3r•_4d' 2
65) | 2985.98
3 | В | (6) | 21.38 25.51 | 2–2 | 7 7 | 4794.54
4810.06
4819.46 | A
A
A | 250
225
200 | 13.38
13.38
13.38 | 15.88 | 2-3
2-2
2-1 | 4s ⁵ se_4p ⁵ p
(1) | | ٠- | | | | | Btronges' | | | ed Lines Attr | Lbuted | to <u>S III</u> | 5423.25
5443.42 | A
A | 150
100 | 13.62
13.62 | 15.88 | 4-3
3-2 | 3đ ⁵ D°-4p ⁵ P
(2) | | Ā | 3
0
4 | | | 2 4p' 3p°-4d' 3
2 (se)
2 4p' 3p°-4d' 3
(67) | | A
A
A
A | 0
0
1
0
3 | | | | 5456.27
5423.52
5444.25
5457.02
5424.36
5444.99 | A
A
A
A | 50
100
60
75
25
10 | 13.62
13.62
13.62
13.62
13.62 | 15.88
15.88
15.88 | 2-1
3 3
2-2
1-1
2-3
1-2 | | | B
B
B | 1
0
1 | 18.84 20.1
18.80 20.1
18.78 20.1 | 10 3-}-2
18 2-∳-1 | 4d ⁴ F-5p ⁴ D°
(68) | 4099.44
4095.17
4064.45
3997.97 | A
A
A | 1
0
2
0 | | | | 5457.47
*5217.93
5221.34 | A
A | 150
75 | 13.62
 | 16.27
16.27 | 0-1
-
1-2
1-1 | 4s ³ S°-4p ³ P | | B
B
B | 0
0 | 18.80 20.1
18.78 20.1
18.76 20.1 | 80 24-2
8 15-1 | *** | 3748.73
3699.37 | A | 1 | | | | *5217.93 | A | 150 | 13.90 | | 1-0 | | | B | 1 | 18.78 20.3
18.76 20.3 | 50 1 2 ⊷2 | ŧ | 3697.88
3638.15
3626.53 | A
A
A | 000 | | | | 3353.39 | A | 125 | 14.28 | 17.96 | 1 -1
 | 383p ⁵ 1p° 4p¹ 1 | | B
B
B | 2
2
0 | 18.80 20.3
18.78 20.3
18.76 20.3 | 0 3-2
8 2-1 | 4d ⁴ F-5p ⁴ P° (69) | 3549.72
3497.340 | A
A | 1
5 | | | | 8360.63
3750.00 | A
A | 15
30 | 14.79
14.79 | | 3-2
3-3 | 3d ³ D°-4p ³ P† (5) 3d ³ D°-4p ¹ 3D | | B
B
B | 0 | 18.78 20.3
18.76 20.3 | | 2 | | | | | | | 3767.57
3774.25 | A
A | 30
25 | 14.79
14.79 | 18.06
18.06 | 2-2
1-1 | (6) | | B
B | 00 | 18.76 20.3
18.78 20.3
18.76 20.3 | | 2
2 4d ⁴ F-5p ⁴ 8°
2 (70) | <u>s IV</u> I
3097.46
3117.75 | P 47.1 | 1 An | al C List A
32.40 26.38
32.40 26.36 | | 1944
1 4 ² 8_4 ² p°
2 (1) | 3769.13
3768.13
3748.46
3773.68 | A
A
A | 20
18
15
20 | 14.79
14.79
14.79
14.79 | 18.06
18.08
18.06 | 3-2
2-1
2-3
1-2 | | | Jnel | assifi | ed Lines of | | | *************************************** | | | | | | 3650.13
3658.38
3673.83 | A
A
A | 30
20
18 | 14.79
14.79
14.79 | 18.16 | 3-4
2-3
1-2 | 3d ³ De-4pl 3Ff
(7) | | D
A
A
A | 6
1
3n
2
5 | 3730 | .41
.80 | A 1
A 3
A 1n
A 1 | Cl I I | A | 75 | al B List C
8.88 10.24 | | 1944
1944
1944
1944
1944
1944
1944
1944 | 3659.84
3668.03
3333.64 | A
A | 18
20
40 | 14.79
14.79 | 18.16
18.15
18.49 | 3-3
2-2
3-2 | 3d ³ D°-4p¹ 3p· | | A
A
A | 6
1
1
6 | 3676
3385
3373
3366
3356 | 5.81
90
3.09 | A 1
A 1
A 1
A 1 | 9393.81
9486.89
8948.01
9191.67
9584.77
9702.35 | A
A
A
A | 50
25
50
60
50
40 | 8.95 10.26
8.99 10.29
8.88 10.26
8.95 10.29
8.95 10.24
8.99 10.26 | 2 -1
1 -1 | ne-to-to-to- | *3315.44
3312.78
3332.42
3320.14 | A
A
A | 100
15
15
30 | 14.79
14.79
14.79
14.79 | 18.52
18.49 | 2-1
1-0
2-3
1-1 | (6) | Labo
I A | ratory
Ref | | E P
Low High | J Multiplet | Lab | orator
Ref | y
Int | E P
Low High | J | Multiplet
(No) | Labo
I A | rator
Ref | | E P
Low High | J Mu | |--------------------------------|---------------|------------------|---|---|---------------------------------|---------------|-----------------|---|-------------------|---|-------------------------------|--------------|---------------------|---|--| | Cl II co | | | | • | Cl II .c | ontinu | eđ | | | | Cl II c | ontinu | .ed. | | | | 3829.27 | A | 15 | 15.00 18.22 | 2-3 3d' 1po-4p' 1F | 6661.68 | Ą | 75 | 16.32 18.17 | | 3d1 3ge_4p1 3p | 3833.40 | A | 200
150 | 18.17 21.39
18.16 21.39 | 4-5-4p ¹
3-4 | | 3147.86 | A | 20 | 15.00 18.92 | 2-2 3d' ¹ D°-4p' ¹ D
(10) | 6686.04
6713.43
6653.75 | A
A
A | 45
40
25 | 16.32 18.16
16.32 18.15
16.32 18.17 | 4-3
3-2
4-4 | (38) | 3827.62
3820.25
3838.37 | A
A
A | 100 | 18.15 21.38
18.17 21.39 | 2-3
4-4 | | 3161 44 | Α. | 20 | 15.02 18.92 | | 6681.03 | Ā | 15 | 16.32 18.16 | 3-3 | | 3830.80 | Ã | 15 | 18.16 21.38 | 3-3 | | 3161.44 | Α. | | | _ (11) | 4924.83 | A | 10 | 17.02 19.53 | 2-1 | 48" 3po_4p" 3s | 3615.09 | A | 10 | 18.17 21.59 | 4-3 4p1 | | 4995.52
4970.12 | A
A | 60
50 | 15.61 18.08
15.58 18.06 | 4-3 3d' ³ F°-4p' ³ D
3-2 (12) | | A | 15 | 17.01 19.53 | 1-1 | (39)
4s ⁿ 3pe_4p ⁿ 3p | •4235.49 | A | 25 | 18.32 21.14 | 3-2 4p | | 4925.17
4936.99 | A
A | 15
25 | 15.56 18.06
15.58 18.08 | 2-1
3-3
2-2 | 4781.32
4768.68
4771.09 | A
A | 75
150
40 | 17.02 19.60
17.01 19.60
17.01 19.59 | 2-3
1-2
0-1 | | 3781.23 | A | 30 | 18.22 21.49 | 3-3 4p1 | | 4924.28
4819.79 | A
A | 18
25 | 15.56 18.06
15.61 18.17 | 4-4 3d; 3F0-4p; 3F | 4785.44 | A
A | 50
45 | 17.02 19.60
17.01 19.59 | 2-2 | | 3231.75 | A | 12 | 18.22 22.04 | 3-2 4p | | 4781.82
4755.64 | A
A | 50
50 | 15.58 18.16
15.56 18.15 | 3-3 (13)
2-2 | 4490.00 | A | 50 | 17.02 19.77 | 2-2 | | 4811-57 | A | -12 | 18.49 21.06 | —
2–3 4p⁴ | | 4836.79
4798.40 | A
A | 20
15 | 15.61 18.16
15.58 18.15 | 4-3
3-2 | 4504.27
4519.19 | A
A | 20
18 | 17.01 19.75
17.02 19.75 | 2-1 | | 4857.04 | A . | 10 | 18.51 21.05 | 1-2 | | 4765.30
4739.42 | A
A | 10
10 | 15.58 18.17
15.56 18.16 | 3-4
2-3 | 4536.78
*4475.28
*4497.30 | A
A
A | 20
20
18 | 17.01 19.73
17.01 19.77
17.01 19.75 | 1-0
1-2
0-1 | | 4721.43
4748.67
4738.41 | A
A
A | 25
20
10 | 18.49 21.11
18.51 21.11
18.51 21.12 | 2-3 4p ¹
1-2
1-1 | | 3092.22
3071.35 | A
A | 50
40 | 15.61 19.60
15.58 19.60 | 4-3 3d' 3F0-4p" 3T
3-2 (14) | 4259.52 | A | 35 | 17.02 19.92 | | 48" 3pe_40" 1p | 3990.19 | A | 30 | 18.49 21.59 | 2-3 4p' | | 3058.00
3053.74 | A
A | 40
10 | 15.56 19.59
15.56 19.60 | 2-1
2-2 | 4208.03 | A | 30 | 17.02 19.95 | 2-2 | | 4020.06
4036.53 | A
A | 15
10 | 18.51 21.58
18.52 21.58 | 1-2
0-1 | | E222 50 | | 15 | 15.64 17.96 |
1-1 4e ^{t 3} p°-4p ^t 1 | 4191.59
4204.54 | A | 15
18 | 17.01 19.96
17.02 19.96 | 1-1
3-1
1-0 | | 3618.88 | Ą | 15
18 | 18.49 21.90 | 2-1 4p | | 5333.70
5078.25 | A
A | 150 | 15.65 18.08 | (15)
3-3 48' 30°-4p' 3 | 4195 11 | A
A
A | 15
18
20 | 17.01 19.96
17.01 19.95
17.01 19.96 | 1-2 | | 3639.19
3648.07 | A | 10 | 18.51 21.90
18.52 21.90 | 1-1
0-1 | | 5103.04
5099.30 | A
A | 125 | 15.65 18.06
15.64 18.06 | 2-2 (16)
1-1 | 1200.02 | • | | | • | | 3568.04
3576.00 | A
A | 20
15 | 18.49 21.95
18.49 21.94 | 2-2 4p*
2-1 | | 5113.36
5104.08 | A
A | 40
25 | 15.65 18.06
15.65 18.06 | 3-2
2-1 | 6831.62 | A | 30 | 17.11 18.92 | | 48" 1po_4p; 1p
(44) | 3603.72
3587.78 | A
A | 10
12 | 18.51 21.94
18.51 21.95 | 1-0
1-2 | | 5068.10
5098.34 | A
A | 10
20 | 15.65 18.08
15.64 18.06 | 2-3
1-2 | 4771.66
4399.14 | A | 20
15 | 17.11 19.70 | 1-2 | 48" 1pc_4p" 1p
(45)
48" 1pc_4p" 1p | 3604.51 | A | 15 | 18.52 21.94 | 0-1 | | 4896.77
4904.76 | A
A | 200
135 | 15.65 18.17
15.65 18.16 | 3_4 4g* 3p°_4p* 3p
2-3 (17) | 71 | - | | | - | (46) | 7578.07 | A | 10 | 18.64 20.27 | 2-2 3d' | | 4917.72
4914.32 | A
A | 125 | 15.64 18.15
15.65 18.16 | 1-2
3-3 | 4943.24 | A | 15 | 17.20 19.70 | | 3d" 1po_4p" 1p | 5568.81 | A | 15 | 18.92 21.14 | 2-2 4p | | 4922.14
4792.04 | A
A | 20
12 | 15.65 18.15
15.65 18.22 | 2-3 4st 3po-4pt 1; | 4544.48
3843.26 | A
A | 10
100 | 17.20 19.92 | | 3d" 1po_4p" 1p
(48)
3d" 1po_4p" 1g | *5175.85 | . А | 30 | 18.92 21.30 | 2-2 4pt | | 4343.62 | A | 100 | 15.65 18.49 | (18)
3_2 48 30°_40 3) | | • | | | - | (49) | 3954.21 | A | 30 | 18.92 22.04 | 2-2 4pt | | 4307.42
4391.76 | A
A | 75
50 | 15.65 18.51
15.64 18.52 | 2-1 (19)
1-0
2-2 | *5175.85 | Α. | 20 | 17.31 19.70 | | 3d" ¹ D°-4p" ¹ D | 4224.92 | A | 15 | 19.60 22.52 |
3-2 4₽* | | 4336.26
4304.07 | A
A | 45
40 | 15.65 18.49
15.64 18.51 | 1-1 | 4740.40 | A | 150 | 17.31 19.92 | 2~1
- | 3d" lpo_4p" lp
(51) |
*4235.49
3868.68 | A | 25
40 | 19.60 22.51 | 2-1
3-4 4p" | | 3123.72
3121.62 | A
A | 15
10 | 15.65 19.60
15.65 19.60 | 2-2 (20) | 01 4372.91
4309.06 | A
A | 80
50 | 47.45 20.27
17.41 20.27 | 2-2 | | 3861.95
3854.75 | Ā | 20
15 | 19.60 22.80
19.59 22.80 | 2-3
1-2 | | •3119.82 | A | 12 | (15.65 19.60
15.64 19.60 | 2-3
1-2 | *4259.52 | A
A | 35
35 | 17.37 20.27 | 1-2
3-2 | _ | 3864.60 | A | 15 | 19.60 22.80 | 3-3 | | 3045.00 | A | 10 | 15.65 19.70 | 3_2 4 ₈ , 3p • 4p, 1
(21) | 3006.98
2982.78 | A | 20
18 | 17.41 21.51
17.37 21.51 | 2-2
1-2 | (53) | 4482.02
•4497.30 | A
A | 10
18 | 19.77 22.52
19.77 22.51 | 2-2 3p
3-1 | | 2996.63
3006.05 | A
A | 40
20 | 15.65 19.77
15.65 19.75 | 3-2 4e' 3po- 3p †
3-1 (22) | | | | | - | | *4475.28 | Ā | 20 | 19.75 22.51 | 1-0 | | 3018.82
3004.39 | A
A | 12
10 | 15.64 19.73
15.64 19.75 | 1-0
1-1 | 6759.42
6850.21 | A | 35
40 | 17.78 19.60
17.80 19.60 | 3-2 | | | t Unc | lassifi | ed Lines of Cl | II | | 5634.84 | Δ | 18 | 15.77 17.96 | -
1_1 3al 1po_4pi 1 | 6952.13
6841.86 | A | 25
10 | 17.82 19.59
17.80 19.60 | 2-1
3-3 | | 7565.53
5356.14 | A
A | 18
10 | 3610.0
3479.8 | | | 1057 51 | | | 45.00.40.50 | (23) | 3883.80 | A | 12 | 17.96 21.14 | 1-8 | 4p' 1p_5e' 1pe | 4584.28
4157.82 | A
A | 20
25 | 3203.0
3173.6 | 05 A
66 A | | 4253.51
4241.38
4234.09 | A
A
A | 75
60
50 | 15.89 18.79
15.88 18.79
15.88 18.79 | 3-2 4p ⁵ P-58 ⁵ g°
2-2 (24)
1-3 | 3688.44 | A | 15 | 17.96 21.30 | 1-2 | (55)
4p ¹ 1p_4d ¹ 3po
(56) | 3981.94
3793.75 | A
A | 15
25 | 3170.2
3160.5 | | | 3860.80 | A | 150 | 15.89 19,09 | 3-4 4p5p-4d5pe | 3022.93 | A | 30 | 17.96 22.04 | 1-2 | | | | | | | | 3850.97
3845.42
3860.98 | A
A
A | 100
50
100 | 15.88 19.09
15.88 19.09
15.89 19.09 | 2-3 (25)
1-2 | 6399.41 | A | 10 | 18.03 19.95 | 2-2 | 3d" 3p0_4p" 3p | † Cl III | IP: | 39.7 | Anal B List | C Nov 1 | | 3851.38
3845.69 | A
A | ?5
?5 | 15.88 19.09
15.88 19.09 | 3-3
2-2
1-1 | 6522.38 | A | 10 | 18.08 19.97 | -
3-3 | (58)
4p' 3p_4d 3 pe (| 3602.10
3612.85 | В | 9 [*]
8 | 21.56 24.98
21.49 24.91 | 21-31 48
11-31 | | 3861.40
3851.69 | A
A | 50
30 | 15.89 19.09
15.88 19.09 | 3-2
2-1 | 4147.09 | A | 30 | 18.08 21.06 | 3-3 | (59)
_{4p} : 3 <u>p</u> _5 ₈ : 3 <u>p</u> e | 3622.69
† 3682.05 | B
B | 7 7 | 21.45 24.85
21.56 24.91 | 8 −1 8 | | 3845.84 | A | 30 | 15.88 19.09 | | 4130.86
4133.66 | A | 25
20 | 18.06 21.05
18.06 21.05 | 2-2
1-1
2-3 | (60) | 3670.28
3656.95 | В | 7 | 21.49 24.85
21.45 24.82 | 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | 6094.65 | A | 100 | 15,93 17.96 | 2-1 48' 10°-40' 1;
(26) | 4079.88 | A
A | -12
15 | 18.06 21.06 | | 4p ¹³ D-5d ³ D•† | 3705.45
*3340.42 | В | 6
9 | 21.49 24.82
21.56 25.25 | 1 2 - 2
2 1 -2 1 48 | | 5790.50 | A | 25 | 15.93 18.06 | 2-1 48' 10°-40' 3 | D† 4052.22 | A | 12 | 18.06 21.11 | 22 | (61) | 3329.06
3387.60 | B
B | 8 6 9 | 21.49 25.20
21.56 25.20 | 13-13
23-13 | | 5392.12 | A
A | 200 | 15.93 18.22 | 2-3 48' 10°-4p' 19
(28)
2-2 48' 10°-4p' 19 | 3798.80 | A | 75
50 | 18.08 21.32 | 3-4
2-3 | (62) | *3340.42 | В | 6 | 21.49 25.19
21.49 25.25 | $1\frac{1}{2}$ $-2\frac{1}{2}$ | | 3276.81 | A | 40 | 15.93 19.70 | 2-2 4e' 10°-4p" 1 | 3818.40 | A
A
A | 40
30
30 | 18.06 21.30
18.08 21.31
18.06 21.30 | 1-2
3-3
2-2 | | 3289.80
3191.45 | В | 7
9 | 21.45 25.20 | 2-12
23-12 4s | | 3096.72 | A | 25 | 15.93 19.92 | (30)
2-1 4st lpc_4p 1; | P 3733.73 | A | 10 | 18.08 21.39 | 3-4 | 4n 3n 4d 3go | 3139.34 | B | 8 | 21.49 25.42
21.45 25.42 | 13-13
2-12 | | 5285.48 | A | 30 | 16.27 18.60 | (31)
3_2 4p ³ P_3d' 3pe | 3717.94
† 3522.14 | A | 15
40 | 18.06 21.38 | 2-3 | | 7005.07 | | | 22 44 25 25 | - | | 5173.15 | A | 25 | 16.27 18.65 | (32)
2-3 4p ³ p-3d ¹ 3pe | 3509.39
† 3513.22 | A
A
A | 40
35 | 18.08 21.59
18.06 21.58
18.06 21.58 | 3-3
2-2
1-1 | (64) | 3925.87
3720.45 | A | 5
8 | 22.11 25.25
22.11 25.42 | 12-22 48
12-22 48 | | 5189.70
5162.34
5193.03 | A
A
A | 25
10
10 | 16.27 18.64
16.27 18.66
16.27 18.64 | 1-2 (33)
0-1
3-2 | 3526.13
3513.69 | A
A | 30
12 | 18.08 21.58
18.06 21.58
18.06 21.59 | 3-2
2-1
2-3 | | 3748.81 | A | 8 | 22.02 25.31 | 출-1 호 | | 4585.03 | A | 15 | 16.27 18.96 | 2-1 4p3p-34 3ge | 3505.44
3508.94 | A | 12
12 | 18.06 21.59
18.06 21.58 | 1-2 | 1 | 3320.57
3259.32
3336.16 | A
A
A | 7
6
5 | 22.11 27.42
22.02 27.39
22.11 27.39 | 1 1 48
1 1 1 1 48 | | *4572.13
4569.42 | A
A | 100
50 | 16.27 18.97 | 2-1 4p ³ P-5s ³ g° | 3189.04 | A | 20 | 18.08 21.95 | 3-2
- | 4p ¹ 3p_4d ¹ 3pe.
(65) | 1 3244.44 | Ā | 5 | 22.02 27.42 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | •4572.13 | A | 100 | 16.27 18.97
16.27 18.97 | 1-1 (35)
0-1 | 4276.51
4270.61 | A
A | 30
25 | 18.17 21.06 | 4-3 | 40 3F-58 300 | | A | 7 | 22.16 25.25 | 21-21 3d | | 3949.96 | A | 10 | 16.27 19.39 | 2-2 4p ³ P-3p ⁵ 4e ³ P | 4261.22 | A | 20 | 18.16 21.05
18.15 21.05 | 3-2
2-1 | | 4059.07
4104.23
4018.50 | A
A
A | 6
5
6 | 22.16 25.20
22.18 25.19
22.18 25.25 | 21-21 3d
21-11
11-11
11-21 | | 3329.12
*2315.44
3307.90 | A
A
A | 150
100
50 | 16.27 19.97
16.27 19.99
16.27 20.00 | 2-3 4p ³ p-4d ³ p°
1-2 (37)
0-1 | 4205.07 | A | 10 | 18.17 21.11 | 4-3 | (67) | 4106.83 | A | 5 | 22.19 25.20 | \$-15 | | 3316.86
3306.45 | A
A | 50
40 | 16.27 19.99
16.27 20.00 | 2-2
1-1 | 3913.92
3916.70
3917.57 | A
A
A | 30
20
18 | 18.17 21.32
18.16 21.31
18.15 21.30 | 4-4
3-3
2-2 | (68) | 3779.35 | . A | 5 | 23.16 25.42 | _ გ გ ∽მჭ 3đ
_ | | | | | | _ | | | | | 5-6 | | | | | | | 17.07 19.88 17.19 19.88 000n A 11-11-48²P-4p⁴S° 2-12 (16) 13- 1 48²P-4p²S° (30) (30) (20) 13.85 15.04 1-0 13.02 15.07 3-4 13.08 15.26 ges in Paschen notation see text \$37 4p 2-5d 4° (13) 4p 2-6d 4° (14) 3108.82 3765.27 3720.43 3669.62 3678.27 655567 ė B B 4 3 4 19.14 22.60 $3\frac{1}{2}$ $4p^4P^0-5s^2P$ 19.18 22.60 $1\frac{1}{2}$ $1\frac{1}{2}$ (43)19.22 22.60 $\frac{1}{2}$ | | | | | REVIS | E D M | ULTIPLE | T T | ABLE | | | | 23 | |------------------|-------------------|--|--|--|---------------------|--|--------------------------|---|--|--|--|---| | rato:
Ref | ry
Int | E P
Low High | J Multiplet (No) | Laborat
I A Re | ory
Int | E P
Low High | J | Multiplet
(No) | Laboratory
I A Ref Int | E P
Low High | J | Multiplet (No) | | tinu | эđ | | | A III I P | 40.8 An | al C List D | Nov | 1944 | K II continued | | | | | A
B
A | 2
5
4
3 | 21.27 24.27
21.34 24.27
21.27 24.27
21.34 24.27 | 31-21 3d' ³ D-4f ² D
11-11 (124)
21-11
12-21 | 3285.85 A
3301.88 A
3311.25 A | 25
20
15 | 21.53 25.28
21.53 25.26
21.53 25.25 | 2-3
2-2
2-1 | 4s ⁵ S°-4p ⁵ P
(1) | 4659.38 A 15
4423.73 A 10
4305.00 A 30
3966.72 A 15 | 20.36 23.01
20.36 23.15
20.36 23.23
20.36 23.47 | 2-3
2-1
2-2
2-1 | 3d 3°-4p 2
(5) -4p 4
-4p 5
-4p 9 | | A
A | 0 3 | 21.41 23.53
21.41 23.77 | -
2½-1½ 4p! 2pe_4d ²
(125)
3½-3½ 4p! 2pe_3d"
1½-1½ (126) | 3480.55 A
P 3503.58 A
3499.67 A | 20
15
12 | 24.28 27.83
24.27 27.79
24.27 27.80 | 2-2
1-1 | (S)
(S)
(S)
(S) | 5536.01 A (3)
4466.65 A 20
4149.19 A 30 | 20.39 22.62
20.39 23.15
20.39 23.36 | 0-1
0-1
0-1 | 4s 3°-4p 1
(6) -4p 4
-4p 7 | | A
B | 1
0
6 | 21.40 23.77 | 1 2 -2 2 | 3344.72 A | 25
20
15 | 24.28 27.98
24.27 27.96
24.27 27.94 | 3-4
2-3
1-2 | 461 3D0_4201 3F1
(3) | 5969.64 A (2) | 20.39 23.47 | 0-1
-
1-1 | -4p 9
4s 4°-4p 1 | | A
A | 3
1
3 | | 21-21 4p; 2p°-5s;
12-12 (127)
21-12 (127) | 7070 1E 1 | 12
12
10 | 25.58 29.66
25.62 29.66
25.64 29.65 | 2-3
1-3
0-1 | 4±я 3ре_4ря 3рң
(4) | 4943.24 A 5 | 20.55 23.05
20.55 23.23
20.55 23.36
20.55 23.41 | 1-2
1-2
1-1
1-3 | (7) -4p 3
-4p 5
-4p 7
-4p 8 | | A
A | 5
4
6 | 21.40 24.62
21.40 24.69
21.41 24.65 | 11-1 4pl 2pe-4di
12-12 (128) | ² P 3064.77 E | | 25.62 29.65 | 1-1
- | _{3d} я 3ре _{—4р} я 3 <u>р</u> е | 4222.97 A 30
3530.75 A 20 | 20.55 23.47
20.55 24.05 | 1-1
1-0 | -4p 9
-4p 10 | | A
A
A | 4
5
4 | 21.41 24.63
21.41 24.63
21.40 24.65 | 3 2 3 40 30 41 12 12 12 12 12 12 12 12 12 12 12 12 12 | 3858.32 E | 10 | 26.46 29.66
26.41 30.05 | 1-2 | (5)
3d ^{n 3} p≈_4p* 3p4 | For changes in Pasc | hen notation se | e text | \$ 37 | | A | 4 | 81.40 24.69 | 12-12140' BD-682 | Р | | | | (6) | KIII I P 46 An | al D List D | A | 244 | | A
A
A | 6
6
4 | 21.41 24.72 | 31-31 4p* 30°-4d*
11-31 (131)
31-32 | A IV I P 6 | 1 Anal | B List A | Nov 19 | 44 | 3322.40 A 6
3420.82 A 6 | 25.61 29.32
25.76 29.37 | Nov 1 | 48 ⁴ P-4p ⁴ P° | | A
A
A | 3
4
3 | 21.41 25.24
21.40 25.25
21.40 25.24 |
22-12 4pt 2pe-5d ²
12-2 (132)
12-12 | P 3077.40 A 3016.15 A 3134.90 A | . 5 | 31.77 35.78
30.95 35.71
31.77 35.71 | 13-23
3-13
13-13 | 48 ² P-4p ⁴ P° | 3278.79 A 6
3468.32 A 6
3513.88 A 5 | 25.61 29.37
25.76 29.32
25.86 29.37 | 23-13
13-23
2-13 | | | A | 4 | 21.41 25.26 | 2 ¹ / ₂ -2 ¹ / ₂ 4p ^{1 2} D°-5d ²
(133) | D 3037.98 A | . 6 | 31.77 35.83 | | 4s ² P-4p ² D°† (2) | 2992.24 A 6
3052.07 A 6
3056.84 A 5 | 25.61 29.73
25.76 29.81
25.86 29.90 | 22-32
12-22
2-12 | 4s ⁴ P-4p ⁴ D ⁰ (2) | | B | 1
8 | 21.53 23.70
81.53 83.74 | 1출-1출 3d 경모4p" 2
1출- 출 (134) | Spo ——— | | | | | +3481.11 § B 6 | 26.26 29.81 | _
1출∽2출 | 48 ² P-4p ⁴ D• | | A | Ŏ | | 1½-2½ 3d 2p_4f2F
(135) | | 32 Ana: | l A List C | Nov 1 | | 3289.06 B 6
3421.83 A 4 | 26.26 30.01
26.45 30.05 | | 48 ² P-4p ² D° 1
(4) | | A | 5 | 21.53 24.27 | 1½-2½ 3d ^{° 3} P-4f ² D
_ (136) | • 7664.907// A
7698.979 A | | 0.00 1.61
0.00 1.60 | 5- 5 | | 3421.83 A 4
3201.95 A 6
3209.34 A 6 | 26.26 30.12
26.45 30.29
26.45 30.12 | | | | A | 000n | 23.47 25.24 | 1½-1½ 5p ² P°-5d ² P
(137) | 4643.27 F | | rb 0.00 2.66
rb 0.00 2.66 | | 4 ² 8-3 ² D
(2) | 3364.22 A 6 | 26.45 30.12 | 2-12
2-12 | | | ; Une | lassi fi e | ed Lines Attri | buted to A II | 4044.145 E
4047.214 E | | 0.00 3.05
0.00 3.05 | 출-1출
출- 출 | 4 ² 5-5 ² P° (3) | | | | | | A
A | 3
4 | | | 3446.38 0
3447.41 0 | | 0.00 3.58
0.00 3.58 | 1-11 | 4 ² 5-6 ² Pe
(4) | <u>Ca I</u> I P 6.09 A
6572.781 A 50 | nal A List B
0.00 1.88 | Mar : | 1944
4 ¹ S-4 ³ P° | | A
A
B | 4
3
3 | | | 12523.0 F | | 1.61 2.60
1.60 2.60 | | 4 ² P°-5 ² S
(5) | 4236.728// A 500F | | 0-1 | (1)
418-41Pe
(2) | | A
A
A | 3
4
3
3 | | | 11772.66 0
11689.76 0
11769.41 I | 15r
10 | 1.61 2.66
1.60 2.66
1.61 2.66 | | 4 ² P°-3 ² D
(6) | 6162.172 A 150
6122.219 A 100
6102.722 A 80 | 1.89 3.89
1.88 3.89
1.87 3.89 | 2-1
1-1
0-1 | 4 ³ P°-5 ³ S
(3) | | A
A
B | 4
4
4 | | | 6964.69 F
6936.27 F
6964.18 F | (1) | 1.61 3.38
1.60 3.38
1.61 3.38 | 13-23
3-13
13-13 | 4 ² P°-4 ² D
(7) | 4454.781 A 80
4434.960 A 60x
4425.441 A 50
4455.887 A 40 | 1.89 4.66
1.88 4.66
1.87 4.66
1.89 4.66 | 2-3
1-2
0-1
2-2 | 4 ³ P°-4 ³ D
(4) | | A
A
A | 3
5
3 | | | 9950.5 I | SON | 2.60 3.84
2.60 3.84 | - | 5 ² S-7 ² P° (8) | 4435.688 A 40
4456.612 B 10
4302.527 A 60r | 1.88 4.66
1.89 4.66 | 1-1
2-1
2-2 | 43pe_4p2 3p | | A
A
B | 5
4
4 | | | 11022.3 | | 2.66 3.78 | - | 3 ² D-5 ² F° | 4298.986 A 30
4318.652 A 45
4307.741 A 45 | 1.88 4.75
1.89 4.75
1.88 4.74 | 1-1
2-1
1-0 | (5) | | A
A
B | 5
4
3 | | | 9595.60 F
9597.76 F | | # 2.66 3.94 | 21-
12- | 3 ² D-6 ² F° (10) | 4283.010 A 40
4289.364 A 40 | 1.88 4.76
1.87 4.75 | 1-2
0-1 | .77- | | A
A | 5
4
3 | • | | | | | | | 3973.707 A 12
3957.053 A 10
3948.901 A 6 | 1.89 5.00
1.88 5.00
1.87 5.00 | 2-1
1-1
0-1 | 4 ³ P°-6 ³ S
(6) | | A | 3
5 | | | <u>KII</u> I P 3 | | 20.06 22.62 | June
2-1 | 1944
4s 1°-4p 1 | 3923.50 D (0)
3761.72 E (0) | | 1-0
1-0 | 4 ³ P°-4p ² 1s
(7)
4 ³ P°-6 ¹ S | | A
A
A | 5
3
5 | | | 4186.24 A
4134.72 A
3995.10 A | 30
30 | 20.06 23.01
20.06 23.05
20.06 23.15 | 2-3
2-2
2-1 | (1) -4p 3
-4p 3
-4p 4 | 3644.410 A 40
3630.748 A 30 | 1.89 5.28
1.88 5.28 | 2-3
1-3 | (8)
43p°_53D
(9) | | A | 3
4
4 | | | 3897.92 A
3739.13 A
3681.54 A
3618.49 A | . 15
. 9
. 15 | 20.06 23.23
20.06 23.36
20.06 23.41
20.06 23.47 | 2-2
2-1
2-2
2-1 | -4p 5
-4p 7
-4p 8
-4p 9 | 3624.111 A 20
3644.765 A 15
3630.974 A 15 | 1.87 5.28
1.89 5.28
1.88 5.28 | 0-1
2-2
1-1
2-1 | | | A
A | 3 | | | | | | - | | 3487.598 A 12 | 1.89 5.28
1.89 5.43 | 2-1 | 4 ³ P°-7 ³ S | | A
A
A | 4
5
3 | | | 5005.60 A
4363.40 A
4114.99 A
4012.10 A | 30 | 20.15 22.62
20.15 23.05
20.15 23.15 | 1-1
1-3
1-1 | 48 2°-4p 1
(2) -4p 3
-4p 4 | 3474.763 A 8
3468.476 A 4 | 1.88 5.43
1.87 5.43 | 1-1
0-1 | (10)
4 ³ P°-6 ³ D | | A
A
A | 3
4
3 | | | 4012.10 A
3783.19 A
3767.36 A
3716.60 A | 15
15 | 20.15 23.23
20.15 23.41
20.15 23.43
20.15 23.47 | 1-3
1-3
1-0
1-1 | -4p 5
-4p 8
-4p 6
-4p 9 | 3361.918 A 35r
3350.209 A 25r
3344.513 A 8r
3362.131 B 35r
3350.361 B 25r
3362.28 B (0) | * 1.88 5.56
1.87 5.56
* 1.89 5.56
* 1.88 5.56 | 2-3
1-2
0-1
2-2
1-1
2-1 | (11) | | A
A
A
B | 4
4
4
5 | | | 5056.27 A
3873.74 A
3744.42 A | 10 | 20.18 22.62
20.18 23.36
20.18 23.47 | 0-1
0-1
0-1 | 3d 1°-4p 1
(3) -4p 7
-4p 9 | 3286.067 A 4
3274.661 B 2 | 1.89 5.65
1.88 5.65 | 2-1
2-1
1-1
0-1 | 4 ³ P°-8 ³ S
(12) | | A
A
A | 3
4
3
4 | | · | 4505.33 A
4340.03 A
4225.67 A
3972.58 A | 30
30 | 30.31 23.05
30.31 23.15
20.31 23.23
30.31 23.41 | 1-3
1-1
1-3
1-3 | 3d 2°-4p 3
(4) -4p 4
-4p 5
-4p 8 | 3269.090 B in
3225.896 A 8n
3215.145 B 5n
3209.930 B 2n
3226.129 B 8n
3215.334 B 5n | • 1.89 5.72
• 1.88 5.72
1.87 5.72
• 1.89 5.72 | 2-3
1-3
0-1
3-3
1-1 | 4 ³ P°-7 ³ D
(13) | | 24 | | | | | | | REV | I S E | э м 1 | JLTI | PLE | T T | ABLE | | | | | | | | |----------------------------------|--------------|-----------------------|----------------------|----------------------|-------------------|--|----------------------|--------------|--------------|--------------|--------------|------------|---|------------------------|-------------|-------------------|--------------|----------------|---|----------------------------------| | Labor
I A | atory
Ref | | E : | P
High | J | Multiplet (No) | Labor
I A | rator
Ref | y
Int | E F
Low | High | J | Multiplet (No) | Labor
I A | ator
Ref | | Low | P
High | , ì | Mu | | Ca I cont | inue | 1 | | | | | Ca I cont | tinue | đ. | | | | | <u>Ca II</u> I | P 1 | 82 | Anal A | List 1 | B Apr | c 1 | | 3180.521
3169.854 | В | 1N
1N | 1.89 | 5.77
5.77 | 2-1
1-1 | 4 ³ P°-9 ³ S
(14) | 6798.51 | C | 6n
500n | 2.70
2.70 | 4.51
4.53 | 2-1
2-1 | 3 ¹ D-5 ³ P° †
(31)
3 ¹ D-3d4p ¹ P° | 3933.664//
3968.470 | A
A | 400R(
350R(| H) 0.00 | 3.14
3.11 | 1-11
2-1 | 42 | | 3164.618 | В | 1N | 1.87 | 5.77 | 0-1 | 43pe_83p | 6717.685
5349.472 | A
A | 25 | 2.70 | 5.00 | 2-3 | (32)
31D-3d4p1F° | 8542.089 | В | 1500 | 1.69 | 3.14 | ~
2출-1출 | 32 | | 3150.738
3140.782
3136.003 | A
B
B | 4N*
3N*
1N | 1.89
1.88
1.87 | 5.81
5.81
5.81 | 2-3
1-2
0-1 | (15) | 5041.620 | A | 40 | 2.70 | 5.15 | 2-1 | 31D-51pe | 8662.140
8498.018 | B
B | 1000
300 | 1.69 | 3.11
3.14 | $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ | | | 3151.280
3141.164 | В | 4N*
3N* | 1.89 | 5.81
5.81 | 2-2
1-1 | | 4878.132 | A | 50 | 2.70 | 5.23 | 2-3 | 31D_41F | | | | | | ~ | . a | | 3117.656 | В | 1N | 1.89 | 5.85 | 2-1 | 4 ³ P°-10 ³ S | 4526.935 | A | 30 | 2.70 | 5.42 | 2-1 | 31 D_61pe
(36) | 3736.901
3706.026 | B
B | 12
10 | 3.14
3.11 | 6.44
6.44 | 12- 2 | 48 | | 3107.388
3102.36 | B
B | 1N
(0) | 1.88
1.87 | 5.85
5.85 | 1-1
0-1 | (16) | 4355.096 | A | 25 | 2.70 | 5.53 | 2-3 | 31D-51F0 | 3179.332
3158.869 | ВВ | 15
10 | 3.14
3.11 | 7.02 | 13-23 | 42 | | 3006.858 | A | 6 | 1.89 | 6.00 | 8-8 | 4 ³ po_3d ² 3p | 4240.456 | A | 6 | 2.70 | 5.61 | 2-1 | 31D_71pc
(38) | 3181.275 | В | 4 | 3.14 | 7.02 | 12-12 | | | 2999.641
3009.205 | A | 5 | 1.88 | 5.99
5.99 | 2-1 | (17) | 4108.554 | В | 10N | 2.70 | 5.70 | 2-3 | 3 ¹ D-6 ¹ F | 11836.4 | P | | 6.44 | 7.48 | -
1_11 | . 52 | | 3000.863
2997.309 | B
A | 5 | 1.88 | 5.99
6.00 | 1-3 | | 4058.912 | В | in | 2.70 | 5.74 | 2-1 | | 11947.0 | P | | 6.44 | 7.47 | -1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | | | 2994.958 | A | 5 | 1.87 | 5.99 | 0-1 | | 3972.570 | A | (1) | 2.70 | 5.80 | 2-3 | 31D_71F0
(41) | 4472.09
4479.29 | D
D | (0)
(1) | 6.44
6.44 | 9.20 | -1-1-1
1 | 52 | | 6439.073 | A | 150 | 2.51 | 4.43 | 3-4 | 3 ³ D-3d4p ³ F° (18) | 3889.141 | В | (1) | 2.70 | 5.87 | 2-3 | 3 ¹ D-8 ¹ F° (42) | 4419.25 | ע | | | |
2- 2 | | | 6462.566
6493.780
6471.660 | A
A
A | 125
80
40 | 2.51
2.51
2.51 | 4.42
4.41
4.42 | 2-3
1-2
3-3 | (18) | 10343.85 | С | 500 | 2.92 | 4.11 | 1-0 | 4 ¹ P°-5 ¹ S | 4788.50
4718.16 | D | {-} | 7.02 | 9.63 | 의 -
1 - | 42 | | 6499.649
6508.742 | A
B | 30
(1) | 2.51 | 4.41 | 2-2
3-2 | | 7326.146 | A | 400 | 2.92 | 4.60 | 1-2 | 41 po_41 D | 3758.36 | E | (8)
(7) | | 10.30 | 2}- | 42 | | 6464.70 | D | (1) | 2.51 | 4.42 | 3-2 | | 6709.88 | D | (1) | 2.92 | 4.76 | 1-2 | 41pe_4p2 3p | 3755.61 | E | | | 10.30 | 1 2 - | . 5 | | 6455.600
6449.610 | A
A | 10
50 | 2.51
£.51 | 4.42 | 2-2
1-8 | (19) | 5007.570 | A | 1 | 3.93 | 5.03 | 1-0 | 41pe_4p2 1s | 3346.99 | E | (10) | | 10.71 | 2 } - | 4 ²
4 ² | | 6169.559 | A | 40 | 2.51 | 4.52 | 3-3 | 3 ³ D-5 ³ P° | 5857.454 | A | 100 | 2.92 | 5.03 | 1-2 | 41 Pe_4p 2 1D | 3125.15
3123.29 | E | (5)
(3) | | 10.97
10.97 | 2}_
1}_ | 4- | | 6169.055
6166.443 | A
A | 25 ⁻
15 | 2.51 | 4.51 | 2-1
1-0 | • | 5512.979 | A | 20n | 2.92 | 5.16 | 1-0 | 41po_61g | 2989.42 | Ē | $\binom{1}{1}$ | | 11.15 | 23- | 42 | | 6161.289
6163.758
6156.10 | A
A
F | 10
10
(1) | 2.51
2.51
2.51 | | 2-2
1-1
1-2 | | 5188.848 | A | 50 | 2.92 | 5.30 | 1-2
 4 ¹ P°-5 ¹ D | 2987.72 | E | | 7.02 | 11.15 | 1] -
 | | | 5588.757 | r
A | 80 | 2.51 | | 3-3 | 7 7 | 4847.296 | A | 2 | 2.92 | 5.47 | 1-0 | 41 po_71s | 9933.3
9856.7 | P
P | | 7.48 | 8.73
8.73 | 1 | 58 | | 5594.468
5598.487 | A | 60
50 | 2.51 | 4.72 | 2-2 | (21) | 4685.265 | A | 12 | 2.92 | 5.55 | 1-2 | 4 ¹ po_6 ¹ D
(51) | 8250.2 | P | | 7.48 | 8.98 | 1-2-2 | | | 5601.285
5602.846 | À
A | 30
25 | 2.51 | 4.72 | 3-2
2-1 | | 12816.06 | P. | | ,3.89 | 4.86 | -
1-2 | | 8203.2
8256.1 | P | | 7.47
7.48 | 8.98 | \$-1
12-1 | • | | 5590.120 | A. | 25
20 | 2.51
2.51 | 4.72 | 2 3
1-2 | | 12823.89
12827.09 | P)
P | (50d) | 3.89 | 4.86 | 1-1
1-0 | | 5307.30
5285.34 | D
D | [_ } | 7.48
7.47 | 9.81
9.81 | | 5 ² | | 5270.270
5265.557 | A
A | 60
40 | 2.51
2.51 | | 3-2
2-1 | | 6361.79 | F | (5n) | 4.43 | 6.37 | -
4-5 | 3d4p ³ F°-3d4d ³ G | 5019.979 | В | (2) | 7.48 | 9.94 | 11-2 | _ | | 5262.244
5264.239 | A
A | 25
20 | 2.51 | 4.86 | 1-0 | | 6343.29
6318.11 | F | (4n)
(3n) | 4.42 | 6.37
6.36 | 3-4
2-3 | (53) | 5001.489
5021.141 | C | (1)
(0) | 7.47
7.48 | 9.94 | 1 -1 | } | | 5261.706
5260.375 | A
A | 20 | 2.51 | 4.86 | 1-1 | | 5757.69 | F | (4n) | 4.43 | 6.57 | 4-4 | 304p ³ F°-304d ³ F | 4220.13 | D | [_ } | | 10.41 | - | 5 ² | | 4585.871 | A | 50 | 2.51 | | 3-4 | | 5735.74
5717.99 | F | (3n)
(4n) | 4.42
4.41 | 6.57
6.57 | 3-3
2-2 | (54) | 4206.21 | D | | 7.47 | | | - | | 4581.402
4578.558 | A
A | 40
30 | 2.51
2.51 | 5.21 | 2-3
1-2 | | 5761.88
5746.81 | F | (1n)
(2N) | 4.43
4.42 | 6.57
6.57 | 4-3
3-2 | | 4109.83
4097.12 | D
D | (1)
(1)
(0) | 7.47 | 10.49 | 11-2
3-1 | ţ | | 4585.923 | В | (2) | 2.51 | | 3-3 | | 5731.70
5707.03 | F | (in) | 4.42 | 6.57
6.57 | 3-4
2-3 | | 4110.33 | D | | | 10.49 | 1-1 | _ | | 4512.282
4509.446 | A
B | .5
.3 | 2.51
2.51 | 5.25 | 3-2
2-1 | (24) | | | | | .—— | - | | 3694.11
3683.71 | D | {1
1
0} | 7.47 | 10.82 |] -1 | ŧ | | 4507.417
4507.854 | B
B | (1) | 2.51
2.51 | 5.25 | 1-0
2-2 | : | 9701.81
9688.60 | P | 20
15 | 4.72 | 6.00
5.99 | 2-1 | 3d4p ³ p°-3d ^{2 3} p
(55) | 3694.31 | D | (0) | 7.48 | 10.82 | 1 } _1}
 | ŧ | | 4506.624
4505.00 | B | (1)
(0) | 2.51
2.51 | | 1-1 | | 9676.25
9664.29 | P
P | 5
5p? | 4.71 | 5.99
6.00 | 1-0
2-2 | | 6456.907 | C | (-) | 8.40 | 10.31 | _ | 42 | | 4000 577 | | 45 | 0 51 | E E2 | | 23n =3ne | 9663.58 | Đ) | ، رړۍ | 4.71 | 5.99 | 1-1 | | E770 20 | | 7.5 | 9.40 | 10 71 | | 12 | 3-2 3d4p³p²-3d² 3p 3683.71 3-1 (55) 1-0 2-2 6456.907 1-1 1-2 5339.29 9701.81 9688.60 9676.25 9664.29 9663.58 9639.40 4.72 4.73 4.71 (4.73 4.71 4.71 6.00 5.99 5.99 6.00 5.99 6.00 PPPPP 4098.533 4094.930 4092.633 2.51 5.53 2.51 5.53 2.51 5.53 3³D-5³F° (25) 15 12 8 3-4 2-3 1-2 8.40 10.71 D (-) 2-2 3d4p³Po-3d^{2 3}P 1-1 (56) 2-1 1-0 1-2 0-1 6.00 5.99 5.99 5.99 6.00 5.99 4.86 4.86 4.86 4.86 4.86 4.86 10838.77 10863.72 10869.37 10879.78 10833.12 10861.51 10 2 3 4 4 3 000000 3875.807 3872.552 3870.506 ВВ 2.51 5.70 2.51 5.70 2.51 5.70 3³D-6³F° (4) (3) (2) 3-2-1-Ca III I P 51.00 Anal D List A Apr A 2-1 .4s 3753.367 3750.349 3748.374 2.51 5.80 2.51 5.80 2.51 5.80 3-2-1-3³D-7³F° (27) B B (1) (1) (1) 29.94 33.60 3372.68 3537.75 2988.61 30.11 33.60 30.11 34.24 1-1 1-2 A A 48 Strongest Unclassified Lines of Ca I 2.70 4.41 2-2 3¹D-3d4p²F 5743.28 (29) 2.70 4.42 2-2 3¹D-3d4p²F 5688.47 (30) 3678.240 3675.307 3673.448 3³D-8³F° 30.32 33.60 30.32 34.40 (3) (3n) (3n) (3n) (3n) 3761.62 3028.66 F F F F F 6 0-1 0-1 4081.74 3367.81 3233.02 3119.66 2989.30 30.58 33.60 30.58 34.24 30.58 34.40 30.58 34.53 30.58 34.71 5 51 4 8 6 1-1 1-3 1-1 1-3 1-1 A A A A 7202.194 A 200 7148.147 A 500 (4N) (3n) | | DESTARD WHISTDIES TADIS | | 25 | |--|---|--|--| | pratory EP J Multiplet | REVISED MULTIPLET TABLE Laboratory EP J Multiplet | Laboratory
I A Ref Int | EP J Multiplet | | Ref Int Low High (No) P 6.7 Anal A List C Nov 1940 | I A Ref Int Low High (No) So I continued | I A Ref Int <u>Sc II</u> continued | Low High (No) | | A (2) 0.02 1.96 $3\frac{1}{2} - 3\frac{1}{2} a^{2} D - z^{4}F^{\circ}$
A 5 0.00 1.95 $1\frac{1}{2} - 2\frac{1}{2}$ (1)
A 50 0.02 1.95 $3\frac{1}{2} - 3\frac{1}{2}$ | 4709.336 A 5 2.29 4.91 $3\frac{1}{2}-3\frac{1}{2}z^{4}p^{6}-f^{4}p^{+}$
4706.967 A (3) 2.28 4.91 $1\frac{1}{2}-3\frac{1}{2}$ (22)
4711.732 A (1) 2.28 4.90 $\frac{1}{2}-1\frac{1}{2}$ | 5552.25 B . 3 | 1.45 3.67 0-1 a ¹ S-z ³ P° (25)
1.45 3.80 0-1 a ¹ S-z ¹ P° | | A 50 0.02 1.95 $3\frac{1}{2}-3\frac{1}{2}$
A 40 0.00 1.93 $1\frac{1}{2}-1\frac{1}{2}$
B 1 0.02 1.93 $3\frac{1}{2}-1\frac{1}{2}$ | 4711.732 A (1) 2.28 4.90 5-15 | 5239.823 A 15 | (26) | | A 400 0.02 1.98 $3\frac{1}{2}$ 3^2 D E^3 D^6 A 200 0.00 1.99 $1\frac{1}{2}$ $1\frac{1}{2}$ (2) A 15 0.02 1.99 $3\frac{1}{2}$ $1\frac{1}{2}$ A 20 0.00 1.98 $1\frac{1}{2}$ $2\frac{1}{2}$ | 5258.333 A 15 2.50 4.85 42-52 a ² G-z ² H°† 5285.752 A 10 2.50 4.83 32-42 (23) | 7178.33 P
7151.18 P | 1.49 3.22 1-2 (27) | | | 6557.87 B) 15• (2.60 4.48 $3\frac{1}{2}-3\frac{1}{2}$ z^2 F°- z^2 D 6558.05 B) 15• (2.60 4.48 $3\frac{1}{2}-1\frac{1}{2}$ (24) | 6245.629 A 20
6279.757 A 15
6309.902 A 15 | 1.50 3.48 2-3 a ³ P-z ³ D ^o
1.49 3.46 1-3 (28)
1.49 3.45 Q-1 | | C (2) 0.02 3.00 $3\frac{1}{2}-3\frac{1}{2}$ $a^2D-z^4D^0$
A (2) 0.00 1.99 $1\frac{1}{2}-3\frac{1}{2}$ (3)
A 100 0.03 1.99 $3\frac{1}{2}-3\frac{1}{2}$ | Strongest Unclassified Lines of Sc. I | 6300.697 A 6
6320.854 A 7
6342.082 A 1 | 1.50 3.46 2-2
1.49 3.45 1-1
1.50 3.45 2-1 | | A 100 0.00 1.98 $1\frac{1}{2}-1\frac{1}{2}$
A 20 0.02 1.98 $2\frac{1}{2}-1\frac{1}{2}$
C (1) 0.00 1.98 $1\frac{1}{2}-\frac{1}{2}$ | 6835.03 B (25)
6817.08 A (10)
6737.87 A (10) | 5657.870 A 25
5667.164 A 10 | 1.50 3.68 2-2 a ³ P-z ³ P°
1.49 3.67 1-1 (29) | | A 15 0.02 2.33 $2\frac{1}{2}-1\frac{1}{2}$ $a^{2}p_{-z}^{2}p^{0}$
A 10 0.00 2.31 $1\frac{1}{2}-\frac{1}{2}$ (4)
A 2 0.00 3.33 $1\frac{1}{2}-1\frac{1}{2}$ | 6036.17 B (10nl)
4573.993 A 6 III
4557.237 A 5 III | 5684.190 A 15
5669.030 A 12
5640.971 A 15 | 1.50 3.67 2-1
1.49 3.67 1-0
1.49 3.68 1-2 | | A 2 0.00 2.33 1½-1½
A 20 0.02 2.60 2½-3½ a ² D-z ² F° | | 5658.334 A 8
5357.195 A 2 | 1.49 3.67 0-1
1.50 3.80 2-1 a ³ P-z ¹ P° | | A 20 0.02 2.60 23 32 42 D z 2 F 6
A 15 0.00 2.60 12 32 (5)
A 4 0.02 2.60 32 22 | So II I P 12.8 Anal A List A Nov 1940 | 5342.05 P
5334.228 A 2 | 1.49 3.80 1-1 (30)
1.49 3.80 0-1 | | A 40 0.03 3.04 $2\frac{1}{2}$ $2\frac{1}{2}$ $2\frac{3}{2}$ $-\frac{1}{2}$ $2\frac{3}{2}$ $-\frac{1}{2}$ $2\frac{3}{2}$ $-\frac{1}{2}$ $2\frac{3}{2}$ $-\frac{1}{2}$ $2\frac{3}{2}$
$-\frac{1}{2}$ $2\frac{3}{2}$ $-\frac{1}{2}$ $-\frac{1}$ | 3843.000 A 4 0.01 3.22 2-2 (1)
3833.059 A 3 0.00 3.22 1-2
3613.836// A 60 0.02 3.44 3-4 a ³ D-z ³ F° | 5526.809 A 75 | 1.76 3.99 4-3 a ¹ G-z ¹ F° (31) | | A 100 0.03 3.09 2½-2½ a²p-y²p° A 75 0.00 3.07 1½-1½ (?) A 25 0.08 5.07 1½-1½ (?) | 3630.740 A 50 0.01 3.41 2-3 (3)
3642.785 A 40 0.00 3.39 1-2 | 3157.44 P
3170.40 B 1
3176.70 P | 3.22 7.13 2-3 z ¹ D°-e ³ D
3.22 7.11 2-2 (32)
3.22 7.10 2-1 | | W 20 0:00 2:02 15-25 | 3645.311 A 30 0.02 3.41 3-3
3651.798 A 25 0.01 3.39 2-2
3666.537 A 3 0.02 3.39 3-2 | 3176.70 P
3107.529 A 6 | 3.22 7.10 2-1
3.22 7.19 2-2 z ¹ D°-e ¹ D | | A 100 0.02 3.18 $3\frac{1}{2}$ - $3\frac{1}{2}$ a^{2} D- y^{2} F° A 75 0.00 3.16 $1\frac{1}{2}$ - $3\frac{1}{2}$ (8) A 30 0.03 3.16 $3\frac{1}{2}$ - $3\frac{1}{2}$ | 3578.583 A 50 0.03 3.48 3-3 a ³ D-z ³ D ⁰ 3576.340 A 35 0.01 3.48 2-2 (3) 3580.987 A 30 0.00 3.45 1-1 | *2988.952§ A 10 | 3.22 7.35 2-3 z ¹ D°-e ¹ F | | A 20 0.02 3.79 21-11 a ² n-x ³ pe
A 15 0.00 3.77 12-12 (9)
A 6 0.00 3.79 12-12 | 3580.927 A 30 0.00 3.45 1-1
3580.475 A 20 0.02 3.46 3-2
3588.635 A 20 0.01 3.45 2-1
3588.538 A 20 0.01 3.48 2-3 | 3343.27 A 4
3331.07 A 3
3320.422 A 3 | 3.44 7.13 4-3 z ³ F°-e ³ D
3.41 7.11 3-2 (35)
3.39 7.10 2-1 | | A 10 0.03 4.11 32-32 a ³ D-x ² F° A 8 0.00 4.09 13-35 (10) A 3 0.03 4.09 32-35 | 3567.701 Å 20 0.00 3.46 1-2
3372.151 A 20 0.02 3.68 3-2 a ³ p-z ³ p | 3316.79 B 17
3313.539 A 07
3299.41 P | 3.41 7.13 3-3
3.39 7.11 2-2
3.39 7.13 2-3 | | A 3 0.03 4.09 $2\frac{1}{2} - 2\frac{1}{2}$
A (6) 0.03 4.16 $2\frac{1}{2} - 2\frac{1}{2}$ $a^2 p - x^2 p^2$ | 3368.946 A 15 0.01 3.67 2-1 (4) 3361.935 A 12 0.00 3.67 1-0 3359.679 A 10 0.01 3.68 2-2 | 3108.511 A 3
3092.519 A 2 | 3.44 7.41 4-3 z ³ F°-f ³ D
3.41 7.40 3-2 (36) | | A (6) 0.02 4.16 3 3 3 2 2 20 20 1 | 3361.270 A 10 0.00 3.67 1-1
3352.048 A 3 0.00 3.68 1-2 | 3082.56 A 2
3065.106 A 30 | 3.39 7.39 2-1
3.44 7.46 4-5 z ³ F°-e ³ G | | | 3251.32 A 3 0.01 3.80 2-1 a ³ D-z ¹ P° 3244.17 P 0.00 3.80 1-1 (5) | 3052.929 A 20
3045.714 A 15
3075.38 B 3 | 3.41 7.45 3-4 (37)
3.39 7.44 2-3
3.44 7.45 4-4 | | A 150 1.43 3.60 3-4-2 (13) B 100 1.43 3.59 3-3-3-2 | 3107.387 A (1) 0.02 3.99 3-3 a ³ D-z ¹ F° 0.01 3.99 2-3 (6) | 3060.531 A 3
3083.07 P | 3.41 7.44 3-3
3.44 7.44 4-3 | | 1 A 15 1.44 3.50 42-42
B 15 1.43 3.59 32-32
1 A 15 1.43 3.58 32-32
B 2 1.44 3.59 43-32
B 2 1.44 3.59 43-32 | 4246.829 A 100 0.31 3.22 2-2 a ¹ D-z ¹ D° (7) 3989.06 B 2 0.31 3.41 2-3 a ¹ D-z ³ F° | 3379.397 A 3
3378.209 A 2
3373.57 B 1? | 3.48 7.13 3-3 z ³ D°-e ³ D
3.46 7.11 2-2 (38)
3.45 7.10 1-1 | | B 1 1.40 0.00 02-02 | 4014.489 A 5 0.31 3.39 2-2 (8) | 3394.29 B 1
3363.501 A 1
3366.46 B 1 | 3.48 7.11 3-2
3.46 7.13 2-3
3.45 7.11 1-2 | | A 125 1.44 3.87 42-42 A F-y ⁴ F ⁶ A 80 1.43 3.86 32-32 (13) A 40 1.43 3.85 32-32 | 3902.09 P 0.31 3.48 2-3 a ¹ D-z ³ D° 3923.503 A 0.31 3.48 2-2 (9) 3939.51 P 0.31 3.45 2-1 | 3139.729 A 10
3133.096 A 8 | 3.48 7.41 3-3 z ³ D°-f ³ D
3.46 7.40 2-2 (39)
3.45 7.39 1-1 | | . A 20 1.44 3.86 45-35
1 A 40 1.43 3.85 35-35 | 3664.254 A 1 0.31 3.68 2-2 a ¹ D-z ³ P° 3675.265 A 1 0.31 3.67 2-1 (10) | 3128.286 A 5
3146.91 B 1
3138.46 B 1 | 3.48 | | 3 A 30 1.43 3.85 2½-1½
A 10 1.43 3.87 3½-4½
A 40 1.43 3.86 2½-3½ | 3535.729 A 10 0.31 3.80 2-1 a ¹ D-z ¹ P° (11)
3353.734 A 25 0.31 3.99 2-3 a ¹ D-z ¹ F° | 3126.02 B 1
3122.954 A 3 | 3.46 7.41 2-3
3.45 7.40 1-2 | | i A 10 1.42 3.85 1½-3½
i A 40 1.44 4.04 4½-3½ a ⁴ F-y ⁴ D° | (12) | 3580.71 P
3586.83 P
3594.13 P | 3.68 7.13 2-3 z ³ P°-e ³ D
3.67 7.11 1-2 (40) | | A | 4698.276 A (2) 0.59 3.22 2-2 (13) | 3597.39 P
3594.89 P | 3.67 7.10 0-1
3.68 7.11 2-3
3.67 7.10 1-1 | | 3 A 5 1.43 4.04 3\frac{3}{2}-\frac{3}{2}\frac{1}{2}\fra | 4400.355 A 30 0.60 3.41 3-3 (14)
4415.559 A 20 0.59 3.39 2-3 | 3605.50 P
3312.736 A 5 | 3.68 7.41 2-3 z ³ P°-f ³ D | | | 4420.665 A 2 0.62 3.41 4-3 4421.309 A 3 0.60 3.49 3-4 434.813 A 6 0.59 3.41 2-3 | 3311.708 A 3
3317.038 A 1
3320.709 A 1
3317.693 A 1 | 3.67 7.40 1-2 (41)
5.07 7.30 0-1
3.68 7.40 2-2
3.67 7.39 1-1 | | ; A 100 1.86 4.09 $3\frac{1}{2}$ $4\frac{1}{2}$ 8^{2} -2^{2} 6^{0}
; A 80 1.84 4.08 $3\frac{1}{2}$ $3\frac{1}{2}$ (15)
B (3) 1.86 4.08 $3\frac{1}{2}$ $3\frac{1}{2}$ | 4314.084 A 60 0.62 3.48 4-3 8 ³ F-z ³ D° | 3326.74 P | 3.68 7.39 2-1
3.68 7.54 2-1 z ³ P°-e ³ S | |) A 100 1.86 4.11 3½-3½ 2 ² F-x ³ Fo† 3 A 80 1.84 4.09 3½-3½ (16) | 4380.745 A 50 0.60 3.46 3-2 (15)
4385.010 A 40 0.59 3.45 2-1
4304.767 A 8 0.60 5.48 2-2
4305.715 A 10 0.59 3.46 2-2 | 3191.005 A 5
2190.403 A 3 | 3.67 7.54 1-1 (42)
3.67 7.54 0-1 | |) A 60 1.86 4.16 $3\frac{1}{2}-2\frac{1}{2}$ $a^{2}F-x^{2}D^{\circ}+$ A 50 1.84 4.15 $2\frac{1}{2}-1\frac{1}{2}$ (17) | 4279.927 A 1 0.59 3.48 2-3
4008.41 P 0.60 3.68 3-2 a ³ F-z ³ P° | 3379.18 A 3 | 3.80 7.46 1-1 z ¹ P°-e ¹ P | | | 4008.60 F 0.59 3.67 2-1 (16)
3995.49 P 0.59 3.68 2-2 | 2979.683 A 5 | 3.80 7.95 1-2 z ¹ P-f ¹ D (44) | | 3 A 15 1.98 4.19 42-42 2 ⁴ F°-e ⁴ F† 1 A 4 1.96 4.18 32-32 (18) 1 A 3 1.95 4.17 32-32 B (4) 1.93 4.17 12-12 | 3843.16 P 0.59 3.80 2-1 a ³ F-2 ¹ P° (17) 3653.62 P 0.62 3.99 4-3 a ³ F-2 ¹ F° | 3678.342 A 2
3122.542 A 1 | 3.99 7.35 3-3 z ¹ F°-e ¹ F
(45)
3.99 7.95 3-2 z ¹ F°-f ¹ D | | 3 A 30 1.98 4.27 4½-3½ z ⁴ F°-e ⁴ D†
3 A 20 1.96 4.26 3½-3½ (19) | 3639.76 P 0.60 3.99 3-3 (18)
3629.10 P 0.59 3.99 2-3 | 3039.92 A 10 | 3.99 8.05 3-4 z ¹ F°-e ¹ G (47) | | | 6604.60 B 10 1.35 3.33 $2-3$ $b^{1}p-z^{1}p^{0}$ (19) 6001.53 P 1.35 3.41 $2-3$ $b^{1}p-z^{3}p^{0}$ | 4748.12 P
4696.71 P | 4.86 7.46 2-1 y ³ P°-e ¹ P
4.83 7.46 1-1 (48)
4.81 7.46 0-1 | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 6059.25 P 1.35 3.39 2-2 (20) | 4671.94 P
3995.48 P
3959.01 P | 4.86 7.95 2-2 y ³ p ^o -f ¹ D
4.83 7.95 1-2 (49) | | 3 A 8 1.93 4.92 1½-2½
5 A 5 1.98 5.57 4½-4½ 2 ⁴ F°-h ⁴ F
3 A 3 1.96 5.56 3½-3½ (21) | 5806.77 P 1.35 3.48 2-3 b ¹ D-2 ³ D° 5854.31 P 1.35 3.46 2-2 (21) 5890.02 P 1.35 3.45 2-1 | | 100 ,100 , 1-0 (10) | | 3 A 3 1.95 5.54 21-21
3 A 3 1.93 5.53 14-14 | 5295.30 P 1.35 3.68 2-2 b ¹ D-z ³ P° 5318.337 A 3 1.35 3.67 2-1 (22) | <u>Sc III</u> I P 24.65 | Anal C List A Jan 1941 | | A 1 1.96 5.54 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 5031.019 A 40 1.35 3.80 2-1 b ¹ D-z ¹ P° (23)
4670.404 A 15 1.35 3.99 2-3 b ¹ D-z ¹ F° | 4068.7 A (2n)
4061.3 A (2n) | 13.86 16.90 $2\frac{1}{2} - 3\frac{1}{2} 4^{2}D - 4^{2}F^{\circ}$
13.86 16.90 $1\frac{1}{2} - 2\frac{1}{2}$ (1) | | 3 A (2) 1.96 5.57 3 4 4 1 1 1.95 5.56 2 3 3 3 1 1 1 1.93 5.54 1 2 3 1 | 4670.404 A 15 1.35 3.99 2-3 b ¹ D-z ¹ F° (24) | | | | | | | | | 36 | REVISED MULTIPLET TABLE | | |--|--|---| | Laboratory E P J Multiplet I A Ref Int Low High (No) | Laboratory E P J Multiplet I A Ref Int Low High (No) | Laboratory E P J Mul I A Ref Int Low High | | T1 I I P 6.81 Anal A List B Nov 1940 *6295.251 E (2) 0.05 2.01 4-5 a ³ F-x ⁵ G* 6273.389 E (6)
0.02 1.99 3-4 (1) 6287.72 H (2) 0.00 1.97 2-3 6259.896 E (8) 0.05 1.99 4-4 6235.22 H (10) 0.02 1.97 3-3 6296.646 E (12) 0.00 1.97 3-3 6296.649 E (12) 0.00 1.97 3-3 6296.649 E (12) 0.00 1.97 3-3 6296.492 H (2) 0.00 1.97 3-3 | Ti I continued 3506.643 E 8 0.05 3.57 4-5 a ³ F-y ⁵ F° 3493.280 E 4 0.02 3.55 3-4 (22) 3493.939 E 1 0.05 3.54 2-3 3503.760 E 1 0.02 3.54 3-3 3490.765 E 1 0.02 3.54 3-3 3501.686 E 1 0.05 3.55 4-4 3530.580 E 1 0.05 3.54 3-3 3511.686 E 3 0.02 3.54 3-2 3495.960 E 2 0.00 3.53 2-1 | Ti I continued *5238.560 B 6 0.84 3.20 5-4 a ⁵ F 5246.574 E 3 0.83 3.18 4-3 (5250.95 E 2 0.82 3.17 3-2 5251.49 E (0) 0.81 3.16 1-1 5241.32 P (1) 0.81 3.16 1-0 5241.32 P (1) 0.83 3.20 4-4 5242.14 P (0) 0.82 3.18 3-3 5233.817 E (1) 0.81 3.17 2-2 5239.942 E (0) 0.81 3.16 1-1 | | 5940.68 E - 0.05 2.13 4-5 a ³ F-z ⁵ F° 5913.730 E - 0.02 2.11 3-4 (2) 6031.68 E - 0.05 2.09 4-3 5984.586 E (1) 0.02 2.08 3-2 5944.65 P 0.00 2.08 2-1 5460.502 B 4 0.05 2.31 4-4 a ³ F-z ⁵ D° 5426.256 B 3 0.02 2.30 3-3 (3) *5396.600 E 1 0.00 2.29 2-2 | 3385.944 A 40r 0.05 3.69 4-3 a ³ F-w ³ D ⁶ 3377.577 A 30r 0.02 3.67 3-2 (23) 3370.436 A 40r 0.00 3.68 2-1 3361.263 E 40r 0.02 3.69 3-3 3358.271 A 10 0.00 3.67 3-2 3342.151 E 6 0.00 3.69 2-3 | 4981.732 // A 60 0.84 3.32 5-6 a ⁵ i
4991.067 A 50 0.83 3.23 4-5 (
4999.504 A 45 0.82 3.29 3-4
5007.209 A 40 0.81 3.28 2-3
5014.277 A (25) 0.81 3.27 1-2
5016.162 A 20 0.84 3.31 5-5
5020.028 A 25 0.83 3.29 4-4 | | 5446.593 B 2 0.02 2.29 3-2
5408.940 E (1) 0.02 2.28 2-1
5396.600 E 1 0.02 2.31 3-4
5376.59 P 0.00 2.30 2-3 | 3371.447 A 80R 0.05 3.71 4-5 a ³ F-x ³ G ⁶ 3354.634 A 60r 0.03 3.70 3-4 (34) 33341.8758 A 50r 0.00 3.65 2-3 3379.216 E 15 0.05 3.70 4-4 3360.990 E 10 0.02 3.69 3-3 3385.864 E 12 0.05 3.69 4-3 | 5028.871 A 25 0.83 3.28 3-3 5024.842 A 20 0.81 3.27 2-8 5045.400 B 5 0.84 3.29 5-4 5043.578 B 7 0.83 3.28 4-3 5040.642 B 6 0.82 3.27 3-2 4953.37 P 0.84 3.34 5-4 8 ⁵ F | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 4928.895 E (0) 0.83 3.34 4-4 (4941.328 E (1) 0.82 3.32 3-3 4947.994 E 1 0.81 3.31 3-2 4909.105 B 2 0.82 3.34 3-4 4928.148 B 4 0.81 3.33 3-3 4937.719 B 4 0.81 3.31 1-2 4801.93 P 0.82 3.39 3-3 a ⁵ F | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 3333.912 E 2 0.00 3.70 2-3 3243.803 E 4 0.05 3.85 4-3 a ³ F-v ³ D ^o 3222.741 E 3 0.02 3.85 3-2 (26) 3205.848 E 5 0.00 3.85 2-1 3231.151 E 2 0.03 3.85 2-1 3205.168 E 2 0.00 3.85 2-2 3203.55 G (2) 0.00 3.85 2-3 | 4801.90 P 0.81 3.38 2-2 (4806.75 P 0.81 3.38 1-1 4787.64 P 0.81 3.38 2-3 4792.24 P 0.81 3.38 1-2 4816.47 P 0.81 3.38 2-1 4781.718 B 6 0.84 3.43 5-5 a^{5} | | 4691.908 A 30 0.05 2.68 $4-5$ $a^3F-z^3G^0$ 4687.585 A 25 0.02 2.67 $3-4$ (6) 4686.468 A 25 0.00 2.65 2-3 4715.295 A 4 0.05 2.67 $4-4$ 4693.670 B 5 0.02 2.63 $3-3$ 4562.637 B 6 0.02 2.73 $3-2$ $a^3F-z^1D^0$ | 3199.915 A 100R 0.05 3.90 4-5 a ³ F ³ G° 3191.994 A 80R 0.03 3.89 3-4 (27) 3196.451 A 60r 0.00 3.87 2-3 3214.240 A 12 0.05 3.89 4-4 3305.828 E 15 0.02 3.87 3-3 3236.240 E 1 0.05 3.87 4-3 | 4789.803 E (1) 0.83 3.41 4-4 (4812.906 E (0) 0.84 3.41 5-4 4788.913 B 4 0.83 3.43 4-5 4771.103 B 3 0.82 3.41 3-4 4783.306 E (2) 0.81 3.39 2-3 | | 4527.455 E (4) 0.00 2.73 2-2 (7) 4540.483 E 1 0.05 2.77 4-3 a ³ F-z ¹ F° 4496.245 E 2 0.02 2.77 3-3 (8) | 3160.09 G tr 0.02 3.93 3-2 a ³ F-y ³ P° 3151.11 G tr 0.00 3.92 2-1 (28) 3143.16 P 0.00 3.93 2-2 | 4534.788 B 60 0.83 3.55 4-4 (4535.574 B 50 0.82 3.54 3-3 4535.980 B 40 0.81 3.54 2-2 4536.051 B 40 0.81 3.53 1-1 | | 4462.099 B (3) 0.00 2.77 2-3
4112.708 A 20 0.05 3.05 4-4 a ³ F-z ¹ G°
4076.370 B 4 0.02 3.05 3-4 (9) | 3000.888 E 20 0.05 4.16 4-4 a ³ F- ³ F° 2983.306 E 20 0.02 4.16 3-3 (29) 2970.884 E 10 0.00 4.15 2-2 302.738 E 3 0.05 4.16 4-3 | 4555.486 A 30 0.84 3.55 5-4 4552.453 A 35 0.83 3.54 4-3 4548.764 A 35 0.82 3.54 3-3 4544.688 A 30 0.81 3.53 2-1 4512.734 A 40 0.83 3.57 4-5 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 2985.477 E 3 0.02 4.15 3-2
2981.448 E (2) 0.02 4.16 3-4
2968.231 E 4 0.00 4.16 3-3 | 4512.734 A 40 0.83 3.57 4-5
4518.022 A 50 0.82 3.55 3-4
4522.798 A 40 0.81 3.54 2-3
4527.305 A 35 0.81 3.54 1-2 | | 3982.478 B 30 0.00 3.10 2-2 (11) 3998.635 A 100R 0.05 3.13 4-4 a³F-y³F° 3989.758 A 80r 0.02 3.11 3-3 (12) 3981.761 A 70r 0.00 3.10 2-2 4024.573 A 35 0.05 3.11 4-3 4008.926 A 35 0.02 3.10 3-2 3964.269 A 35 0.02 3.13 3-4 3962.261 A 35 0.00 3.11 2-3 | 2956.133 A 70R 0.05 4.23 4-4 a ³ F-7 ³ F°† 2967.225 E 35 0.05 4.21 4-3 (30) 2956.797 E 25 0.02 4.19 3-2 10396.85 C 25 0.84 2.03 5-6 a ⁵ F-2 ⁵ G° 10496.14 C 30 0.83 2.01 4-5 (31) 10584.66 C 25 0.82 1.99 3-4 | 4314.801 A 25° 0.83 3.89 4-3 a ⁵ F 4336.359 B 9 0.82 5.67 3-2 (4334.840 B 2 0.81 3.66 2-1 4299.636 B 15 0.82 3.69 3-3 4314.74 P 25° 0.81 3.67 2-2 4386.986 B 2 0.81 3.67 2-2 4388.986 B 2 0.81 3.69 1-1 4388.8161 B 3 0.81 3.69 2-3 4306.945 E 1 0.81 3.69 2-3 | | 3958.206 A 80 0.05 3.17 4—3 a ³ F_y ³ D ⁰ 3958.336 A 60 0.02 3.14 3—2 (13) 3948.570 A 60 0.00 3.13 2—1 3948.527 A 50 0.03 3.17 3—3 3858.675 A 40 0.00 3.14 2—2 3898.487 B 8 0.00 3.17 2—3 | 10861.61 C 20 0.81 1.97 2-3
10736.33 C 18 0.81 1.96 1-2
10607.78 C 10 0.84 2.01 5-5
10677.04 C 10 0.83 1.99 4-4
10732.89 C 8 0.82 1.97 3-3
10774.82 C 12 0.81 1.96 2-8
10792.59 P 0.84 1.99 5-4
10828.04 C 1 0.83 1.97 4-3 | 4305.910 A 60 0.84 3.71 5-4 a ⁵ F
4301.089 B 50 0.83 3.70 4-3 (
4300.566 B 50 0.82 3.69 3-2
4298.664 A 40 0.81 3.69 2-1
4895.751 A nn 0.81 3.68 1-0
4287.405 A 22 0.83 3.71 4-4
4286.006 A 25 0.82 3.70 3-3 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 10847.72 C 1 0.82 1.96 3-2
9638.28 D 100 0.84 2.13 5-5 a ⁵ F-z ⁵ Fo
9675.55 D 90 0.83 2.11 4-4 (33) | 4289.068 A 25 0.81 3.69 2-2
4290.933 B 22 0.81 3.69 1-1
4272.440 B 8 0.82 3.71 3-4
•4274.584 A 15 0.81 3.70 2-3 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 9705.64 | +4891.371 A 10 0.91 3.69 12 *4891.314 B 5n 0.83 3.71 4.5 a ⁵ F 4288.78 P 0.82 3.70 34 (4287.71 P 0.81 3.69 23 4314.356 B 5 0.83 3.69 43 4299.17 P 0.82 3.69 33 | | 3788.804 E 2 0.05 3.31 4-5 a ³ F-y ⁵ g° 3774.331 E 1n 0.02 3.39 3-4 (16) | 9599.53 D 50 0.82 2.11 3-4
9647.40 D 50 0.81 2.09 2-3
9688.86 D 30 0.81 2.08 1-2 | 3457.494 E 4 0.84 4.41 5-4 e ⁵ F
3458.020 E 3 0.83 4.40 4-3 (
3457.298 E 2 0.82 4.39 3-2
3455.755 E 1 0.81 4.39 2-1 | | 3753.860 A 80r 0.05 3.34 4-4 a ³ F-x ³ F ⁹ 3741.059 A 80r 0.03 3.32 3-3 (17) 3739.806 A 50r 0.00 3.31 3-2 3771.653 A 25 0.05 3.52 4-3 3753.623 B 25 0.03 3.31 3-2 3732.558 A 157 0.03 3.34 3-4 3717.933 A 20 0.00 3.32 3-3 | 8434.98 p 300 0.84 2.31 5-4 a 5-25pc 8435.88 p 300 0.83 2.30 4.33 (33) 8426.50 p 200 0.82 2.29 3-2 8412.35 p 150 0.81 2.28 2-1 8396.93 p 90 0.81 2.28 2-1 8396.93 p 90 0.81 2.28 1-0 8364.24 E (2) 0.83 2.31 4-4 8357.99 p 100 0.82 2.30 3-2 | 3453.654 E tr 0.81 4.38 1-0 3445.566 E 1 0.83 4.41 4-4 3448.265 E 1 0.82 4.40 3-3 3449.874 E 2 0.81 4.39 2-2 3450.735 E 1 0.81 4.39 1-1 3444.899 E tr 0.81 4.39 1-2 3240.84 P 0.84 4.65 5-5 a ⁵ F | | 3689.916 A 15 0.05 3.39 $4-3$ $a^3F-x^3D^0$ 3668.965 A 15 0.02 3.38 3-2 (18) 3654.592 A 15 0.00 3.38 2-1 3660.631 A 12 0.02 3.39 3-3 3646.198 A 12 0.00 3.38 2-2 3637.966 E 10 0.00 3.39 2-3 | 8382.54 D 100 0.81 2.29 2-2
8382.82 D 90 0.81 2.28 1-1
8307.41 E (1) 0.82 2.31 3-4
8334.37 E (2) 0.81 2.30 2-3
8353.15 E (2) 0.81 2.39 1-2
7852.74 P 0.84 2.42 5-4 a ⁵ F-2 ³ F ^o
7885.00 P 0.83 2.40 4-3 (34) | 3240.84 P 0.84 4.65 5-5 a*F 3235.95 P 0.82 4.64 3-3 (3244.53 P 0.83 4.64 4-3 6743.124 A 10 0.90 3.73 2-2 a*D 6599.112 E 12 0.90 3.77 2-3 a*D | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 7885.50 P 0.83 2.40 4-3 (34) 7895.50 P 0.82 2.39 3-2 5361.784 E (1) 0.83 3.13 4-4 a ⁵ F-y ³ F° 5384.634 E (1) 0.83 3.11 3-3 (35) 5401.33 H (1) 0.81 3.10 3-2 5338.336 E 1 0.82 3.13 3-4 5566.651 B 2 0.81 3.11 3-3 | 5659.104 E (3) 0.90 3.08 2-1 a ¹ D
5436.703 B 1 0.90 3.17 2-3 a ¹ D
5497.92 P 0.90 3.14 2-2 (
4943.074 E (0) 0.90 3.39 2-3 a ¹ D | | 3635.202 E 8 0.05 3.44 4_3 a ³ F ₋₂ 5pe
3626.085 E 4 0.02 3.42 3_3 (20)
3606.786 E 4 0.02 3.44 3_3
3603.845 E 2 0.00 3.42 2_2
3604.284 E 8 0.02 3.45 3_2 a ³ F ₋₂ 1pe | 5389.180 B 2 0.81 3.10 1-2
5389.28 E (1) 0.83 3.17 4-3 a ⁵ F-y ³ D°
5323.958 E (1) 0.82 3.14 3-2 (36)
5340.68 H (1) 0.81 3.13 2-1
5386.49 P 0.82 3.17 3-3 | 4958.26 P 2 0.90 3.38 2-2 (4840.874 A 25 0.90 3.45 2-2 a ¹ D 4412.436 B 1 0.90 3.69 2-3 a ¹ D | | 3604.284 E 8 0.02 3.45 3-2 a ³ F-y ¹ po (21) | Code Dear Omo | • | | REVISED MULTIPLET TABLE |-------------------------|----------------------|-------------------------------------|-------------------|--|------------------------------------|-------------|-------------------|----------------------|----------------------|-------------------|--|----------------------------------|-------------|-------------------|----------------------|----------------------|-------------------|--| | orato
Ref | Int | E P
Low High | J | Multiplet
(No) | Labor
A I | ator
Ref | Int | Low | | T T | ABLE
Multiplet
(No) | Labo
I A | Ref | Int | E
Low | P
High | J | Multiplet
(No) | | ntinu
§ B | ed
(1) | 0.90 3.85 | 2-3 | a ¹ D-v ³ D° | <u>T1 I</u> conf | E | 15 | 1.06 | 4.71 | 2-3 | a ³ P-u ³ D° | <u>T1 I</u> con
5474.228 | tinue
B | e d .
6 | 1.45 | 3.71 | 4-5 | b ³ F-x ³ G° | | A | 40n | 0.90 4.06 | 2-3 | (55)
a ¹ D-y ¹ F°
(56) | 3390.682
3398.634
3403.369 | E
E
E | 10
8
4 | 1.05
1.04
1.06 | 4.69
4.67
4.69 | 1-3
0-1
2-3 | (86) | 5453.646
5438.310
5494.726 | B
B | 3
1
(1) | 1.44
1.42
1.45 | 3.69
3.70 |
3-4
2-3
4-4 | (108) | | A | 20
12 | 0.90 4.16 | 2-1
2-1 | alD_zlpo
(57)
alD_ylpo | 3405.094
m3417.88 | E
P | 5
Fe | 1.05
1.06 | 4.67
4.67 | 1-1
2-1 | | 5470.50
•5511.795 | J
B | (1)
(2)
2 | 1.44
1.45 | 3.69
3.69 | 3-3
4-3 | | | A | 15 | 0.90 4.33 | 2-2 | (58)
a ¹ D-x ¹ D°
(59) | 3314.422
3309.501
3308.391 | A
E
E | 10
15
10 | 1.06
1.05
1.04 | 4.79
4.78
4.77 | 2-3
1-2
0-1 | a ³ P_t ³ D°
(87) | 5145.465
5113.448
5087.055 | A | 12
10 | 1.45 | 3.85
3.85 | 4-3
3-2 | b ³ F-v ³ D° (109) | | G
E | 1
1 | 0.90 4.61
0.90 4.59 | 2-2
2-1 | a ¹ D_w ³ P°
(60) | 3321.588
3314.523 | E
E
E | 8
8 | 1.06 | 4.78
4.77 | 2-2
1-1 | | 5109.427
5085.333 | A
B
B | 8
4
4 | 1.42
1.44
1.43 | 3.85
3.85
3.85 | 2-1
3-3
2-2 | | | E | 10 | 0.90 4.64 | 2-3 | a ¹ D_v ³ G° | 3326.639
3280.391 | E | a
a | 1.06 | 4.77 | 2-1
2-1 | a ³ P-x ¹ P° | 5081.39
5035.908 | P
A | 25 | 1.42 | 3.85
3.90 | 2-3
4-5 | b ³ F-w ³ G° | | A
§ E | (12) | 0.90 4.66 | 2-3
2-3 | a ¹ D-x ¹ F°
(62)
a ¹ D-u ³ F° | 3262.63 | G- | 1 | 1.05 | 4.82
4.82 | 1-1
0-1 | (88) | 5036.468
5038.400
5071.475 | A
A
B | 25
25
7 | 1.44
1.42
1.45 | 3.89
3.87
3.89 | 3-4
2-3
4-4 | (110) | | P | T1+
tr | 0.90 4.65
0.90 4.67 | 2-3
2-1 | (63)
a ¹ p-u ³ p° | *3260.259§
*3248.602§ | E | 3
15 | 1.05 | 4.85
4.85 | 2-1
1-1 | a ³ P_w ¹ P°
(89) | 5065.985
4742.32 | B
P | 7 | 1.44 | | 3-3
4-3 | b3F-y1Fe | | E | 4
3 | 0.90 4.79
0.90 4.78 | 2-3
2-2 | 64)
e ¹ D-t ³ D°
(65) | *3213.145§
3204.870
3201.594 | E
E | 8
6
5 | 1.06
1.05
1.04 | 4.90
4.90
4.90 | 2-3
1-2
0-1 | a ³ P-s ³ D°
(90) | 4711.68
4687.82 | P
P | | 1.44 | 4.06
4.06 | 3-3
2-3 | (111) | | E | 15 | 0.90 4.82 | 2-1 | a ¹ D-x ¹ P* (66) | 3216.203
3207.337
3218.683 | E
E | 3
5
tr | 1.06
1.05
1.06 | 4.90
4.90
4.90 | 2-2
1-1
2-1 | | 4559.920
4535.87
4518.700 | A
P
B | 6
8 | 1.45
1.44
1.42 | 4.16
4.15 | 4-4
3-3
2-2 | b ³ F-w ³ F° (112) | | E | 15 | 0.90 4.85 | 2-1
- | alD_wlP°
(67) | 3137.352
3134.654 | E | (1)
1 | 1.06 | 5.00
4.99 | 2-3
1-1 | a ³ P-▼ ³ P° (91) | 4564.216
4540.873
m4531.60 | E
E
P | 1
1
Fe | 1.45
1.44
1.44 | 4.16 | 4-3
3-2
3-4 | | | D
D | 150
125
100 | 1.06 2.48
1.05 2.47
1.04 2.46 | 2-3
1-2
0-1 | a ³ P-z ³ D°
(68) | 3145.515
•3136.038 | E | 1 2 | | 4.99
4.98 | 2-1
1-0 | (01) | 4513.715
4457.488 | Ē | 1
40 | 1.42 | 4.16 | 2-3
4-4 | b ³ F-v ³ F° | | D
D | 75
75
8 | 1.06 2.47
1.05 2.46
1.06 2.46 | 3-2
1-1
3-1 | | *3100.666
3106.806
3112.482 | E
E | 12
8
8 | 1.06
1.05
1.04 | 5.04
5.03
5.01 | 3-3
1-2
0-1 | a ³ P-r ³ D°
(92) | 4455.321
4453.312
4482.688 | A
A | 30
30
10 | 1.44 | 4.21
4.19 | 3-3
2-2 | (113) | | A
A | 20.
20 | 1.06 3.08
1.05 3.08 | 2-1 | a ³ P-z ³ s° (69) | 3117.455
3117.899 | E | 6
5 | 1.06 | 5.02 | 2-2
1-1 | | *4474.853
4430.366 | A
A | 8
7 | 1.45
1.44
1.44 | 4.21
4.19
4.23 | 4-3
3-2
3-4 | | | Î.
P | 9 | 1.04 3.08 | 1-1
0-1 | a ³ P-z ⁵ S° | *3128.640§ | E | 8
12 | 1.06 | 5.04 | 3-1
2-1 | a ³ P-x ³ s° | *4434.003
4127.09 | A
P | 15 | 1.42 | 4.21 | 2-3
4-4 | b3F-y1Ge | | E | (0) | 1.05 3.10 | 3-3 | (70)
a ³ p_z ³ pe | 3090.137
3084.819 | E | 8 | 1.04 | 5.04 | 1-1
0-1 | (93) | 3789.293
3795.903 | В | 8
? | 1.44 | 4.71
4.69 | 4-3
3-2 | (114)
b ³ F_u ³ D°
(115) | | A
E | 10
5
5 | 1.06 3.15
1.06 3.15
1.05 3.15 | 2-2
2-1
1-2 | (71) | 2965.707
2965.231
2965.68 | E | (61)
8 | 1.06
1.05
1.04 | 5.22
5.21
5.20 | 2-3
1-2
0-1 | a ³ P-q ³ D°
(94) | 3798.276
3717.259 | A
E | 6
1 | 1.43 | 4.67 | 2-1
4-4 | b ³ F-t ³ F° 1 | | A
A | 35
25 | 1.06 3.17
1.05 3.14 | 2-3
1-3 | a ³ P-y ³ D°
(72) | 2974.934
2970.556
2980.296 | E
E | 4
tr | 1.06
1.05
1.06 | 5.20
5.20 | 2-2
1-1
2-1 | | 3715.795
3713.734
3728.676 | E
E | 1
1
1 | 1.44
1.43
1.44 | 4.76
4.75
4.75 | 3-3
2-2
3-3 | (116) | | A
A
H | 18
6
12
(1) | 1.04 3.13
1.06 3.14
1.05 3.13 | 0-1
2-3
1-1 | | 10034.45 | D | 15 | 1.45 | 2.68 | -
4–5 | b ³ F-z ³ G° | 3704.295
3694.445 | B
A | 15
10 | 1.45
1.44 | 4.79
4.78 | 4-3
3-2 | b ³ F-t ³ D° (117) | | н | (1)
(1)
(0) | 1.06 3.13
1.06 3.18 | 2-1
2-3 | a ³ P-y ⁵ D°
(73) | 10048.78
10059.87
10189.26 | D
C | 12
12
3 | 1.44
1.42
1.45 | 2.67
2.65
2.67 | 3-4
2-3
4-4 | (95) | 3685.964
3651.90 | B
P | 2 | 1.43 | 4.77 | 2-1
4-5 | _b 3 _{F−x} 3 _H • | | H
A | (0)
4 | 1.05 3.17
1.06 3.39 | 1-2
2-3 | a ³ P-x ³ D° | 10170.60
7366.60 | C
E | 3
(1) | 1.44 | 2.65
3.10 | 3-3
2-2 | b ³ F-z ⁵ S° | 3638. 4 9
3656.73 | P | | 1.44
1.45 | 4.83
4.83 | 3-4
4-4 | (118) | | B
B | 3
2
(1) | 1.05 3.38
1.04 3.38
1.06 3.38 | 1-2
0-1
2-3 | (74) | 7344.78
7357.74 | E
E | 4 3 | 1.45
1.44 | 3.13
3.11 | 4-4
3-3 | 06)
b ³ F-y ³ F•
(97) | 3487.80
3439.305 | P
E | 8 | 1.44 | 4.98
5.04 | 3-3
4-3 | b ³ F-w ¹ F°
(119)
b ³ F-r ³ D° | | A
A | 1
20 | 1.05 3.38
1.06 3.69 | 1-1
2-3 | a ³ P-w ³ D° | 7364.11
7423.17
7271.41 | E
E | (2)
(2)
(2) | 1.48
1.44
1.44 | 3.10
3.10
3.13 | 3-2
3-3
3-4 | ,, | 3443.644
3444.403
3423.172 | E | 5
3
2 | 1.44
1.48
1.44 | 5.02
5.01
5.04 | 3-2
2-1
3-3 | (120) | | A
A
B | 20
18
10 | 1.05 3.67
1.04 3.66
1.06 3.67 | 1-3
0-1
2-3 | (75) | 7299.67
7216.20 | Ī
E | (ā)
5 | 1.42 | 3.11 | 2-3
3-2 | b ³ F-z ³ p° | 3430.874 | Ē | 2 | 1.42 | 5.02 | 2-2 | b ³ F-w ¹ G° | | B
E | 10 | 1.05 3.66
1.06 3.66 | 1-1
2-1 | | 7160.33
7138.05 | Ř
P | (ä) | 1.42 | 3.15
3.15 | 2-3
2-1 | (98) | 3297.68
3309.32 | P
P | | 1.45 | 5.20 | 4-4 | (121)
b3F-v5po
(122) | | B | 3
10 | 1.06 3.69
1.06 3.70 | 2-3
2-3 | a ³ P-x ³ G°
(76)
a ³ P-x ⁵ D° | 7209.44
7244.86 | E | 20
10
8 | 1.45 | 3.17
3.14 | 4-3
3-2 | b ³ F-y ³ D°
(99) | 3274.047 | E | (5) | 1.45 | 5.22 | 4-3
4-3 | $b^3F-q^3D^{\bullet}$ | | E | 2
T1 | 1.05 3.69
1.04 3.69
1.06 3.69 | 1-2
0-1
3-3 | (77) | 7251.74
7138.91
7188.55 | I
E
P | (1) T11 | | 3.13
3.17
3.14 | 3-3
3-3 | | 3270.562
3265.480
3259.42 | E | 3 2 2 | 1.44
1.42
1.44 | 5.20
5.22 | 3-2
2-1
3-3 | (123) | | P | 40 | 1.05 3.69 | 1-1 | a ³ P-v ³ D° | 7084.25 | J | (1) | 1.43 | 3.17 | 2-3 | b3F-y5pe | 3259.04 | G
- | | 1.42 | 5.21 | 2-2 | 1- 1-4 | | A
B
E | 10
5
(2) | 1.06 3.85
1.05 3.85
1.04 3.85 | 2-3
1-2
0-1 | (78) | 7130.34
*7007.81 | P | (1) | 1.45 | 3.18
3.18 | 4-3
2-3 | (100) | 9718.96
7949.17 | D
E | ·25
(3) | 1.50 | 2.77
3.05 | 4-3
4-4 | a ¹ G-z ¹ F°
(124)
a ¹ G-z ¹ G° | | B
B
P | 3
Ti | 1.06 3.85
1.05 3.85
1.06 3.85 | 2-2
1-1
2-1 | | 6556.066 | E
A | (2n)
25 | 1.45 | 3.34 | 4-5
4-4 | b ³ F-y ⁵ G
(101)
b ³ F-x ³ F° | 4820.410 | A | 30 | 1.50 | 4.06 | 4-3 | alG_ylre
(126) | | B
E | 3
1n | 1.06 3.93
1.05 3.92 | 2-2
1-1 | a ³ P-y ³ P°
(79) | 6554.226
6546.276
m6592.91 | A
A
P | 20
20
Fe | 1.44
1.43
1.44 | 3.32
3.31
3.31 | 3-3
2-2
3-2 | (102) | *4526.374
4427.098 | E
A | 40 | 1.50 | 4.22 | 4-4
4-5 | a ¹ G-v ³ F°
(127)
a ¹ G-z ¹ H° | | B
B
B | 1
1
3 | 1.06 3.92
1.05 3.91
1.05 3.93 | 2-1
1-0
1-3 | | 6497.689
6508.135 | E | 3 | 1.44 | 3.34 | 3-4
2-3 | | 4186.119 | A | 25 | 1.50 | 4.44 | 4-4 | (128)
a ¹ G-y ¹ G*
(129) | | E
A | 1
30 | 1.04 3.92 | 0-1
3-2 | a ³ P-x ³ P° | 6366.354
6336.104
6318.027 | A
A
E | 8
8
5 | 1.45
1.44
1.42 | 3.39
3.38
3.38 | 4-3
3-2
3-1 | b ³ F-x ³ D°
(103) | 3919.822
3724.570 | B
A | 5
20 | 1.50 | 4.64
4.81 | 4-3
4-4 | a ¹ G-x ¹ F°
(130)
a ¹ G-x ¹ G° | | B
A
A | 15
20
15 | 1.05 4.09
1.06 4.09
1.05 4.08 | 1-1
2-1
1-0 | (80) | 6311.289
6293.00
6268.50 | E
P
H | (1)
(2) | 1.44
1.42
1.43 | 3.39
3.38
3.39 | 3-3
2-2
2-3 | | 3702.942 | В | 2 | 1.50 | 4.83 | 4-4 | a ¹ G-x ¹ G ^o
(131)
a ¹ G-x ³ H ^o
(132) | | Ā | 20
20 | 1.05 4.09
1.04 4.09 | 1-3
0-1 | | 6258,706 | A | 50 | 1.45 | 3.43 | 4-5 | b ³ F-y ³ G° | 3547.029 | A | 15 | 1.50 | 4.98 | 4-3 | a ¹ G-w ¹ F° (133) | | B
E
E | (o) | 1.06 4.16
1.05 4.16 | 3-1
1-1 | a ³ P_z ¹ P°
(81) | 6258.103
6261.101
6312.240 | A
A
A | 40
35
10 | 1,.45 | 3.41
3.39
3.41 | 3-4
3-3
4-4 | (104) | 3456.661
3431.08 | E
P | 6 | 1.50 | 5.07
5.09 | 4-5
4-4 | a ¹ G_y ¹ H°
(134)
a ¹ G_u ³ G°
(135) | | F | а | 1.04 4.16 | 0-1
2-2 | a ³ P-x ¹ D° | 6303.754
5839.78 | P | 10 | 1.45 | 3.39 | 3-3
4-5 | b ³ F-y ⁵ F° | 3392.713 | E | 10 | 1.50 | 5.13 | 4-3 | a ¹ G_v ¹ F°
(136) | | B
A | 3
20 | 1.05 4.33 | 1-3
3-1 | (82)
a ³ P-y ³ 8° | 5906.50
5512.529 | P
A | 25 | 1.45 | 3.54 | 4-3
4-3 | (105)
b ³ F-w ³ D° | 3119.725 | E | 15 | 1.50 | 5.45 | 4-5
- | a ¹ G-x ¹ H° (137) | | B | 20
10 | 1.05 4.37
1.04 4.37 | 1-1
0-1 | (83) | 5514.536
5514.350
5471.198 | B
B | 25
20
5 | 1.44
1.43
1.44 | 3.67
3.66
3.69 | 3-2
2-1
3-3 | (106) | 9090.70
9027.32
8989.44 | D
D
D | 25
15
12 | 1.74
1.73
1.73 | 3.10
3.10
3.10 |
3-2
2-2
1-3 | a ⁵ P-z ⁵ S° (138) | | A
E
E | 12
6
8 | 1.06 4.61
1.05 4.59
1.06 4.59 | 3-3
1-1
3-1 | a ³ P_w ³ P°
(84) | 5481.862
5449.155 | B
B | 5 | 1.48 | 3.67 | 2-2
3-3 | b ³ F-x ⁵ D° | 8821.14
8761.44 | D
D | 12
15 | 1.74 | 3.14 | 3-2 | a ⁵ P-y ³ D° (139) | | E
E | 6 | 1.05 4.58
1.05 4.61
1.04 4.59 | 1-0
1-3
0-1 | | 5440.53
5490.151
5472.696 | P
A
B | 12 | 1.43
1.45
1.44 | 3.69
3.70
3.69 | 2-2
4-3
3-2 | (107) | 8725.76
8778.66 | D
D | 30 | 1.73 | 3.14 | 1-3 | a ⁵ P-z ³ Pe | | E | 3 | 1.06 4.61 | 2-2 | a ³ P-y ⁵ 8°
(85) | 02101000 | , | | 1.44 | U. UJ | U-6 | | 8719.56 | D | 30 | | 3.15 | 3-2 | (140) | | | | 1.05 4.61 | 1-2 | (65) | | | | | | | | | | | | | | | | Laboratory I A Ref Int | | | E P
Low High | | EP J)
w High | | o) IA Ref Int Low | | Low | P
High | J | Multiplet (No) | | ator;
Ref | y
Int | E P
Low | High | J | Mul· | | |--|-----------------------|----------------------------|--------------------------------------|--|--|--|---|------------------|--------------------------|------------------------------|--------------------------------------|---------------------------------|---|---|------------------|------------------------------|------------------------------|--------------------------------------|---------------------------------|------------------------| | Ti I cont | inued | 1 | | | | | T1 I con | tinue | 1. | | | | | Ti I con | tinue | ď | | | | _ | | 8457.10
8494.42
8531.36
8550.54
8565.45
8578.40 | D
D
D
D
D | 40
30
15
25
25 | 1.74
1.73
1.73
1.74
1.73 | 3.20
3.18
3.17
3.18
3.17
3.16 | 3-4
2-3
1-2
3-3
2-2
1-1 | a ⁵ p_y ⁵ p°
(141) | 4263.134
*4274.584
4282.702
4251.618
4265.723 | A
A
B
B | 15
15
13
3
4 | 1.88
1.87
1.87
1.87 | 4.77
4.76
4.75
4.77
4.76 | 5-4
4-3
3-2
4-4
3-3 | a ³ (L+ ³ F° (162) | 3143.350
3139.87
3135.069
3130.175
3127.684 | EEEEE | 12N
10N
8N
8N
8N | 2.01
1.99
1.97
1.96 | 5.96
5.94
5.92
5.91
5.91 | 6-7
5-6
4-5
3-4
2-3 | z ⁵ (1) | | 8612.91
•8600.98 | D
D | 7
25 | 1.73
1.73 | 3.16
3.16 | 2-1
1-0 | E 2 . | 4169.330
4166.311
4164.134 | B
B
B | 7
6
4 | 1.88
1.87
1.87 | 4.84
4.83
4.83 | 5-6
4-5
3-4 | a ³ G-x ³ H°
(163) | 3123.769
3118.130
3114.092 | E
E | 20n
15
20n | 2.01
1.99 | 5.98
5.97
5.95 | 6-5
5-4
4-3 | 2 ⁵ G
(1 | | 7474.94
7466.44
7431.98 | E
P
P | (1p?) | 1.74
1.73
1.73 | 3.39
3.38
3.39 | 3–3
2–2
2–3 | a ⁵ P-x ³ D°
(142) | 4177.357
4172.609 | E | (2)
(2) | 1.88 | 4.83 | 5-5
4-4 | 3- 1-0 | 3111.283
3107.468
3105.220 | E | 10n
12n
2n | 1.97
1.96
2.01 | 5.94
5.93
5.98 | 3-3
2-1
5-5 | | | •7253.76
7291.03 | I
P | (1p?) | 1.74
1.73
1.73 | 3.44
3.42
3.42 | 3-3
2-2
1-1 | a ⁵ P-z ⁵ P° (143) | 3895.59
3885.95
3878.61 | P
P
P | | 1.88
1.87
1.87 | 5.05
5.05
5.05 | 5-4
4-4
3-4 | a ³ G-w ¹ G°
(164) | 3102.517
3101.526
3101.77 | E
E | 3n
4n
1n | 1.99
1.97
1.96 | 5.97
5.95
5.94 | 4-4
3-3
2-2 | | | 7305.87
7332.26
7330.97
7213.35 | H
I
E | (1)
(1p?)
(1p?) | 1.74
1.73
1.73 | 3.42
3.42
3.44 | 3-2
3-1
3-3 | | 3786.253
3801.093
3811.385 | B
B
B | 3
3
4. | 1.88
1.87
1.87 | 5.14
5.13
5.10 | 5-4
4-3
3-2 | а ³ G-в ³ F°
(165) | 8518.05
8467.15 | D | 60
75 | 2.13 | 3.57 | 5-4
4-3 | z ⁵ F | | 7266.29
6266.021 | Ē
E | (ō)
(1)
(0) | 1.73 | 3.42 | 1-2
3-4 | a ⁵ P-x ⁵ D° | 3733.767
3738.901 | B
E | 4n
5n | 1.88 | 5.18
5.17 | 5-6
4-5 | a ³ G-w ³ H° f
(166) | 8424.41
8389.48
8417.54 | D
D | 50
25
25 | 2.09
2.08
2.11 | 3.56
3.55
3.57 | 3-2
2-1
4-4 | • | | 6264.825
6277.525
•6295.251 | E
E
E | (0)
(00)
(0) | 1.73
1.73
1.74
1.73 | 3.70
3.69
3.70
3.69 | 3-3
1-3
3-3
2-2 | (144) | 3748.101
3504.773 | B
E
E | 6n
2
3 | 1.87
1.88
1.87 | 5.40
5.38 | 3-4
5-4
4-3 | a ³ G_r ³ F°
(167) | 8386.24
8363.58
5224.301 | P
P
A | 1'5 | 2.09
2.08
2.13 | 3.57
3.56
4.49 | 3-3
2-2
5-5 | z ⁵ F | | 6295.949
6298.075
4617.269 | Ē | (00) | 1.73 | 3.69 | 1-1
3-4 | _a 5 _{P-w} 5 _D o | 3516.838
3525.161
3428.955 | Ē | 3
4 | 1.87 | 5.37 | 3-2
5-5 | a ³ G_t ³ G° | 5224.928
5224.558
5223.623 | A
B
B | 8 6 | 2.11 | 4.47
4.46
4.45 | 4-4
3-3
3-3 | (i | | 4623.098
4629.336
4639.669 | A
A
B | 25
15
15 | 1.73
1.73
1.74 | 4.40
4.39
4.40 | 2-3
1-2
3-3 | (145) | 3446.603
*3454.165 | E | 3 | 1.87
1.88 | 5.45
5.45 | 4-4
5-4 | (168) | 5222.685
5263.483
5255.811 | B
B | 6
3
5 | 2.08
2.13
2.11 | 4.44
4.47
4.46 | 1-1
5-4
4-3 | | | 4639.369
4639.944
4656.048 | B
B | 18
15
6 | 1.73
1.73
1.74 | 4.39
4.39
4.39 | 2-2
1-1
3-2 | | 3352.43
3358.56
3364.10 | P
P
P | | 1.88
1.87
1.87 | 5.56
5.55
5.53 | 5-4
4-3
3-2 | a ³ G-q ³ F°
(169) | 5247.293
•5238.560
5186.329 | B
B | 5
6
3 | 2.09
2.08
2.11 | 4.45
4.44
4.49 | 3-2
2-1
4-5 | | | 4650.016
4645.193 | B
A | 10 | 1.73 | 4.39 | 3-1
1-0 | _a 5p_y5pe | 3010.42 | P | | 1.87 | 5.97 | 4 - 3 | a ³ G-u ¹ F° (170) | 5194.043
5201.096
5207.852 | E
E
B | 4
4
3 | 2.09
2.08
2.08 | 4.47
4.46
4.45 | 3-4
2-3
1-2 | | | 4481.261
4480.600
4479.724
4496.146 | B
B
A | 30
5
9
20 | 1.74
1.73
1.73
1.74 | 4.50
4.49
4.48
4.49 | 3-3
2-2
1-1
3-3 | (146) | *5054.070
3601.16 | В | 3
1 | 1.87 | 4.31
5.30 | 0-1
0-1 | a ¹ S_y ¹ P°
(171)
a ¹ S_y ¹ P° | 4503.762
4497.709
4492.540 | A
B
B | 4n
3
3 | 2.13
2.11
2.09 | 4.87
4.85
4.84 | 5-5
4-4
3-3 | z ⁵ ř
(1 | | 4489.089
4465.807
4471.238 | A
A
A | 20
20
20 | 1.73
1.73
1.73 | 4.48
4.50
4.49 | 2-1
2-3
1-2 | | 5025.570 | A | 18 | 2.03 | 4.49 | -
6-5 | (172)
z ⁵ g°-e ⁵ F | m4488.27
4485.013
*4526.374 | P
B
E | T1+
1
1 | 2.08
2.08
2.13 | 4.83
4.83
4.85 | 2-2
1-1
5-4 | | | 4305.474
*4291.214 | ВВ | 2
5n | 1.74 | 4.61
4.61 | 3-2
3-2 | a ⁵ P-w ³ P° (147) | 5013.284
5000.991
4989.140 | B
B | 18
10
10 | 2.01
1.99
1.97 | 4.47
4.46
4.45 | 5-4
4-3
3-2 | (173) | 4515.610
4505.715
4496.75 | B
E
P | 1 | 2.11
2.09
2.08 | 4.84
4.83
4.83 | 4-3
3-2
2-1 | | | 4299.229
4284.988
4276.441 | E
B
B | 15
8
8 | 1.74
1.73
1.73 | 4.61
4.61
4.61 | 3-2
2-2
1-3 | a ⁵ P-y ⁵ S° (148) | 4978.191
4977.731
4973.051
4968.566 | A
B
B
B | 10
5
6
6 | 1.96
2.01
1.99
1.97 | 4.49
4.47
4.46 | 2-1
5-5
4-4
3-3 | • | 4475.518
*4474.852
4475.19
4476.61 | E
A
P
P | 1
8 | 2.11
2.09
2.08
2.08 | 4.87
4.85
4.84
4.83 | 4-5
3-4
2-3
1-2 | | | 9832.15 | ם | 25 | 1.88 | 3.13 | 5-4 | a ³ G_y ³ F° | 4964.713
4938.04
4941.015 | B
H
E | (On) | 1.96
1.99
1.97 | 4.45
4.49
4.47 | 2-2
4-5
3-4 | | 4030.512
4026.539 | A
A | 25n
25n | 2.13 | 5.19 | 5-6
4-5 | | | 9927.35
9997.94
9879.41 | D
D
D | 20
15
3 | 1.87
1.87
1.87 | 3.11
3.10
3.11 | 4-3
3-2
3-3 | (149) | 4944.388
4355.308 | E | {1}
(0) | 1.96
2.03 | 4.46 | 2-3
6-5 | z ⁵ G°-£ ⁵ F | 4021.812
4017.771
4015.377 | B
A
A | 25n
15n
12n | 2.09
2.08
3.08 | 5.16
5.15
5.15 | 3-4
3-3
1-2 | | | 8468.46
8518.37
8548.07 | D
D | 100
100
100 | 1.88
1.87
1.87 | 3.34
3.32
3.31 | 5-4
4-3
3-8 | e ³ G-x ³ F° (150) | 4340.018
3911.185
*3899.668 | E
B
B | 9n
(2) | 2.01
2.03
2.01 | 5.19
5.17 | 5-4
6-6
5-5 | (174)
2 ⁵ Ge_e ⁵ G
(175) | 4049.398
4040.310
4031.753 | B
B | an
4n
3n | 2.13
2.11
2.09 | 5.17
5.16
5.15 | 5-5
4-4
3-3 | | | 8423.10
8483.16 | D
D | 20
25 | 1.87 | 3.34 | 4-4
3-3 | | 3888.020
3877.591
3869.275 | B
B
B | 4n
2n
5n | 1.99
1.97
1.96 | 5.16
5.15
5.15 | 4-4
3-3
3-2 | (2.0) | 4016.264
4012.786
4013.24 | B
B
P | 6
3 | 2.13
2.11
2.09 | 5.20
5.18
5.17 | 5-4
4-3
3-2 | (: | | *7978.88
8024.84
8068.24 | E
E | (2)
(2) | 1.88
1.87
1.87 | 3.43
3.41
3.39 | 5-5
4-4
3-3 | | 3926.97
3912.589
3897.290 | B | 2 | 2.03
2.01
1.99 | 5.17
5.16
5.15 | 5-5
5-4
4-3 | | 3993.796
3994.56
3975.69 | P
P | 1 | 3.09
2.09 | 5.20
5.20 | 3-3
3-4 | | | 8066.05
7938.53 | P
P
E | (4) | 1.88
1.87 | 3.41
3.43
3.71 | 5-4
4-5
5-5 | | 3884.090
3882.147
*3875.362
3868.397 | B
A | (0)
15n
20n | 1.97
2.01
1.99
1.97 | 5.15
5.19
5.17 | 3-2
5-6
4-5 | | 3980.821
4013.587
4008.046 | B
A
B | (0)
12n
9n | 2.08
2.13
2.11 | 5.18
5.20
5.19 | 2-3
5-6
4-5 | | | 6746.433
6746.43
6751.94 | H | (1)
(0) | 1.87 | 3.69 | 4-4
3-3 | (158) |
3882.892 | B
B | 10n
10n
20n | 2.03 | 5.16
5.15
5.21 | 3-4
2-3
6-7 | z ⁵ g°-e ⁵ H | 4005.958
4007.195 | В | on
3n | a.09
2.08 | 5.17
5.16 | 3-4
2-3 | | | 6092.814
6131.008
6146.225 | E
E | 4
3
3 | 1.88
1.87
1.87 | 3.90
3.89
3.87 | 5-5
4-4
3-3 | (153) | 3866.446
3858.133
3853.719
3853.038 | A
B
B
B | 15n
15n
10n
10n | 2.01
1.99
1.97
1.96 | 5.20
5.19
5.17
5.16 | 5-6
4-5
3-4
2-3 | (176) - | 4003.789
4002.466
3999.336
3994.683 | B
B
B | 10n
9n
7n
4n | 2.13
2.11
2.09
2.08 | 5.21
5.19
5.18
5.17 | 5-4
4-3
3-2
2-1 | (| | 5965.828
5978.543 | A
A
A | 30
30
25 | 1.88
1.87
1.87 | 3.94 | 5–€
4–5
3–4 | (154) | 3095.036
3095.043
3882.313
3873.203 | A
B
B | 30n
10n
10n | 2.01
1.99 | 5.10
5.19
5.17 | 5-5
4-4 | , | 3981.466
3984.313 | E
B
B | (1n)
(0)
3 | 3.08
2.11
2.09 | 5.17
5.21
5.19 | 1-0
4-4
3-3 | | | 5988.560
5996.007 | E | 2 | 1.88
1.87 | 3.94
3.93 | 5-5
4-4 | | 3867.739
3911.362
3897.581 | BEB | (2)
1 | 1.97
2.03
2.01 | 5.16
5.19
5.17 | 3-3
6-5
5-4 | | 3985.580
3828.180 | В | (1) | 2.08 | 5.18 | 2-2
5-5 | z 5 | | 5409.609
5397.093
5389.996
5391.06 | A
A
P | . 6
. 4
. 3 | 1.88
1.87
1.87 | 4.16
4.15
4.16 | 5-4
4-3
3-8
4-4 | (155) | 3887.365
3720.384
3707.549 | E
E
B | (1n)
2
10n | 1.99
2.03
2.01 | 5.16
5.35
5.34 | 4-3
6-5 | z ⁵ G°-g ⁵ F
(177) | 3822.026
3817.639
3814.855
3813.261 | B
B
B | (2)
5
4
(0) | 2.11
2.09
2.08
2.08 | 5.34
5.33
5.32
5.31 | 4-4
3-3
2-2
1-1 | | | 5382.96
5265.967 | P | 10 | 1.87 | 4.16 | 3-3
5-4 | a ³ Q_v ³ F° | 3696.885
3688.27
3681.272 | E
P
E | 1 | 1.99
1.97
1.96 | 5.33 | 5-4
4-3
3-2
2-1 | (211) | 3306.879
3309.730 | E | 10
6 | 2.13
2.11 | 5.86
5.84 | 5-6
4-5 | z 5 | | 5283.441
5297.236
•5248.402 | A
A
E | 8
(1)
1) | 1.87
1.87
1.87 | 4.31
4.19
4.22 | 4-3
3-2
4-4 | (156) | 3694.10
3685.47
3679.14 | P
P | _ | 2.01
1.99
1.97 | 5.35
5.34
5.33 | 5-5
4-4
3-3 | | 3312.690
3315.237
3318.362 | E
E | 5
2
4 | 2.08
2.08
2.08 | 5.82
5.81
5.80 | 3-4
2-3
1-2 | | | 5269.93
4885.082
4899.910 | H
A
A | 20
20 | 1.87
1.88
1.87 | 4.41 | 3-3
5-6
4-5 | a ³ G-y ³ H° | *3366.176 | P
§ E
G | 5 | 2.03 | 5.70 | 2-2
6-5 | z ⁵ g•_h ⁵ F | 3325.155
3325.229
*3324.754 | E
E | 3
3
4 | 2.13
2.11
2.08 | 5.84
5.82
5.80 | 5-5
4-4
(3-3
(2-2 | | | 4913.616
4915.236
4925.396 | A
B
B | 20
5
5 | 1.87
1.88
1.87 | 4.38
4.39 | 3-4
5-5 | | 3361.50
3356.196
•3350.548
3344.931 | E
E | 1
2
2
1 | 2.01
1.99
1.97
1.96 | 5.68
5.67
5.66
5.65 | 5-4
4-3
3-2
2-1 | (178) | 3340.77
3337.40
3334.35 | H
G
H | (1)
in
(in) | 2.13
2.11
2.09 | 5.82
5.81
5.80 | 5-4
4-3
3-8 | | | 4811.074 | В | 4 | 1.88 | | 5-4 | (158) | 3344.630
3343.379
•3341.554 | E
E | tr
tr
1 | 2.01
1.99
1.97 | 5.70
5.68
5.67 | 5-5
4-4
3-3 | | 3199.43
3198.726 | G
E | in
in | 2.13
2.11 | 5.98
5.97 | 5-5
4-4 | • (| | 4449.985
4440.345
4449.143 | B
A | 1
10
30 | 1.87
1.87 | 4.64 | 3-3 | 159) | 3339.54
3226.128 | E | 1n
12 | 1.96 | 5.86
5.86 | 2-2
6-6 | _გ ნ ცი_ გნც | 3199.34
*3213.145
3211.07 | H | (1n)
8
1n | 2.13
2.11 | 5.95
5.97
5.95 | 3-3
5-4
4-3 | | | 4450.896
4453.708
4463.539 | A
A
B | 25
20
80 | 1.87
1.87
1.88 | 4.64 | 4-4
3-3 | (160) | 3223.519
3221.381
3219.212
3217.942 | E | 10
10
8
8 | 2.01
1.99
1.97
1.96 | 5.82
5.81 | 5-5
4-4
3-3
2-2 | | 3141.670
3129.075 | E
E
E | 10
7
8 | 2.13
2.11
2.09 | 6.05
6.05
6.04 | 5-4
4-3
3-8 | (| | 4463.391
4436.586
4441.272 | B
A
B | 8
4
4 | 1.87
1.87
1.87 | 4.64
4.65 | 4-3
4-5 | 3
5 | 3243.513
3238.224
3232.791 | E
E | 3
4
3 | 2.03
2.01
1.99 | 5.84
5.82 | 6-5
5-4
4-3 | | *3128.640
3125.656
3125.553 | E | (a) | 2.08 | 6.03 | 2-1
1-0 | | | 4417.274
4426.054 | A | 15
10 | 1.88 | 4.67
4.66 | 5-4
4-3 | a ³ G-u ³ F° | 3228.183
3206.344
3206.825 | E | 2
5
5 | 1.97
2.01
1.99 | 5.80
5.86
5.84 | 3-2
5-6
4-5 | | | | | | | _ | | | *4434.003
4404.911
4416.535 | A
B
B | 15
5
4 | 1.87
1.87
1.87 | | 4-4 | Ī | 3207.897
3209.030 | | 5
4 | 1.97
1.96 | | 3-4
2-3 | | | | | • | REVI | 8 1 | D MI | ULTI | PLE | T T | ABLE | | | | | | | 29 | |-------------------------|------------------------|-------------|--|-------------------------------|-------------|-------------------|--------------|----------------------|-------------------------|---|----------------------------------|--------------|---------------------------------|----------------------|----------------------|-------------------|---| | oratory
Ref Int | E P
Low High | J | Multiplet
(No) | Labor
I A | ator
Ref | 'y
Int | Low E | P
High | J | Multiplet (No) | Labor
I A | ator;
Ref | | E : | P
High | J | Multiplet (No) | | ntinued | | | \ , | T1 I cont | | | | | | (4.07 | Ti I cont | | | 2,011 | 11284 | | (110) | | D 25 | 2.17 3.39 | 3-3 | a ³ D-x ³ D° | 4995.062 | В | (0) | 2.24 | 4.71 | 2-3 | b ³ P-u ³ De | 5662.154 | A | 12 | 2.31 | 4.49 | 4-5 | z ⁵ D°-e ⁵ F | | D 25
D 15 | 2.15 3.38
2.14 3.38 | 2-2
1-1 | (193) | 4848.41 | P. | (0) | 2.24 | 4.79 | 8-3 | (216)
b ³ r-t ³ p° | 5675.413
5689.465 | Ā | 9 | 2.30 | 4.47 | 3-4
3-3 | (249) | | C 10
D 8 | 2.17 3.38
2.15 3.38 | 3-2
3-1 | | 4843.989
4839.251 | B | (1) | 2.23 | 4.78 | 1-3
0-1 | (217) | 5702.666
5713.895 | B
B | 6 | 2.28 | 4.45 | 1-2 | | | D 8 | 2.15 3.39
2.14 3.38 | 2-3
1-2 | | 4863.75
4854.727 | P | (00) | 2.24 | 4.78 | 2-2
1-1 | | 5708.199
5711.852 | B | 3
4 | 2.31 | 4.47 | 4-4
3-3 | | | D 10 | 2.17 3.44 | 3-3 | a ³ D-z ⁵ P° | *4404.276 | В | 10 | 2.24 | 5.04 | 2-3 | b ³ P-r ³ D° | 5716.450
5720.445 | B | 4
3 | 2.29 | 4.45 | 2-2 | | | מ מ | 2.15 3.42 | 2-2 | (194) | 4421.754
4431.284 | A
B | 6 | 2.23 | 5.02
5.01 | 1-2
0-1 | (218) | 5739.08 | P | · | 2.30 | 4.45 | 3-2 | | | P
P | 2.17 3.69
2.15 3.67 | 3-3
2-2 | a ³ D-w ³ D°
(195) | 4438.232
4444.267 | B | (1) | 2.24 | 5.02 | 2-2
1-1 | | 4825.445
4827.597 | B | 3
2 | 2.31 | 4.87
4.85 | 4-5
3-4 | z ⁵ p°_f ⁵ F
(250) | | P | 2.14 3.66 | 1-1 | | *4404.276 | В | 10 | 2.24 | 5.04 | 2-1 | b ³ P-x ³ S° | 4832.065
4837.42 | B
P | (õ) | 2.29 | 4.84
4.83 | 2-3 | (200) | | H (2)
E (1)
H (1) | 2.17 4.09
2.15 4.09 | 3-2
2-1 | a ³ D-x ³ P°†
(196) | 4388.077
4375.425 | B | 3 | 2.23 | 5.04
5.04 | 1-1
0-1 | (219) | 4270.139 | В | 7n | 2.31 | 5.20 | 4-4 | zSpo-g3F | | H (1) | 2.14 4.08 | 1~0 | | 4203.465 | В | 8 | 2.24 | 5.18 | 3-2 | b ³ P-u ³ P° | 4273.312
4291.88 | B
J | (1) | 2.30 | 5.18
5.18 | 3-3
4-3 | (251) | | J 3
E 2 | 2.17 4.16
2.15 4.16 | 3-4
2-3 | a ³ D-w ³ F°†
(197) | 4186.01
4200.752 | P | 6 | 2.23 | 5.18
5.18 | 1-1
2-1 | (380) | 4251.769
4260.738 | B | 2n | 2.30 | 5.20 | 3-4 | | | Ī ī | 3.14 4.15 | 1-3 | | 4183.294
4188.694 | В | 4 5 | 2.23 | 5.18
5.18 | 1-0 | | 4256.025 | A | 8n | 2.31 | 5.21 | 4-4 | z ⁵ D°-e ⁵ D | | F 4n
E (0) | 8.17 4.88
3.15 4.21 | 3-4
2-3 | a ³ D-v ³ F°
(198) | 4174.478 | В | | 8.88 | 5.10 | 0-1 | 2 2 | 4266.227 | В | 5n
3n | 8.30
2.29 | 5.19
5.18 | 3-5
2-2 | (858) | | L (1) | 2.14 4.19 | 1-3 | | 4136.894
4140.42 | B | (1) | 2.24
2.23 | 5.22
5.21 | 2-3
1-2 | b ³ P-q ³ D°
(221) | 4268.928
4280.069 | E
B | (in)
2n | 2.28
2.31 | 5.17
5.19 | 1-1
4-3 | | | A 8
A 7 | 3.17 4.61
3.15 4.59 | 3-2.
3-1 | a ³ D-w ³ P°
(199) | 4139.46
4154.865 | H
E | (1) | 2.22 | 5.20 | 0-1
3-2 | | 4278.829
4276.657 | B
B | 3n
2 | 2.29 | 5.18
5.17 | 3-2
2-1 | | | B 5
H (2)
E (1) | 2.14 4.58
2.15 4.61 | 1-0
8-8 | | 4150.809 | B
_ | (0) | 2.23 | 5.20 | 1-1 | . 3 3 | 4274.408
4837.786 | B | { <u>@</u> } | 2.28 | 5.17 | 1-0
3-4 | | | | 2.14 4.59 | 1-1 | 7- 3 | 3698.183
3710.186 | E. | رة
(ق) | 2.34 | 5.58
5.57 | 2-2
3-1 | p3p-t3p° | 4249.114
4258.523 | A | 5n
4n | 2.29
2.28 | 5.19
5.18 | 2-3
1-2 | | | A 12
A 10 | 2.17 4.67
2.15 4.66 | 3-4
3-3 | 200) | 3705.53
3686.71 | Л | (0)
10)
(0) | 2.23 | 5.56
5.58 | 1-0 | | 4265.273 | B | 3n | 2.28 | 5.17 | 0-1 | 5-0 5-0 | | A 12
B 3 | 2.14 4.65
2.17 4.66 | 1-2
3-3 | | 3689.671 | E | (0) | 2.22 | 5.57 | 0-1 | | 4137.284
4143.048 | B | 10n
7n | 2.31 | 5.29 | 4-3
3-2 | z ⁵ D°-e ⁵ P†
(253) | | B 3 | 2.15 4.65 | 2-2 | 3- 3 | 10460.07 | C | 10 | 2.25 | 3.43 | 6-5 | a3H-y3Ge | 4150.557
4120.037 | В | 3
2 | 2.39
2.30 | 5.26
5.29 | 2-1
3-3 | | | B 8
B 4 | 2.17 4.71
2.15 4.69 | 3-3
2-2 | a ³ D-u ³ D°
(201) | 10553.02
10565.97 | C | 8
5 | 2.24
2.23 | 3.41
3.39 | 5-4 _,
4-3 | (223) | 4131.244
4143.280 | В | 3 | 2.28
2.28 | 5.27
5.26 | 2-2
1-1 | | | B 3 | 2.14 4.67
2.17 4.69 | 1-1
3-2 | | 8438.93 | Đ | 75 | 2.25 | 3.71 | 6-5 | a3H-x3Ge | 4058.139 | Ā | 7 | 2.31 | 5.35 | 4-5
| z ⁵ D°-g ⁵ F | | Н (1)
н (1рт) | 2.15 4.67
2.15 4.71 | 2-1
2-3 | | 8450.89
8416.97
8402.54 | D | 75
60
5 | 2.23 | 3.70
3.69
3.71 | 5-4
4-3
5-5 | (224) | 4057.612
4060.09
m4064.23 | B
P
P | 5
ma | 2.30
2.29
2.38 | 5.34
5.33
5.32 | 3-4
2-3 | (254) | | A 9 | 2.17 4.77 | 3-4
2-3 | a ³ D_t ³ F° (202) | 7440.60 | D | - | 2.24 | 3.90 | | a ³ H-w ³ Ge | 4068.661 | E
B | T1
(1) | 2.28 | 5.31 | 1-2 | | | B 6
B 3 | 2.15 4.76
2.14 4.75 | 1-2
3-3 | (202) | 7489.61 | E | (3)
(2)
(2) | 2.24 | 3.89 | 6-5
5-4 | (225) | 4074.356
4071.469
4071.211 | E | 3 | 2.31
2.30
2.29 | 5.34 | 4-4
3-3
2-2 | | | Н (ip?)
Н (ip?) | 2.17 4.76
2.15 4.75 | 2-3 | | 7496.12
6745.56 | E | (2) | 2.23 | 3.87
4.06 | 4-3
4-3 | a3H_y1pe | 3323.896 | E | 2 | 2.31 | 5.32 | 4-5 | 2500_k5F+ | | A 18
P (67) | 2.17 4.79
2.15 4.78 | 3-3
2-2 | a ³ D-t ³ D°
(203) | 5999.668 | Ā | 8 | 2.23 | 4.28 | 4-5 | (226)
a3H-z1H° | 3323.660
3325.365 | Ē | 2n
1n | 2.30 | 6.01 | 3-4 | (255) | | B '4 | 2.14 4.77
2.17 4.78 | 1-1
3-2 | (2007 | 5715.123 | A | 9 | 2.25 | 4.41 | | (227)
a3H-y3H° | 3328.326 | Ē | ī | 3.28 | 5.99 | 1-2 | | | E (2)
E 1
E 2 | 2.15 4.77
2.15 4.79 | 2-1
2-3 | | 5739.464
5739.975 | A
B | 9 | 2.24
2.23 | 4.39 | 6-6
5-5
4-4 | (228) | 7038.80 | E | 6 | 2.33 | 4.09 | -
2-2 | c ³ P-x ³ P° | | E 4 | 2.14 4.78 | 1-3 | | 5756.45 | P | - | 2.25 | 4.39 | 6-5 | | 7008.35
7050.65 | E | {i} | 2.32 | 4.09
4.09 | 1-1 | (256) | | A 4
B 3 | 2.17 5.00
2.15 4.99 | 3-2
2-1 | a ³ D_v ³ P°
(204) | 5597.92
5565.476 | I | (2n) | 2.24
2.23 | 4.44
4.44 | 5-4
4-4 | a ³ H-y ¹ G°
(229) | 7010.94
6996.63 | Ī | (1)
(1)
(1)
(1)
(1) | 2.32 | 4.08
4.09 | 1-0 | | | E 1
B 1 | 2.14 4.98
2.15 5.00 | 1-0
2-2 | | 5127.367 | E | - | 2.25 | 4.65 | 6-5 | a ³ H-v ³ Go | 7004.60 | ī | (i) | 2.32 | 4.09 | 0-1 | | | B 1 | 2.14 4.99 | 1-1 | | 5132.931
5122.082 | B | (1)
(0) | 2.24
2.23 | 4.64
4.64 | 5-4
4-3 | (230) | 6017.52 | P | | 2.32 | 4.37 | 1-1 | c ³ P _y ³ S °
(257) | | B 3
P Ti | 2.17 5.04
2.15 5.02 | 3-3
2-2 | a ³ D_r ³ D°
(205) | 4856.012 | A | 20 | 2.25 | 4.79 | 6-7 | a3H-z3I° | 5419.189 | В | 1 | 2.33 | 4.61 | 2~2 | c ^{op} _yos°
(258) | | в 8 | 2.14 5.01 | 1-1 | | 4870.129
4868.264 | A | 20
18 | 2.24 | 4.77 | 5-6
4-5 | (231) | 5429.139
5448.882 | A
B | (6) | 2.33 | 4.61
4.59 | 2-2
1-1 | с ³ Р_ж ³ Р°
(259) | | A 10
A 9 | 2.17 5.14
2.15 5.12 | 3-4
2-3 | a ³ D-a ³ F°
(206) | 4882.326
4893.065 | B | 2 | 2.25 | 4.77 | 6-6
5-5 | | 5474.449
5473.517 | B · | (0)
(1)
(1) | 2.33 | 4.59
4.58 | 2-1 | | | B (8
B (00) | 2.14 5.10
2.17 5.12 | 1-2
3-3 | • | 4778.259 | A. | 10 | 2.23 | 4.81 | 4-4 | a. H-x Go | 5404.023
*5446.593 | E
B | 3 | 2.32 | 4.61
4.59 | 1-2 | | | B (00) | 2.15 5.10 | 2–2 | | 4759.272 | A | 25 | 2.25 | 4.84 | 6-6 | (232)
a ³ H-x ³ H° | 4805.416 | A | 12 | 2.33 | 4.90 | 2-3 | c ³ P-s ³ D° | | A 8
B 4 | 2.17 5.18
2.15 5.18 | 3-2
3-1 | a ³ D-u ³ P°
(207) | 4758.120
4742.791 | A | 25
20 | 2.24
2.23 | 4.83
4.83 | 5-5
4-4 | (233) | 4792.482
4796.210 | A
B | 10
6 | 2.32 | 4.90
4.90 | 1-2
0-1 | (260) | | B (0) | 2.14 5.18
2.15 5.18 | 1-0
2-2 | | 4769.775
4766.330 | B | 4 | | 4.83
4.83 | 6-5
5-4 | | 4812.240
4797.983 | B
B | 5
5 | 2.33
2.32 | 4.90 | 2-2
1-1 | | | E 3 | 2.14 5.18 | 1-1 | 2 2. | 4747.680
4734.682 | B | 3
3 | 2.24
2.23 | 4.84
4.83 | 5-6
4-5 | | 4637.887
4637.209 | В | 8 | | 5.00 | 2-2 | c3p_v3pc | | A 10
B 6 | 2.17 5.22
2.15 5.21 | 3-3
2-2 | a ³ D-q ³ D°
(208) | 4346.104 | A | 5 | 2.23 | 5.07 | 4-5 | a3H-y1H° | 4655.712 | E
B | 2 | | 4.99
4.99 | 1-1
2-1 | (261) | | B 5 | 2.14 5.20
2.17 5.21 | 1-1
3-2 | | 4318.631 | A | 10n | | 5.10 | 6-5 | a ³ H-y ¹ H°
(234)
a ³ H-u ³ G° | 4640.431
4619.525 | E | 2
3 | | 4.98
5.00 | 1-0 | | | E 2 | 2.15 5.20
2.15 5.22 | 2-1
2-3 | | 4325.134
4321.655 | A
A | 9n
8n | 2.23 | 5.09 | 5-4
4-3 | (235) | 4635.539 | E | 3 | | 4.99 | 0-1 | 3- 3 | | P Ti ⁺ | 2.14 5.21 | 1-2
- | | 4309.071 | В | 1 | 2.24 | 6.10 | 5-5
- | | *4558.092
4576.551 | B | (o) | 2.33 | 5.04
5.02 | 2-3
1-2 | (263) | | D 60 | 2.24 3.69 | 2-3 | b3p_w3pe | 8598.18 | D | 60 | 2.26 | 3.69 | 4-3 | b1G-x3G0 | 4598.99
4594.51 | P
P | | 2.32
2.33 | 5.01
5.02 | 0-1
2-2 | | | D 60
D 50
D 25 | 2.23 3.67
2.22 3.66 | 1-3
0-1 | (309) | 6861.47 | E | 6 | 2.26 | 4.06 | 4-3 | (236)
b(0.y)F°
(557) | *4558.092 | В | 2 | 2.33 | 5.04 | 2-1 | e3p-x3se | | D 25
D 20 | 2.24 3.67
2.23 3.66 | 3-3
1-1 | | 6091.175 | A | 20 | 2.26 | 4.28 | 45 | blG-zlH° | 2040 52 | | 4 | 0.40 | | - , - | (263)
2 ³ F°~b ³ G | | D 20
D 15 | 2.24 3.70
2.23 3.68 | 2-3 | b ³ p-x ⁵ po | 5823.679 | В | 3 | 2.26 | 4.38 | 4-4 | (238)
b1G_y3H°
(239) | 6012.53
5982.52 | H | (1)
(0)
(0) | 2.42 | 4.47 | 4-5
3-4
2-3 | (264) | | E (2) | 2.23 3.68
2.24 3.85 | 1-0
2-3 | 7 (210)
b ³ P-v ³ D°† | 5644.137 | A | 18 | 2.26 | 4.44 | 4-4 | b1G_y1G°
(240) | 5971.07 | H | (O)
8 | 2.39 | 4.45
4.67 | 2-3
4-4 | z ³ F°-e ³ F | | E (1p?) | 2.23 3.85
2.23 3.85 | 1-3
0-1 | (311) | 4836.125 | В | 6 | 2.26 | 4.81 | | | 5477.695
5481.426 | A | 8
6
5 | 2.40 | 4.65
4.63 | 3-3 | (265) | | E (2) | 2.24 3.93 | 2-2 | b ³ P-y ³ P° | 4799.797 | A | 13 | 2.26 | 4.83 | 4-4 | (241)
b1G-x3H°
(242) | 5488.210
5527.606 | A
B
P | (1) | 2.42 | 4.65 | 4-3
3-2 | | | P (2) | 2.24 3.92 | 2-1
1-0 | (212) | 4424.401 | В | 2 | 2.26 | 5.05 | 4-4 | .b1G-w1G°
(243) | 5518.11
5432.318 | В | (0)
(1) | 2.40 | 4.63
4.67
4.65 | 3-4
2-3 | | | Ē (0) | 2.23 3.91
2.23 3.93 | 1-2 | | 4393.925 | A | 8 | 2.26 | 5.07 | 4-5 | big-yiH°
(S+4) | 5451.965
4563.437 | В | (1) | 2.39
2.48 | 2.65
5.18 | | z3ro-e3g | | P | 2.24 4.09 | 2-2 | b ³ P-7 ³ P°
(213) | 4368.941 | В | 2 | 2.26 | 5.08 | 4-3 | b1G-u3ge
(245) | 4555.069
4570.906 | B | 3
3n | 2.40 | 5.11 | 3-4
2-3 | (266) | | B 2
I 1 | 2.24 4.37
2.23 4.37 | 2-1
1-1 | _b 3p_y3s• | 3938.005 | В | 2n | 2.26 | 5.39 | 4-4 | big_vig• | 4586.95 | P | | | 5.11 | 4-4 | | | в з | 2.24 4.61 | 2-2 | b3p_w3pe | 3574.245 | E | 8 | 2.26 | 5.71 | | big_uig•
(247) | 4436.64
4430.033 | H
B | (1)
3 | 2.42
2.40 | 5.20
5.18 | 4-4
3-3 | z ³ F°-g ³ F
(267) | | န် (၀ိ) | 2.23 4.59
2.23 4.61 | 1-1 | (315) | 9746.86 | D | 15 | 2,31 | 3.57 | -
4-4 | z5po-a5p+ | 4433.578 | В | 3 | 2.39 | 5.17 | 2-5 | | | B (0) | 2.22 4.59 | 0-1 | | 9717.00
9702.86 | D | 10 | 2.30 | 3.57
3.56 | 3-3 | (248) | 3708.625 | ·B | 4n | 2.42 | 5.74 | 4-4 | z ³ F°-h ³ F
(268) | | | | | | 55.60 | | · | 2.00 | | J-5 | | | | | - | | - | | | 30 | | | | | | | REVI | S E | D M | ULTI | PLE | T T | ABLE | | | | | | | |----------------------------------|-------------|----------------|----------------------|----------------------|------------------------|--|--|------------------|--------------------------|------------------------------|------------------------------|----------------------------------|---|---|------------------|----------------------|------------------------------|------------------------------|--| | Labor
I A | ator
Ref | | E I | P
High | J | Multiplet
(No) | Labora
I A R | tor:
ef | y
Int | E I | High | J | Multiplet
(No) | Labor
I A | | Int | LOW E P | High | J 1 | | Ti I cont | inue | ā | | | | | T1 I conti | nue | đ | | | | | <u>Ti II</u> con | t1nu | be | | | | | 5648.570
5662.891
5679.908 | A
B
B | 5
4
3 | 2.48
2.47
2.46 | 4.67
4.65
4.63 | 3-4
2-3
1-3 | z ³ D°-e ³ F
(269) | 5812.827
5797.445 | H
B
B
E | (1)
(1)
(1)
(1) | 3.32
3.31
3.29
3.28 | 5.44
5.43
5.42
5.41 | 6-6
5-5
4-4
3-3 | y ⁵ G°-f ⁵ H
cont | 3088.027
3078.645
3075.225
3072.971 | A
A
C | 75
50
40
40 | 0.03
0.01
0.00 | 4.05
4.04
4.02
4.02 | 41-31 a
31-21
21-19
11-1 | | 4548.094
4547.850
4557.857 | B
E
B | 2
2
2 | 2.48
2.47
2.46 | 5.20
5.18
5.17 | 3-4
3-3
1-2 | 2 ³ D°-g ³ F
(270) | 10896.10 | c
c |
8
5 | 3.34 | 4.47 | 4-5
3-4 | x ³ F°-b ³ G†
(310) | 3072.107
3066.220
3066.354
*3059.741 | 0000 | 30
30
20
4 | 0.01
0.00
0.01 | 4.05
4.04
4.03
4.05 | 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - | | 3481.675
3481.126
3472.793 | E
E | 3
3
2 | 2.48
2.47
2.46 | 6.03
6.02 | 3-3
2-3
1-1 | z ³ D°-e ³ D
(271) | | Č
E | 3

2 | 3.31 | 4.45
5.50 | 2-3
2-2 | y ¹ D°-e ¹ D | 3057.395
3444.306 | C . | 10 ,
 | 0.00 | 3.73 | 1½-3½
-
4}-5½ t | | 7352.16 | E | (1) | 2.48 | 4.16 | 1-1 | a ¹ P_z ¹ P°
(272) | | | 25 | 3.57 | 4.87 | 5-5 | (311)
y5po_f5p+ | 3461.496
3477.181
3491.053 | A
A | 20
15
10 | 0.13
0.13
0.11 | 3.70
3.67
3.65 | 31-41
21-31 | | 6716.679 | E | (i) | 2.48 | 4.31 | 1-1 | alp_yipo
(273) | 9508.49 | D
D | 20
12 | 3.55 | 4.85 | 4-4 | (312) | 3476.982
3489.739 | Ĉ | tr
2 | 0.15 | 3.70
3.67 | 45-45
35-35 | | 6677.25 | J | (0) | 2.48 | 4.33 | 1-2 | a P-x D°
(274) | 9511.80
9511.55 | D | 8
10 | 3.54
3.53 | 4.83
4.83 | 3-3
2-2
1-1 | | 3500.340
3505.45 | C
P | 3 | 0.12 | 3.65 | 2 1 -2 1
41-31
31-21 | |
°5511.795
5206.059 | В | 2
5 | 2.48
2.48 | 4.72
4.85 | 1-0
1-1 | alp_glge
(275)
alp_wlpe | *8496.03 | D | | 3.68 | 5.13 | -
3 – 3 | air_vire | 3513.09
3322.936 | F
A | tr
75 | 0.13 | 3.65
3.86 | 43-43 t | | 4372.383 | A | 3 | 2.48 | 5.30 | 1-1 | (276)
alp_vlpe | 7214.97 | H | (0) | 3.68 | 5.39 | 3-4 | a1F_V1G0 | 3329.455
3335.192 | A | 70
40 | 0.13 | 3.84 | 31-31
31-31 | | 4227.654 | В | 5 | 2.48 | 5.40 | 1-3 | (277)
a ¹ P_w ¹ D°
(278) | 10147.09 | σ | 4 | 3.90 | 5.12 | -
5-5 | (314)
³ G°-e ³ G | 3340.344
3343.770
3346.724 | A
C
D | 35
10
15 | 0.11
0.15
0.13 | 3.81
3.84
3.82 | 15-15
45-35
35-25 | | 4211.729 | В | 4 | 2.48 | 5.41 | 1-2 | a ¹ p_v ¹ D°
(279) | 10119.20 | Č | 3 3 | 3.89
3.87 | 5.11 | 4-4
3-3 | (315) | 3348.844
3308.806
3318.024 | C
C
A | 107
8
10 | 0.13
0.13
0.12 | 3.81
3.86
3.84 | 25-15
35-45
25-35 | | 5741.192 | В | 1 | 2.49 | 4.64 | 2-3 | b1p_x1F°
(280) | 5341.492 | В | 1 | 4.31 | 6.68 | 1-1 | y ¹ P°_e ¹ P
(316) | 3326.762 | Ā | 30
0 | 0.11 | 3.82 | 1g-3g t | | 5298.429
5246.143 | A
B | 4
2 | 2.49 | 4.82
4.85 | 2-1
2-1 | b ¹ D-x ¹ P°
(281)
b ¹ D-w ¹ P° | | | | | | | (310) | 3319.063
3288.142 | Ġ | (1)
On | 0.13
0.13 | 3.85
3.89 | 32-32 | | 4075.344 | A | 10 | 0.40 | 4.08 | 2-3 | (282)
(283)
(283) | Strongest 1
11609.41 | Unel | Lassifi
3 | ed Lines | of <u>T1</u> | ī | | 3307.717
3276.998
m3299.44 | C
P | tr
tr
Ti | 0.13
0.13
0.11 | 3.85
3.89
3.85 | 24-24
24-34
12-22 | | 4237.889 | A | 7 | 2.49 | 5.41 | 2-2 | blp_vipe
(284) | 11539.50
11403.89 | 000 | 5
8 | | | | | 3231.315 | · c | 4 | 0.13 | 3.95 | 31-21 t | | 7189.89 | E | 2 | 2.57 | 4.38 | 5-5 | a ¹ H-z ¹ H°
(285) | 11381.53
11230.91 | C | 7
5 | | | | | 3248.70
3220.467
3240.71 | PCO | 1
1 | 0.12
0.12
0.11 | 3.92
3.95
3.92 | 24-14
24-24
14-14 | | 6575.180 | E | 3 | 2.57 | 4.44 | 5-4 | a ¹ H-y ¹ G°
(285) | 10145.48
9981.16 | C
D | 8
5 | | | | | 3212.70 | P | | 0.11 | 3.95 | 11-21 | | 5503.897 | A | 8
12 | 2.57 | 4.81
4.98 | 5-4
5-6 | alH-x1G°
(287)
alH-z1I° | 8641.47
8418.70
6565.62 | D
D
E | 40
10
4 | ٧ | | | | 3168.519
3162.570
3161.755 | A
O
A | 40
35
30 | 0.15
0.13
0.12 | 4.05
4.04
4.02 | 42-32 t
32-22
32-12 | | 5130.420
4938.283 | A
A | 8 | 2.57 | 5.07 | 5-5 | a ¹ H-y ¹ H°
(389) | 5369.635 | Ā | 4 | III | • | | | 3161.205
3155.670 | Ö | 25
12 | 0.11 | 4.02
4.05 | 15- 1
35-35 | | 4369.682 | A | 5n | 2.57 | 5.39. | 5-4 | (289)
a1H_v1G°
(290) | 4599.226
4539.096
4511.176 | A
B
B | 5
3
3 | IA
IA
IA | | | | 3152.251
3154.195
+3145.402 | CCC | 15
12
0 | 0.13
0.11
0.12 | 4.04
4.03
4.05 | 21-21
11-11
21-31 | | 4278.231 | В | 7 | 2.57 | 5.45 | 5-5 | a1H_x1H°
(291) | 4495.006 | В | 4 | III | | | | m3144.74 | ř | T1+ | 0.11 | 4.04 | 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | 3926.319
6215.212
6220.460 | B
B
B | 20
13 | 2.57
2.68
2.67 | 4.67
4.65 | 5-4
-
5-4
4-3 | a ¹ H-u ¹ G°
(292)
z ³ G°-e ³ F
(293) | 4129.166
4121.637
4027.486
3985.246
3861.079 | - | 4
4
3
3n | IA.
III
IA
III | | | | 3987.63
3981.998
4025.136
4012.372 | P
B
C
B | tr
2
4 | 0.60
0.57
0.60
0.57 | 3.70
3.67
3.67
3.65 | 31-42 8
22-32
32-32
22-22 | | 6221.41
5064.068 | E
B | 8
4 | 2.65 | 4.63
5.12 | 3-2
5-5 | z ³ @-e ³ @ | 3846.438
3836.763 | ВВ | 6n
5 | IA | | | | 4056.212
3786.33 | Ç
P | (1) | 0.60 | 3.65
3.86 | 3출-2출
3출-4출 8 | | *5054.070
5068.332 | В | 3 3 | 2.67
2.65 | 5.11
5.09 | 4-4
3-3 | (294) | 3833.674
3833.186
3735.660 | BBB | 4
4
4n | IA | | | | 3774.650
3813.390
3796.899 | C
B
B | (3n)
2
3n | 0.57
0.60
0.57 | 3.84
3.84
3.82 | 21-31
31-31
21-21 | | 4908.46
4900.625
4900.03 | P
E
P | (7) | 2.68
2.65
2.65 | 5.20
5.18
5.17 | 5-4
4-3
3-2 | z ³ @°_g ³ F
(295) | 3715.371
3700.055
3644.699 | BBE | 3n
4n
4 | IA
IA | | | | 3836.085
3814.580
3759.291 | B
B | 200 | 0.60
0.57
0.60 | 3.82
3.81
3.89 | 31-21
22-12
31-31
21-22 | | 4127.531
4123.559
4122.143 | A
P | 15
10 | 2.68
2.67
2.65 | 5.67
5.66
5.64 | 5-6
4-5
3-4 | 2 ³ G°-f ³ H
(296) | 3633.458
3631.999 | E | 5 | IA | | | | 3761.320
3799.81
3721.632 | A
F
B | 200
tr
15 | 0.57
0.60
0.57 | 3.85
3.85
3.89 | 24-25
34-24
25-35 | | 4149.445
4142.480 | A
B
B | 10
(0)
2 | 2.68 | 5.66 | 5-5
4-4 | | 3585.852
3556.184 | E | 4
3 | III? | | | | +3685.192 | A | ż50 | .0.60 | 3.95 | 3 1-21 s | | 4032,628 | В | 3n | 2.68 | 5.74 | 5 - 4 | z ³ G°-h ³ F
(297) | 3507.426
3459.431
3435.432 | E | 3
3
3 | III
III | | | | 3649.01 | P | | 0.57 | 3.92
3.95
4.05 | 31-11
31-21
31-31 . | | 5259.976 | В | 3 | 2.73 | 5.07 | 2-3 | , z ¹ D°-e ¹ F | *3130.804§
3007.487 | A
E | 15?
4N | | | | | 3587.130
3561.575
3596.048 | C
A | 12
3
60 | 0.60
0.57
0.60 | 4.04 | 3 3 -2 3 | | 4068.981 | В | 4n | 2.73 | 5.76 | 2-3
- | | | | | | | | | 3573.737
3552.85 | C
P | 20 | 0.57
0.57 | 4.02
4.05 | 3출-1출
3출-3출 | | 5351.072 | В | 4 | 2.77 | | 3-3 | (300) | <u>ri II</u> I | P 1 | 3.6 | Anal A | List A | . '00 | t 1940 | 3349.035
•3341.875 | C | 75
100 | 0.60
0.57 | 4.29
4.26 | 31-41 6
21-31
31-32 | | 4224.795
4123.287 | В | 5
5n | 2.77 | | 3-4
3-3 | (301) | 3349.399//
3361.213 | | 125
125 | 0.05 | 3.73 | 41-5 | o a 4F−z 4G° | 3372.208 | С | 107 | 0.60 | 4.26 | | | 3606.062 | E | 1 | 2.77 | | 3-2 | (302) | 3372.800
3383.761
3380.278 | Ç
A | 100
125
30 | 0.01
0.00
0.05 | 3.67
3.65 | 41-5
31-4
31-3
11-2 | ¥ \- ' | 4762.77
4798.535
4806.33 | F
C
P | (1)
(2) | 1.08
1.08
1.08 | 3.67
3.65
3.65 | 23-33 6
13-23
22-23 | | 6098.655 | В | 7 | 3.05 | 5.07 |
4-3 | z1Go_e1F | 3387.834
3394.574 | A
A
A | 50
40 | 0.03
0.01 | 3.67 | 44-3
32-3
44-3
32-3 | 9 1
9 1 | 4469.160 | C | tr
(1) | 1.08 | 3.84 | | | 4808.531 | В | 5 | 3.05 | 5.62 | 4-5 | (304)
zige-ein
(305) | 3407.205
3408.809 | C | 3
4 | 0.05 | 3.65 | | | 4493.53
4500.32
4518.30 | C
P
P | (1) | 1.08
1.08
1.08
1.08 | 3.82
3.81 | 25-25
15-15 | | 4688.392 | В | 3 | 3.08 | 5.71 | 1-2 | (306) | 3234.517
3236.573
3239.037
3241.984 | A
A
A | 75
70
60
60 | 0.05
0.03
0.01 | 3.84 | 41-4
31-3
22-1
12-1 | 1 a ⁴ F-2 ⁴ F°
3 (2) | 4525.21
4395.031
4443.802 | A
A | 60
50 | 1.08 | 3.89 | 22-22 t | | 7069.11
7039.36 | I | | 3.17
3.14 | 4.89 | | y ³ p°_f ³ p
(307) | 3254.250
3252.914 | C | 30
40 | 0.05 | 3.84 | 44_3
32-4 | 3 2
3 2 | 4450.487 | В | 10 | 1.08 | 3.85 | | | 7035.86 | E | | 3.13 | 4.88 | 1-2 | 3 | 3251.911
3217.056
3222.843 | C
A
A | | 0.01
0.03
0.01 | 3.86 | 44-
34-
34-
34- | 19
40
30 | 4294.101
4337.916
4544.291 | A
A
B | 40
50
2 | 1.08
1.08
1.08 | 3.92
3.92 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 7996.53
•7978.88 | E | (4) | 3.32 | 4.85 | 5-4 | (308) | 3228.193 | C | 40 | 0.00 | 3.82 | 15-1 | e. <u>S</u> | 4287.893 | В | 8 | 1.08 | | 15-02 | | 7961.58
7943.93
7926.37 | E | (1n?
(1) | 3.27 | 4.83
4.83 | 3-2
2-1 | 3
! | 3214.750
3226.771
3197.518 | 000 | | 0.00 | 3.85
3.89 | 32-
32- | 3 | 4161.524
4167.67
4173.537 | B
P
B | 1 | 1.08
1.08
1.08 | 4.04 | 1 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | | 7909.34
5804.265 | P | | 3.30 | 4.87 | 5 | 5 | *3213.145§
3184.09
3203.435 | 000 | 1 2 | 0.0 | 1 3.85
1 3.89 | 41
32
33
24
21
12 | 3 1 | 4184.329
4190.29
4196.64 | C
F | (1) | 1.08
1.08
1.08 | 4.02 | 13-13
25-13
12- 2 | | 5785.979
5774.037 | A
A | 5n 5n | 3.3:
3.29 | 1 5.44
9 5.43 | 5-0
4-1 | 8 (309)
5 | 3143.758 | O | 10 | 0.0 | 3 3.95 | | | 3480.897 | C | 0 | 1.08 | | | | 5766.330
5762.295 | A (| | 3.21
3.2 | | | | 3157.397
*3130.8048
3148.033
3121.599 | C | 15
13 | 0.0 | 1 3.93
1 3.95
0 3.92 | 25-
25-
15- | 1) (4)
2) | | | | | | | | | | | | | | | | ., | • | | | ~ *** | • | | | | | | | | | | R E V I | S E | ט א מ | LTIP | LET | TABLE | | | | | | | 31 | |--|---|--|----------------|----------------------------|----------------------------|---|--|--|--------------|--------------------|------------------------------|------------------------------|----------------------------------|--| | atory E P
Ref Int Low High | J Multiplet | labor
I A | atory
Ref | Int | Low Hi | .gh | Multiplet
(No) | Labor
I A | atory
Ref | Int | Low E P | High | J | Multiplet
(No) | | tinusd
P Ti ⁺ 1.08 4.8 | 3 1 -3 1 a ² D-y ² D° | <u>Ti II</u> cont
m3218.26 | P | i
Ti ⁺ | 1.18 5. | | 2} a4P-y4D° | <u>Ti II</u> con
5446.46 | P | eđ. | | 3.84 | 2=3글 | b ² D-z ⁴ F° | | C 3 1.08 4.8
C 35 1.08 4.8
C 3 1.08 4.8 | 1 33-13
7 13-33 |
3221.76
3228.36
m3234.50 | P
P
P | T1 ⁺ | 1.16 4.
1.18 4. | 98 \$.
99 2 § . | · ‡
·1∳ | 5454.05
5492.83
5490.65
5529.94 | P
P
P | | 1.57
1.56 | 3.82
3.82
3.81
3.81 | 12-12 | b ² D-z ⁴ F°
(68) | | C 30 1.08 4.89
C 30 1.08 4.99
C 30 1.08 4.89 |) 1출~ 출 (34) | 3231.71
3058.090
*3059.741 | C | 50
6 | 1.18 5. | .21 2½ | · z
-3½ a ⁴ P-2 ⁴ P°
-1 2 (47) | 5336.809
5381.020 | B
B | 4 | 1.57 | | 2½-1½
2½-3½ | b ² D-z ² F°
(69) | | C 3 1.08 4.9
C 3 1.08 4.9 | 1 31-11 a3D-z45° | 3063.502
3071.242
3066.514 | 000 | 4
15
3 | 1.16 5.
1.18 5. | 18 }
19 3}
18 1 \$ | 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 | 5418.802
5188.700 | B
C | Õ
6 | 1.57 | 3.85 | 2½-2½
2½-2½ | b ² D-z ² D° | | C 30 1.08 4.9
A 40 1.08 4.9 | 5 2½-3½ a ³ D-y ³ F°
3 1½-2½ (36) | 3046.685
3056.740 | ° c | 30
15 | 1.16 5. | . 31 1] . | -3 1
-1 1 | 5226.534
5262.104
5154.061 | B
C
B | 5
0
0 | 1.56
1.57 | 3.92
3.92
3.95 | 15-15
25-15
15-25 | b ² D_z ² D°
(70) | | C 1 1.08 4.9 | 4 33-33 a ² D-y ⁴ D° | 4764.535
4763.84 | C
P | (1) | 1.22 3. | 82 1 | -3½ a ³ P-z ⁴ F°
-1½ (48)
-1½ | 4995.89
4981.38 | P
P
C | | 1.56 | 4.05
4.04 | 21-31 | b ² D-z ⁴ D•
(71) | | F tr 1.08 5.0
P 1.08 5.0
P 1.08 4.9
P 1.08 4.9 | 15-15 | 4792.39
4708.663 | P
C | tr | | .85 1] . | 2 a a P-z a Fe | 5013.712
5005.18
5037.81
m5022.82 | PP | tr
T1 | 1.56
1.57 | 4.04
4.02
4.03
4.03 | 23-22
13-13
23-13
13- 2 | | | P 1.08 4.9
F 1 1.08 5.3 | 3 1] -] | 4533.966
4563.761
4589.961 | B
A
B | 30
30
2 | 1.22 3. | 95 13
92 3 | -3½ a ² P-z ² D°
-1½ (50)
-1½ | 3741.633
3757.684 | B
B | 50
30 | 1.57 | 4.87
4.84 | 24_24 | b ² D-y ² D°
(72) | | P 1.08 5.1
P 1.08 5.1
P 1.08 5.1 | 9 2½-1½
8 1½ ½ | 4399.767
4394.057 | A
B | 35
2 | 1.22 4. | 04 1 | -2½ a ² P-z ⁴ D°
-1½ (51) | 3776.062
3723.631 | B
C | 6
tr | 1.57 | 4.84 | 12-12
22-12
12-22 | . 2 2 | | P 1.08 5.2
P 1.13 3.7 | | 4418.340
4407.678
4432.089 | C
C | i
i
tr | 1.22 4. | 02 1 | - 2 | 3724.106
3696.39
3706.219 | C
B | (1)
20 | 1.57
1.56
1.56 | 4.89
4.89
4.89 | 22-12
12-12
12-12 | _b a _{D_z} a _{pe}
(73) | | P 1.11 3.7
P 1.13 3.7
P 1.11 3.6 | 0 3½-4½ (29)
0 4½-4½ | 3641.330
3624.826 | A
A | 100
70 | | | - ½ a ³ p_z ² s°
- ½ (52) | 3666.11
3648.80 | P
P | | 1.57
1.56 | 4.94
4.94 | | b ³ D-2 ⁴ 8° (74) | | p 1.13 3.6
C tr 1.11 3.6 | 7 41-31
5 32-22 | 3388.755
3402.422
3416.957 | Ġ | 8 | 1.23 4 | .87 1
84 2
84 1 | -21 e ^{3p_y2} n°
-1 2 (53)
-1 2 | 3659.765
3662.237
3679.673 | C | 60
40
(3) | 1.57
1.56
1.57 | 4.95
4.93
4.93 | 21-31
11-21
31-22 | h ² n_y ² r°
(75) | | P 1.13 3.8
P 1.11 3.8
C tr 1.13 3.8 | 4 3½-3½ (30)
4 4½-3½ | 3374.352
3352.071 | 000 | 8 5 | 1.22 4 | .89 1 2 | -1 a ³ P-z ³ P°
- | 3565.326
3576.38 | C
F | (On) | 1.57 | 5.04 | 21-31
11-31 | b ² D-y ⁴ D°
(76) | | P 1.11 3.8
P 1.11 3.8
A 50 1.13 3.8 | 6 3]_4] | *3366.176§
3360.16
3337.85 | C
P
F | 8 | 1.32 4. | | | 3593.093
3596.55
3613.30
3608.89 | CCPP | tr | 1.57
1.56
1.57
1.56 | 5.01
4.99
4.99
4.98 | 25-25
15-15
25-15
15- 5 | | | A 40 1.11 3.8
B 1 1.11 3.8 | 5 3½-3½ (31)
9 3½-3½ | 3326.68
3312.90 | P
P | | 1.23 4 | .94 1
.94 3 | -1 a ³ P-z s°
-1 (56) | 3110.095
3096.424 | C | 8 | 1.57
1.56 | 5.54
5.54 | | b ² D-x ² D°
(77) | | B 1 1.11 3.9 P 1.13 4.0 P 1.11 4.0 | 5 43-31 a ² 0-2 D° | 3266.43
3269.77
3283.14 | F
F
P | $\binom{1}{1}$ | 1.22 4 | .01 11
.99 1 | -2½ s ² p-y ⁴ p°
-1½ (57)
-1½ | 3108.927
3097.626
3048.766 | C
C | 0
1
6 | 1.57
1.56 | 5.54
5.54
5.62 | 15-25 | | | P 1.11 4.0 | 5 32-32
9 43-43 a ² G-2 ² G° | m3379.97
3393.48 | P | T1 ⁺ | 1.23 4 | .98 1½ | - 2 | 3043.851
3036.784 | Ö | 5 | | 5.61
5.62 | 12-12 | b ² D-y ² P°
(78) | | A 60 1.11 4.2
B 3 1.13 4.2
P 1.11 4.2 | 6 3½-3½ (34)
6 4½-3½
9 3½-4½ | m3101.52
3102.975
3115.088 | P
C
C | T1
2
1 | 1.22 5
1.23 5 | .21 13
.19 13 | -2½ a ² P-z ⁴ P°
-1½ (58)
-1½ | 5723.87
5781.73 | P | | 1.58 | 3.73
3.70
3.70 | 5-5-5-
 | a ² H-z ⁴ G° (79) | | C 4 1.11 4.8 | 7 3½-3½ a ² G-y ² D° (35) | 3109.92
3122.065 | P
C | 2 | | .18 1 | - 1 | 5814.62
5860.92
5691.99 | P
P | | 1.58
1.56
1.56 | 3.70
3.67
3.73 | 42-52
42-52 | | | A 35 1.13 4.9
C 30 1.11 4.9
P 1.11 4.9 | | 4657.210
4698.67
4719.515 | C
P
C | tr
(1) | 1.23 3 | .89 23
.85 13 | -3½ b ⁴ P-z ² F'
-3½ (59)
-3½ | 5396.3
5422.47
5367.95 | F
F
P | (1) | 1.58
1.56
1.56 | 3.86
3.84
3.86 | 51-41
41-31
41-41 | a ² H-z ⁴ F° (80) | | P 1.13 5.0
P 1.11 5.0
P 1.11 5.0 | 1 3] 2] (37) | 4544.009
4580.458 | Ç | tr
(1) | 1.24 3 | .95 al | -3 b ⁴ P-z ³ D°
-1 (60)
-1 (7) | 5313.76 | P | | 1.56 | 3.89 | | | | P T1 1.18 3.8
C (1) 1.16 3.8 | 4 3½-3½ a ⁴ P-z ⁴ F° | 4600.28
4524.732
4568.312 | C
C | (1?)
(1) | 1.23 3 | .95 19 | -8 2
-1 2 | 4549.622
4571.971
4529.465 | A
C | 60n
50n
1 | 1.58
1.56
1.56 | 4.29
4.26
4.29 | 52-42
42-32
42-42 | 28H-z ² F°
(81)
28H-z ² G°
(82) | | C (1) 1.16 3.8
P T1 1.16 3.8
P 1.18 3.8
P 1.16 3.8 | 1 \$-1\$
2 2\$-2\$ | 4395.848
4390.977
4398.314 | B
B
C | 2
tr
(1) | 1.23 4 | .05 2
.04 1 | -3½ b ⁴ P-z ⁴ D°
-3½ (61) | 3648.86
3224.241 | c
c | (0)
35 | 1.56
1.58 | 4.95
5.40 | 4½-3½
5à-4k | a ² H-y ² F°
(83)
a ² H-y ² G° | | P 1.18 3.8 | 1 35-15 | 4409.22
4409.519
4411.936 | Č C | tr
tr
(1) | 1.24 4
1.23 4
1.22 4 | .02 🔞 | -13
-23
-13
-13
- 3 | 3218.270
3214.14 | C
F | 25
1 | 1.56
1.58 | | 45-35
45-45 | a ² H-y ² F°
(83)
a ² H-y ² G°
(84) | | C (1) 1.16 5.6
P 1.18 3.8
P 1.18 3.8 | 5 2] _2] | 4487.90
4483.22 | P | | 1.23 4 | .02 1g | -13
- 2
1 24n -3ce | 3029.730
3038.706
3008.322 | 0000 | 50
35
6
2 | 1.56
1.58 | 5.64
5.64 | 52-52
42-42
52-42
42-52 | a ² H-z ² H°
(85) | | P 1.18 3.5
B tr 1.16 3.5
P 1.18 3.5
B 40 1.16 3.5 | 2 1 1 1 1 (40)
2 2 1 1 1 1 (40) | 3635.36
3627.71
3394.37 | P
C
P | (1) | 1.33 4 | .62 | - 1 b ⁴ p-z ³ s°
- 2 (62)
- 3 b ⁴ p-v ³ p° | 5129.143 | В | | 1.56 | 4.29 | | b ² G-z ² G• | | B 1 1.16 3.0
B 60 1.18 4.0 | 5 31-31 a4p-z4D° | 3422.661
3383.57 | r
C
P | (1) | 1.23 4
1.23 4 | .84 1
.84 2
.87 1 | -21 b4p-y2D°
-12 (63)
-15 -21
-21
-12 | 5185.90
5183.72
5131.28 | E
C
P | ā
tr | 1.89 | 4.26
4.26
4.29 | 32-32
42-32
32-42 | (se) | | B 50 1.16 4.0
B 15 1.16 4.0
A 35 1.18 4.0 | 14 12-22 (41)
13 2-12
14 22-22 | 3404.97
3379.930 | g
G | (1)
_in | 1.24 4 | 84 | -1 1 b ⁴ F-z ³ P° | 4028.332
4053.814 | В | 7
3 | 1.86 | 4.95 | 41-31
31-21 | b ² G_y ² F°
(87) | | A 40 1.16 4.0
B 40 1.18 4.0
B 0 1.18 4.0
B 1 1.16 4.0 | w. w2-w2 | m3361.07
3369.313
3354.54
3362.653 | P C P C | Ti
S
1 | 1.23 4 | 90 1
89 1
90 | -12 b ⁴ p-z ² p°
- 2 (64)
- 2
- 2
- 12
- 12 | 4029.64
3504.890
3510.840 | P
A
A | 80
60 | 1.88
1.88 | 4.95
5.40
5.40 | 32-32
41-41
34-34 | b ² G-y ² G° | | F 6 1.16 4.6 | 2 13- 3 a4P-z38° | 3332.111
3321.700 | A
C | 30
25 | 1.24 4 | | -1 b ⁴ P-2 ⁴ S°
-1 (65)
-1 2 | 3509.844
3505.901 | Ċ | 3
tr | 1.88
1.88 | 5.40
5.40 | 42-32
32-42 | (88) | | C tr 1.18 4.8
C 1 1.16 4.8 | 7 21-21 a ⁴ P-y ² D°
4 11-12 (43) | 3315.324
•3248.602§ | C
C | 10
50 | 1.22 4 | | | *3261.596
3287.657
3286.756 | A
A
C | 60
40
0 | 1.88
1.88
1.88 | 5.67
5.64
5.64 | 41-51
31-41
41-41 | b ² 0—z ² H°
(89) | | P 1.18 4.8
F 1.16 4.8
P 1.16 4.8 | 7 1] | *3261.596
3272.080
3271.652 | A ∪ ∪ C | 60
25
25 | 1.23 5
1.22 4
1.24 5 | .01 1
.99 | -31 b4P-y4D°
-31 (66)
-11 (66) | 3103.804
3089.401
3104.593 | G C C | 50
15
3 | 1.88
1.88
1.88 | 5.86
5.88
5.86 | 41-31
31-21 | (90) | | P T1 ⁺ 1.18 4.8
F (3) 1.16 4.8
P T1 1.16 4.8 | 9 31-11 a ⁴ P-z ³ P°
0 12-2 (44) | 3278.290
3282.329
3288.428
3288.575 | 0000 | 30
25
5
5 | 1.22 4 | .98
.99 2 | -14
-14
-14 | 6491.61 | Þ | | 2.05 | 3.95 | | | | F (1) 1.16 4.9
C tr 1.16 4.8 | ∨ ছ∽-ছ | | c | 35
20 | 1.24 5 | .21 2 | -8 b4P-24P° | 6559.580
6607.02 | C
P | (2)
(1) | 2.04
2.05 | 3.92
3.92 | \$-1\$
1\$-1\$ | b ² P-z ² D° (91) | | C 5 1.18 4.9 | | 3106.234
3110.620 | C | 30· | | .19 1 | -15 (01) | | | | _ | | . , . | . 2- 2 | | C 4 1.16 4.9
C 3 1.16 4.9 | 2 2-12
4 22-12 8 P-z 2 8 14 12-12 (45)
4 2-12 | | | 20
10
15
20
25 | 1.23 5 | .18 1
.19 2
.18 1 | -2 b ⁴ P-2 P°
-15 (67)
-15 (67)
-15 -25
-15 -15 | 4805.105
4779.986
4374.825 | B
B | a
1
1 | 2.05
2.04
2.05 | 4.62
4.62
4.87 | 11/2 1/2 | (93)
b ³ P-y ² De
(98) | 3902.250 3875.075 3864.862 3855.370 3909.894 3892.859 3875.902 2⁴F°-e⁴F (120) 8n? 5n? 4n 5n tr 3194.56 3194.26 3192.68 3189.52 3213.59 3.85 3.84 3.82 3.81 3.85 7.73 7.70 7.69 7.68 7.70 0.07 0.04 0.03 0.00 0.07 0.04 0.02 3.23 3.21 3.20 3.22 3.21 3.20 41-41 31-32 21-22 11-12 42-32 31-22 21-12 a⁴F-y⁴F° (?) 0.30 3.07 0.29 3.05 0.27 3.04 0.29 3.07
0.27 3.05 0.27 3.05 0.27 3.05 0.26 3.04 4460.292 4459.760 4457.479 4437.837 4441.683 4444.207 4419.935 4438.138 4436.138 | | | REVISED M | ULTIPLET TABLE | | | |--|--|--|---|---|--| | aboratory
Ref Int | EP J Multiplet
Low High (No) | Laboratory
I A Ref Int | E P J Multiplet
Low High (No) | Laboratory
I A Ref Int | EP J Multipl
Low High (No) | | ontinued | | V I continued | | V I continued | | | 38 // C 150rw
22 C 125r
74 C 100
28 C 80
75 C 60 | 0.30 3.12 4±-5½ a ⁶ p_y ⁶ F°
0.29 3.10 3½-4½ (22)
0.27 3.09 2½-3½
0.27 3.07 1½-2½
0.36 3.07 ½-1½ | 5743.438 A 18
5737.040 A 25
5727.662 A 20
*5782.601 A 2
5761.411 A 2 | 1.08 3.22 $3\frac{1}{2}$ $3\frac{1}{2}$ a^4 D-y ⁴ F° 1.06 3.21 $3\frac{1}{2}$ $3\frac{1}{2}$ cont 1.05 3.20 $1\frac{1}{2}$ $1\frac{1}{2}$ 1.08 3.21 $3\frac{1}{2}$ $3\frac{1}{2}$ $3\frac{1}{2}$ 1.06 3.20 $3\frac{1}{2}$ $3\frac{1}{2}$ $3\frac{1}{2}$ | 4113.518 C 12
4092.407 C 8
4091.945 C 3
4124.072 C 5
4107.487 C 4 | 1.21 4.21 2½-3½ a ⁴ P-w ⁴ Γ
1.19 4.21 1½-2½ (52)
1.18 4.19 ½-1½
1.21 4.21 2½-2½
1.19 4.19 1½-1½ | | 37 C 70
04 C 70 | 0.30 3.10 45 45
0.29 3.09 35-35
0.27 3.07 25-25 | 5670.827 A 30w
5731.257 A 30 | 1.08 3.25 31-41 a4D-z ² G°
1.06 3.21 21-32 (36)
1.08 3.21 32-32 | 4092.497 0 6
3533.676 C 10 | 1.18 4.10 $\frac{1}{2}$ $\frac{1}{2}$
1.21 4.71 $3\frac{1}{2}$ $3\frac{1}{2}$ a^4P-t^4D | | 11 C 90
96 C 15 | (0.27 3.07 12-12
0.26 3.06 2-2
0.30 3.09 42-32 | 5776.670 A 4
5627.628 A 30 | | 3529.735 C 10
3533.757 C 6
3553.271 C 6 | 1.19 4.69 13-25 (53)
1.18 4.67 3-15
1.21 4.69 25-25 | | 05 C 20
73 C 20
74 C 20 | 0.29 3.07 31-21
0.27 3.07 25-15
0.27 3.06 12-2 | 5624.605 A 30
5624.895 A 10
5626.014 A 8
5668.369 A 12 | 1.08 3.27 $3\frac{1}{2}$ - $3\frac{1}{2}$ a^4 D- y^4 D°
1.06 3.25 $3\frac{1}{2}$ - $3\frac{1}{2}$ (37)
1.05 3.24 $1\frac{1}{2}$ - $1\frac{1}{2}$
1.04 3.23 $\frac{1}{2}$ - $\frac{1}{2}$
1.08 3.25 $3\frac{1}{2}$ - $\frac{1}{2}$ | 3545.339 C 8
3543.500 C 8
3569.083 C 1
3555.142 C 3 | 1.19 4.67 15-15
1.18 4.66 5-5
1.21 4.67 25-15
1.19 4.66 15-5 | | 4 G 1
11 C 4
25 C 5 | 0.29 3.10 $3\frac{1}{2}-2\frac{1}{2}$ a^{6} $D-z^{4}$ P^{o} † 0.27 3.08 $2\frac{1}{2}-1\frac{1}{2}$ (23) 0.27 3.10 $2\frac{1}{2}-1\frac{1}{2}$ 0.27 3.08 $1\frac{1}{2}-1\frac{1}{2}$ | 5657.449 A 13
5646.112 A 10
5584.490 A 10 | 1.06 3.24 25-15
1.05 3.23 15- 5
1.06 3.27 35-35 | 3377.625 C 15
3376.057 C 8 | 1.21 4.87 $2\frac{1}{2} = 2\frac{1}{2} a^4 P - w^4 P$
1.19 4.85 $1\frac{1}{2} = 1\frac{1}{2}$ (54) | | 74 C 5 | | 5592.409 A 12
5604.943 A 8 | 1.05 3.25 1 2-22
1.04 3.24 2-12 | 3366.880 C 4
3397.580 C 6 | 1.18 4.84 ½- ½
1.21 4.85 2½-1½ | | 11 C 4 | 0.29 3.22 31-31 (24)
0.30 3.22 41-31 | 5547.080 A 8
5545.933 A 2 | 1.08 3.30 3\frac{1}{2} a^4 \text{D-y}^6 D^6 † 1.06 3.28 2\frac{1}{2} - 2\frac{1}{2} (38) 1.05 3.27 1\frac{1}{2} - 2\frac{1}{2} | 3377.394 C 10
3356.352 C 10
3365.553 C 10 | 1.19 4.84 15- 5
1.19 4.87 15-25
1.18 4.85 5-15 | | 1 G 2
41 C 12
91 C 10 | 0.29 3.21 3½-2½
0.29 3.23 3½-4½
0.27 3.22 2½-3½ | 5544.865 C (1)
4670.483 A 25w | 1.08 3.72 31-21 a4D-y4P° | 3329.855 C 12
3309.176 C 8 | 1.21 4.93 $2\frac{1}{2}-1\frac{1}{2}$ a^4P-x^4S 1.19 4.92 $1\frac{1}{2}-1\frac{1}{2}$ (55) 1.18 4.93 $\frac{1}{2}-1\frac{1}{2}$ | | 19 C 15 | 0.27 3.21 1 1 2½
0.30 3.25 4½ 4½ a ⁶ D-z ² G°†
0.29 3.25 3½ 4½ (25) | 4646.396 A 15w
4640.062 A 8
4640.735 A 7w | 1.05 3.71 1½- ½
1.06 3.72 2½-2½ | 3299.096 C 3
3106.11 C 5 | 1.21 5.19 2½-2½ a ⁴ P-v ⁴ P | | 86 C 8 | 0.29 3.25 3½-4½ (25)
0.29 3.27 3½-3½ a ⁶ p-y ⁴ p°† | 4624.404 A 8
4626.480 A 7
4618.800 A (2) | 1.05 3.73 1 1-1 1
1.04 3.71 1-1
1.05 3.73 11-2 | 3103.60 F 1
3103.994 C 6
3121.749 C 4 | 1.18 5.15 3-3
1.21 5.17 25-15 | | 6 G 2
59 C 2
28 C 2 | 0.29 3.27 31-31 a ⁶ p-y ⁴ p°†
0.27 3.25 25-27 (26)
0.27 3.24 11-11
0.26 3.23 5-3 | 4610.925 A 2
4423.212 C 8 | 1.04 3.72 1-1-1 | 3112.925 C 8
3088.114 C 30
3094.692 C 20 | 1.19 5.15 13- 3
1.19 5.19 13-23
1.18 5.17 3-13 | | 85 C 100R | 0.30 3.30 4½ 4½ a ⁶ D-y ⁶ D°
0.39 3.38 3½-3½ (27)
0.27 3.27 3½-3½ | *4406.147 C 6
4393.835 C 4
4387.213 C 3 | 1.08 3.87 $3\frac{1}{2}-4\frac{1}{2}$ $a^4D-x^4F^6+$
1.06 3.86 $2\frac{1}{2}-3\frac{1}{2}$ (40)
1.05 3.86 $1\frac{1}{2}-2\frac{1}{2}$
1.04 3.85 $\frac{1}{2}-1\frac{1}{2}$ | 3083.539 C 30
3075.933 C 8 | 1.21 5.22 $3\frac{1}{2} - 3\frac{1}{2} a^4 P - r^4 D'$
1.19 5.20 $1\frac{1}{2} - 2\frac{1}{2}$ (57) | | 70 C 50
03 C 4 | 0.27 3.27 21-21
0.27 3.26 12-12
0.26 3.26 3-3 | 4090.579 C 25
4095.486 C 25 | 1.08 4.09 32-42 a ⁴ D-w ⁴ F°†
1.06 4.07 32-32 (41) | 3080.333 C 12
3093.792 C 25
3089.130 C 25 | 1.18 5.18 2-12
1.21 5.20 21-21
1.19 5.18 12-12 | | .88 C 60
17 C 60 | 0.30 3.28 41-31
0.29 3.27 31-21 | 4102.159 C 20
m4109.81 P V | 1.05 4.06 1 3-2 1
1.04 4.04 2-1 1
1.08 4.07 32-3 1 | 3087.065 C 15
3107.142 B 5
3095.902 C 5 | 1.18 5.18 2-1
1.21 5.18 2-1
1.19 5.18 12-2 | | 66 C 60
94 C 50 | 0.27 3.26 21-11
0.27 3.26 11-1
0.29 3.30 31-42 | 4118.643 C 8
4119.457 C 8
4120.538 C 8 | 1.06 4.06 25-25
1.05 4.04 15-15 | 3016.16 C 20 | 1.21 5.30 23-13 a4P-w4s' | | 96 C 60
67 C 60
86 C 50 | 0.27 3.28 22-32
0.27 3.27 12-22
0.26 3.26 2-12 | 3934.013 C 20
3928.431 C 12 | 1.08 4.21 31-31 a4D-w4D°
1.06 4.21 21-21 (43) | 2999.238 C 12
2990.948 C 8 | 1.19 5.30 1½-1½ (58)
1.18 5.30 ½-1½ | | 64 C 50
74 C 25 | 0.30 3.55 4½-4½ a ⁶ p-x ⁶ p°
0.29 3.53 3½-3½ (28)
0.27 3.51 2½-3½ | 3920.487 C 5
*3912.207 C 10
3943.664 C 12 | 1.05 4.19 12-12
1.04 4.19 2- 2
1.08 4.31 32-32 | 6558.02 A 5
6607.82 A 3 | 1.37 3.25 $4\frac{1}{2}$ | | 97 C 15
5 P V
14 C 10
63 C 15 | 0.26 3.50 3-3 | 3936.282 C 5
3921.905 C 6
3912.886 C 4 | 1.06 4.19 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 6106.967 A 2
6135.07 A 2 | 1.37 3.39 $4\frac{1}{2}$ - $3\frac{1}{2}$ a^{2} G- z^{2} F ⁴ 1.34 3.36 $3\frac{1}{2}$ - $2\frac{1}{2}$ (60) | | 88 C 15
13 C 15 | 0.29 3.51 3½-2½
0.27 3.50 2½-1½ | *3906.748 C 6 3910.790 C 5 | 1.04 4.19 \frac{1}{2}-1\frac{1}{2} | 4609.646 A 4
4585.94 G 2 | 1.37 4.05 $4\frac{1}{2}$
$4\frac{1}{2}$ 4^{2} 4^{2 | | 87 C 15
84 C 25
24 C 20 | 0.27 3.50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | *3872.748 C 4n
3875.436 C 3
3891.227 B 2 | 1.08 4.26 3}-4} a ⁴ D-v ⁴ F°
1.06 4.24 2}-3} (43)
1.05 4.23 1}-2} | 4501.972 A 8
4449.573 C 5 | 1.37 4.11 $4\frac{1}{2}$ $4\frac{1}{2}$ 4^{2} 4^{2 | | 12 C 25
05 C 20 | 0.27 3.51 12-22
0.26 3.50 2-12 | 3902.558 C 3
*3896.1559 E 6
*3906.748 C 6 | 1.04 4.20 \$-1\$
1.08 4.24 3\$-3\$
1.06 4.22 2\$-2\$ | 4491.164 C 2
m4460.16 P V | 1.34 4.11 32-42 | | 84 C 100
99 C 60
35 C 30 | 0.30 3.63 41-31 a ⁶ p-y ⁶ p ^o
0.29 3.63 31-21 (29)
0.27 3.61 32-11 | *3912.207 C 10
m3840.44 P Fe | 1.05 4.20 1½-1½
1.08 4.29 3½-3½ a ⁴ p-v ⁴ p° | 3930.023 C 10
*3909.894 C 20
3942.006 C 6 | 1.37 4.51 $4\frac{1}{2}$ $4\frac{1}{2}$ a^{2} G^{2} G^{2} 1.34 4.50 $3\frac{1}{2}$ $3\frac{1}{2}$ (63) 1.37 4.50 $4\frac{1}{2}$ $3\frac{1}{2}$ | | 69 C 50
25 C 50
65 C 40 | 0.29 3.63 31-31
0.27 3.62 21-21
0.27 3.61 12-12 | 3839.002 C 10
3836.054 C 5
3835.560 C 4 | 1.06 4.27 25-25 (44)
1.05 4.26 15-15
1.04 4.26 5-1 | 3898.143 B (4?) | 1.34 4.51 3½-4½
1.37 4.55 4½-3½ 8 ^D G-w ⁴ G° | | 00 C 20
26 C 30
81 C 40 | 0.27 3.63 23-35
0.27 3.62 13-25
0.26 3.61 3-15 | 3859.341 C 6
3851.171 C 5
3844.892 C 4 | 1.08 4.27 35-25
1.06 4.26 25-15
1.05 4.26 15- 5 | 3864.300 B (3)
3885.770 C 2 | 1.34 4.54 3½-2½ (64)
1.37 4.55 4½-4½ a ² G-w ² G | | | | 3820.299 B (4)
3823.990 C 5 | 1.06 4.29 2½-3½
1.05 4.27 1½-2½ | 3884.465 C 4 | 1.34 4.52 $3\frac{1}{2} - 3\frac{1}{2}$ (65)
1.37 4.56 $4\frac{1}{2} - 3\frac{1}{2}$ $a^{2}G - x^{2}F^{6}$ | | 3 A 100 | 1.06 2.57 25-25 (30)
1.05 2.55 14-14 | 3826.774 C 6
3583.704 C 8
3540.530 C 1 | 1.04 4.36 ½-1½
1.08 4.52 3½-2½ a ⁴ p-x ⁴ P°† | 3871.078 C 8
*3863.8669 C 6
3840.140 C 4 | 1.34 4.54 3 1 -21 (66)
1.34 4.56 3 1 -32 | | 1 A 100w
0 A 100 | 1.08 2.57 31-21
1.08 2.55 31-21
1.06 2.55 21-11 | 3543.657 C 1
*3566.1779 E 4 | 1.08 4.52 3½-2½ 8*P-x*P°†
1.06 4.54 2½-1½ (45)
1.05 4.53 1½-½
1.06 4.52 3½-3½ | 3828.836 C 4
3802.883 C 2 | 1.37 4.59 $4\frac{1}{2}$ $-5\frac{1}{2}$ $a^2Gy^2H^0$
1.34 4.59 $3\frac{1}{2}$ $4\frac{1}{2}$ (67)
1.37 4.59 $4\frac{1}{2}$ $4\frac{1}{2}$ | | 1 A 60
6 A 100w
8 A 100w | 1.04 2.54 3 2 2
1.08 3.57 32 22
1.08 2.55 32 12
1.05 3.54 12 2
1.06 2.60 32 32 32
1.05 2.57 12 22
1.04 2.55 2 12 | 3400.395 C 12
3402.571 C 9 | 1.08 4.71 3\frac{1}{2} a^4D-t^4D^0 † 1.06 4.69 2\frac{1}{2}-2\frac{1}{2} (46) | 3833.226 C 3 | 1.37 4.61 42-42 a2G-v2Ge | | 8 A: 50
O A 80w | 1.04 2.55 ½-1½
1.08 2.90 3½-4½ a ⁴ D-z ⁴ F° | 3405.160 C 6
3406.837 C 6 | 1.04 4.00 3- 2 | 3790.469 C 8 | 1.37 4.63 4½-3½ a ² G-w ² F° | | 9 A 60
8 A 40
0 A 20 | 1.08 2.90 $3\frac{1}{2}-4\frac{1}{2}$ $a^4D-z^4F^0$
1.06 2.88 $3\frac{1}{2}-3\frac{1}{2}$ (31)
1.05 2.87 $1\frac{1}{2}-3\frac{1}{2}$
1.04 2.85 $\frac{1}{2}-1\frac{1}{2}$ | 3002.65 C 8
3004.824 C 10 | 1.08 5.19 $3\frac{1}{2}-3\frac{1}{2}$ $a^4D-v^4P^\circ +$ 1.06 5.17 $3\frac{1}{2}-1\frac{1}{2}$ (47) | 3779.648 C 4
3686.262 C 8 | | | 4 A 10
4 A 10
9 A 7 | 1.04 2.85 2-12
1.08 2.88 32-32
1.08 3.87 32-32
1.05 3.85 12-12 | 6531.44 A 15
6543.51 A 5 | 1.21 3.10 2½-2½ a ⁴ P-z ⁴ P°
1.19 3.08 1½-1½ (48) | 3671.205 C 10
3699.476 C 3 | 1.37 4.72 $4\frac{1}{2}$ - $5\frac{1}{2}$ a^2G - x^2H°
1.34 4.71 $3\frac{1}{2}$ - $4\frac{1}{2}$ (70)
1.37 4.71 $4\frac{1}{2}$ - $4\frac{1}{2}$ | | 7 A 2 6 A 2 | 1.05 2.95 1 2 2 a D-z Do t | 6565.88 A 3
6624.86 A 7
6605.98 A 10 | 1.21 3.10 24-24 a ⁴ P-z ⁴ P°
1.19 3.08 12-12 (48)
1.18 3.08 25-12
1.21 3.08 25-12
1.19 3.08 15-25
1.19 3.08 25-12
1.19 3.08 25-12 | 3384.360 C 6
3273.027 C 7 | 1.37 5.13 $4\frac{1}{2}-4\frac{1}{2}$ $a^2G-t^2G^{\circ}$ 1.34 5.12 $3\frac{1}{2}-3\frac{1}{2}$ (?1) | | 8 A (1) | 1.08 3.10 32-42 a4p-y6re t
1.06 3.09 32-32 (33) | 6452.354 A 10
6504.164 A 9 | 1.19 3.10 1 1 -2 1
1.18 3.08 1 -1 1 | 3233.190 C 6
3218.889 C 5 | 1.37 5.19 $4\frac{1}{2}$ $-3\frac{1}{2}$ $a^2G-u^2F^0$ 1.34 5.18 $3\frac{1}{2}$ $-8\frac{1}{2}$ (72) | | 85 A 1
73 A (3)
09 B (1) | 1.08 3.10 32-42 a ⁴ D-y ⁶ F* 1
1.08 3.09 32-52 (33)
1.05 3.07 12-32
1.04 3.07 2-12
1.06 3.07 32-12
1.05 3.07 32-12 | 6002.273 A 2
5980.748 A 2
5984.602 A 1 | 1.21 3.27 $2\frac{1}{2}$ $2\frac{4}{2}$ 4^{4} P 9^{4} P 1.19 3.25 $1\frac{1}{2}$ $2\frac{1}{2}$ 1 1 1 3.24 $\frac{1}{2}$ 1 1 3.25 $2\frac{1}{2}$ $2\frac{1}{2}$ 1 1 3.24 $1\frac{1}{2}$ $1\frac{1}{2}$ 1 1 3.24 $1\frac{1}{2}$ $1\frac{1}{2}$ 1 1 3.24 $1\frac{1}{2}$ $1\frac{1}{2}$ 1 1 3.24 $1\frac{1}{2}$ 1 1 3.24 $1\frac{1}{2}$ 1 1 3.24 1 1 1 1 1 1 1 1 1 1 | 3212.434 C 15
3205.582 C 15 | 1.37 5.21 $4\frac{1}{2}$ $-5\frac{1}{2}$ a^{2} G $-u^{2}$ H^{0} 1.34 5.19 $3\frac{1}{2}$ $-4\frac{1}{2}$ (73) | | 0 A 2 | | 6017.90 A tr | 1.21 3.25 21-21
1.19 3.24 11-11 | 3050.400 C 25
3031.007 C 107 | 1.37 5.42 $4\frac{1}{2}$ $3\frac{1}{2}$ a^{2} G t^{2} F ° 1.34 5.42 $3\frac{1}{2}$ $-2\frac{1}{2}$ (74) | | 84 A 50
05 A 40
6 A 15 | 1.08 3.10 3 -2 a 4 p - 2 4 p 0
1.06 3.08 3 - 1 (34)
1.05 3.08 12 - 2
1.08 3.10 2 - 2
1.05 3.08 12 - 12
1.05 3.08 12 - 12
1.04 3.06 2 - 2
1.05 3.10 12 - 2
1.05 3.10 12 - 2 | 6008.648 A tr
6086.55 A (2) | 1.21 3.24 25-15 | 3021.78 C 6
3006.35 C 6 | 1.37 5.45 $4\frac{1}{2}$ $-5\frac{1}{2}$ a^{2} G $-t^{2}$ H° 1.34 5.45 $3\frac{1}{2}$ $-4\frac{1}{2}$ (75) | | 90 A 25
21 A 25
23 A 25 | 1.06 3.10 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 4925.657 A 10
4886.821 A 2
4882.183 A 2 | 1.41 3.78 35-35 a P-y Po
1.19 3.73 15-15 (50)
1.18 3.71 5-2 | 9865.44 A 10 | | | 01 A 4
13 A 5 | · • | 4932.029 A 4
4904.285 A (8)
4880.560 A 8 |
1.21 3.72 $2\frac{1}{2}-2\frac{1}{2}$ $a^4P-y^4P^0$ 1.19 3.72 $1\frac{1}{2}-1\frac{1}{2}$ (50) 1.18 3.71 $\frac{1}{2}-\frac{1}{2}$ 1.21 3.72 $\frac{1}{2}-\frac{1}{2}$ 1.19 5.71 $\frac{1}{2}-\frac{1}{2}$ 1.19 3.72 $\frac{1}{2}-2\frac{1}{2}$ 1.18 3.72 $\frac{1}{2}-1\frac{1}{2}$ | 10203.45 A 10
10193.00 A 5 | 1.70 2.95 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | 24 A 60
09 A 60
62 A 40 | 1.08 3.23 31-41 a4p-y4r° 1.06 5.23 32-57 (35) 1.05 3.21 12-22 1.04 3.20 2-12 | 4864.83 P
4758.742 A 2 | | 5558.752 A 3
5561.670 A 2 | 1.70 3.92 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{a^2P-z^2s^6}{(77)}$ 1.70 3.92 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{2}{2}$ $\frac{2}{2}$ | | 73 A 30 | 1.04 3.20 1-12 | 4716.844 A (1-) | 1.31 3.61 2½-3½?a ⁴ P-z ⁶ 5°
1.19 3.61 1½-3½? (51) | 4833.027 A 3
*4848.821 A 1 | 1.70 4.26 $1\frac{1}{2}$ $-2\frac{1}{2}$ $a^{2}P-y^{2}D^{\circ}$ 1.70 4.25 $\frac{1}{2}$ $-1\frac{1}{2}$ (78) | | | | | | | | | 34 | REVISED MULTIPLET TABL | 2 | |--|--|--| | Laboratory EP J Multiplet IA Ref Int Low High (No) | Laboratory EP J Multi
I A Ref Int Low High (No. | | | V I continued | VI continued | V I continued | | 4365.745 C 3 1.70 4.53 1½-3½ a ² P-x ³ P° 4422.477 C 2 1.70 4.50 ½-1½ (79) •3798.661 C 2 1.70 4.95 1½-3½ a ² P-y ³ P° | 4354.979 C 5 1.88 4.72 5½-5½ a ² H | 3 H° 3571.037 C 4 8.13 5.58 5 2 $^{-4}$ 3 5 8 6 C $^{-4}$ 9 13573.516 C 5 2.13 5.57 4 5 2 5.7 (122 2H° 3568.940 C 3 2.11 5.56 2 2 $^{-1}$ 5 2 2 5 2 2 1 2 8 2 2 1 2 8 2 2 1 2 9 2 2 1 2
1 2 1 | | *3798.661 C 2 1.70 4.95 $1\frac{1}{2}$ - $2\frac{1}{2}$ a^{2} P- v^{2} D° m3834.22 P Fe 1.70 4.92 $\frac{1}{2}$ - $\frac{1}{2}$ (80) 3832.835 C 4 1.70 4.92 $1\frac{1}{2}$ - $1\frac{1}{2}$ | 3706.035 c 4 1.86 5.19 $4\frac{1}{2}$ 4 $\frac{1}{2}$ (104 3082.010 B 6 1.88 5.89 $5\frac{1}{2}$ $-5\frac{1}{2}$ $a^{2}H_{-1}$ |)
² H° 5128.530 A 7 2.28 4.68 4½-5½ z ⁶ p°- | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 3075.269 C 10 1.86 5.88 4½-4½ (105 | 5159.350 A 3 2.24 4.63 1½-3½ | | 4537.663 A 6 1.80 4.53 2 1 2 2 2 4 2 1 2 2 4 2 2 2 4 2 2 2 2 4 2 2 2 2 | 9611.60 A 80 1.95 3.23 41-41 b4F-1
0614.69 A 50 1.04 3.22 31-32 (10)
9691.58 A 40 1.94 3.21 32-22
9738.50 A 15 1.93 3.20 12-12
9582.28 A 6mp 1.94 3.22 32-32 | *3755.701 C 4 (2.28 5.56 42.32 (124 2.28 5.56 32.28 5.56 32.28 5.56 32.28 5.56 32.28 5.56 32.28 | | 3639.024 C 6 1.80 5.19 22-32 a2p-u2ro t | 9668.9 A 3p? 1.93 3.21 15-25 | 4pr † 5193.004 A 7 2.31 4.68 5½-5½ 26pr
4pr † *5194.824 A 10 2.29 4.66 4½-4½ (135) 5195.394 A 5 2.27 4.64 3½-3½ | | 6326.845 A 6 1.86 3.81 62-52 a4H-y4G°† | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | *5194.824 A 10 2.25 4.63 25-25 | | 6349.477 A 5 1.85 3.79 45-35
6357.297 A 4 1.84 3.78 35-25 | 4723.877 A 8 1.95 4.56 41-51 147-4721.524 A 6 1.94 4.56 32-32 (10) 4730.394 A 3 1.94 4.55 32-32 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | 5586.007 A 2 1.85 4.06 52-52 (85)
*5604.205 A 1 1.85 4.05 42-62
5622.075 A (2) 1.84 4.04 32-32 | 4545.394 A 25 1.95 4.66 4\frac{1}{2}-5\frac{1}{2}\text{ b}^4\Frac{1}{2}-5\frac{1}{2}\text{ b}^4\Frac{1}{2}-5\text{ b}^4 | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 4578.728 A 15 1.93 4.63 1½-3½ 4570.425 A 6 1.95 4.65 4½-4½ 4579.198 A 7 1.94 4.64 3½-3½ 4583.783 A 5 1.94 4.63 3½-3½ | 5624.223 A (2) 2.32 4.52 2-12
4776.519 A 5 2.37 4.95 12-22 b ² P-V
4742.631 A 5 2.38 4.92 2-12 (126 | | 4452.008 C 20 1.86 4.63 6½-7½ a ⁴ H-z ⁴ I°† 4462.363 C 20 1.85 4.63 5½-6½ (87) 4469.710 C 15 1.85 4.61 4½-5½ 4468.010 C 8 1.84 4.60 3½-4½ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | 4464.747 C 2 1.94 4.71 31-31
*4488.898 A 20 1.94 4.69 31-21 | 5415.277 A 10 2.36 4.64 51.61 b2H.2 | | 4271.554 C 12 1.85 4.74 5\frac{1}{2} -5\frac{1}{2} (88) 4276.958 C 12 1.85 4.73 4\frac{1}{2} -4\frac{1}{2} | | 4ro + 5240.878 A 9 2.36 4.72 5-5-5 b ² H-x | | 4284.055 C 15 1.84 4.72 $3\frac{1}{2}$ - $3\frac{1}{2}$ 3998.730 C 15 1.86 4.95 $6\frac{1}{2}$ - $5\frac{1}{2}$ a^4 μ - u^4 a° † | 4232.460 C .15 | *5014.620 A 5 2.36 4.82 5}-6} b ² H-y | | *3990.566 C 20 (1.85 4.94 45-35
1.84 4.93 35-25 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | 3988.833 C 5 1.85 4.95 5\(\frac{3}{2}\)-5\(\frac{3}{2}\) 3984.600 C 6 1.85 4.94 4\(\frac{4}{2}\)-4\(\frac{3}{2}\) 3984.335 C 6 1.84 4.94 3\(\frac{3}{2}\)-3\(\frac{3}{2}\) | 4123.188 C 6 1.94 4.93 25-15
4128.858 C 5 1.93 4.92 15-2 | 4553.056 A 7 2.35 5.06 $4\frac{7}{2}$ 4 $\frac{7}{2}$ (133 3227.409 C 4 2.36 6.19 $5\frac{1}{2}$ 6 $\frac{1}{2}$ 5^{2} H-X | | 3924.658 C 10 1.86 5.00 63-63 a4H-w4H°† 3927.926 C (3) 1.85 4.99 53-55 (90) 3931.340 C 5 1.85 4.98 42-43 | 4807.537 A 25 2.13 4.68 62.51 2.60°
4796.930 A 20 2.09 4.66 52.42 (11
4786.515 A 20 2.07 4.64 42.32
478.64 A 10 2.05 4.63 32.21 | 3839.604 B 4 8.35 6.17 4½-5½ (134 | | 3935.141 C 6 1.84 4.98 32-32 | 4786.515 A 20 2.07 4.64 455
4776.364 A 10 2.05 4.63 355
4766.635 A 10 2.03 4.62 2515 | 2124.004 N 2 2:00 4:20 25-05 (10c | | *3722.601 C (3) 1.86 5.17 6 - 5 a 4 + t 4 0 t 3721.998 C 4 1.85 5.17 5 - 4 (91) 3729.035 C 4 1.85 5.16 4 - 3 = 5 | 4757.50 A 8 2.03 4.61 1}- } 4757.37 A 4 2.09 4.68 5}-5} | 4705.099 A 4 2.36 4.98 $3\frac{1}{2}-2\frac{1}{2}$ ϵ^2F-v
4715.900 A 5 2.35 4.97 $3\frac{1}{2}-1\frac{1}{2}$ (136 | | 3737.992 0 5 1.84 5.14 32-22 | 4750.990 A 8 2.05 4.64 3\frac{1}{2}-3\frac{1}{2}
4748.525 A 7 2.03 4.63 3\frac{1}{2}-2\frac{1}{2} | 3645.596 C 3 2.36 5.74 3½-2½ 2³F-E | | 5772.402 A 6 1.92 4.06 2\frac{1}{2}-\frac{1}{2}\text{b}^4\text{P-x}^4\text{D}^0\text{f}
5748.860 A 4 1.89 4.03 1\frac{1}{2}-\frac{1}{2}\text{(92)}
5752.711 A 3 1.86 4.01 \frac{1}{2}-\frac{1}{2}\text{.} | 4746.638 A 5 2.02 4.63 $1\frac{1}{2}$ - $1\frac{1}{2}$ 3695.335 C 30 2.12 5.46 $6\frac{1}{2}$ - $7\frac{1}{2}$ x^6 x^6 3687.473 C 12? 2.09 5.44 $5\frac{1}{2}$ - $6\frac{1}{2}$ (11 3680.113 C 15 2.07 5.43 $\frac{1}{2}$ - $\frac{1}{2}$ | *3265.899\$ 0 5 2.36 6.13 3\frac{1}{2} 2\frac{1}{2} 2\frac | | 5850.286 A 2 1.92 4.03 25-25
5817.063 A 3 1.89 4.01 15-15 | | 1)
5266.118 A (4) 2.67 5.01 4½-3½ b²(| | 4797.973 A 2 1.92 4.49 $2\frac{1}{2}$ $2\frac{1}{2}$ $2\frac{4}{2}$ $2\frac{1}{2}$ $2\frac{4}{2}$ $2\frac{1}{2}$ $2\frac{4}{2}$ $2\frac{1}{2}$ $2\frac{4}{2}$ $2\frac{1}{2}$ | 3667.741 0 15 2.03 5.40 25-35 3653.594 0 15 2.02 5.39 15-25 3705.83 0 1 2.09 5.42 55-55 3 | 4373.230 C 4 2.67 5.49 $4\frac{1}{2}$ $4\frac{1}{2}$ 1^{2} C= 4375.304 C 4 2.67 5.49 $3\frac{1}{2}$ $-3\frac{1}{2}$ (14C | | 4656.926 A 6 1.86 4.49 <u>\$-1\$</u> 4751.574 A 6 1.92 4.52 2] -2] b ⁴ P-x ⁴ P° | *3694.682 C 3 2.07 5.41 4\(\frac{1}{2}\) 4\(\frac{1}{2}\) 3684.332 C 3 2.05 5.40 3\(\frac{1}{2}\) 3675.497 C 3 2.03 5.39 2\(\frac{1}{2}\) 2\(\frac{1}{2}\) 2\(\frac{1}{2}\) | 5784.360 A 5 2.75 4.89 5½-4½ z ⁴ g°- *5786.153 A 7 (2.73 4.86 4½-3½ (141 2.71 4.84 3½-2½ | | 4640.309 B (0) 1.89 4.54 1 1 (94) 4624.657 B (1) 1.86 4.53 1 2 4 4 5 4 5 4 5 4 5 6 6 6 149 A 4 1.89 4.53 1 2 2 1 2 4 6 4 4 5 4 5 | 3676.684 C 10 2.12 5.47 61-61 2 ⁶ 0x 3672.403 C 8 2.09 5.45 51-51 (11 3665.142 C 8 2.07 5.43 41-45 3656.706 C 6 2.05 5.42 31-31 31 31 31 31 31 31 31 31 31 31 31 31 3 | 1°G † 5783.509 A 2 2.70 4.83 2½-1½
5) | | 4591.991 B (0) 1.92 4.61 2-2 b4P-r2F°
4529.301 A 4 1.89 4.61 12-2 (95) | 3641.096 C 4 2.02 5.41 12-12 | 5817.532 A 5 3.09 5.21 32-42 | | 4071.541 C 8 1.92 4.95 $2\frac{1}{2}-3\frac{1}{2}$ $b^4P-a^4D^0$ † 4042.635 C 5 1.89 4.94 $1\frac{1}{2}-3\frac{1}{2}$ (96) | 3014.37 C 15N 2.12 6.21 $6\frac{1}{2}$ $\frac{7}{2}$ $\frac{2}{6}$ $\frac{1}{6}$ 3006.90 F 5N 2.09 6.19 $\frac{1}{2}$ $\frac{1}{6}$ $\frac{1}{2}$ $\frac{1}{2$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | *3781.303 C 3 1.98 5.19 8k-8k b4p-v4pc | 3001.90 F 10N 2.05 6.16 3 44
2997.87 F 5N 2.03 6.15 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | Strongest Unclassified Lines of \underline{V} I | | 3761.442 C 3 1.89 5.17 12-12 (97) 3747.982 C 8n 1.86 5.15 2-2 3804.589 C 3 1.92 5.17 22-12 3775.187 C 3 1.89 5.15 12-2 | 7338.92 A 30 2.13 3.81 $5\frac{1}{2}$ $-5\frac{1}{2}$ a^4g . 7356.51 A 20 2.12 3.80 $4\frac{1}{2}$ $4\frac{1}{2}$ (11 7363.16 A 15 2.11 3.79 $3\frac{1}{2}$ | 4619.648 A 8 IV
4549.644 A 10 IV
(*4° + 4527.990 A 5 IV
(*) 4265.170 C 8n III | | 3734.428 C 5 1.86 5.17 2-12 | 7363.16 A 15 2.11 3.79 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | *3963.626\$ C 4 II
3898.278 C 5 II | | *3747.982 C 8n 1.92 5.22 32-32 b4P-r4D*† 3720.93 G 1 1.89 5.20 12-22 (98) 3713.56 G 1 1.86 5.18 2-12 | 4904.350 B (9) 2.13 4.64 5½-6½ 6 ⁴ G-4904.447 B (7) 2.12 4.64 4½-5½ (11 4900.624 A 6 2.11 4.63 3½-4½ | 7 ⁴ H° f 3891.119 C 4 II
3) 3849.324 C 6 I
3845.974 C 3 II | | 3713.56 | 4894.218 A 4 2.11 4.63 22-32 | 3425.070 C 6 II | | 4524.218 A 15 1.88 4.61 $5\frac{1}{2}$
$4\frac{1}{2}$ $4\frac{1}{2$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 5) 3156.222 C 10 IV
3153.549 C 5N IV
3150.568 C 5 IV
3092.72 G 8 III | | 4515.558 A 2 1.88 4.62 $5\frac{1}{2}-6\frac{1}{2}$ a ² H-z ⁴ T ⁰ 4540.014 A 6 1.88 4.60 $5\frac{1}{2}-4\frac{1}{2}$ (100) | 4291.816 C 15 2.13 5.00 5 6 8 4 G 4296.107 C 15 2.12 4.99 44.5 (12 4297.681 C 12 2.11 4.98 3 4.4 | / ⁴ H° †
)) 3041.86 C 8 IV
3002.442 C 6 IV | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 4020.002 0 12 2.11 4.28 25-35 | | | 4468.759 C 4 1.86 4.63 $4\frac{1}{2}$ - $3\frac{1}{2}$ 8^{2} H- ψ^{2} F° (102) | *4051.3528 C 12 3.13 5.17 5\frac{1}{2}-5\frac{1}{2}a^4\frac{4}{2}-4\frac{1}{2}505.963\frac{1}{2} C 10 2.12 5.17 4\frac{1}{2}-4\frac{1}{ | i) | | | | | | REVISED MULTIPLET TABLE Aboratory EP J Multiplet Laboratory EP J Multiplet Laboratory EP J Multiplet Ref Int Low High (No) IA Ref Int Low High (No) | | | | | | | | | | | | | | |--|---|---|---|---|--|--|--|--|--|--|--|--|--| | Ref Int Low High | (No) | I A Ref Int | | I A Ref Int | E P
Low High | | | | | | | | | | IF 14.1 Anal A LAst A .08 | Jsn 1941 5-6 e ⁵ F-2 ⁵ G° 4-5 (1) 3-4 2-3 1-2 5-5 | <u>V II</u> continued
m3844.48 P V
3865.72 A 5
5883.43 A 2
3875.67 A 5
3891.25 A 4
3901.33 P | 1.68 4.89 $4-5$ $b^3F-z^3g^0$ 1.67 4.86 3-4 (20) 1.67 4.84 2-3 1.68 4.86 $4-4$ 1.67 4.84 3-3 | VII continued 4183.435 A 250 4205.080 A 250 4225.228 A 120 4164.015 A 15 4190.89 A 10 4150.08 P | 2.04 4.99
2.03 4.96
2.03 4.99
2.03 4.99
2.02 4.96
2.02 4.99 | 5-4 b ³ G-z ³ F
4-3 (37)
3-2
4-4
3-3
3-4 | | | | | | | | | H15 A 150R 0.37 4.31
H22 A 100R 0.35 4.32
H23 A 150r 0.33 4.27
H24 A 30 0.39 4.31
H27 A 30 0.37 4.29
H27 A 30 0.35 4.27 | 4-4
3-3
2-3
5-4
4-3
3-2 | 3727.351 A 1000 l
3750.88 A 600
3770.974 A 400
3760.24 A 140
3778.357 A 100
3718.159 A 60 | 1.68 4.99 4-4 b ³ F-z ³ F°
1.67 4.96 3-3 (21)
1.67 4.94 2-2
1.68 4.96 4-3
1.67 4.94 3-2
1.67 4.98 3-4 | *3217.1218 A 400
3237.876 A 350
*3254.7738 A 300
3249.617 A 40
3263.33 A 20
m3093.16 P V | 2.04 5.88
2.03 5.84
2.02 5.81
2.04 5.84
2.03 5.81 | 5-6 b ³ G-z ³ H
4-5 (38)
3-4
5-5
4-4 | | | | | | | | | 17 A 150 0.35 4.55
520 A 100 0.33 4.50
117 A 6 1.12 4.34
355 A 5 1.09 4.31 | 3-2 e ⁵ F-z ⁵ F ^e ↑
3-1 (3)
-
4-5 e ³ F-z ⁵ G ^e
3-4 (3) | 3743.610 A 40
*3983.009 A 10
 | 1.67 4.96 2-3
1.67 5.81 3-4 b ³ F-2 ³ H°† (22)
1.70 4.59 3-4 a ⁵ P-2 ⁵ F° | 3094.196 A 100
3100.938 A 100
3104.906 A 25
3108.704 A 30
3082.524 A 40 | 2.04 6.03
2.03 6.02
2.02 6.00
2.04 6.02
2.03 6.00
2.03 6.03 | 5-5 b ³ G-y ³ G
4-4 (39)
3-3
5-4
4-3
4-5 | | | | | | | | | 53 A 4 1.07 4.38
10 A 4 1.07 4.27
536 A 50 1.18 4.03
48 A 10 1.09 4.58
18 P 1.07 4.56
71 A 3n 1.12 4.56 | 2-3
2-2
4-5 a ³ F-2 ⁵ F°
3-4 (4)
3-3
4-4 | 4286.13 A 3
4316.258 A 2
4313.30 A 2
4231.70 A 3
*4260.75 A 9n
4263.836 A 4n | 1.88 4.56 2-3 (23)
1.67 4.53 1-2
1.70 4.58 3-3
1.68 5.55 2-0
1.70 4.59 3-3 2 ⁵ P-z ³ D°
1.88 4.57 2-2 (24) | 3086.507 A 30
3053.894 A 80
3040.801 A 70
3042.27 A 80
3043.545 A 40
3041.42 A 60 | 2.04 6.08
2.03 6.08
2.03 6.08
2.03 6.08
2.03 6.08 | 3-4
5-4 b ³ G-y ³ F
4-3 (40)
3-2
4-4
3-3 | | | | | | | | | 594 A 90 1.09 4.55
1778 A 300 1.07 4.53
323 A 600 1.12 4.56
518 A 000 1.09 4.52
745 A 1000 1.07 4.50 | 3-3
2-2
4-3
3-5
2-1 | 4264.50 A 1
4234.251 A 7
4248.820 A 4
4202.350 A 150
4178.390 A 60 | 1.67 4.56 1-1
1.68 4.59 2-3
1.67 4.57 1-2
1.70 4.63 3-4 e ⁵ P-z ⁵ D°
1.68 4.63 2-3 (25) | 3036.07 A 2
3023.882 A 20
3015.98 A 10 | 2.03 6.08
2.04 6.12
2.03 6.13 | 3-4
5-5 b ³ G-z ¹ H
4-3 b ³ G-z ¹ F
(42) | | | | | | | | | 800 A 1500 1.12 4.59 190 A 100 1.09 4.57 765 A 500 1.09 4.56 713 A 200 1.09 4.59 823 A 1.00 1.07 4.59 823 A 20 1.07 4.59 | 4-3 s ³ F-z ³ D°
3-2 (5)
3-1
3-3
2-2
2-3 | 4190.40 A 15
4204.20 A 20
m4205.05 P V
4208.74 A 10
4231.165 A 4
4234.51 A 10
4230.047 A 10 | 1.67 4.61 1-2
1.70 4.63 3-3
1.68 4.61 2-2
1.67 4.60 1-1
1.70 4.61 3-2
1.68 4.60 2-1
1.67 4.59 1-0 | 3012.020 A 30
3001.93 A 2
2979.102 A 5
 | 2.04 6.14
2.03 6.14
2.02 6.16 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | 00 A 5 1.12 4.63 916 A 250 1.09 4.63 837 A 80 1.07 4.61 298 A 800 1.12 4.63 432 A 400 1.09 4.61 163 A 150 1.07 4.60 | 4-4 e ³ F-z ⁵ D°
3-3 (6)
2-2
4-3
3-8
3-1 | 4820.047 A 10
3039.56 A 7
3020.65 A 6
3022.57 A 40
3016.14 A 15
3013.102 A 80 | 1.67 4.03 1-0
1.70 5.77 3-2 a ⁵ P-z ³ P°
1.68 5.76 2-1 (36)
1.67 5.75 1-0
1.68 5.77 3-3
1.67 5.76 1-1 | 4606.59 P
4651.42 P
4688.45 P
4439.42 A 1
3401.997 A 3 | 2.21 4.86
2.21 4.84
2.21 4.99
2.21 5.84 | 4-4 (45)
4-3 (46)
4-4 a ¹ G-z ³ F' (46)
4-5 a ¹ G-z ³ H' | | | | | | | | | 55 A 3 1.09 4.63
580 A 5 1.07 4.63
12 A 1500R 1.12 4.89
124 A 1200R 1.09 4.86
709 A 1000R 1.07 4.84 | 3-4
2-3
4-5 e ³ F-z ³ G°
3-4 (7)
2-3 | 3008.610 A 70
3001.203 A 200
3003.461 A 80
3007.296 A 15
3016.775 A 120 | 1.67 5.77 1-2
1.70 5.81 3-3 a ⁵ P-z ⁵ P°
1.68 5.79 2-3 (27)
1.67 5.77 1-1
1.70 5.79 3-2 | 3230.919 A 4
3243.74 P
3259.684 A 3
3188.10 A 30 | 2.21 6.03
2.21 6.02
2.21 6.00
2.21 6.08 | 4-5 a ¹ G-y ³ G' 4-4 (48) 4-3 4-4 a ¹ G-y ³ F' 4-3 (49) | | | | | | | | | 738 A 130 1.12 4.86
391 A 100 1.09 4.84
395 A 8 1.13 4.84 | 4-4
3-3
4-3 | 3014.822 A 100
2988.027 A 80
2995.999 A 60 | 1.68 5.77 2-1
1.68 5.81 2-3
1.67 5.79 1-2 | *3193.97§ A 10?
3157.900 A 40 | 3.21 6.08
3.21 6.12 | 4-3 a ¹ G-z ¹ F° | | | | | | | | | 686 A 500R 1.12 4.99 522 A 300R 1.09 4.96 717 A 200R 1.07 4.94 750 A 120 1.12 4.96 345 A 100 1.09 4.94 83 A 40 1.09 4.99 127 A 40 1.07 4.96 | 4-4 e ³ F-z ³ F°
3-3 (8)
2-3
4-3
3-8
3-4
3-3 | 3968.373 A 200
2976.517 A 100
2976.197 A 60
2989.594 A 40
2983.558 A 80n
2975.650 A 50
2996.70 A 3 | 1.70 5.85 3-4 a ⁵ P-y ⁵ D° (28)
1.68 5.82 2-3 (28)
1.67 5.81 1-2
1.70 5.82 3-3
1.68 5.81 2-2
1.67 5.82 1-1
1.70 5.81 3-2 | 3155.409 A 60
3142.484 A 150

5318.61 P
5367.53 P | 2.21 6.12
2.21 6.14
2.27 4.59
2.26 4.56 | 4-5 a ¹ G-z ¹ H ^e (51) 4-4 a ¹ G-z ¹ G ^e (52) 3-4 a ³ D-z ⁵ F ^e 2-3 (53) | | | | | | | | | 126 A 200 1.47 4.56
642 A 300 1.42 4.53
11 A 150 1.39 4.50
779 A 60 1.47 4.53
940 A 80 1.42 4.53 | 2-3 e ³ P-z ⁵ F° 1-3 (9) 0-1 2-2 1-1 | *2983.009 A 10
2982.75 A 40
 | 1.68 5.82 3-1
1.67 5.81 1-0
 | 5432.09 A 2
5384.89 A 8
5439.30 A 15
5487.00 A 8
5457.10 A 4
5494.35 P |
3.26 4.53
3.27 4.56
3.26 4.53
3.26 4.50
3.27 4.53
3.26 4.50 | 2-3 (53)
1-2
3-3
2-2
1-1
3-2
2-1 | | | | | | | | | 968 A 500 1.47 4.59
418 A 500 1.48 4.57
1558 A 60 1.39 4.56
732 A 60 1.47 4.57
734 A 50 1.43 4.57 | 2-3 e ³ P-z ³ p°
1-3 (10)
0-1
2-3
1-1 | 4867.79 P
4902.89 P
4938.62 P
4936.94 P
4951.66 P
4966.08 P | 1.81 4.34 5-5
1.80 4.31 4-4
1.79 4.29 3-3
1.81 4.31 5-4
1.80 4.29 4-3
1.79 4.27 3-2 | 5303.26 A 40
5332.65 A 9
5350.37 A 5
5349.75 A 3
5357.35 A 2
5286.42 P
5325.71 P | 2.27 4.59
2.26 4.57
2.26 4.56
2.36 4.57
2.36 4.59
2.36 4.59 | 3-3 a ³ D-z ³ D°
3-2 (54)
1-1
3-2
2-1
4-3
1-2 | | | | | | | | | 47 A 3 1.47 4.56 27 A 250 1.47 4.63 744 A 60 1.43 4.61 409 A 7 1.39 4.60 497 A 10 1.47 4.61 208 A 5 1.42 4.60 88 P 1.47 4.60 98 P 1.43 4.59 | 3-1 3-3 & 3P-2 ⁵ D° 1-3 (11) 0-1 3-3 1-1 2-1 1-0 | 4404.68 A 3
4424.62 P
4451.61 P
4444.20 P
4470.39 P
4500.86 P
4365.45 P
4406.22 P | 1.81 4.61 5-5 a ³ G-z ⁵ F° 1.80 4.59 4-4 (30) 1.79 4.56 3-3 1.61 4.59 5-4 1.80 4.59 4-3 1.79 4.53 3-2 1.80 4.61 4-5 1.79 4.59 3-4 1.81 4.63 5-4 a ³ G-z ⁵ D° (31) | 5213.08 P
5199.88 A 4
5204.28 P
5215.928 A 25
5240.97 P
5264.49 P
5257.51 P
5271.26 P
5280.62 P | 2.27 4.63
2.26 4.63
2.27 4.63
2.26 4.61
2.26 4.60
2.27 4.61
2.26 4.50
2.26 4.59 | 3-4 e ³ D-z ⁵ D°
2-3 (55)
1-2 (55)
1-3 2-3
1-1 3-2
2-1
1-0 | | | | | | | | | 12 P 1.57 4.38
11 P 1.56 4.34
76 P 1.55 4.31
77 P 1.57 4.36
03 P 1.56 1.56 | a-3 a ³ F-z ³ F° (12) 6-6 a ³ H-z ⁵ G° 5-5 (13) 4-4 6-5 5-4 | 4005.712 A 800
4023.388 A 600
4035.631 A 400
4035.631 A 20
°4051.06\$ A 20
3989.803 A 15
4008.17 A 20 | (31)
1.81 4.89 5-5 8 ³ C-2 ³ G ²
1.80 4.86 4-4 (38)
1.91 4.84 3-3
1.81 4.86 5-4
1.80 4.84 4-3
1.80 4.84 4-3
1.80 4.84 8-5
1.79 4.86 3-4 | 4528.51 A 300
4564.592 A 200
4600.19 A 150
M4577.13 P 15
4605.352 A 15
4618.12 P | 2.27 4.99
2.26 4.94
2.27 4.96
2.26 4.94
2.27 4.94 | 3-4 a ³ D-z ³ F°
2-3 (56)
1-2
3-3
2-2
3-2 | | | | | | | | | 13 P 1.55 4.28
88 P 1.56 4.38
17 P 1.55 4.34
270 A 7 1.57 4.61
66 A 3 1.56 4.59 | 4-3
5-6
4-5
6-5 a ³ H-z ⁵ F°
5-4 (14) | 3878.715 A 300
3899.140 A 200
3914.333 A 250
*3863.81\$ A 60
3884.847 A 50
3849.758 A 3 | 1.81 4.99 5-4 a ³ G-z ³ F°
1.80 4.96 4-3 (33)
1.79 4.94 3-8
1.80 4.99 4-4
1.79 4.96 3-3
1.79 4.99 3-4 | 3521.836 A 90
3520.547 A 15
3530.45 A 10
3514.422 A 20
3517.53 P
3511.42 A 3 | 2.27 5.77
2.26 5.76
2.26 5.75
2.26 5.77
2.26 5.76
3.26 5.77 | 3-2 a ³ D-z ³ P°
3-1 (57)
1-0
2-2
1-1
1-2 | | | | | | | | | 476 A 12001 1.57 4.89
780 A 8001 1.58 4.86
806 A 800 1.55 4.86
832 A 7 1.56 4.89
16§ A 10 1.55 4.86 | 6-5 e ³ H-z ³ Q°
5-4 (15)
4-3
5-5
4-4 | 3033.821 A 300
3053.39 A 200
3067.104 A 200
3062.702 A 20
3076.016 A 25 | 1.81 5.88 5-6 a ³ G-z ³ H°
1.80 5.84 4-5 (34)
1.79 5.81 3-4
1.81 5.84 5-5
1.80 5.81 4-4 | 3477.514 A 40
3469.528 A 50
3476.252 A 20
3470.263 A 20
3466.59 A 20
3467.33 A 2 | 2.27 5.81
2.26 5.82
2.26 5.81
2.26 5.81
2.26 5.82
2.26 5.81 | 3-2 a ³ D-y ⁵ D°
2-1 (58)
1-0
2-3
1-1
1-2 | | | | | | | | | 59 A 1 1.67 4.27
78 A 57 1.68 4.56
02 A 4 1.87 4.53 | 3-2 $b^3F-z^5G^0$
(16)
4-3 $b^3F-z^5F^0$
3-2 (17) | 3085.47 A 1
4810.17 A 1? | | 3333.608 A 3
3291.04 A 5
3300.905 A 6 | 2.26 5.96
2.27 6.02
2.26 6.00 | 1-0 a ³ D-z ¹ S°
(59)
3-4 a ³ D-y ³ G°
2-3 (60) | | | | | | | | | 89 A 3 1.67 4.50
82 A 4 1.68 4.59
41 A 15n 1.67 4.57
75 A 9n 1.67 4.56
062 A 3 1.88 4.63
82 A 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 3-2 (17)
3-2 (18)
3-3 (18)
3-1 4-4 b ³ F-z ⁵ D° | 4331.55 A 6n
4349.97 A 6n
4366.91 A 5n
4371.17 P
4382.33 P
4310.72 P
4334.77 P | 2.03 4.59 4-3 $b^3G_{-2}^3D^0$ 2.04 4.89 5-5 $b^3G_{-2}^3G^0$ 2.03 4.86 4-4 (36) 2.03 4.84 3-3 2.04 4.86 5-4 2.03 4.89 4-5 2.03 4.89 4-5 2.03 4.86 3-4 | 3307.445 A 2
3233.772 A 80
3233.546 A 40
3233.952 A 80
3239.833 A 8
3234.504 A 10 | 2.27 6.08
2.27 6.08
2.26 6.08
2.26 6.07
2.27 6.08
2.26 6.07 | 3-3 3-4 a ³ D_y ³ F° 2-3 (61) 1-2 3-3 2-2 | | | | | | | | | | | | | | | | REVI | a F | וו או מ | | P t. E | T T | ABLE | | | | | | | | |--|-------------|----------------|----------------------|----------------------|-------------------|--|----------------------------------|-------------|------------------|----------------------|----------------------|-------------------|---|----------------------------------|-------------|----------------|----------------------|----------------------|-------------------|--------------------------| | 36
Labor | ator | у . | E P | | J | Multiplet | Labore | ator | y | E I | , | J | Multiplet | Labor | atom | y | E : | P
High | J | Mal· | | | Ref | | Low | High | | (No) | I A I | Ref
inve | | Low | High | | (No) | I A
V II cont | Ref
inue | | LOW | uren | | V. | | <u>V II</u> cont
3202.711
3196.574 | A
A | 2
20 | | 6.12
6.12 | 3-3
2-3 | a ³ D-z ¹ F° (62) | 5928.86
5897.54 | A
A | 100
50 | 2.51
2.48 | 4.59
4.57 | 2-3
1-2 | o ³ P-z ³ D°
(98) | 5916.364
5967.77 | A.
A | 15
6 | 2.55
2.55 | 4.63
4.61 | 3-3
2-2 | b ³ D
(1: | | 3186.86 | A | 10 | | 6.14 | | a ³ D-z ¹ G° | 5951.45 | A | 4 | 2.49 | 4.63 | 0-1
2-3 | 0 ³ P-z ⁵ D° | 5914.28
*5047.308§ | A. | 5
10 | 2.55
2.55 | 4.63 | 2-3
3-4 | ъ ^З р. | | 3186.10 | A | 1 | 2.27 | 6.14 | 3-2 | a ³ D-z ⁵ S°
(64) | 5819.93
3787.235 | A
A | 80
150 | 2.51
2.51 | 5.77 | 2-2 | (99)
c ³ P-z ³ P° | 5106.233
5132.19 | A
A
A | 5 2 | 2.55
2.53 | 4.96
4.94 | 2-3
1-2 | (1: | |
3169.21
*3160.781 | A
A | 2
15 | | 6.16
6.16 | 3-27
1-2 | a ³ D-z ¹ D°
(65) | *3758.22\$
3794.366 | A
A | 40
50 | 2.48
2.51 | 5.76
5.76 | 1-1
2-1 | (100) | 5157.28 | A | 21 | 2.55 | 4.94 | 2-2 | ь ³ р | | 3050.735 | A
A | 15
25 | 3.27
2.26 | 6.31
6.26 | 3-2
2-1 | а ³ D-у ³ Р°
(66) | 3772.962
3751.222
3767.720 | A
A
A | 80
150
40 | 2.48
2.48
2.49 | 5.75
5.77
5.76 | 1-0
1-3
0-1 | | 3826.968
3813.12 | A | 30
3 | 2.55
2.53 | 5.77
5.77 | 2-2
1-3 | (1: | | 3081.254
3086.210
3078.948 | A
A | 10
5 | 2.26 | 6.25 | 1-0
1-1 | (00) | 3731.64 | A | 1 | 2.48 | 5.79 | 1-2 | c3p_z5pe | 3774.678
3773.80 | Ā | 15
5 | 2.55 | 5.81
5.82 | 2-2
2-1 | b ³ D
(1: | | 3054.24
3048.65 | A
A | 7n
4 | 2.27 | 6.31
6.31 | 3-3
2-3 | a ³ D-y ³ D ^e
(67) | 3724.984
3700.96 | A
A | 2
30 | 2.51
2.48 | 5.82
5.81 | 2-3
1-2 | (101)
c3P_y5pe
(102) | 3761.20
3604.375 | A | 4 | 2.53
2.53 | 5.81 | 1-2 | b ³ D | | 3075.474 | Å | ž | 2.26 | 6.27 | 1-3 | (0.7 | 3709.335
3736.017 | A
A | 40
70 | 2.49
2.51 | 5.82
5.81 | 0-1
2-2 | ,, | 3489.947 | A | 20 | 2.55 | 6.08 | 3-4 | (1
b ³ D | | 4968.50 | A | 1 | 2.36 | 4.84 | 4-3 | b ¹ G-z ³ G°
(68) | 3700.126
3735.158
3711.118 | A
A
A | 40
30
50 | 2.48
2.51
2.48 | 5.82
5.82
5.81 | 1-1
2-1
1-0 | | 3496.27
m3485.82
m3497.00 | P
P | Δ+
Δ+ | 2.55
2.53
2.55 | 6.08
6.07
6.08 | 2-3
1-2
3-3 | (1: | | 3547.07
3577.644 | A
A | 5
3 | 2.36 | 5.84
5.81 | 4-5
4-4 | b ¹ G-z ³ H°
(69) | 3549.030 | A | 3 | 2.48 | 5.96 | 1-0 | c3p_zige | 3497.39
3498.12 | A
P | 4 | 2.55
2.55 | 6.07
6.07 | 2-2
3-2 | | | 3361.506
3392.659 | A
A | 60
50 | 2.36
2.36 | 6.03
6.00 | 4-5
4-3 | b ¹ G-у ³ G°
(70) | 3463.079
3434.024 | A
A | 4 | 3.51
3.48 | 6.08 | 2-3
1-2 | (103)
c ³ P-y ³ F°
(104) | 3453.78
3453.087 | A
A | 90 | 2.55
2.55 | 6.12
6.12 | 3-3
2-3 | ь ³ р
(1 | | 3315.170 | A | 50 | a. 36 | 6.08 | 4-4 | blo-y3re | 3464.17 | A | 6 | 2.51 | 6.07 | 2-3
2-3 | c ³ P-z ¹ F° | 3435.38 | A | 7 | 2.55 | 6.14 | 3_4 | h ³ n
(1 | | 3321.539
3282.534 | A | 150
150 | 2.36 | 6.08 | 4-3
4-3 | (71)
b ¹ G_z ¹ F°
(72) | 3420.709
3401.740 | A
A | 5
1 | 2.51
2.51 | 6.12 | 2-3 | (105)
c ³ P_z ⁵ g• | 3434.46
3433.767 | A
A | 1
3 | 2.55
2.55 | 6.14
6.14 | 3-2
2-2 | b ³ D. | | 3279.844 | A | 300 | 2.36 | 6.12 | 4-5 | (72)
b ¹ G-z ¹ H° | 3372.666 | A | 3 | 2.48 | 6.14 | 1-2 | (106)
c ³ F-z ¹ D° | 3414.879 | A | 3 | 2.55 | 6.16 | 3-2 | b ³ D | | -3865.893 | A | 100 | 2.36 | 6.14 | 4-4 | b1g_g1g0
(74) | 3382.529
3353.776 | A | 30
30 | 2.51
2.48 | 6.16
6.16 | 2-2
1-3 | (107) | *3414.192§
3403.159 | A | 10
3 | 2.55 | 6.16
6.16 | 2-2
1-2 | (1: | | 3025.68
3032.187 | A
A | 1
3 | 2.36
2.36 | 6.44
6.43 | 4-5
4-4 | b ¹ G-y ³ H°
(75) | 3251.869
3257.893
3297.528 | A
A | 200
100
20 | 2.51
2.48
2.49 | 6.31
6.27
6.23 | 2-3
1-2
0-1 | c ^{3p_y3} p°
(108) | 3281.755
3314.862
m3337.76 | A
A
P | 10
50
V+ | 2.55
2.55
2.53 | 6.31
6.27
6.23 | 3-3
2-2
1-1 | b ³ D
(1: | | 3621.203 | A | 150 | 2.36 | 5.77 | -
2-2 | b ³ P-z ³ P° | 3285.022
3290.240 | A
A
A | 50
50 | 2.51
2.48 | 6.27 | 2-2
1-1 | | 3315.53
3348.372 | A
A | 5 | 2.55
2.55 | 6.27
6.23 | 3-2
3-1 | | | 3632.126
3627.713 | A | 15
60 | 2.37
2.36 | 5.76
5.76 | 1-1
3-1 | (76) | 3317.912
3247.908 | A | 20
4 | 2.51
2.51 | 6.23 | 2-1
2-2 | _3 _{D_} _3 _{D0} | 3281.120
3304.474 | A | 40
40 | 2.55
2.53
| 6.31
6.27 | 2-3
1-2 | | | 3645.905
3625.608
3631.482 | A
A
A | 30
50
10 | 2.37
2.37
2.37 | 5.75
5.77
5.76 | 1-0
1-2
0-1 | | 3261.80
3288.985 | A
A | 5 | 2.48
2.51 | 6.26 | 1-1
3-1 | c ³ P-y ³ P°
(109) | 3277.71
3318.907 | A
A | 30
20 | 2.55
2.55 | 6.31
6.26 | 3-2
3-1 | b ³ D. | | 3607.30
3623.03 | A
A | 1 | 2.37 | 5.79
5.77 | 1~2
0-1 | b ³ P-z ⁵ P°
(77) | 3221.380
3119.32 | A | 2
4 | 2.48
2.51 | 6.31 | 1-2
2-3 | c ³ P-x ³ F° | 3316.873
3277.082
3308.480 | A
A
A | 20
10
20 | 2.53
2.55
2.53 | 6.25
6.31
6.26 | 1-0
3-3
1-1 | | | 3574.340 | A | 60 | 2.36 | 5.81 | 2-2 | b ³ P-y ⁵ D° | 3115.16 | A | 2 | 2.48 | 6.44 | 1-1 | (110)
c3P_z3ge | 3266.91
3120.726 | A | 17
50 | 2.53
2.55 | 6.31 | 1-2
3-4 | ь ³ р. | | *3577.8579
3573.557
3588.13 | A
A
A | 20
50
15 | 2.37
2.36
2.37 | 5.82
5.82
5.81 | 1-1
2-1
1-0 | (78) | 3083.208
3065.61 | A
A | 40
50 | 2.51
2.48 | 6.51
6.51 | 2-3
1-2 | (111)
c ^{3p_x³D°
(112)} | 3146.226
3151.319 | Ã | 40 1
100 | 2.55
2.53 | 6.47
6.45 | 2-3
1-2 | (1: | | 3578.636
3577.220 | A
A | 15
10 | 2.37
2.37 | 5.81
5.82 | 1-2
0-1 | | 3081.01
3089.633 | A | 20
4 | 2.49
2.51 | 6.49
6.51
6.49 | 0-1
2-3 | | 3146.818
•3160.781 | Ä | 10
15 | 2.55
2.55 | 6.47
6.45 | 3-3
2-8 | | | 3436.393 | A | 2 | 2.37 | 5.96 | 1-0 | b ³ P-z ¹ S° | 3074.66
3079.75 | A | 12
1 | 2.48
2.51 | 6.52 | 1-1
3-1 | o ³ P_z ¹ P° | 3110.07
3116.02 | A
A | 31
3 | 2.55
2.55 | 6.51
6.51 | 3-3
2-2 | b ³ D.
(1: | | 3394.92 | A | 1 | 2.36 | 6.00 | 2-3
2-3 | b ³ p_y ³ co
(80)
b ³ p_y ³ ro | 3062.178
2981.924 | A | 3
15 | 2.49
2.51 | 6.52 | 0-1
3-2 | (113)
o ^{3p_w³D° †} | 3116.11
3106.829 | A | 3 | 2.53
2.53 | 6.49
6.51 | 1-1
1-2 | | | 3323.731
3249.464 | A | 4 | 2.36 | 6.16 | 2-2 | b ³ P-z ¹ D° | 2992.378 | A | | 3.51 | 6.64 | 2-1 | (114) | 3105.973 | A | 5 | 2.55 | 6.52 | 3-1 | (14 | | 3128.686
3162.714 | A
A | 20
30 | 2.36 | 6.31
6.27 | 2-3
1-3 | (83)
b ^{3p} -y ³ p• | 5193.43
5227.70 | P
A | 20 | 2.51
2.50 | 4.89 | 6-5
5-4 | b ³ H-z ³ G°
(115) | 3001.754
3006.502
3008.508 | A
A | 30
20
15 | 2.55
2.55
2.53 | 6.66
6.65
6.64 | 3-3
3-2
1-1 | ь ³ р.
(1. | | 3192.699
3159.365 | A
A | 15
20 | 2.37 | 6.23
6.27 | 0-1
2-2 | (65) | 5263.99
5171.13 | A
P | 15 | 2.50
2.50 | 4.84
4.89 | 4-3
5-5 | (110) | 3007.035
2997.945 | Ā | 1 6 | 2.55
2.53 | 6.65
6.65 | 3-2
1-3 | | | 3193.200
3189.76 | A | 20
3 | 2.37
2.36 | 6.23 | 1-1
3-1 | | 5217.36
3669.410 | P
A | 300 | 2.50
2.51 | 4.86
5.88 | 4-4
6-6 | b ³ H-z ³ H° | 5202.94 | A | 2 | 2.59 | 4.96 |
2-3 | a ¹ D | | 3125.01
3166.39 | A
A | 20
8 | 2.36
2.37 | 6.31
6.26 | 3-3
1-1 | b ³ P_y ³ P°
(84) | 3700.337
3728.335 | A
A | 200
200 | 2.50
2.50 | 5.84
5.81 | 5-5
4-4 | (116) | 3881.04 | A | 2 | 2.59 | 5.77 | 2-2 | a ² D | | 3163.024
3174.077
3128.288 | A
A
A | 30
30
10 | 2.36
2.37
2.37 | 6.26
6.25
6.31 | 2-1
1-0
1-2 | | 3711.751
3733.607
3658.266 | A
A
A | 10
4
10 | 2.50
2.50 | 5.84
5.81
5.88 | 6-5
5-4
5-6 | | 3622.289 | A | 10 | 2.59 | 6.00 | 2-3 | a D. | | 3165.89 | A | 10
30
50 | 2.37 | 6.26 | 1-2
0-1 | b ³ P-z ³ S° | *3695.158 | A | 10 | 2.50
2.50
2.51 | 5.84
6.03 | 5-6
4-5
6-5 | ь ³ н-у ³ с• | 3541.341
3542.480 | A | 50
4 | 2.59
2.59 | 6.07 | 3-3 | a ² D- | | 3028.042
3027.600 | A
A
A | 50
15 | 2.36
2.37
2.37 | 6.44
6.44
6.44 | 2-1
1-1
0-1 | (85) | 3513.877
3527.867 | A
A | 40
15
10 | 2.50
2.50 | 6.02 | 5-4
4-3 | (117) | 3497.031 | A | 300 | 2.59 | 6.12 | 23 | 51 4 | | 3005.813
3022.146 | A
A | 30
4 | 2.36
2.37 | 6.47
6.45 | 2-3
1-3 | b ³ P-x ³ F° (86) | 3498.83
3509.20 | P | | 2.50
2.50 | 6.03
6.02 | 5-5
4-4 | | 3457.153
3359.50 | A
A | 300
2 | 2.59
2.59 | 6.16 | 2-2
3-1 | (14 | | 30 19.09 | Ã | 3 | 2.36 | 6.45 | 2-2 | | 3448.69
3451.048 | Ā | 1
13 | 2.50
2.50 | 6.08
6.08 | 5-4
4-3 | ъ ³ н_у ³ г°
(118) | 3320.780 | A | 4 | 2.59 | 6.31 | 2-3 | a ¹ D- | | 2972.263
2981.200
2989.306 | A
A | 80
70 | 2.36
2.37 | 6.51
6.51
6.49 | 2-3
1-2 | b ³ P-x ³ D°
(87) | 3420.15 | Ā | 2 | 2.51 | 6.12 | 6-5
5-5 | b3H-z1H° | 3355.366
3182.674 | A | 3 0 | 2.59 | 6.27 | 2-3
2-3 | | | 2978.226
2989.74 | A
A
A | 15
20
10 | | 6.51
6.49 | 0-1
2-2
1-1 | | 3410.46
3406.06 | A | 7 | 2.50
2.50 | 6.12
6.12 | 4-5 | (119) | 3197.574 | Ā | 7 | 2.59 | 6.45 | 2~2 | (1! | | 3370.40 | A | | 2.37 | 6.03 |
6-5 | a ¹ I-y ³ G° | 3408.955
3391.01 | A . | 15
1 | 2.50
2.50 | 6.12 | 4-3
4-4 | b ³ H-z ¹ F°
(120)
b ³ H-z ¹ G° | 3161.313
3141.486 | A | 30
40 | 2.59
2.59 | 6.49
6.52 | 2-1
2-1 | {1 8 | | 3288.324 | A | .30 | 2.37 | 6.12 | 6-5 | (88)
a ¹ I-z ¹ H° | 3134.928 | A | 300 | 2.51 | 6.45 | 6-6 | p3H-73He | 3039.767 | Ā | 2 | 2.59 | 6.65 | 3-2 | (1 8 | | 6027.23 | | 8 | 2.46 | 4.50 | | (89)
a ¹ 8–z ⁵ F° | 3136.503
3139.733 | A | 160
160 | 2.50
2.50 | 6.44
6.43 | 5-5
4-4 | (122) | 2963.249 | A | 9 | 2.59 | 6.75 | 2-1 | | | 5862.80 | A
A | 15+p1 | | 4.56 | 0-1
0-1 | (90)
a ¹ 8-z ³ po | 3144.700
3143.477
3126.79 | A
A
A | 20
15
2 | 2.51
2.50
2.50 | | 6-5
5-4
5-6 | | 4038.545 | A | 2 | 2.75 | 5.81 |
1-0 | a ¹ P- | | 3731.983 | A | 20 | 2.46 | 5.76 | 0-1 | a ¹ 8-z ³ pe | 3132.793
3033.445 | A | 3
200 | 2.50
2.51 | | 4-5
6-7 | | *3847.323\$ | A | 100 | 2.75 | 5.96 | 1-0 | aip_
(1: | | 3674.691 | A . | 30 | 2.46 | 5.82 | 0-1 | (93) | 3048.214
3063.247 | A
A
A | 200
200 | 2.50
2.50 | 6.55
6.53 | 5-6
4-5 | (123) | 3712.533 | | 8 | 2.75 | 6.07 | 1-3 | alp_
{18 | | 3270.115
3057.08 | A
A | 10
2 | 2.46
2.46 | | 0-1
0-1 | a ¹ S_y ³ D°
(94) | 3055.942
3066.80 | A
A | ?
4 | 2.51
2.50 | 6.55 | 6-6
5-5 | | 3618.924
3507.534 | A | 300 | 2.75
2.75 | | 1-3 | [18 | | 3038.520 | A | 30 | 2.46 | | 0-1 | (95)
a ¹ S-z ¹ P° | 6226.29 | A | 10n | 2.55 | 4.53 |
2-2 | b ³ D-2 ⁵ F° | 3465.25 | A | 4 | 2.75 | | 1-3 | 11.
alp. | | 6031.07 | A | 40 | 2.51 | 4.56 |
2-3 | (96)
c ³ P-z ⁵ F° | 6028.98
6086.93 | A | 20
15m | 2.55
2.55 | | 3-3 | (124)
b ³ D-2 ³ D° | 3335.482 | A | 10 | 2.75 | 6.45 | 1-2 | aip_
(16 | | 6028.26
6120.98 | A
A | 40
5 | 2.48
2.49 | 4.53
4.50 | 1-2
0-1 | (97) | 6083.82
6086.81 | A
A
A | 15n
10n
6 | 2.53
2.55 | 4.56 | 2-2
1-1
2-3 | • | 3285.672
3296.052 | A | 3
8 | 2.75
2.75 | | 1-2
1-1 | | | 6095.93 | A | 3 | 2.48 | 4.50 | 1-1 | | | | - | | | . • | | | | | | | | | | | | REVISED H | ULTIPLET TABLE | | | |---|---|---|---|---|--| | eboratory E P
Ref Int Low Hig | J Hultiplet
h (No) | Laboratory
I A Ref Int | EP J Multiplet
Low High (No) | Laboratory
I A Ref Int | EP J Multipl
Low High (No) | | I P 14.1 Anal A List | | VII continued | tw. 1157 (110) | VII continued | Low High (No) | | 08// A 2500R 0.39 4.3 | 8 5-6 a ⁵ F-z ⁵ G° | m3844.48 P V | 1.68 4.89 4-5 b ³ F-z ³ G° | 4183.435 A 250 | 2.04 4.99 5-4 b ³ G-z ³ F | | 95 A 2000R 0.37 4.3
08 A 1500R 0.35 4.3
76 A 1000R 0.33 4.3 | 1 3-4 | 3865.73 A 5
3883.43 A 2
3875.67 A 5 | 1.67 4.86 3-4 (20)
1.67 4.84 2-3
1.68 4.86 4-4 | 4205.080 A 250
4225.238 A 120
4164.015 A 15 | 2.03 4.96 4-3 (37)
2.02 4.94 3-2
2.03 4.99 4-4 | | 76 A 1000R 0.33 4.2
82 A 600R 0.32 4.2
.38 A 80 0.39 4.3 | 7 1-2 | 3891.25 A 4
3901.33 P | 1.67 4.84 3-3
1.68 4.84 4-3 | 4190.89 A 10
4150.08 P | 2.02 4.96 3-3
2.02 4.99 3-4 | | 15 A 150R 0.37 4.3
162 A 100R 0.35 4.2 | 1 4-4 | 3727.351 A 1000l | 1.68 4.99 4-4 b ³ F-z ³ F° | *3217.121§ A 400 | 2.04 5.88 5-6 b ³ G-z ³ H | | 39 A 150r 0.33 4.2
37 A 30 0.39 4.3 | 1 5-4 | 3750.88 A 600
3770.974 A 400 | 1.67 4.96 3-3 (21)
1.67 4.94 2-2 | 3237.876 A 350
*3254.773§ A 300 | 2.03 5.84 4-5 (38)
2.02 5.81 3-4 | | 171 A 20 0.37 4.2
137 A 30 0.35 4.2 | | 3760.24 A 140
3778.357 A 100
3718.159 A 60 | 1.68 4.96 4-3
1.67 4.94 3-3
1.67 4.99 3-4 | 3249.617 A 40
3263.33 A 20 | 2.04 5.84 5-5
2.03 5.81 4-4 | |)7 A 150 0.35 4.5 | 3 3-2 a ⁵ F-z ⁵ F°† | 3718.159 A 60
3743.610 A 40 | 1.67 4.96 2-3 | m3093.16 P V+
3094.196 A 100 | 2.04 6.03 5-5 b^3G-y^3G
2.03 6.02 4-4 (39) | | equivalent polyto grate accompany service | 7 -5 | *2983.009 A 10 | 1.67 5.81 3-4 b ³ F-z ³ H°† (32) | 3100.938 A 100
3104.906 A 25 | 2.02 6.00 3-3
2.04 6.02 5-4 | |)17 A 6 1.12 4.3
355 A 5 1.09 4.3 | 31 3-4 (3) | 4270.64 A 3 | 1.70 4.59 3-4 a ⁵ F-z ⁵ F° | 3108.704 A 30
3082.524 A 40 | 2.03 6.00 4-3
2.03 6.03 4-5 | | 53 A & 1.07 4.2
10 A 4 1.07 4.2 | 7 2-3 | 4286.13 A 3
4316.258 A 2
4313.30 A 2 | 1.68 4.56 2-3 (23)
1.67 4.53 1-2
1.70 4.56 3-3 | 3086.507 A 30
3053.894 A 80 | 2.04 6.08 5-4 b ³ G-y ³ F | | 150 A 50 1.12 4.6
18 A 10 1.09 4.5 | i9 3 -4 (4) | 4331.70 A S | 1.68 1.50 2-2 | 3040.891 A 70
3042.27 A 80 | 8.03 G.08 4-3 (40)
2.02 6.07 3-2 | | 18 P
1.07 4.5 | 9 4-4 | *4260.75 A 9n
4263.836 A 4n | 1.70 4.59 3-3 e ⁵ P-z ³ D°
1.68 4.57 2-3 (24) | 3043.54\$ A 40
3041.42 A 60 | 2.03 6.08 4-4
2.02 6.08 3-3 | | 594 A 90 1.09 4.5
1778 A 300 1.07 4.5
323 A 600 1.12 4.5 | 3 2-2 | 4364.50 A 1
4334.251 A 7
4348.830 A 4 | 1.67 4.56 1-1
1.68 4.59 2-3
1.67 4.57 1-2 | 3036.07 A 2
3023.882 A 20 | 2.02 6.08 3-4
2.04 6.12 5-5 b ³ G-z ¹ H | | 745 A 1000 1.09 4.5 | 3 39 | 4202.350 A 150 | 1.70 4.63 3-4 e ⁵ P-z ⁵ D° | 3015.98 A 10 | 2.03 6.12 4-3 b ³ G-z ¹ F
(42) | | 300 A 1500 1.13 4.5
190 A 1000 1.09 4.5 | 59 4-3 a ³ F-z ³ D°
57 3-2 (5) | 4178.390 A 60
4190.40 A 15
4804.20 A 20 | 1.68 4.63 2-3 (25)
1.67 4.61 1-2
1.70 4.63 3-3 | 3012.020 A 30 | 2.04 6.14 5-4 b ³ G-z ¹ G | | 190 A 1000 1.09 4.5
765 A 500 1.07 4.5
713 A 200 1.09 4.5 | 6 2-1 | 4204.20 A 20
m4205.05 P V ⁺
4209.74 A 10 | 1.68 4.61 2-3
1.67 4.60 1-1 | 3001.93 A 2
2979.102 A 5 | 2.03 6.14 4-4 (43)
2.02 6.16 3-2 b ³ G-z ¹ D | | 322 A 120 1.07 4.5
323 A 20 1.07 4.5 | 57 2 <u>–</u> 2 | 4231.165 A 4
4234.51 A 10 | 1.70 4.61 3-2
1.68 4.60 2-1 | | (44) | | 00 A 5 1.12 4.6
916 A 250 1.09 4.6 | | 4220.047 A 10
3029.56 A 7 | 1.67 4.59 1-0
1.70 5.77 3-2 a ⁵ P-z ³ P° | 4606.59 P
4651.42 P
4688.45 P | 2.21 4.89 $4-5$ $a^{1}G-z^{3}G$
2.21 4.86 $4-4$ (45)
2.21 4.84 $4-3$ | | 337 A 80 1.07 4.6
398 A 800 1.12 4.6 | 31 2-2
33 4-3 | 3020.65 A 6
3022.57 A 40 | 1.68 5.76 2-1 (26)
1.67 5.75 1-0 | 4439.42 A 1 | 2.21 4.99 4-4 a ¹ G-z ³ F' (46) | | 132 A 400 1.09 4.6
163 A 150 1.07 4.6
35 A 3 1.09 4.6 | 30 2-1 | 3016.14 A 15
3013.102 A 80
3008.610 A 70 | 1.68 5.77 2-2
1.67 5.76 1-1
1.67 5.77 1-2 | 3401.997 A 2 | 2.21 5.84 4-5 a ¹ G-z ³ H | | 35 A 3 1.09 4.6
380 A 5 1.07 4.6 | 33 2-3 | 3001.203 A 200 | 1.67 5.77 1-2
1.70 5.81 3-3 a ⁵ P-z ⁵ P° | 3230.919 A 4
3243.74 P | 3.21 6.03 4-5 a ¹ G-y ³ G ⁴
2.21 6.03 4-4 (48) | | L2 A 1500R 1.12 4.6 | 36 3⊶4 (7) | 3003.461 A 80
3007.296 A 15 | 1.68 5.79 2-3 (27)
1.67 5.77 1-1 | 3259.684 A 3 | 2.21 6.00 4-3 | | 709 A 1000R 1.07 4.6
738 A 130 1.12 4.6
391 A 100 1.09 4.6 | 36 4-4 | 3016.775 A 120
3014.822 A 100
2988.027 A 80 | 1.70 5.79 3-2
1.68 5.77 3-1
1.68 5.81 2-3 | 3188.10 A 30
*3193.97§ A 10? | 2.21 6.08 4-4 a ¹ G-y ³ F ^c
2.21 6.08 4-3 (49) | | 395 A 3 1.13 4.8 | 34 4-3 | 2995.999 A 60 | 1.67 5.79 1-2 | 3157.900 A 40 | 2.21 6.12 4-3 a ¹ G-z ¹ F ^c (50) | | 386 A 500R 1.12 4.5
528 A 300R 1.09 4.5 | 86 3-3 (8) | 2968.373 A 200
2976.517 A 100 | 1.70 5.85 3-4 a ⁵ P-y ⁵ D°
1.68 5.82 3-3 (28) | 3155.409 A 60 | 3.21 6.12 4-5 a ¹ G-z ¹ H ^c (51) | | 717 A 200R 1.07 4.5
750 A 120 1.12 4.5
345 A 100 1.09 4.5 | 6 4-3 | 2976.197 A 60
2989.594 A 40
2983.558 A 80n | 1.67 5.81 1-2
1.70 5.82 3-3
1.68 5.81 2-2 | 3142.484 A 150 | 2.21 6.14 4-4 a ¹ G-z ¹ G ^c (52) | | 38 A 40 1.09 4.9
127 A 40 1.07 4.9 | 99 3-4 | 2975.650 A 50
2996.70 A 3 | 1.67 5.83 1-1
1.70 5.81 3-3 | 5318.61 P
5367.53 P | 2.27 4.59 3-4 a ³ D-z ⁵ F ^c
2.26 4.56 2-3 (53) | | 126 A 300 1.47 4.1 | 56 2-3 e ³ P-z ⁵ F° | *2983.009 A 10
2982.75 A 40 | 1.68 5.82 2-1
1.67 5.81 1-0 | 5432.09 A 2
5384.89 A 8 | 2.26 4.53 1-2
2.27 4.56 3-3 | | 342 A 300 1.42 4.1
11 A 150 1.39 4.1 | 53 1-2 (9) | 4799.94 P | 1.81 4.38 5-6 a ³ G-z ⁵ G ^o | 5439.30 A 15
5487.00 A 8
5457.10 A 4 | 2.26 4.53 2-2
2.26 4.50 1-1
2.27 4.53 3-2 | | 779 A 60 1.47 4.5 | 53 2-2
50 1-1 | 4844.31 P
4880.30 P | 1.80 4.34 4-5 (29)
1.79 4.31 3-4 | 5494.35 P | 2.26 4.50 2-1 | | 03 A 5 1.47 4.5
968 A 500 1.47 4.5 | | 4867.79 P
4902.89 P
4928.62 P | 1.81 4.34 5-5
1.80 4.31 4-4
1.79 4.89 3-3 | 5303.26 A 40
5332.65 A 9
5350.37 A 5 | 2.27 4.59 3-3 a ³ D-z ³ D°
2.26 4.57 2-2 (54) | | 18 A 200 1.48 4.1
1559 A 60 1.39 4.1 | 57 1→8 (10)
56 0–1 | 4926.94 P
4951.66 P | 1.81 4.31 5-4
1.80 4.29 4-3 | 5349.75 A 3
5357.35 A 2 | 2.26 4.56 1-1
2.27 4.57 3-2
2.26 4.56 2-1 | | 738 A 60 1.47 4.1
734 A 50 1.42 4.1
47 A 3 1.47 4.1 | 56 1-1 | 4966.08 P | 1.79 4.27 3-2
1.81 4.61 5-5 a ³ G-z ⁵ F° | 5386.43 P
5325.71 P | 2.26 4.59 2-3
2.26 4.57 1-2 | | 37 A 250 1.47 4.6 | 7 6 | 4404.68 A 2
4424.62 P
4451.61 P | 1.81 4.61 5-5 a ³ G-z ⁵ F°
1.80 4.59 4-4 (30)
1.79 4.56 3-3 | 5213.08 P
5199.68 A 4 | 2.27 4.63 3-4 $a^{3}D-z^{5}D^{\circ}$
2.26 4.63 2-3 (55) | | 744 A 60 1.42 4.6
109 A 7 1.39 4.6 | 31 1-3 (11)
30 0-1 | 4444.20 P
4470.39 P | 1.81 4.59 5-4
1.80 4.56 4-3 | 5234.28 P
5215.928 A 25 | 2.26 4.61 1-2
2.27 4.63 3-3 | | 197 A 10 1.47 4.6
308 A 5 1.42 4.6
48 P 1.47 4.6 | 30 1-1 | 4500.86 P
4385.45 P
4406.22 P | 1.79 4.53 3-2
1.80 4.61 4-5
1.79 4.59 3-4 | 5240.97 P
5264.49 P
5257.51 P | 2.26 4.61 2-2
2.26 4.60 1-1 | | 98 P 1.43 4.5 | 9 1-0 | 4370.27 A 3 | 1.81 4.63 5-4 a ³ G-z ⁵ D° (31) | 5257.51 P
5271.26 P
5280.62 P | 2.27 4.61 3-2
2.26 4.60 2-1
2.26 4.59 1-0 | | 14 A 8 1.47 4.5 | 96 2-3 a ³ P-z ³ F° (12) | 4005.712 A 800 | 1.81 4.89 5-5 a ³ G-z ³ G° | 4528.51 A 300 | 2.27 4.99 3-4 a ³ D-z ³ F° | | 13 P 1.57 4.1
11 P 1.56 4.1 | | 4023.388 A 600
4035.631 A 400
4039.574 A 20 | 1.80 4.86 4-4 (32)
1.79 4.84 3-3
1.81 4.86 5-4 | 4564.592 A 200
4600.19 A 150
m4577.13 P V | 2.26 4.96 2-3 (56)
2.26 4.94 1-2
2.27 4.96 3-3 | | 76 P 1.55 4.3 | 31 4-4
34 6-5 | *4051.06§ A 20
3989.803 A 15 | 1.80 4.84 4-3
1.80 4.89 4-5 | 4605.352 A 15
4618.12 P | 2.26 4.94 2-2
2.27 4.94 3-2 | | 03 P 1.56 4.0
13 P 1.55 4.0
38 P 1.56 4.0 | 39 4-3 | 4008.17 A 30 | 1.79 4.86 3-4
1.81 4.99 5-4 a ³ G-z ³ F° | 3521.836 A 90 | 2.27 5.77 3-2 a ³ D-z ³ P° | | 38 P 1.56 4.1
17 P 1.55 4.1 | 5 4 4–5 | 3878.715 A 300
3899.140 A 200
3914.333 A 250 | 1.80 4.96 4-3 (33)
1.79 4.94 3-2 | 3520.547 A 15
3530.45 A 10
3514.422 A 20 | 2.36 5.76 2-1 (57)
2.36 5.75 1-0
2.36 5.77 2-3 | | 370 A 7 1.57 4.6
36 A 3 1.56 4.1 | | *3863.81\$ A 60
3884.847 A 50 | 1.80 4.99 4-4
1.79 4.96 3-3 | 3517.53 P
3511.42 A 3 | 2.26 5.76 1-1
2.26 5.77 1-2 | | 176 A 1200 l 1.57 4.8
760 A 800 l 1.56 4.8 | 39 6-5 a ³ H-z ³ Q°
36 5-4 (15) | 3849.758 A 3
3033.821 A 300 | 1.79 4.99 3-4
1.81 5.88 5-6 a ³ G-z ³ H° | 3477.514 A 40
3469.528 A 50 | 2.27 5.81 3-2 a ³ D-y ⁵ D° | | 306 A 800 1.55 4.8
332 A 7 1.56 4.8 | 34 4-3
39 5-5 | 3053.39 A 200
3067.104 A 200 | 1.80 5.84 4-5 (34)
1.79 5.81 3-4 | 3476.252 A 20
3470.263 A 20 | 2.36 5.82 2-1 (58)
2.36 5.81 1-0
2.36 5.81 2-3 | | 16§ A 10 1.55 4.6 | 36 4-4 | 3062.702 A 20
3076.016 A 25 | 1.80 5.81 4-4 | 3466.59 A 20
3467.33 A 2 | 2.26 5.81 1-1
2.26 5.81 1-2 | | 59 A 1 1.67 4.2 | 37 2-2 b ³ F-z ⁵ G° (16)
56 4-3 b ³ F-z ⁵ F° | 3085.47 A 1 | 1.81 5.81 5-4 | 3333.608 A 2 | 2.26 5.96 1-0 e ³ D-z ¹ S° (59) | | 78 A 57 1.68 4.5 | 3 3-2 (17) | 4810.17 A 17 | 2.03 4.59 4-3 b ³ G-z ³ D° (35)
3.04 4.89 5-5 b ³ G-z ³ G° | 3291.04 A 5
3300.905 A 6 | (59)
2.27 6.02 3-4 a ³ D-y ³ G°
2.26 6.00 2-3 (60) | | 39 A 3 1.67 4.5 | 50 2-1 | 4331.55 A 6n
4349.97 A 6n | 2.04 4.89 5-5 b ³ G-z ³ G°
2.03 4.86 4-4 (36)
2.02 4.84 3-3 | 3307.445 A 2
3233.772 A 80 | 2.27 6.00 3-3
2.27 6.08 3-4 a ³ D-y ³ F° | | 32 A 4 1.68 4.5
41 A 15n 1.67 4.5
75 A 9n 1.67 4.5 | 37 3-2 (18) | 4366.91 A 5n
4371.17 P
4382.33 P | 2.02 4.84 5-4
2.03 4.84 4-3 | 3233.546 A 40
3231.952 A 80 | 2.26 6.08 2-3 (61)
2.26 6.07 1-2 | | 062 A 3 1.68 4.6 | | 4310.72 P
4334.77 P | 2.03 4.89 4-5
2.02 4.86 3-4 | 3239.833 A 8
3234.504 A 10 | 2.27 6.08 3-3
2.26 6.07 2-2 | | R A 69 4 69 4 7 | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | 5 F V 1 | | א ה | ULTI | PLE | T T | ABLE | | | | | | | | |-----------------------------------|-------------|----------------|----------------------|----------------------|-------------------|--|---|------------------|-------------------|----------------------|----------------------|-------------------|---|---|-------------|----------------|----------------------|----------------------|-------------------|---| | 36
Labor | ator | Ψ . | E | P | J | Multiplet | Labor | ator | У | E | P | , , | Multiplet | Labor | ator | y | E : | P | J | Mul | | IA | Ref | Int | Low | | | (No) | | Ref | | FOM | High | | ' (До) | | | Int | Low | High | | (1 | | V II cont
3202.711
3196.574 | A
A
A | a
20
20 | 2.27
2.26 | 6.12
6.13 | 3-3
2-3 | a ³ D-z ¹ F° (62) | <u>V II</u> cont
5928.86
5897.54
5951.45 | A
A
A
A | 100
50
4 | 2.51
2.48
2.49 | 4.59
4.57
4.56 | 2-3
1-2
0-1 | o ³ P-z ³ D°
(98) | V II cont
5916.364
5967.77
5914.28 | A.
A. | 15
6
5 | 2.55
2.55
2.55 | 4.63
4.61
4.63 | 3-3
2-3
3-3 | b ³ D
(1 | | 3186.86 | A | 10 | 2.27 | 6.14 | 3-4 | a ³ D-z ¹ G°
_(63) | 5819.93 | A | 80 | 2.51 | 4.63 | 2-3 | o ³ P-z ⁵ D° | *5047.308\$ | A | 10 | 2.55 | 4.99 | 3-4 | b ³ D | | 3186.10 | A | 1
2 | 2.27 | 6.14
6.16 | 3-2
3-21 | a ³ D-z ⁵ S°
(64)
a ³ D-z ¹ D° | 3787.235
*3758.22§ | A
A | 150
40 | 2.51
2.48 | 5.77
5.76 | 2-3
1-1 | (99)
c ^{3p} -z ³ p•
(100) | 5106.233
5132.19
5157.28 | A
A
A | 5
2
21 | 2.55
2.53
2.55 | 4.96
4.94
4.94 | 2-3
1-2
2-2 | (1: | | 3169.21
*3160.781 | A
A | 15 | 2.26 | 6.16 | 1-2 | (65) | 3794.366
3772.962 | A
A | 50
80 | 3.51
2.48 | 5.76
5.75
5.77 | 2-1
1-0 | (100) | 3826.968 | A | 30 | 2.55 | 5.77 | 2-2 | b ³ D | |
3050.735
3081.254
3086.210 | A
A
A | 15
25
10 | 2.27
2.26
2.26 | 6.31
6.26
6.25 | 3-2
2-1
1-0 | a ³ D-y ³ P°
(66) | 3751.222
3767.720 | A | 150
40 | 2.48
2.49 | 5.77
5.76 | 1-3
0-1 | | 3813.12
3774.678 | A | 3
15 | 2.53
2.55 | 5.77
5.81 | 1-2
2-2 | (1;
b ³ D | | 3078.948 | Â | 5 | 2.26 | 6.26 | 1-1 | 3- 3-4 | 3731.64 | A | 1. | 2.48 | 5.79 | 1-2 | c ³ p_z ⁵ p°
(101)
c ³ p_y ⁵ p° | 3773.80
3761.20 | Ā | 5
1 | 2.55
2.53 | 5.82
5.81 | 2-1
1-2 | (1) | | 3054.24
3048.65
3075.474 | A
A
A | 7n
4
2 | 2.27
2.26
2.26 | 6.31
6.31
6.27 | 3-3
2-3
1-8 | a ³ D-y ³ D°
(67) | 3724.984
3700.96
3709.335 | A
A
A | 30
40 | 2.51
2.48
2.49 | 5.82
5.81
5.82 | 2-3
1-2
0-1 | (103) | 3604.375 | A | 4 | 2.53 | 5.96 | 1-0 | b ³ D | | | | | | | _ | -3ae | 3736.017
3700.126 | A
A | 70
40 | 2.51
2.48 | 5.81
5.82
5.82 | 2-2
1-1
2-1 | | 3489.947
3496.27 | A
P
P | 20
V** | 2.55
2.55 | 6.08 | 3-4
2-3 | ь ³ р
(1 | | 4968.50
3547.07 | A
A | 1
5 | 2.36 | 4.84
5.84 | 4-3
4-5 | b ¹ G-z ^{3G°}
(68)
b ¹ G-z ³ H° | 3735.158
3711.118 | A
A | 30
50 | 2.51
2.48 | 5.81 | 1-0 | | m3485.82
m3497.00
3497.39 | P | ν+
4 | 2.55
2.55
2.55 | 6.07
6.08
6.07 | 1-2
3-3
2-2 | | | 3577.644 | A | 3 | 2.36 | 5.81 | 4-4 | (69)
b ¹ | 3549.030 | A | 3 | 2.48
2.51 | 5.96
6.08 | 1-0
2-3 | c ³ p_z ¹ s°
(103)
c ³ p_y ³ p° | 3498.12
3453.78 | P | 1 | 2.55 | 6.07 | 3-2 | b ³ D | | 3361.506
3392.659 | A | 60
50 | 2.36
2.36 | 6.03
6.00 | 4-5
4-3 | (70) | 3463.079
3434.024
3464.17 | A
A
A | 4 | 2.48
2.51 | 6.07 | 1-2
2-2 | (104) | 3453.087 | A | 90 | 2.55 | 6.12 | 3-3
2-3 | (1: | | 3315.176
3321.539 | A
A | 50
150 | 2.36 | 6.08
6.08 | 4-4
4-3 | b ¹ G-y ³ F°
(71) | 3420.709 | A | 5 | 2.51 | 6.12 | 2-3 | e ³ P_z ¹ F° | 3435.38
3434.46 | A
A | 7 | 2.55 | 6.14 | 3-4 | b ³ D
(1:
b ³ D. | | 3282.534 | A | 150 | 2.36 | 6.12 | 4-3 | b ¹ G_z ¹ F° (72) | 3401.740
3372.666 | A
A | 1 3 | 2.51
2.48 | 6.14
6.14 | 2-2
1-2 | (105)
c ³ P _{-z} 5g°
(106) | 3433.767 | Ã | 3 | 2.55 | 6.14 | 22 | (1: | | 3279.844
*3265.893§ | A | 100 | 2.36 | 6.12 | 4-5
4-4 | b ¹ G-z ¹ H°
(73)
b ¹ G-z ¹ G° | 3382.529
3353.776 | A
A | 30
30 | 2.51
2.48 | 6.16 | 2-2
1-3 | c ³ F_z ¹ D° (107) | 3414.879
*3414.1928
3403.159 | A
A
A | 10
3 | 2.55
2.55
2.53 | 6.16
6.16
6.16 | 3-2
3-3
1-3 | b ³ D.
(1: | | 3025.68 | A | 1 | 2.36 | 6.44 | 4-5 | (74)
b ¹ G-y ³ H° | 3251.869 | A | 200 | 2.51 | 6.31 | 2-3 | c ³ P-v ³ De | 3281.755 | A | 10 | 2.55 | 6.31 | 3-3 | b ³ D | | 3032.187 | A | | 2.36 | 6.43 | 4-4
 | (75) | 3257.893
3297.528
3285.022 | A
A
A | 100
20
50 | 2.48
2.49
2.51 | 6.27
6.23
6.27 | 1-2
0-1
2-3 | (108) | 3314.862
m3337.76
3315.53 | A
P | 50
V+
5 | 2.55
2.55
2.55 | 6.27
6.23
6.27 | 2-2
1-1
3-2 | (1: | | 3621.203
3632.126 | A | 150
15 | 2.36
2.37 | 5.77
5.76 | 2-2 | b ³ P-z ³ P°
(76) | 3290.240
3317.912 | Ā | 50
50
20 | 2.48
2.51 | 6.23
6.23 | 1-1
2-1 | | 3315.53
3348.372
3281.120 | Ā | 5
4
40 | 2.55 | 6.27
6.23
6.31 | 3-2
2-1
2-3 | | | 3627.713
3645.905
3625.608 | A
A
A | 60
30
50 | 2.36
2.37
2.37 | 5.76
5.75
5.77 | 2-1
1-0
1-2 | | 3247.908
3261.80 | A | 4
5 | 2.51
2.48 | 6.31 | 2-3
1-1 | o ³ P_y ³ P°
(109) | 3304.474
3277.71 | A | 40
30 | 2.53
2.55 | 6.27
6.31 | 1-2
3-2 | b ³ D | | 3631.482
3607.30 | Ā | 10 | 2.37 | 5.76
5.79 | 0-1 | _р 3р_ <u>z</u> 5ре | 3288.985
3221.380 | A | 7 | 2.51
2.48 | 6.26 | 3-1
1-3 | | 3318.907
3316.873
3277.083 | A
A | 20
20
10 | 2.55
2.53
2.55 | 6.26
6.25
6.31 | 3-1
1-0
3-3 | (1 | | 3623.03 | Â | 1 | 2.37 | 5.77 | 0-1 | (77) | 3119.32 | A | 4 | 2.51 | • | 2–3 | 0 ³ P_x ³ P°
(110)
0 ³ P_z ³ B° | 3308.480
3266.91 | Ā | 20 | 2.53
2.53 | 6.26 | 1-1 | | | 3574.340
*3577.857
3573.557 | A
A
A | 60
20
50 | 2.36
2.37
2.36 | 5.81
5.82
5.82 | 3-3
1-1
2-1 | b ³ P_y ⁵ D°
(78) | 3115.16
3083.208 | A
A | 2
40 | 2.48
2.51 | 6.44 | 1-1
2-3 | 03P_x3B°
(111)
03P_x3D° | 3120.726
3146.226 | Ā | 50
40 1 | 2.55
2.55 | 6.50
6.47 | 3-4
2-3 | b ³ D. | | 3588.13
3578.636 | A
A | 15
15 | 2.37
2.37 | 5.81
5.81 | 1-0
1-2 | | 3065.61
3081.01 | Ā | 50
20 | 2.48
2.49 | 6.51 | 1-2
0-1 | (112) | 3151.319
3146.818 | ·A | 100
10 | 2.53
2.55 | 6.45
6.47 | 1-2
3-3 | 121 | | 3577.220
3436.393 | A
A | 10
2 | 2.37 | 5.82 | 0-1 | b ³ P-z ¹ S° | 3089.633
3074.66 | A
A | 13 | 2.51
2.48 | 6.51
6.49 | 2-2
1-1 | | *3160.781
3110.07 | A | 15
31 | 2.55
2.55 | 6.45
6.51 | 2-2
3-3 | ъ ³ Д | | 3394.92 | A | 1 | 2.36 | 6.00 | 2-3 | b ³ P-y ³ G° | 3079.75
3062.178 | A | 1
3 | 2.51
2.49 | 6.52
6.52 | 3-1
0-1 | o ³ P_z ¹ Pe
(113) | 3116.02
3116.11 | Ā | 3 | 2.55
2.53 | 6.51
6.49 | 2-2
1-1 | (1) | | 3323.731 | A | 3 | 2.36 | 6.08 | 2-3 | (80)
b ³ P_y ³ F°
_(81) | 2981.924
2992.378 | A
A | 15
2 | 2.51
2.51 | 6.65
6.64 | 3-2
2-1 | о ^З Р_w ^З D° †
(114) | 3106.829
3105.973 | A | . 3
5 | 2.53
2.55 | 6.51
6.52 | 1-2
2-1 | ь ³ д. | | 3249.464 | Α. | 4 | 2.36 | 6.16 | 2-2 | p ₃ p-2 ₁ p ₀
(83)
p ₃ p-2 ₁ p ₀ | | | | | | | b ³ H-z ³ G° | 3001.754 | À | 30 | 2.55 | 6.66 | 3-3 | b3D. | | 3128.686
3162.714
3192.699 | A
A
A | 20
30
15 | 2.36
2.37
2.37 | 6.31
6.27
6.23 | 2-3
1-2
0-1 | (83) | 5193.43
5227.70
5263.99 | P
A
A | 20
15 | 2.51
2.50
2.50 | 4.89
4.86
4.84 | 6-5
5-4
4-3 | (115) | 3006.508
3008.508
3007.035 | A
A | 20
15
1 | 2.55
2.53
2.55 | 6.65
6.64
6.65 | 2-2
1-1
3-2 | (14 | | 3159.365
3193.200
3189.76 | A
A
A | 20
20
3 | 2.36
2.37
2.36 | 6.27
6.23
6.23 | 3-3
1-1
2-1 | | 5171.13
5217.36 | P | | 2.50
2.50 | 4.89 | 5-5
4-4 | | 2997.945 | A | - 6 | 2.53 | 6.65 | 13
- | | | 3125.01 | A | 20 | 2.36 | 6.31 | 2-2 | b ³ P-y ³ P° | 3669.410
3700.337 | A | 300
200 | 2.51
2.50 | 5.88
5.84 | 6-6
5-5 | b ³ H-z ³ H°
(116) | 5202.94 | A | 2 | .2.59 | 4.96 | 2-3 | a ¹ D. | | 3166.39
3163.024
3174.077 | A
A
A | 8
30
30 | 2.37
2.36
2.37 | 6.26 | 1-1
2-1
1-0 | (84) | 3728.335
3711.751
3733.607 | A
A
A | 200
10 | 2.50
2.51
2.50 | | 4-4
6-5
5-4 | | 3881.04
3622.289 | A | 2
10 | 2.59
2.59 | 5.77
6.00 | 2-3
2-3 | a ² D-
(14
a ¹ D- | | 3128.288
3165.89 | A | 10
30 | 2.37 | 6.31 | 1-3
0-1 | | 3658.266
*3695.158 | Ā | 10 | 2.50
2.50 | 5.88
5.84 | 5-4
5-6
4-5 | | 3541.341 | A | 50 | 2.59 | 6.08 | 2-3 | a ¹ D | | 3024.981
3028.042 | A
A | 50
50 | 2.36
2.37 | | 2-1
1-1 | b ³ P-z ³ s°
(85) | 3509.024
3513.877 | A
A | 40
15 | 2.51
2.50 | 6.03 | 6-5
5-4 | b ³ Hy ³ G°
(117) | 3542.480
3497.031 | A | 4
200 | 2.59 | 6.07 | 2-3
2-3 | (14
a ¹ D- | | 3027.600
3005.813 | A
A | 15
30 | | 6.44 | 0-1
2-3 | b ³ P-x ³ F° | 3527.867
3498.83
3509.20 | A
P
P | 10 | 2.50
2.50
2.50 | 6.00
6.03
6.02 | 4-3
5-5
4-4 | | 3457.153 | A | 300 | 2.59 | 6.16 | 2~2 | {1€
a:D-
(14 | | 3022.146
3019.09 | Ā | 4 3 | 2.37
2.36 | 6.45 | 1-2
2-2 | (88) | 3448.69 | A | 1 | 2.50 | 6.08 | 5-4 | b ³ H-y ³ Fe | 3359.50 | A | 2 | 2.59 | 6.26 | 2-1 | a ¹ D-
{14 | | 2972.263
2981.200 | A
A | 80
70 | 2.36
2.37 | | 2-3
1-3 | b ³ P-x ³ D°
(87) | 3451.046
3420.15 | Á | 12 | 2.50
2.51 | 6.08 | 4-3
6-5 | (118)
b ³ H-z ¹ H° | 3320.780
3355.366 | A | 20 | 2.59
2.59 | 6.31 | 2-3
2-3 | a ¹ D- | | 2989.306
2978. 2 26 | A | 15
20 | 2.36 | 6.51 | 0-1
2-3 | (01) | 3410.46
3406.06 | Ã | î
7 | 2.50
2.50 | 6.12 | 5-5
4-5 | (119) | 3182.674
3197.574 | A | a0
7 | 2.59
2.59 | 6.47
6.45 | 2-3
2-2 | a ¹ D.
(1! | | 2989.74 | A | 10 | 2.37 | 6.49 | 1-1 | | 3408.955 | A | 15 | 2.50 | 6.13 | 4–3 | b ³ H-z ¹ F° | 3161.313 | A | 30 | 2.59 | 6.49 | 2-1 | a ¹ D-
(18 | | 3370.40 | A | 3 | 2,37 | | 6-5 | (88) | 3391.01 | A . | 1 | 2.50 | 6.14 | 4-4 | (120)
b3H_z1Ge
(121) | 3141.486 | A | 40 | 2.59 | 6.52 | 2-1 | a ¹ D.
(1: | | 3288.324 | A | .30 | 2.37 | | 6-5
 | (89) | 3134.928
3136.503
3139.733 | A
A
A | 200
160
160 | 2.51
2.50
2.50 | 6.45
6.44
6.43 | 6-6
5-5
4-4 | (121)
b ³ H-y ³ H ^o
(122) | 3039.767
2963.249 | A | 2
9 | 2.59
2.59 | 6.65 | 2-2
2-1 | alp.
(1!
alp. | | 6027.23
5862.80 | A | 8
15+p? | 2.46
2.46 | | 0-1 | a ¹ 8-z ⁵ F°
(90)
a ¹ 8-z ³ D° | 3144.700
3143.477 | A | 20
15 | 2.51
2.50 | 6.44 | 6-5
5-4 | | | | | | | | a ¹ D-
(1f
a ¹ P- | | 3731.983 | A | 10+p1
20 | 2.46
E.40 | | 0-1
0-1 | 4 ¹ 8-1 ³ P° | 3126.79
3132.793 | A | 3 | 2.50
2.50 | 6.44 | 56
45 | | 4038.545
*3847.383\$ | A | 2
100 | 2.75
2.75 | 5.81 | 1-0 | 11.
21.P- | | 3674.691 | A | 30 | 2.46 | 5.82 | 0-1 | (92)
a ¹ g_y ⁵ D°
(93) | 3033-445
3048-214
3063-247 | A | 200
200 | 2.51
2.50
2.50 | 6.58
6.55
6.53 | 6-7
5-6
4-5 | b ³ H-z ³ I°
(123) | 3712.533 | | 8 | 2.75 | 6.07 | 1-2 | 41!
aip.
(1! | | 3270.115 | A | 10 | 2.46 | | 0-1 | a ¹ S_y ³ D°
(94) | 3055.942
3066.80 | A
A
A | 200
7
4 | 2.50
2.51
2.50 | 6.55 | 6-6
5-5 | | 3618.924 | A | 200 | 2.75 | 6.16 | 1-3 | a ¹ P-
(15 | | 3057.08
3038.520 | A | 30
 2.46
2.46 | | 0-1
0-1 | (95)
a ¹ S-z ¹ P° | 6226.29 | A | 10n | 2.55 | |
 | b ³ B-2 ⁵ F° | 3507.534
3465.25 | A | 20 | 2.75
2.75 | 6.37 | 1-2 | aip. | | | | ******* | | | | (96) | 6028.98 | A | 20 | 2.55 | 4.59 | 3-3 | (134)
b ³ D- x ³ D° | 3335.482 | | 10 | 2.75 | 6.45 | 1-8 | a1P_ | | 6031.07
6028.26
6120.98 | A
A
A | 40
40
5 | 2.51
2.48
2.49 | 4.53 | 3-3
1-2
0-1 | (97) | 6086.93
6083.82 | A | 15n
10n | 2.55
2.53 | 4.56 | 2-2
1-1 | (125) | 3285.672 | ¥ | 3 | 2.75 | | 1-3
1-1 | (16
n ¹ P-
(16 | | 6095.93 | Ā | 2 | 2 10 | 4 50 | 1 1 | | 6026.81 | A | 6 | 2.55 | 4.59 | 8-3 | | 3296.052 | ٨ | 8 | 2.75 | 0.48 | 1-1 | 126 | | | REVISED MULTIPLET TABLE 3 |--------------------|---------------------------|--------------|----------------------|----------------------|-------------------|--|-----------------------------------|-------------|-------------------|----------------------|----------------------|-------------------|--|----------------------------------|-------------|------------------------|----------------------|----------------------|-------------------|---| | abora | | y
Int | E P | High | J | Multiplet
(No) | Labor
I A | ator
Ref | y
Int | Low | e
High | J | Multiplet (No) | Lebon
I A | ator
Ref | | Low
E I | High | J | Multiple
(No) | | cont | | | | _ | | | V II cont | inue | ď | | | | | V II cont | inue | đ | | | | | | 0 | A | 10 | 2.75 | 6.52 | 1-1 | $a_{(163)}^{1P-z^{1}P^{o}}$ | 6080.11 | A | 6 | 3.78 | | 4-4 | d ³ F-z ³ H°
(206) | 3035.14 | A. | 3N | | 8.96 | | z ³ G°-e ⁵ H
(245)
z ³ F°-e ⁵ F | | 0 | A . | 10 | 2.75 | 6.75 | 1-1 | a ¹ P-x ³ P°
(164) | *5290.74 \$ | A | 6
2 | 3.79
3.78 | 6.12 | 2-3
3-2 | d3F_z1F°
(207) | 3038.00 | A | 2N? | 4.94 | 9.00 | 2-3
 | (246) | | 2
7 | A
P | 5 | 2.89
2.89 | 6.03 | 55
54 | a ¹ H-y ³ G°
(165) | 5191.59
4883.415 | A
A | 100 | 3.78 | 6.31 | 4-3 | d3F_z1D°
(208)
d3F_y3D° | 5530.10
5562.02 | A
A | 4
4np î | 5.44
5.45 | 7.68
7.67 | 3-4
2-3 | c ³ D-w ³ F°
(247) | | 8 | A | 200 | 2.89 | 6.12 | 55 | a ¹ H-z ¹ H° (166) | 4965.40
5048.91 | A
A | 40
15
2 | 3.78
3.79
3.79 | 6.27
6.23
6.27 | 3-2
2-1
2-2 | (209) | m4875.49
4842.50 | P
A | y
2n | 5.44
5.45 | 7.98
8.00 | 3-3
2-2 | c ³ D-v ³ D ^c
(248) | | 8 8 | A | 10 | 2.89 | 6.14 | 5-4 | a ¹ H-z ¹ G°
(167) | 4973.16
4535.215 | A . | 3n | 3.78 | 6.50 | 4-4 | d3F~x3Fe | 4813.00 | Ā | 17 | 5.45 | 8.02 | 2-1 | | | 31
2 | A
A | 2 | 2.89
2.89 | 6.45
6.43 | 5-6
5-4 | a ¹ H-y ³ H°
(168) | 4596.37
4634.21 | A
A | 5n
3n | 3.78
3.79
3.78 | 6.47
6.45
6.47 | 3-3
2-2
4-3 | (210) | 3148.738
3163.76
3172.230 | A
A
A | 15
10
7 | 5.44
5.45
5.46 | 9.36
9.35
9.35 | 3-3
2-2
1-1 | c ³ D-t ³ D°
(249) | | 11 | A | 2 | 2.89 | 6.50 | 5-4 | a ¹ H-x ³ F° (169) | 4590.505
4627. 4 8 | A | ?n
1 | 3.78 | 6.45 | 3-2 | | 3154.80 | Ā | í | 5.45 | 9.36 | 2-3 | | | 166 | A | 3 | 2.89 | 6.55 | 56 | a1H-z3I° | 4517.35 | A . | 3n | 3.79 | 6.52 | 3-1 | d ³ F-z ¹ P°
(211)
d ³ F-x ³ D° | 3071.77 | A | 2n | 5.44 | 9.46 | 3-4
- | c ³ D-u ³ F°
(250) | | 75 | A | 200
20 | 2.89 | 6.68 | 5-4
5-5 | a1H-y1G°
(171)
a1W-y3G° | 4512.72
4532.188
4558.46 | A
A | 60n
40n
20 | 3.78
3.78
3.79 | 6.51
6.51
6.49 | 4-3
3-2
3-1 | (313) | 5016.60 | A | 4 | 5.51 | 7.97 | 2-2 | c ¹ D-x ¹ D° (251) | | ,83
187 | A
A | 100 | 2.89 | 6.84 | 5-6 | a ¹ H-x ³ G°
(173)
a ¹ H-z ¹ I° | 4518.38
4538.64 | A
A | 3n
3 | 3.78
3.79 | 6.51
6.51 | 3–3
2–2 | | 4618.52 | A | 3 | 5.51 | 8.19 | 2-3 | c ¹ D-x ¹ F°
(252) | | i60 | A | 100 | 2.89 | 6.85 | 55 | (173)
a ¹ H-y ¹ H°
(174) | 4524.81
4304.15 | P
A | a | 3.79 | 6.51 | 2⊷3
3–2 | d ³ Fee ³ D° | Strongest | Une: | lasaifi c d | lines | of V I | ıτ | | |)72 | A | | 3.11 | 6.08 | 2-3 | b1D-y3Fe | 4080.44 | A | 2 | 3.78 | 6.81 | 3-3 | d3F-w3D°
(213)
d3F-y1F° | 5791.47 | A | 15 | | | | | | 355 | A . | .2 | 3.11 | 6.07 | 2-2 | (175)
b ¹ D-z ¹ F° | 4085.67 | A. | 10n
100 | 3.79
3.78 | 6.81 | 2-3
4-5 | (214)
d ³ F-x ³ G° | 3611.58
3301.66
3206.16 | A
A
A | 10n
10
15N1 | | | | | | 369
30 § | A
A | 8
50 | 3.11 | 6.18 | 2-3
2-2 | (176)
bip_zip*
(177) | 4065.070
4053.59
-4051.34 9 | A
A
A | 601 | 3.78 | 6.83 | 3-4
2-3 | (215) | 3201.58
3195.50 | Ā | 15N1
15N1 | | | | | | 58 | A | 3 | 3.11 | 6.27 | 2-2 | b ¹ D-y ³ D ⁶
(178) | 4049.03 | A | 3 | 3.78 | 6.83 | 4-4
4-5 | ,3p ,1ve | | | | | | | | | 158 | A | 8 | 3.11 | 6.45 | 2-2 | b ¹ D-x ³ F°
(179) | 4017.29
3167.420 | A
A | 15n
40 | 3.78
3.78 | 6.85
7.68 | 4-4 | d ³ F-y ¹ H°
(216)
d ³ F-w ³ F° | Cr I I | P 6. | 74 Ana: | LA I | iet B | Marc | h 1941 | | 13
348 | A | 1
7 | 3.11 | 6.51
6.49 | 2-2
2-1 | b ¹ D-x ³ D°
(180) | 3174.531
3180.59 | A | 60
ao | 3.78
3.79 | 7.67
7.66
7.67 | 3-3
2-2 | (217) | 4254.346/
4274.803 | / c | 1000R
800R | 0.00 | 2.90 | 3-4
3-3 | 27S-27po | | 196 | A | 20 | 3.11 | 6.52 | 2-1 | b ¹ D-z ¹ P°
(181) | 3171.739
3179.416
3170.208 | A
A | 9
8
8 | 3.78
3.78
3.78 | 7.66
7.68 | 4-3
3-2
3-4 | | 4289.721 | č | 700R | 0.00 | 2.88 | 3-2 | | | 961 | A | 6 | 3.11 | 6.66 | 2-3 | b ¹ D-w ³ D°
(182) | 3177.696 | A | 6 | 3.79 | 7.67 | 2-3 | d ³ F-w ³ G°↑ | 3732.032
3730.807 | c | 50
40 | 0.00 | 3.31
3.31 | 3–3
3–2 | a ⁷ S-z ⁵ p°
(2) | | 790
345 | A | 3
200 | 3.11 | 6.75
6.81 | 2-1
2-3 | b ¹ D_x ³ P°
(183)
b ¹ D_y ¹ F°
(184) | 2973.975
2985.184
2994.540 | A
A | 40
60n
60 | 3.78
3.78
3.79 | 7.93
7.92
7.91 | 4-5
3-4
2-3 | (318) | 3615.645
3635.281 | C | 30
10 | 0.00 | 3.41 | 3-4
3-3 | a ⁷ S-z ⁷ D° | | 924 | A | 40 | 3.11 | 6.93 | 2-1 | (181)
bin_yipo
(185) | | | | | | | .3n -3no | 3578.687 | ç | 1000R | 0.00 | 3.45 | 3-4 | a7s-y7pe | | 375 | A | 20 | 3.11 | 7.08 | 2-2 | b ¹ D-y ¹ D°
(186) | 6801.16
5249.22 | A | 5
17 | 3.96
3.96 | 5.77
6.31 | 23 | d ³ p_z ³ p°
(219)
d ³ p_v ³ p° | 3593.488
3605.333 | C | 900R
750R | 0.00 | 3.43
3.48 | 3-3
3-2 | (4) | | 52 | A | 4n | 3.31 | 6.13 | -
3-3 | alr-zlro | 4963.75 | Ā | 2 | 3.96 | 6.44 | 3-1 | d ³ P_y ³ D°
(220)
d ³ P_z ³ S° | 3351.966
3379.171 | C | 12
15 | 0.00 | 3.68
3.65 | 3-3
3-2 | a ⁷ 5-y ⁵ pe
(5) | | 87 | P | | 3.31 | 6.14 | 3-4 | (187)
a ¹ F_z ¹ G°
(188) | 4912.38 | A | 8 | 3.96 | 6.47 | 2–3 | (221)
d ³ P_x ³ F°
(222) | 6330.101 | G | 40 | 0.94 | 2.89 | -
2-3 | a ⁵ S-2 ⁷ p° | | 37 | A | 1 | 3.31 | 6.43 | 3⊶4 | a ¹ F_y ³ H°
(189) | 4823.396
4839.08 | A
A | 6
3 | 3.96
3.96 | 6.51
6.51 | 2-3
2-2 | (223) | 6362.874 | č | 30 | 0.94 | 2.88 | 2-2 | (6)
e ⁵ S-z ⁵ po | | 70
383 | A | 1
200 | 3.31 | 6.68 | 3-3
3-4 | alr_w3p°
(190) | 4408.93
4440.41 | A
A | 40N?
5n | 3.96
3.99 | 6.75
6.77 | 2-2
1-0 | d ³ P-x ³ P°
(224) | 5208.436
5206.039
5204.518 | 0 | 500R
300R
200R | 0.94
0.94
0.94 | 3.31
3.31
3.31 | 2-3
2-2
2-1 | (7) | | 285 | A | 20 | 3.31 | 6.81 | 3-3 | a ¹ F_y ¹ G°
(191)
a ¹ F_y ¹ F°
(192) | 4483.50 | Ã | 2n | 4.00 | 6.75 | 0-1 | | 5021.903 | C | 25 | 0.94 | 3.39 | 2-3 | a5s-z7De | | 13
57 | A
A | 3
7 | 3.31
3.31 | 6.83
6.83 | 3-4
3-3 | 192)
alr_x3ge
(193) | 4232.065
4278.893
4301.130 | A
A
A | 80n
60n
40n | 3.96
3.99
4.00 | 6.87
6.87
6.87 | 2-1
1-1
0-1 | d ³ P-y ³ S°
(225) | 5051.900
5072.920 | C | 40
60 | 0.94 | 3.38
3.37 | 2-2
2-1 | (8) | | 448 | A | 15 | 3.31 | 7.08 | 3-2 | a ¹ p-y ¹ D° | *4142.90 \$ | | 6 | 3.96 | 6.93 | 3-1 | d ³ P-y ¹ P°
(226) | 4942.495
4964.928 | C | 200
100 | 0.94
0.94 | 3.43
3.42 | 2-3
2-2 | a ⁵ S-y ⁷ P°
(9) | | 65 | A | 10 | 3.74 | 6.08 |
4-4 | (194)
c ³ F-y ³ F° | *3991.965 | A | 2 | 3.99 | 7.08 | 1-2 | d ³ P-y ¹ D°
(227) | 4496.862
4545.956 | C | 100
50 | 0.94
0.94 | 3.68
3.65 | 2-3
2-3 | a ⁵ S-y ⁵ P° | | 31
00 | Ā | 5
31 | 3.74
3.74 | 6.08 | 3-3
3-2 | (195) | 3070.12
3075.58
3075.043 | A
A | 25 1
5 | 3.96
3.99 | 7.98
8.00
8.02 | 2-3
1-2
0-1 | 435° 43 ₽°
(338) | 4580.056 | Ċ | 40 | 0.94 | 3.63 | 2-1 | | | 87 | A | 2 | 3.74 | 6.14 | 4-4 | c ³ F_z ¹ G° | 3075.043
3051.308 | A | 3
3 | 4.00
3.96 | | 0-1
2-3 | | 3833.49
3852.58
3870.267 | B
C | 4
15
25n | 0.94
0.94
0.94 | 4.16
4.14
4.13 | 2-3
2-2
2-1 | a ⁵ S-E ⁵ D° | | 952
06. | A | 50
50 | 3.74
3.74 | 6.31
6.27 | 4-3
3-2 | (196)
o ³ F-y ³ D°
(197) | 6672.84 | A | 3n | 4.23 | 6.08 |
3-3 | blr_y3re | 3758.72 | В | 4 | 0.94 | 4.22 | 2-2 | a ⁵ 8-z ³ P° | | 58
14
805 | Á | 40
6
4 | 3.74
3.74
3.74 | 6.23
6.31
6.27 | 2-1
3-3
2-2 | | 6517.27 | A | 15n | 4.23 | 6.13 | 3-3 | b ¹ F_y ³ F°
(229)
b ¹ F-z ¹ F°
(230) | 3192.12 | B
B | 5
2 | 0.94
0.94 | 4.80
4.78 | 2-3
2-3 | (12)
a ⁵ 8-z ³ D°
(13) | | 24 | A | 1 | 3.74 | 6.50 | 4-4 | o ³ F-x ³ F° | 6380.11 | A | 40n | 4.23 | 6.16 | 3-2 | b-F-z-D-
(231) | 3210.62
2988.649 | C | 25r | 0.94 | 5.07 | 2-3 | a58-x5p0 | | 08
765 | A | 59
4 | 3.74
3.74 | 6.47 | 4-3
3-2 | (198) | 5019.855 | . A | 100n | 4.23 | | 3-4 | (232) | 2994.069
2998.787 | C | 18
20 |
0.94
0.94 | | 2-2
2-1 | (14) | | 35
32 | A
A | 30n
40n | 3.74
3.74 | 6.51
6.51 | 4-3
3-2 | c ³ F-x ³ D°
(199) | 4325.22
3343.312 | A | 9n
2 | 4.23
4.23 | | 3-2
3-4 | b ¹ F-y ¹ D°
(233)
b ¹ F-w ³ G° | 2984.82
2995.10 | B | 8
25 | 0.94
0.94 | 5.07
5.06 | 2-3
2-2 | a ⁵ S-y ⁵ F° | | 70
53 | Ā | 30n
3n | 3.74
3.74 | 6.49
6.51 | 2-1
2-3 | , | 3351.53 | A. | 1 | 4.23 | 7.91 | 33 | (234) | | | ***** | | | | a ⁵ D-z ⁷ P° | | 55 §
894 | A
A | 40n
30n | 3.74
3.74 | 6.66
6.65 | 4-3
3-2 | o ³ F_w ³ D°
(200) | 3293.146
3167.49 | A | 50
30 | 4.23
4.23 | | 3-2
3-4 | b ¹ F-x ¹ D°
(235)
b ¹ F-x ¹ G°
(236) | 6580.96
6537.921
6501.212 | B
D
D | 8
20
15 | 1.03
1.00
0.98 | 2.89
2.88 | 4-4
3-3
2-2 | (16) | | 03 | A | 15n | 3.74 | 6.64 | 2-1 | | 3116.78 | A | 40 | 4.23 | | 3-3 | blF-xlFo | 6630.015
6572.900 | C | 25
15 | 1.03 | 2.89
2.88 | 4-3
3-2 | | | 30
05 | A | 1
7n | 3.74
3.74 | 6.81
6.81 | 4-3
2-3 | c ³ F-y ¹ F°
(201) | 5643.01 | A | 60n | 4.50 | 6.68 | -
4-4 | (237)
61 ₆₋₁ 160 | 5798.46
5790.59 | B
P | 25 | 1.03 | 3.15
3.13 | 4-5
3-4 | a ⁵ D-z ⁷ F° (17) | | 82
195 | A
A
A | 30n
30n | 3.74
3.74 | 6.83 | 4-5
3-4 | 03F~x3G°
(202) | 5341.22 | A | 2 | 4.50 | 6.81 | 4-3 | c ¹ G_y ¹ G°
(238)
c ¹ G_y ¹ F°
(239) | *5785.86 | F | (5d?) | .0.98 | 3.11 | 2-3
1-2 | • • • • | | 783
17
965 | A
A | 30
2
2 | | 6.83
6.83
6.83 | 2-3
4-4
3-3 | | 5322.61 | A. | 5 | 4.50 | 6.82 | 4-5 | c ¹ G-x ³ G°
(240) | 5409.791
5345.807 | C | 500
500 | 1.03 | 3.31
3.31 | 4-3
3-2 | a ⁵ D-z ⁵ P° | | 15 | A | 5 | 3.74 | | 4-5 | e ³ F-y ¹ H° | 5241.19 | A | 100n | 4.50 | | 4-5 | c1G_y1H°
(241) | 5296.686
5348.319 | Ö. | 100
350 | 0.98 | 3.31
3.31 | 3-1
3-3
2-3 | | | 72 | A | 1 | 3.74 | 7.08 | 3-2 | 63k-A7De
(803) | 3608.32
3404.43 | A | 1
801 | 4.50 | 7.92
8.12 | 4-4 | 01G_w3G°
(242)
01G_x1G° | 5298.269
5264.152
5300.749 | C O | 100
200
75 | 0.98
0.96
0.98 | 3.31
3.31
3.31 | 2-2
1-1
2-3 | | | 05
07 | A | 20
2 | 3.74
3.74 | 7.68
7.67 | 4-4
3-3 | (204)
c3F_w3F°
(205) | 3345.899 | A | 70 | 4.50 | | 4-3 | o1G-x1G°
(243)
o1G-x1F° | 5265.722
5247.564 | goo | 100
150 | 0.96 | 3.31
3.31 | 1-8
0-1 | | | | | | | | - | - | | | | | | - | (244) | | | | | | | | | 38 | | REVISED MULTI | PLET TABLE | | | |---|---|--|--|--|---| | Laboratory
I A Ref Int | EP J Multiplet
Low High (No) | Laboratory E :
I A Ref Int Low | P J Multiplet
High (No) | Laboratory
I A Ref Int | EP J Milti
Low High (No | | Cr I continued | | Cr I continued | | Gr I continued | | | 5123.121 C 30
5112.490 C 25
5107.70 B 7
5168.63 B 8
5151.83 B 12
5138.71 B 10 | 1.03 3.44 4-5 a ⁵ p-z ⁷ p° î
1.00 3.41 3-4 (19)
0.98 3.39 2-3
1.03 3.41 4-6
1.00 3.39 3-3
0.98 3.38 2-2 | *9894.17 A 20 2.53
*9447.00 A 50 2.53
9571.76 A 25 2.53
9687.20 A 25 2.53
*9294.17 A 20 2.53
\$9444.35 A 5 2.53 | 3.86 5-5 a ⁵ G-2 ⁵ F°
3.84 4-4 cont
3.82 3-3
3.81 2-3
3.86 4-5
3.84 3-4 | 3777.32 B 5
3789.49 B 2
*3777.93 B 3
3796.99 B 5 | 2.53 5.80 6-5 a ⁵ g-z;
2.53 5.79 5-4 (41
2.53 5.80 5-5
(2.53 5.80 4-5
2.53 5.78 2-3 | | 5183.41 B 10
5093.41 B 7
5068.290 C 35
5048.752 C 25
5123.465 C 35
5091.890 C 30 | 1.00 3.38 3-2
1.03 3.45 4-4 a ⁵ p-y ⁷ P°
1.00 3.43 3-3 (20)
0.98 3.42 2-2
1.03 3.43 4-3
1.00 3.42 3-2 | 9568.58 A 4 2.53
4872.02 B 18 2.53
4885.776 C 75 2.53
4789.354 D 75 2.53
4838.376 C 10007 2.55 | 3.82 2-3
5.07 4-3 a ⁵ G-x ⁵ P° f
5.06 3-2 (30)
5.11 6-5 a ⁵ G-y ⁵ F°
5.09 5-4 (31) | *3768.08 B 18 3768.08 B 18 3768.08 B 7 *3768.08 B 18 3768.62 B 7 *3768.08 B 18 | 2.53 5.81 6-5 p5g-y
2.53 5.81 5-4 (42)
2.53 5.81 5-5
(2.53 5.81 5-5
2.53 5.81 4-4
2.53 5.81 4-5 | | 5036.87 P
5025.54 B 10
5019.20 B 20
4646.174 C 100
4652.158 C 100
4651.285 C 75
4600.752 C 75
4616.137 C 75
4626.188 C 65 | 1.00 3.45 3-4
0.98 3.43 2-3
0.96 3.42 1-2
1.03 3.68 4-3 a ⁵ p_y ⁵ p°
1.00 3.65 3-2 (21)
1.00 3.65 3-2
0.98 3.63 2-1
1.00 3.68 3-3
0.98 3.65 3-2 | 4888.530 C 40 2.53
4898.530 C 40 2.53
4903.239 C 70 2.53
4790.337 C 30 2.53
4829.376 C 10047 2.53
4861.305 C 35 2.53
4861.305 C 35 2.53
48790.337 C 30 2.53
4828.66 B 8 2.53
4860.37 B 7 2.53 | 5.07 4-3
5.06 3-3
5.15 5-1
5.11 5-5
5.09 4-4
5.07 3-3
5.08 3-2
5.11 4-5
5.09 3-4
5.07 3-3 | 3743.884 | 3.53 5.83 6-6 a ⁵ G-x ¹
2.53 5.83 5-5 (43
2.55 5.83 4-3
2.55 5.81 3-3
2.53 5.81 6-5
2.53 5.83 4-3
2.53 5.82 4-3
2.53 5.82 4-3
2.53 5.81 3-2 | | 4565.512 C 50
4591.394 C 60
4613.373 C 60
4351.770 C 100
4344.507 C 100 | 0.98 3.68 2-3
0.96 3.65 1-2
0.96 3.63 0-1
1.03 3.86 4-5 a ⁵ p-z ⁵ f°
1.00 3.84 3-4 (22) | 4571.676 C 40 2.53
4601.021 C 30 2.53
4621.893 C 45* 2.53
4637.182 C 40 2.53
4648.126 C 25 2.53 | 5.23 6-7 £ ⁵ G-2 ⁵ H°
5.23 5-6 (32)
5.20 4-5
5.19 3-4
5.19 3-3
5.23 6-6 | 3744.490 C 18
3743.578 C 45
3748.614 C 12
3757.174 C 18
3685.548 C 50w
*3686.803 C 45w | 3.53 5.83 5.6
2.53 5.83 4.5
3.53 5.83 3.4
3.53 5.88 3.4
2.53 5.88 6.5 $e^5 e^{-7}$
2.53 5.88 5.4 (44 | | 4339.450 C 75
4337.566 C 75
4339.718 C 60
4384.977 C 75
4371.279 C 75
4359.631 C 75
4351.051 C 75 | 0.98 3.83 2-3
0.96 3.81 1-2
0.96 3.80 0-1
1.03 3.84 4-4
1.00 3.82 3-3
0.98 3.81 2-2
0.96 3.80 1-1 | 4600.104 C 40 2.53
*4637.772 C 40 2.53
*4637.772 C 40 2.53
4648.868 C 35 2.53
4631.00 B 4 2.53
*4637.772 C 40 2.53
*4649.461 C 45 2.53 | 5.40 5-5
5.19 4-4
5.19 3-3
5.40 6-5
5.19 5-4
5.19 4-3 | 3687.352 C 50w
*3686.18 B 5w
*3686.803 C 45w
*3686.18 B 5w
3679.070 C 8 | 2.53 5.88 4-3
2.53 5.88 5-5
2.53 5.88 4-4
3.53 5.88 4-5
2.53 5.89 6-7 a ⁵ G-z | | 4412.250 C 40
4391.753 C 40
4373.254 C 35
3919.159 C 100
3908.755 C 100 | 1.03 3.83 4-3
1.00 3.81 3-3
0.98 3.80 2-1
1.03 4.17 4-4 a ⁵ D-z ⁵ D°
1.00 4.16 3-3 (23) | 4526.466 C 75 2.53
4530.755 D 100° 2.53
°4535.731 C 60 2.53
4540.502 C 50 2.53
4544.619 C 50 2.53 | 5.26 6-6 £ ⁵ G-2 ⁵ G°
5.26 5-5 (33)
5.25 4-4
5.25 3-3
5.25 2-2 | 3688.11 B 7
°3694.12 B 4
3687.545 C 80
°3694.12 B 4
3693.56 B 2 | 2.53 5.87 4.5
2.53 5.87 4.5
2.53 5.88 6.6
2.53 5.87 6.5
2.53 5.87 6.5
2.53 5.91 5.4 a ⁵ g-y | | 3903.915 C 50
3903.164 C 25
3941.490 C 60
3928.636 C 60
3921.022 C 50
3916.243 C 25
3886.789 C 50
3885.292 C 60 | 0.98 4.14 2-2
0.96 4.13 1-1
1.03 4.16 4-3
1.00 4.14 3-3
0.98 4.13 3-1
0.96 4.13 1-0
1.00 4.17 3-4
0.98 4.16 2-3
0.96 4.14 1-2 | 4529.851 C 25 2.53
4535.721 C 60 2.53
4541.071 C 30 2.53
4545.335 C 25 2.53
4537.339 C 40 2.53
4530.688 D 100° 2.53
4535.146 C 35 2.53
4539.788 C 30 2.53 | 5.25 4-3
5.25 3-2
5.26 5-6
5.26 4-5
5.25 3-4
5.25 2-3 | *3656.361 C 50
3663.206 C 40
3666.642 C 25
3668.039 C 15
*3656.261 C 50
3662.840 C 15
3666.19 B 8
3655.92 P 3662.39 B 2 | 2.53 5.91 5-4 6-7 (46) 2.53 5.90 4-3 2.53 5.90 3-2 2.53 5.90 3-2 2.53 5.90 8-1 2.53 5.90 8-1 2.53 5.90 8-2 2.53 5.90 8-2 2.53 5.90 8-2 2.53 5.90 8-2 2.53 5.90 8-2 2.53 5.90 8-2 | | 3894.035 C 40 3831.032 C 12 3849.534 C 40 3852.218 C 30 3806.55 B 5 3832.32 B 5 3789.723 C 15 3823.582 C 12 | 0.96 4.13 0-1
1.00 4.23 3-2 e ⁵ D-z ³ P°
0.98 4.18 2-1 (34)
0.96 4.23 2-2
0.96 4.18 1-1
0.96 4.23 1-2
0.96 4.23 1-2
0.96 4.24 0-1 | m4466.13 P Cr 2.53 *4518.63 B 6 2.53 4561.30 B 3 2.53 4126.531 C 20 2.53 *4153.816 C 25 2.53 *4163.635 D 20 2.53 4191.271 C 25 2.53 4203.590 C 18 2.53 | 5.26 4-3 (34)
5.24 3-2
5.52 6-6 e ⁵ G-y ⁵ G°
5.50 5-5 (35)
5.50 4-4
5.48 3-3 | 3639.802 C 100
*3836.590 C 50
3641.830 C 50
3648.997 C 50
3653.912 C 45
*3840.39 B 20
*3836.590 C 50
3641.470 C 15 | 3.53 5.92 6.5 a ⁵ Gu ¹ 2.53 5.93 5.4 (47) 3.53 5.92 4.3 3.53 5.92 3.2 3.53 5.92 3.2 3.53 5.92 5.5 3.53 5.93 4.4 3.53 5.93 3.3 | | 3823.522 C 12
3266.634 C 7
3263.25 P
3259.60 B 1
3244.115 C 7
3245.485 C 10
3247.274 C 4
3226.55 B 4 | 0.96 4.18 0-1 1.03 4.80 4-3 a ⁵ D-z ³ D° 1.00 4.78 3-3 (35) 0.98 4.76 3-1 0.98 4.78 2-2 0.96 4.76 1-1 0.98 4.80 2-3 | 4803.590 C 18 2.53
4163.697 C 9 2.53
4163.625 D 20 2.53
4291.750 C 10 2.53
4204.19 B 8 2.53
4127.308 C 7 2.53
4163.16 P 2.53
4190.66 B 4 2.53 | 5.50 6-5
5.50 5-4
5.48 4-3
5.47 3-2
5.52 5-6
5.50 4-5
5.50 3-4 | 3648.534 C 15
*3640.39 B 20
3636.21 B 2
3641.01 B 3*g?
3619.460 C 10
3646.161 C
12
*3665.980 C 12 | 2.53 5.92 2-2
2.53 5.92 4-5
2.53 5.93 3-4 | | 3833.234 C 7
3240.951 C 6
3053.880 C 50r
3039.780 C 7
3029.164 C 18
3034.190 C 25
3024.350 C 40r | 0.96 4.78 1-2
0.96 4.76 0-1
1.03 5.07 4-3 e ⁵ p-x ⁵ p°
1.00 5.06 3-3 (36)
0.98 5.06 2-1
1.00 5.07 3-3
0.98 5.06 2-2 | 4033.265 C 6 2.53
*4037.294 C 10 2.53
4042.246 C 8 2.53
4046.760 C 6 2.53
4050.02 B 4 2.53
*4033.95 B 3 2.53
*4037.294 C 10 2.53 | 5.59 6-5 a ⁵ G-x ⁵ F°
5.59 5-4 (36)
5.59 4-3
5.58 3-2
5.58 2-1
5.59 5-5 | 3679.819 C 10
3688.457 C 10
3645.59 B 5
*3665.980 C 12
*3680.19 B 7
3680.19 B 7
3689.302 C 8 | 2.53 5.88 3-4
2.53 5.88 2-3
2.53 5.92 6-6
2.53 5.90 5-5
2.53 5.89 4-4
2.53 5.89 5-4
2.53 5.88 4-3 | | 3018.496 C 10r
3018.821 C 10r
3013.713 C 20r
3013.030 C 15
3021.558 C 50r
3017.569 C 35r | 0.96 5.05 1-1
0.98 5.07 2-3
0.96 5.06 1-2
0.96 5.05 0-1
1.03 5.11 4-5 a ⁵ D-y ⁵ p°
1.00 5.09 3-4 (27) | 4041.79 B 6 2.53
4046.19 B 3 2.53
*4033.95 B 3 2.53
4036.80 B 1 2.53
4036.166 C 20 2.53 | 5.59 3-3
5.58 2-3
5.59 4-5
5.59 3-4
5.60 5-6 a ⁵ G-2 ³ H° | *3632.839 C 40
m3605.41 P Cr
3609.479 C 18
3610.058 C 10
*3632.839 C 40
3605.05 P | 2.53 5.93 5-4 a ⁵ G-u ¹
2.53 5.96 4-3 (49)
2.53 5.95 3-2
8.50 5.95 1-1
2.53 5.98 4-4
2.53 5.98 3-3 | | 3014.915 C 20r
3014.760 C 18r
3015.194 C 18r
3037.044 C 15
3030.845 C 252-
3025.40 P | 0.96 5.07 2-3
0.96 5.06 1-2
0.96 5.05 0-1
1.03 5.09 4-4
1.00 5.07 3-3
0.98 5.06 2-2 | 4025.012 C 15 2.53
*4026.166 C 18 2.53
*4025.44 B 5 (2.53
2.53 | 5.60 3-4
5.60 5-5
5.60 4-4
5.60 5-4
5.65 6-7 a ⁵ G-y ⁵ H° | 3609.04 B 4
3632.46 B 1
3604.54 B 3
3536.89 B 1
35565.55 B 2 | 2.53 5.95 2-2
2.53 5.93 3-4
2.53 5.96 2-3
2.53 6.99 6-51 a ⁵ 6-x ²
2.53 5.99 5-4 (50) | | 3020.673 C 8
3049.883 C 3
3040.846 C 10r
3031.353 C 7 | 0.96 5.05 1-1
1.03 5.07 4-3
1.00 5.06 3-2
0.98 5.05 2-1
1.03 5.16 4-4 a ⁵ p-y ⁵ p ^o
1.00 5.13 3-3 (28) | 3963.690 C 100 2.53
3969.748 C 70 2.53
3976.665 C 100 2.53
3991.123 C 80 2.53
3991.123 C 80 2.53
39976.665 C 10 2.53
39976.665 C 10 2.53
39984.338 C 25 2.53 | 5.64 4-5
5.63 3-4
5.63 6-3
5.64 6-6
5.64 5-5 | *3537.25 B 440
*3565.55 B 2
*3537.25 B 440
3565.15 B 3 | 2.53 5.99 4-4
2.53 6.02 4-5
3.53 5.99 3-4
2.53 6.13 6-5 a ⁵ G-F | | 2985.995 C 35r
2985.849 C 8r
2986.137 C 3
3005.057 C 25r
3000.890 C 25r
2996.580 C 15r
2991.886 C 15 | 1.00 5.13 3-3 (28)
0.98 5.11 2-2
0.96 5.10 1-1
1.03 5.13 4-3
1.00 5.11 3-2
0.98 5.10 2-1
0.96 5.09 1-0 | 3991.673 C 25 2.53
3976.01 B 5 2.53
3984.338 C 25 2.53
3992.11 B 4 2.53 | 5.63 3-3
5.64 6-5
5.63 5-4
5.63 4-3 | *3455.602 C 35
3465.57 B 5
*3445.618 C 40
*3455.602 C 35
3465.245 D 15
*3445.618 C 40
3455.281 C 10 | 2.53 6.09 4-3
2.53 6.12 5-5
2.53 6.11 4-4
2.53 6.09 3-3
2.53 6.12 4-5
2.53 6.11 3-4 | | 2967.642 C 15
2971.112 C 20
2975.483 C 20
2980.791 C 25 | 1.00 5.16 3-4
0.98 5.13 2-3
0.96 5.11 1-3
0.96 5.10 0-1 | 3817.844 C 10 2.53
*3816.173 C 20 2.53
3820.874 C 7 2.53
3822.10 B 5 2.53 | 5.73 4-4 (39)
5.77 6-5 2 ⁵ G-v ⁵ y ^c
5.77 5-4 (40)
5.76 4-3
5.76 3-2 | 3464.82 B 5
3433.598 C 50
*3436.187 C 50
*3441.439 C 35
3447.430 C 30 | 2.53 6.09 2-3
2.53 6.13 6-6 a ⁵ G-w ^f
2.53 6.13 5-5 (52)
2.53 6.12 4-4
2.53 6.11 3-3 | | 9290.44 A 50
*9447.00 A 50
9574.25 A 50
9670.48 A 50
9734.52 A 50 | 2.53 3.86 6-5 a ⁵ 0-x ⁵ p°
2.53 3.84 5-4 (29)
2.53 3.82 4-3
2.53 3.81 3-2
2.53 3.80 2-1 | *3818.481 | 5 5.77 5-5
5 5.77 4-4
5 5.76 2-2
5 5.77 4-5 | 3453.328 C 35
3435.679 C 10
*3441.439 C 35
3447.760 C 20
3453.743 C 12
3434.112 C 20
*2436.187 C 50 | 2.53 6.11 2-2
2.53 6.13 6-5
2.53 6.12 5-4
2.53 6.11 4-3
2.53 6.11 3-2
2.53 6.13 5-6
2.53 6.13 4-5 | | | | | | 3441.115 C 9
3447.015 C 13 | 2.53 6.12 3-4
2.53 6.11 2-3 | | | | | | | | REVI | S E | D MI | LTI | PLE | T T | ABLE | | | | | | | | |--|------------------|---------------------------------------|--|---|---|---|-------------------|----------------------------------|--|--|--|---|--|------------------|---|--|--|---|--| | Labora
A l | Ref | Int | E P
Lon High | J | Multiplet
(No) | Labor
I A
<u>Cr.I</u> cont | Ref | Int | Low E | P
High | J | Multiplet
(No) | Labor
I A
<u>Cr I</u> cont | Ref | Int | E l | High | J | Multir
(No) | | .819
.31
.69
.819 | O
B
C
C | 6d
8
4
6d | 2.53 6.13
2.53 6.13
2.53 6.13
2.53 6.13 | 5-4
4-3
3-8
4-4 | e ⁵ Q-x ³ F°
(53) | 3841.277
3850.042
3855.571
3848.983 | 0000 | 50
50
30
40 | 2.70
2.70
2.70
2.70 | 5.91
5.90
5.90
5.90 | 3-4
2-3
1-8
3-3 | a ⁵ P_√ ⁵ D°
(69) | 7462.37
7400.23
7355.94 | B
B | 100
150
300 | 2.90
2.89
3.88 | 4.55
4.55
4.66
5.22 | 4-3
3-3
9-3 | z ⁷ P°(
(93)
z ⁷ P°(| | .995
.284
.488
.59 | 000 | 7
10
3
3 | 2.53 6.13
2.53 6.13
2.53 6.13
2.53 6.13 | 3-3
2-2
3-4
2-3 | | 3854.220
3857.631
3853.176
3856.281
3855.286 | 00000 | 50
20
12
15
12 | 2.70
2.70
2.70
2.70
2.70 | 5.90
5.90
5.90
5.90
5.90 | 2-3
1-1
3-3
2-1
1-0 | | 5328.339
5297.360
5275.171
5329.12
5297.976 | OPOOO | 60w
75w
65w
40w | 2.90
2.89
2.88
2.90
2.89 | 5.22
5.22
5.22
5.22 | 4-5
3-4
2-3
4-4
3-3 | (94) | | 1.213
1.53
1.825§
1.65 | C
C
B
B | 20
157
8
107
10 | 2.53 6.20
2.53 6.20
2.53 6.19
2.53 6.18
2.53 6.17 | 6-5
5-4
4-3
3-2
2-1 | a ⁵ G-t ⁵ F°
(54) | 3819.564
3826.425
3836.070
3825.390 | 0000 | 40
40
12
20 | 2.70
2.70
2.70
2.70 | 5.93
5.92
5.92
5.92 | 3-4
2-3
1-2
3-3 | a ⁵ P-u ⁵ F° (70) | 5275.689
5329.719
5298.44
5276.03 | C
P
D | 50w
35w
75w | 2.88
2.90
2.89
2.88 | 5.22
5.22
5.22
5.22 | 2-2
4-3
3-2
2-1 | | | 3.70
3.53
3.564
4.24 | B
C
G
B | 8
15
3
3
3
8 | 3.53 6.20
3.53 6.20
3.53 6.19
3.53 6.18
2.53 6.20 | 5-5
4-4
3-3
3-8
4-5 | | 3834.735
3842.03
3833.71
3840.70 | C
B
B | 15
10
3
4 | 2.70
2.70
2.70
2.70 | 5.92
5.91
5.93
5.91 | 3-2
1-1
3-3
3-1 | | 4514.531
4491.678
4475.345
4261.354 | 000 | 40
30
50
25 | 2.90
2.89
2.88 | 5.63
5.63
5.63 | 4-3
3-3
2-3
4-5 | z ⁷ P°-1
(95)
z ⁷ P°-1 | | 3.70
1.652
7.22
1.69 | B
C
P | 5 | 2.53 6.56
2.53 6.56
2.53 6.55 | 6-5
5-4
4-3 | a ⁵ G-s ⁵ F°
(55)- | 3815.433
3786.22
3792.42 | C 23 B | 30
8
3 | 2.70
2.70
2.70 | 5.93
5.96
5.95 | 3-4
2-3
1-2 | a ⁵ P-u ¹ ⁵ Fe+
(71)
a ⁵ P-x ³ Pe+ | 4272.910
4284.725
4293.565
4299.718
4306.463 | 00000 | 12
12
20
20 | 2.89
2.88
2.90
2.89 | 5.78
5.76
5.78
5.76
5.76 | 3-4
2-3
4-4
3-3
2-2 | (96) | | 3.58 | В | 3 | 8.50 C.55
2.53 6.54 | 3-8
2-1 | | 3755.01
3756.83 | B | 3 | 2.70 | 5.98 | 2-2 | (72) | *4320.592 | C | 30 | (2.89
(2.89 | 5.76
5.74 | 4–3
3–2 | | | 3.28
5.24
5.54
2.26
3.83
3.03
3.72
3.26
7.42 | A A A A A A A A | 20
12
5
15
12
10
10 | 2.70 4.16
2.70 4.14
2.70 4.16
2.70 4.16
2.70 4.13
2.70 4.14
2.70 4.13
2.70 4.13 | 3-4
2-3
1-2
3-3
2-2
1-1
3-2
2-1
1-0 | e ⁵ P-z ⁵ D° (56) | 3726.85
*3574.039
3602.574
3604.95
3601.666
*3603.745
3574.935
*3603.745 | # 004000 0 | 40
12
40
12
10
13 | 2.70
2.70
2.70
3.70
2.70
2.70
2.70 | 6.01
6.15
6.12
6.13
6.13
6.15
6.15 | 1-1
3-3
2-2
1-1
3-2
2-1
2-3
1-2 | a ⁵ P-x ³ D°
(73)
e ⁵ P-t ⁵ P°
(74) | 4319.641
4129.21
4110.87
4097.65
4129.96
4111.36
4097.96
4130.47
4111.67 | С нентент | 40
(20n)
(8)
(5)
(6)
(7)
(3)
(7) | 2.88
2.90
2.89
2.90
2.89
2.89
2.89 | 5.73
5.89
5.89
5.89
5.89
5.89
5.89
5.89 | 2-1
4-5
3-4
2-3
4-4
3-3
2-2
4-3
3-2 | ± ⁷ P°-{
(97) | | 3.90
7.04
3.19 | A
A
A | 4
6
6 | 2.70 4.18
2.70 4.17
2.70 4.18 | 2-1
1-0
1-1 | a ⁵ P-z ³ Pe
(57) | 3572.748
3573.643
3574.805 | 000 | 12
18
12 | 2.70
2.70
2.70 | 6.15
6.15
6.15 | 3-2
2-2
1-2 | a ⁵ p_y ⁵ s° (75) | 4098.18
8224.09 | E | 8 | 2.88 | 4.47 | 2-1
-
5-4 | a ³ H-z | | 5.821
7.75 | C | 50
25 | 2.70 5.06
2.70 5.06 | 3-2
2-3 | a ⁵ P-y ⁵
F°
(58) | 3548.731
3481.303 | c
c | 8
80 | 2.70 | 6.24 | 3-4 | a ⁵ p_t ⁵ pe
(76)
a ⁵ p_u ⁵ pe | 8261.95
4727.153 | A
C | 8
40 | 2.95 | 4.45
5.60 | 4-3
6-6 | (98)
a ³ H-z ²
(99) | | 0.228
6.15
4.541
1.458
2.676 | C PCCC | 40
Cr
45
30
30 | 2.70 5.06
3.70 5.07
3.70 5.06
3.70 5.05
3.70 5.06 | 1-8
3-3
2-2
1-1
3-2 | a ⁵ P_X ⁵ P°
(59) | 3473.612
3471.49
3472.764
3470.401
3470.529
3470.72 | CBCCCB | 15
7
12
10
7
4 | 2.70
2.70
2.70
2.70
2.70
2.70 | 6.25
6.25
6.25
6.25
6.25 | 2-3
1-2
3-3
2-2
1-1
1-0 | (77) | 4693.949
4666.215
4725.95
4692.97
4695.153
4667.181 | CDBBCD | 45
25
7
10
30
30 | 2.97
2.95
2.99
2.97
2.97 | 5.60
5.60
5.60
5.60
5.60 | 5-5
4-4
6-5
5-4
5-6
4-5 | | | 8.971
8.07
7.10 | C
P
B | 65
Cr
20 | 2.70 5.05
2.70 5.07
2.70 5.06 | 2-1
2-3
1-2 | | 3307.755
3312.06
3315.19 | C
B
B | 8
3
11 | 3.70
2.70
3.70 | 6.43
6.42
6.42 | 3-4
2-3
1-21 | e ⁵ P-t ⁵ D°†
(78) | 4543.74
*4518.63 | C
B | 80
6 | 2.97
2.95 | 5.69
5.69 | 5-4
4-4 | a ³ H-y ² | | 3.316
7.714
3.130 | 900 | 100
75
45 | 2.70 5.16
2.70 5.13
2.70 5.11 | 3-4
2-3
1-2 | a ⁵ P _{-y} 5 _D °
(60) | 3196.37
3201.97 | P
P | | 2.70
2.70 | 6.56
6.55 | 3-4
2-3
3-3 | a ⁵ P-s ⁵ F°
(79) | 4442.268 | B | 4
30 | 2.95 | 5.70 | 4-3
6-5 | a ³ H-y ²
(101)
a ³ H-w | | 5.910
0.751
4.672
8.93
2.263 | CCCBC | 50
40
50
12
20 | 2.70 5.13
2.70 5.11
2.70 5.10
2.70 5.11
2.70 5.10 | 3-3
2-2
1-1
3-2
2-1 | | m3201.24
3204.55
9900.87 | P
P
A | 0x* | 2.70 | 6.55
6.55
 | 3-2
-
2-2 | a ³ P-z ³ P° | 4410.967
4393.534
4387.496
4375.333 | 00 | 25
12
30
30 | 2.97
2.95
2.99
2.97 | 5.77
5.76
5.80
5.79 | 5-4
4-3
6-5
5-4 | (102)
a3H-z ⁵
(103) | | 1.765
5.308
6.255
7.34 | C
C
B | 35
30
35
18 | 2.70 5.09
2.70 5.30
2.70 5.36
2.70 5.34 | 1-0
3-4
2-3
1-2 | a ⁵ p-x ⁵ p¢
(61) | 9626.30
10197.05
9752.84
9362.06
9313.55 | A
A
A
A | 4
3
4
10
8 | 2.90
2.97
2.90
2.90
2.86 | 4.18
4.17
4.22
4.18 | 1-1
2-1
1-0
1-2
0-1 | (80) | 4363.134
4374.158
4346.833
4325.075 | 0000 | 13
40
30
40 | 2.95
2.99
2.97
2.95 | 5.78
5.81
5.81
5.81 | 4-3
6-5
5-4
4-3 | a ³ H-y ²
(104) | | 4.64
5.146
1.97
3.52
9.73
9.87 | BCBPBB | 15
15
18
20
6 | 2.70 5.26
2.70 5.24
2.70 5.22
2.70 5.24
2.70 5.23
2.70 5.23 | 3-3
2-2
1-1
3-3
3-1
1-0 | | 4619.551
4501.788
4622.761
4501.112
4498.730
4432.175 | 000000 | 40
25
25
25
35
35 | 2.97
2.90
2.97
2.90
2.90 | 5.65
5.64
5.64
5.65
5.65 | 3-3
1-1
3-1
1-0
1-2
0-1 | a ³ p_y ³ p° (81) | 4255.502
*4240.705
4226.76
4266.82
4248.73 | C
P
B
B | 25
30
8
10 | 2.99
2.97
2.95
2.99
2.97 | 5.89
5.88
5.87
5.88
5.87 | 6-7
5-6
4-5
6-6
5-5 | a ³ H-z ³
(105) | | 7.062
8.615
0.608 | C | 40
50
40 | a.70 5.3a
2.70 5.32
2.70 5.33 | 3-2
3-3
1-3 | a ⁶ P-z ⁵ a•
(62) | °4527.339
4424.075 | C | 40
10 | 2.97
2.90 | 5.70
5.69 | 2-3
1-2 | a ³ P-y ³ D°
(82) | 4175.945
4185.345
4189.96 | C
B | 15
10
5 | 2.99
2.97
2.95 | 5.92
5.90 | 6-7
5-6
4-5 | a ³ H-x ⁵
(106) | | 9.34
5.20
3.782
7.46 | B
P
C
B | 187
40
57 | 2.70 5.46
2.70 5.45
2.70 5.45
2.70 5.45 | 3-3
2-3
3-2
3-1 | a ⁵ P-w ⁵ P* (63) | *4362.95 \$ 4491.858 4377.549 4321.238 | B
C
C
C | 7
35
30
30 | 2.86
2.97
2.90
2.86 | 5.69
5.72
5.72
5.72 | 0-1
2-2
1-3
0-1 | а ³ Р-н ⁵ р° (83) | 4210.77
4237.27
4230.29
4220.45 | B
B
B | 5
1
4
5 | 2.99
2.99
2.97
2.95 | 5.92
5.90
5.89
5.88 | 6-6
6-5
5-4
4-3 | 2 | | 0.769
7.02
5.757 | C
B
C | 18
35 v
25 | 2.70 5.46
2.70 5.45
2.70 5.57 | 2-3
1-2
3-3 | _{&} 5p_ _¥ 5p∘ | 4387.380
*4262.133
4190.16 | C
C
B | 10
12
15 | 2.97
2.90
2.86 | 5.79
5.80
5.80 | 2-3
1-2
0-1 | a ³ p_u ⁵ p°
(84) | 4167.80
4146.695
4123.387 | BC | 3
6
10 | 2.97
2.95
2.99 | 5.93
5.93
5.98 | 5-4
4-4
6-6 | (107) | | 1.48
2.853
0.130
11.112 |) M C C C C | 7
20
18
35
15 | 2.70 5.54
2.70 5.51
2.70 5.51
2.70 5.51
2.70 5.57 | 3-3
1-1
3-3
2-1
2-3 | (64) | 4118.45
3886.94 | P
P | 15 | 2.90
2.97 | 5.90
6.15 | 1-3
2-3 | a ³ P-v ⁵ D°
(85)
a ³ P-t ⁵ P°
(86) | 4121.817
4104.867
4140.47
4099.016
4101.163 | OCCACA | 10
10
4
6
8 | 2.97
2.95
2.99
2.97
2.95 | 5.96
5.96
5.90
5.98
5.98 | 5-5
4-4
6-5
5-6
4-5 | (108 | | 13.163
18.400
10.613 | 0 | 18
6 | 2.70 5.54
2.70 5.70
2.70 5.69 | 1-2
3-3
2-2 | a ⁵ p_y ³ p°
(65) | 3843.64
m3819.57
3748.18 | B
P | 3
Or
2 | 2.97
2.97
2.90 | 6.19
6.21
6.20 | 2-3
2-3
1-2 | a3p_t5po
(87)
a3p_w3po+
(88) | 3510.538
3494.967
3488.453 | 000 | 15
15
10 | 2.99
2.97
2.95 | 6.50
6.50
6.49 | 6-7-
5-6
4-5 | а ³ н-у | | 37.643
19.44
36.099 | BC | 12
8
31
6 | 2.70 5.69
2.70 5.69
2.70 5.69 | 1-1
3-2
2-1 | (65) | 3710.60
*3676.33 | B
B | 4
18 | a.aa
2.97 | 6.33 | 0-1
2-2 | a ³ P-w ³ P° | 3518.70
3503.38 § | В | 18
18 | 2.99
2.99 | 6.49
6.53 | 6-6
6-6 | | |)9.584
32.162
36.938 | 0 | 8 8 | 2.70 5.70
2.70 5.69
2.70 5.73 | 2-3
1-2
3-4
2-3 | a ⁵ p-a ⁵ pe | *3604.54
*3681.691
3613.669
3599.395 | BCCC | 3
12
8
10 | 2.90
2.90
2.90 | 6.33 | 1-1
2-1
1-0
1-2 | (89) | 3481.536
3467.715
3443.790 | 000 | 18
10 | 2.97
2.95 | 6.53
6.54 | 5-5
4-4 | 7 | | 77.089
31.737
75.92
30.221 | CBC | 12
5
6
5 | 2.70 5.72
2.70 5.73
2.70 5.73
2.70 5.73 | 2-3
1-2
3-3
2-2 | (68) | 3559.781
3450.00
3453.84 | C
P | 10 | 2.86
2.97
2.97 | 6.33
6.55
6.55 | 0-1
2-3
2-2 | a ³ P_s ⁵ F°
(90) | 3472.906
3346.018
3346.71 | C
C
B | 10
12
10 | 2.95
2.99
2.97 | 6.51
6.68
6.66 | 4-4
6-5
5-4 | (111
a ³ H-v | | 90.305
92.845 | c | 6
30 | 2.70 5.72
2.70 5.79 | 1-1
3-3 | a5p_u5pe | 3388.88 | Ē
C | 1 | 2.90
2.97 | 6.54 | 1-1
2-3 | ₈ 3 _{P_v} 3 _P o | 3346.78
3257.822 | B | 9
12 | 2.95
2.99 | 6.64 | 4-3
6-6 | a ³ H-w | | 79.798
72.688
78.677
71.255
93.968 | 00000 | 10
7
18
20
15 | a.70 5.80
a.70 5.80
a.70 5.80
a.70 5.80
a.70 5.79 | 3-3
1-1
3-3
3-1
2-3 | (67) | 3188.011
3159.59
3144.409
3218.70 | C
C
B | 20w
20w
8w
5w | 2.97
2.90
2.86
2.97 | 6.78
6.81 | 2-3
1-2
0-1
2-2 | (92)
a ³ P-y ³ D° | 3251.836
3245.542
3259.975
3238.087 | 00 00 | 15
12
10
8 | 2.97
2.95
2.99
2.97 | 6.77
6.78 | 5-5
4-4
6-6
5-5 | a ³ H_v ² | | 81.233
80.768
82.19 | C
G
B | 15
5
3 | 2.70 5.90
8.70 5.81
2.70 5.81 | 1-3
3-1
1-1 | e ⁵ r_z ³ ge
(83) | 3179.283
3239.14 | C
B | 7w
1 | 2.90 | 6.78 | 1-1
3-1 | | 3237.729
3253.26
3250.58
3244.69 | C
B
B | 10
4
4
1 | 2.95
2.99
2.97
2.97 | 6.78
6.77 | 4-4
6-5
5-4
5-6 | Laboratory I A Ref Int | EP J Multiplet
Low High (No) | Laboratory
I A Ref Int | E P J Multiplet
Low High (No) | Laboratory
I A Ref Int | E P
Low High | J Mult: | |---|--|--|---|--|--|---| | Cr I continued | | Cr I continued | | Cr I continued | | | | 3163.756 C 15
3155.149 C 12
3148.445 C 10
3169.58 B 3
3160.61 B 4 | 2.99 6.89 6-7 a ³ H-x ³ I°
2.97 6.88 5-6 (115)
2.95 6.87 4-5
2.99 6.88 6-6
2.97 6.87 5-5 | 4217.636 C 30
4216.365 C 15
4222.732 C 20
4230.481 C 25
4235.98 B 15 | 3.00 5.92 4-5 b ⁵ D-u ⁵ F°
3.00 5.93 3-4 (132)
3.00 5.92 2-3
3.00 5.92 1-2
3.00 5.91 0-1 | 4540.719 C 50
4511.903 C 60
4500.295 C 40
4513.21 B 8+g | 3.09 5.81
3.07 5.81
3.07 5.81
3.07 5.81 | 5-5 e ³ G-;
4-4 (15)
3-3
4-3 | | 3152.881 D 5
3141.891 D 5 | 2.99 6.90 6-6 a ³ H-u ³ H°
2.97 6.90 5-5 (116) | 4333.47 B 7
4332.866 C 10
4237.710 C 12 | 3.00 5.93 3-3
3.00 5.93 2-3
3.00 5.91 1-1 | 4505.22 B 1
4484.68 B 8 | 3.09 5.83
3.07 5.88 | 5-5 a ³ G-:
3-3 (15: | | m3039.74 P Cr | 2.99 7.05 6-5 a ³ H-u ³ G ⁶
3.97 7.04 5-4 (117) | 4211.349 C 15
4177.17 B 3 | 3.00 5.93 3-4 b ⁵ D-u ¹ ⁵ Fe
3.00 5.95 0-1 (133) | 4425.129 C 12
4406.26 B 18 | 3.09 5.88
3.07 5.87 | 5-6 a ³ G-;
4-5 (15) | | 3031.486 C 4
3024.681 C 2 | 2.95 7.03 4-3 | 4207.51 B 2 | 3.00 5.93 4-4 | 4364.87 B 10
4366.33 B 4 | 3.09 5.92
3.07 5.90 | 5–6 a ³ (;
4–5 (15; | | 10486.24 A 20
10672.17 A
18
10816.91 A 8
10647.66 A 12 | 3.00 4.17 4-4 b ⁵ D-z ⁵ D°
3.00 4.16 3-3 (118)
3.00 4.14 2-2
3.00 4.16 4-3 | 3945.968 C 10
3945.495 C 9
3944.25 B 2
3943.21 B 3 | 3.00 6.13 4-5 b ⁵ D-m ⁵ G ⁶ (134) 3.00 6.13 4-4 b ⁵ D-x ³ F ⁶ † 3.00 6.13 3-3 (135) 3.00 6.13 2-3 | 4271.061 C 15
4269.951 C 12
4262.38 B 8 | 3.09 5.98
3.07 5.96
3.07 5.96 | 5-6 a ³ G-1
4-5 (15 ⁴
3-4 | | 10821.63 A 13
10957.19 A 13
11044.64 A 5 | 3.00 4.14 3-8
3.00 4.13 8-1
3.00 4.12 1-0 | 3915.843 C 40
3952.399 C 15 | 3.00 6.15 4-3 b ⁵ D-t ⁵ P ⁶
3.00 6.12 3-2 (136) | 4309.756 C 15
4334.514 C 18
•4221.572 C 25 | 3.09 6.02
3.07 5.99
3.07 5.99 | 5-5 8 ³ G-1
4-4 (15!
3-3
5-4 | | 10509.96 A 10
10667.53 A 15
10801.37 A 12 | 3.00 4.17 3-4
3.00 4.16 2-3
3.00 4.14 1-2 | 3953.163 C 18
m3919.15 P Cr
3951.765 C 8 | 3.00 6.12 2-1
3.00 6.15 3-3
3.00 6.12 2-2 | 4349.81 P
4184.895 C 13
4313.179 C 10 | 3.09 5.99
3.07 6.02
3.07 5.99 | 5-4
4-5
3-4 | | 10929.90 A 10
5712.778 C 100 | 3.00 4.13 0-1 | 3951.097 C 10
3918.54 P | 3.00 6.12 1-1
3.00 6.15 2-3 | 4080.56 B 2
4057.19 B 3 | 3.09 6.12
3.07 6.12 | 5-5 9 ³ G-1
4-5 (156 | | 5788.389 C 20
5843.24 B 25 | 3.00 5.13 3-3 (119)
3.00 5.11 2-2 | *3949.64 B 8 | \3.00 6.12 0-1 | 4060.62 B 841 | 3.07 6.11 | 3-4
5-6 a ³ G-> | | *5781.195 C 40
5844.606 C 40
5884.452 C 25 | 3.00 5.13 4-3
3.00 5.11 3-2
3.00 5.10 2-1 | 3917.596 C 15
3916.980 C 10
3914.96 B 4 | 3.00 6.15 3-2 b ^D D-y ^D S ^o
3.00 6.15 2-3 (137)
3.00 6.15 1-2 | 3586.23 B 4
3571.97 P
3553.968 C 5 | 3.09 6.53
3.07 6.53
3.07 6.54 | 4-5 (15°
3-4 | | 5902.182 C 25
5719.821 C 40
5787.036 C 20 | 3.00 5.09 1-0
3.00 5.16 3-4
3.00 5.13 2-3 | 3849.365 C 50
3858.90 B 15w | 3.00 6.20 4-5 b ⁵ D-t ⁵ F°
3.00 6.20 3-4 (138) | 3442.58 B 1
3425.96 B 4 | 3.09 6.68
3.07 6.68 | 5-5 a ³ G-1
4-5 (158 | | 5838.66 B 25
5876.55 B 25 | 3.00 5.11 1-3
3.00 5.10 0-1 | 3874.570 D 40**
3879.222 C 50
3883.660 C 20 | 3.00 6.19 2-3
3.00 6.18 1-2
3.00 6.17 0-1 | *3349.322\$ C 8
3343.348 C 5 | 3.09 6.78
3.07 6.76 | 5-6 a ³ G-1
4-5 (159 | | *5556.19 B 10
5574.41 B 12 | 3.00 5.23 4-4 b ⁵ D-x ⁷ P°
3.00 5.21 3-2 (120) | m3855.65 P Cr
3875.14 B 10n
3881.214 C 40 | 3.00 6.20 4-4
3.00 6.19 3-3
3.00 6.18 2-2 | 3343.227 C 5
3351.596 C 8 | 3.07 6.76 | 3-4
5-6 a ³ G-1 | | 5512.69 B 10
•5556.19 B 10 | 3.00 5.24 3-8 b ⁵ p-x ⁵ p°
3.00 5.22 2-1 (121) | 3885.084 C 20
3881.856 C 10 | 3.00 6.17 1-1
3.00 6.18 3-2 | 3328.80 B 4
3334.925 C 6
3344.50 B 4 | 3.07 6.78
3.07 6.77
3.09 6.78 | 4-5 (160
3-4
5-5 | | 5004.38 B 35w
5028.00 B 15w | 3.00 5.46 4-3 b ⁵ D-w ⁵ Po †
3.00 5.45 3-2 (122) | 3804.798 C 50
3797.716 C 40
3793.289 C 30 | 3.00 6.24 4-4 b ⁵ D-u ⁵ D°
3.00 6.25 3-3 (139)
3.00 6.25 2-2 | 3313.721 C 3
3309.82 B 4 | 3.09 6.82
3.07 6.80 | 5-4 a ³ G-1
4-3 (161 | | 4981.30 P
4998.55 B 4
4980.30 P | 3.00 5.48 3-3 b ⁵ D-y ⁵ G°
3.00 5.47 2-2 (123)
3.00 5.48 2-3 | 3790.238 C 8
3794.608 C 25
3793.879 C 30
3792.137 C 30 | 3.00 6.25 1-1
3.00 6.25 4-3
3.00 6.25 3-2
3.00 6.25 2-1 | 3298.318 C 7
3302.86 B 6
3238.50 B 4 | 3.07 6.83
3.07 6.80
3.09 6.90 | 4-4
3-3
5-6 a ³ G-u | | 4755.137 C 8
4764.643 C 20
4770.670 C 12 | 3.00 5.59 4-5 b ⁵ D-x ⁵ F°
3.00 5.59 3-4 (124)
3.00 5.59 2-3 | 3790.454 C 18
3807.926 C 15
3797.126 C 2C | 3.00 6.25 1-0
3.00 6.24 3-4
3.00 6.25 2-3 | 3227.23 B 2
3119.246 C 5 | 3.07 6.90 | 4-5 (162
5-5 s ³ G-u | | 4774.557 C 8
4759.74 B 8 | 3.00 5.58 1-2
3.00 5.59 4-4 | 3791.376 C 30
3788.864 C 20 | 3.00 6.25 1-2
3.00 6.25 0-1 | 3110.860 C 5
3109.336 C 8 | 3.07 7.04
3.07 7.03 | 4-4 (163
3-3 | | 4771.57 B 10
4777.57 B 7
4779.87 B 3 | 3.00 5.59 3-3
3.00 5.58 2-2
3.00 5.58 1-1 | m3602.61 P Cr
3607.92 P | 3.00 6.42 4-3 b ⁵ D-t ⁵ D*
3.00 6.42 3-2 (140) | 3115.51 B 1
3105.57 B 2
3104.70 B 2 | 3.07 7.03
3.07 7.05
3.07 7.04 | 4-3
4-5
3-4 | | m4766.66 P Cr
•4778.50 B 2 | 3.00 5.59 4-3
3.00 5.58 3-2 | 3608.58 P
3607.25 P | 3.00 6.42 2-1
3.00 6.42 1-0 | *3060.63 B 2
3058.17 B 3 | 3.09 7.12
3.07 7.11 | 5-5 a ³ G-t
4-4 (164 | | 4566.602 C 7
4584.75 B 18
4590.69 B 8 | 3.00 5.70 4-3 b ⁵ D-y ³ D°
3.00 5.69 3-2 (125)
3.00 5.69 2-1 | 3460.430 C 25
3469.590 C 15
3474.87 B 8 | 3.00 6.56 4-5 b ⁵ D-6 ⁵ F*†
3.00 6.56 3-4 (141)
3.00 6.55 2-3 | 3047.455 C 4
3052.229 C 6 | 3.07 7.12
3.07 7.11 | 4-5
3-4 | | 4571.105 C 25
4583.89 B 15
4587.86 B 8 | 3.00 5.70 3-3
3.00 5.69 2-2
3.00 5.69 1-1 | 3477.161 C 7
3479.14 B 5
*3467.022 C 12 | 3.00 6.55 1-2
3.00 6.54 0-1
3.00 6.56 4-4 | 9059.74 A 5
9148.45 A 6 | 3.11 4.47
3.10 4.45 | 4-4 a ³ F-z
3-3 (165 | | *4570.30 B 6 | 3.00 5.70 2-3
3.00 5.73 4-4 b ⁵ p-# ⁵ p° f | 3475.36 P
3478.77 B 7
3480.28 D 4 | 3.00 6.55 3-3
3.00 6.55 2-2
3.00 6.54 1-1 | 9208.29 A 25
9263.97 A 20 | 3.11 4.45
3.10 4.43 | 4-3
3-2 | | 4519.83 B 7
4530.12 P | 3.00 5.73 3-4 (126)
3.00 5.72 2-3 | 8947.20 A 35 | 3.09 4.47 5-4 a ³ G-z ³ F° | 4954.811 C 80
4936.334 C 150
4953.714 D 25 | 3.11 5.60
3.10 5.60
3.11 5.60 | 4-5 a ³ F-z
3-4 (166
4-4 | | 4458.538 C 45
4459.738 C 25
4465.357 C 35 | 3.00 5.77 4-5 b ⁵ D-w ⁵ p•
3.00 5.77 3-4 (127)
3.00 5.76 2-3 | 8976.88 A 25
9035.86 A 20 | 3.07 4.45 4-3 (142)
3.07 4.43 3-2
3.07 4.47 4-4 | 4880.08 B 25 | 3.11 5.64
3.10 5.63 | 4-5 a ³ F-y
3-4 (167 | | 4464.907 C 25
4462.774 C 30 | 3.00 5.76 1-3
3.00 5.76 0-1
3.00 5.77 4-4 | 8835.67 A 10
8935.75 A 10
8786.28 P | 3.07 4.45 3-3
3.07 4.47 3-4 | 4787.74 B 5 | 3.11 5.69 | 4-4 8 ³ F-y | | 4466.165 C 25
4467.561 C 30 | 3.00 5.76 3-3
3.00 5.76 2-2 | 4922.267 C 300
4887.013 C 150 | 3.09 5.60 5-6 a ³ G-z ³ H ^o
3.07 5.60 4-5 (143) | 4784.70 P
4754.743 C 20
4801.030 C 75 | 3.08 5.67
3.11 5.68 | 3-3 (166
2-2
4-3 | | 4464.669 C 25
4468.38 B 7 | 3.00 5.76 1-1
3.00 5.76 3-2 | 4870.796 C 100
4920.945 C 50
4886.867 G 50 | 3.07 5.60 3-4
3.09 5.60 5-5
3.07 5.60 4-4 | 4792.513 C 75
4747.00 B 4 | 3.10 5.67
3.08 5.68 | 3-2
2-3 | | 4403.372 C 35
4423.318 C 12
4433.968 C 20 | 3.00 5.80 4-5 b ⁵ D-z ³ G*
3.00 5.79 3-4 (128)
3.00 5.78 2-3 | 4836.857 C 40
4814.265 C 35 | 3.09 5.64 5-6 a ³ G-y ⁵ H ^o 3.07 5.64 4-5 (144) | 4761.242 C 10
4759.907 C 10
4729.723 C 35 | 3.11 5.70
3.10 5.69
3.08 5.69 | 4-3 a ³ F-y
3-2 (169
3-1? | | 4419.10 B 10
4434.75 B 10
m4430.51 P Cr | 3.00 5.79 4-4
3.00 5.78 3-3
3.00 5.78 4-3 | 4810.733 C 35
4847.177 C 18
4825.51 B 10 | 3.07 5.63 3-4
3.09 5.64 5-5
3.07 5.63 4-4 | 4717.688 C 10
4706.103 C 25 | 3.11 5.72
3.10 5.72 | 4-3 e ³ F-w | | 4424.281 C 40
4411.093 C 40 | 3.00 5.79 4-3 b ⁵ p-u ⁵ p° 3.00 5.80 3-2 (129) | 4933.08 B 5
4756.113 C 100 | 3.07 5.63 3-3 | 4680.870 C 35
4701.92 B 5
4689.67 B 10 | 3.08 5.78
3.10 5.72
3.08 5.72 | 9-1
3-3
3-8 | | 4399.823 C 30
4428.501 C 35
4410.304 C 40 | 3.00 5.80 2-1
3.00 5.79 3-3
3.00 5.80 2-2 | 4737.350 C 75
4730.711 C 50 | 3.07 5.68 4-3 (145)
3.07 5.67 3-2 | 4640.55 B 4 | 3.11 5.77 | 4-4 a3F-w | | 4397.251 C 30
4427.71 B 10 | 3.00 5.80 1-1
3.00 5.79 2-3 | 4734.416 C 35
4733.03 B 15
4710.24 B 6 | 3.07 5.69 4-4
3.07 5.68 3-3
3.07 5.69 3-4 | 4632.180 C 35
4599.25 B 1
4634.59 B 5 | 3.10 5.76
3.08 5.76
3.10 5.76 | 2-2
3-2 | | 4395.417 C 18 | 3.00 5.80 O-1 | *4698.615 C 50
4698.947 C 20 | 3.07 5.70 4-3 a ³ G-y ³ D*
3.07 5.69 3-2 (148) | 4599.00 B 8
4635.30 B 3
4596.90 B 3 | 3.08 5.76
3.10 5.77
3.08 5.76 | 2-1
3-4
2-3 | | 4356.760 C 20
4368.252 C 20
4379.782 C 20 | 3.00 5.83 4-5 b ⁵ D-x ⁵ G°
3.00 5.83 3-4 (130)
3.00 5.82 2-3 | 4684.605 C 12
4656.189 C 30 | 3.07 5.70 3-3
3.07 5.72 4-3 a ³ G-w ⁵ D°† | 4584.095 C 20
4586.138 C 20 | 3.11 5.80
3.10 5.79 | 4-5 a3F-z2 | | 4392.26 B 10
4364.14 B 10
4380.55 B 10 | 3.00 5.81 1-2
3.00 5.83 4-4
3.00 5.82 3-3 | 4646-495 C 15
4614-15 B 12 | 3.09 5.77 5-5 2 ³ G-w ⁵ F° | 4565.057 0 85
4601.15 B 20
4598.441 C 20 | 3.08 5.78
3.11 5.79
3.10 5.78 | 3-4 (178)
3-3
4-4
3-3 | | 4394.83 B 8
4238.957 C 35 | 3.00 5.81 2-2
3.00 5.91 4-4 b ⁵ p-v ⁵ p° | 4581.063 C 10
4574.45 B 6
4576.76 B 6 | 3.07 5.77 4-4 (148)
3.07 5.76 3-3
3.07 5.76 3-2 | 4589.530 C 20 | 3.11 5.81 | 4-5 a ³ F-y ³
3-4 (173) | | 4252.243 C 10
4256.680 C 8
4248.344 C 12 | 3.00 5.90 3-3 (131)
3.00 5.90 2-2
3.00 5.90 4-3 | 4555.09 B (107)
4542.681 C 35 | 3.00 8.80 5-5 e3g-z3g | 4554.830 C 25
4523.00 B 12
4569.644 C 30 | 3.10 5.81
3.08 5.81
3.11 5.81 | 2-3
4-4 | | 4257.368 C 12
4259.15 B 10
4242.82 B 10 | 3.00 5.90 3-2
3.00 5.90 2-1 | 4541.513 C 25 | 3.07 5.79 4-4 (149)
3.07 5.78 3-3 | 4556.169 C 40
4570.98 B 20 | 3.10 5.81
3.11 5.81 | 3-3
4-3 | | | 3.00 5.91 3-4 | | | | | | 40. | Second S | .tory | | EP | | J | Multiplet | Labor | | У | ULTI
E | PLE
P | T T
J | Multiplet | Labor | | | EI | | J | Multiplet |
--|-------------|-----------------|----------------------------------|----------------------|-----------|---|----------------------------------|-------------|-----------------|----------------------|----------------------|-------------------|--|-------------------------------|-------------|-------------------|----------------------|----------------------|-------------------|--| | Second | | Int | Low Hig | çh. | | (No) | | | | Low | High | | (No) | | | | Low | High | | (No) | | 1 | C | | | | -1 | (174)
a3F_z3g• | 4752.87 | В | 10 | 3.35 | 5.95 | 1-1 | (194) | 3277.86 | В | 4 | 3.42 | 7.19 | 4-3 | | | | B | 8 | 3.10 5.9
3.08 5.9 | 95 3.
95 2. | -2
-1 | (175)
a ³ F-u ¹ 5F*
(176) | 4725.67
4736.13
4749.25 | B
B
B | 5
5
1w | 3.35
3.36
3.35 | 5.97
5.97
5.95 | 1-1
3-1
1-0 | | 3219.616 | Ď | 8 | 3.42 | 7.25 | 4-5 | (SSO)
p ₃ d−f ₃ H•↓ | | 1 | С | 8 | 3.11 5.9 | 96 4 | -5 | a ³ F-y ³ H° (177) | 4722.741
4526.108 | D
G | 10
40 | 3.35
3.36 | 5.97
6.09 | 0-1
2-3 | b ³ p_x ³ p= | 11015.63 | A | 30 | 3.43 | 4.55 | 3-3 | y ⁷ P°-e ⁷ S
(221) | | S | C | 12 | 3.10 5.9 | 99 3 | -4 | a ³ F-x ³ G°
(178) | 4584.934 | č | 15 | 3,36 | 6.05 | 2-2 | | 6978.46 | В | 300 | 3.45 | 5.22 | 4-5 | y ⁷ p°-e ⁷ p | | 1 | В | 5 | 3.11 6.0 | 9 4 | -3 | a ³ F-x ³ D° (179) | 4482.878
4480.263 | Ċ | 40
30 | 3.35
3.35 | 6.11
6.11 | 1-1
0-1 | (197) | 6881.64
6979.82
6925.24 | B
C
D | 100
150
150 | 3.42
3.45
3.43 | 5.22
5.22
5.22 | 2-3
4-4
3-3 | (855) | | 8 4 5.11 5.72 4-2 4 7 4.72 7 4.40 6.40 3 6 5.35 6.43 8.1 5 5.05 6.13 8.1 5 5.05 6.10 8.1 5 5.05 6.10 8.1 5 5.05 6.10 8.1 5 5.05 6.10 8.1 5 5.05 6.10 8.1 5 5.05 6.10 8.1 5 5.05 6.10 8.1 5 5.05 6.10 8.1 5 5.05 6 | В | 4 | 3.10 6.1 | 11 3 | -4 | | 4345.085
4357.525
4353.983 | COD | 15
15
15 | 3.35
3.35
3.36 | 6.20
6.19
6.20 | 1-3
0-1
3-3 | | 6980.91
6926.04 | B | 50
100 | 3.45
3.43 | 5.22 | 4-3
3-2 | | | 7 3.10 5.00 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 | В | 2 | 3.10 6.7 | 76 3 | -4 | | 4368.89 | В | 8 | 3.36 | 6.19 | 2-1 | 13n5ne | | | | | | | y ⁷ p°- f⁷8
(223) | | 0 0 3.00 6.70 8-70 8-70 8-70 8-70 8-70 8-70 8-70 8- | ď | 8 | 3.11 6.8 | | | a3F_w3Fe | 3153.54 | В | 5 | 3.36 | 7.27 | 3-3 | (199)
b3p_t3pe | | | 405 | | | | y ⁷ p°_f ⁵ s
(224) | | S | C
B | 10
2 | 3.08 6.7
3.10 6.8 | 79 2 | -3 | (182) | | _ | | | | - | | 5272.010
5287.188 | C | 50
40 | 3.43
3.42 | 5.78
5.76 | 3-4
3-3 | (335) | | \$\begin{array}{c} \text{S} & \text{3.10} & \text{7.08} & \text{3.11} \text{3.12} \ | | | 3.11 7.0 | 05 4 | | a3 _{F-u} 3ge | 5225.032
5224.082 | C, | 40 | 3.41 | 5.78
5.76 | 4-4
3-3 | (201) | 5312.878
5318.775 | C | 50
40 | 3.43
3.42 | 5.76 | 3-3
2-2 | | | 0 3.11 7.12 4.5 37.39 584.385 0 77 3.18 5.77 3.4 597.39 584.385 0 77 3.18 5.77 3.4 597.39 5.4 6.10 3.10 7.11 3.3 6 (1.8) 518.40 0 100 3.18 5.78 3.4 6 (1.8) 518.40 0 100 3.18 5.78 3.4 6 (1.8) 518.40 0 100 3.18 5.78 3.4 100 3.18 5 | C | 5 | 3.10 7.0
3.08 7.0
3.11 7.0 | 04 4 | -4 | (183) | 5265.160 | C | 60 | 3.41 | 5.76 | 4-3 | | 5344.761 | C | | 3.43 | | | | | 0 10 3.08 7.11 2.3 | C | 10 | 3.11 7.1
3.10 7.1 | 12 4
11 3 | -5
-4 | a ³ F-t ³ G° (184) | 5243.395
5177.430
5184.590 | 000 | 75
75
100 | 3.38
3.41
3.39 | 5.73
5.80
5.78 | 2-1
4-5
3-4 | | 9949.06 | A | 20 | 3.54 | 4.78 | 2-2 | a ³ D-z ³ D° † | | Section Color Co | В | 4 | 3.11 7.1 | 11 4 | -4 | | 5200.188 | C | 100
50 | 3.37 | 5.74 | 1-3 | 7-4 7- | 5738.554 | A.
C | 30 | 3.54 | 5.69 | 3-4 | a3D-y3Fe | | B 28 | В | 40 | 3.15 5.2 | 88 5 | -4 | z ⁷ F°-e ⁷ D
(185) | 4948.64
4900.83
4983.63 | P | | 3.39
3.37
3.41 | 5.89
5.89
5.89 | 3-3
1-1
4-5 | (303)
F.Do-B.D | m5783.15
*5700.514 | P
C | Gr
40 | 3.54
3.54 | 5.67
5.70 |
1-2
3-3 | a ³ D-y ³ D° | | F 3.09 5.28 1-1 5564.040 0 40 3.48 5.60 4-5 (300) 0 75 3.18 5.60 6-5 x ⁷ F=-7 ⁷ D 0 80 3.18 5.60 6-5 x ⁷ F=-7 ⁷ D 0 80 3.18 5.60 6-5 x ⁷ F=-7 ⁷ D 0 80 3.18 5.76 5.18 3.18 5.76 5.18 3.18 5.18 5.18 5.18 5.18 5.18 5.18 5.18 5 | B | 25
25 | 3.11 5.2
3.15 5.2 | 88 3
88 5 | -2
-5 | | 4900.50 | P | | 3.37 | 5.89 | _ 1-3
_ | . 3 3 | m5746.32 | ₽ | Cr | 3.54 | 5.69 | 1-1 | | | 0 0 3.16 5.00 6.5 279-279 | 2 | 25 | 3.09 5.2 | 33 1 | -1 | | 5664.040
5628.645 | G | 40
50 | 3.42
3.41 | 5.60
5.60 | 4-5
3-4 | (303) | 4775.141 | C | 10 | 3.54 | 6.12 | 3-4? | (229)
₈ 3 _{D-77} 5 _G • • | | G 60 3.1.3 5.76 4-3 5463.974 0 40 3.4.9 5.889 4-3 (304) 4764.989 0 50 3.5.4 6.1.3 3-2 6.1 6.2 | | | 3.18 5.8
3.15 5.1 | 78 5 | -4 | z ⁷ F°-f ⁷ D
(186) | | | | | | 5-4 | | 4809.33 | | 10 | | | | | | C 50 2.15 5.80 5-5 | Ċ | 65 | 3.13 5.7
3.11 5.7 | 76 4
74 3
73 2 | -2
-1 | | 5442.413 | Č | 35 | 3.41 | 5.67 | 3-2 | (204) | 4767.860 | Ö | 30 | 3.54 | 6.13 | 2-3
1-2 | (231) | | 6 55 5,10 5,74 2-2 5827.07 8 10 3.41 5.78 3-3 42 5.77 4-4 (205) 4721.14 8 8 w 3.55 6.15 3-3 2.50-572 C 40 3.09 5.73 4-5 5838.63 8 10 3.41 5.78 3-3 C 20 3.09 5.74 1-3 5808.63 P 3215.29 8 20 3.43 5.80 5.5 5.50-572 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | C | 50
55 | 3.15 5.6
3.13 5.7 | 80 5
78 4 | -5
-4 | | 5432.347 | C | 25 | 3.41 | 5.68 | 3-3 | ր3 <u>(_</u> ա5թօ | 4757.591 | C | 18 | 3.54 | 6.13 | 3-3 | | | 0 30 3.11 5.78 3.4 5.50 5.75 3.0 1 5.78 3.4 5.0 5.50 5.0 2.2 (333) 0 30 3.11 5.78 2.4 5.00 5.78 2.3 5.00 5.2 5.00 5.2 5.00 5.2 5.00 5.2 5.00 5.2 5.00 5.2 5.00 5.2 5.00 5.0 5.0 5.2 5.0 5.0 5.2 5.0 5.0 5.0 5.2 5.0 5.0 5.0 5.2 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 | C | 55
40 | 3.10 5.7
3.09 5.7 | 74 2
73 1 | -2
-1 | | 5257.07 | В | 10 | 3.42 | 5.77 | 4-4 | | | | | | | | 83D-£5pa
(337) | | C 35 3.06 5.73 0.1 | Č
D | 30
35 | 3.11 5.1
3.10 5.1 | 78 3
76 2 | -4
-3 | | 5206.52 | ₽ | | 3.42 | 5.79 | 4-4 | | m4649.54 | Ď | Cr | 3.54 | 6.20 | 2-2 | (333) | | A 100 3.31 4.68 3-2 g ² Pe ⁻ g ² B 4 75 3.31 4.68 3-2 (187) 5196.443 C 100° 3.43 5.81 5-5 b ² G ₋ y ² G ² 4429.938 C 20 3.54 6.33 3-2 4 550 3.31 4.68 1-2 S 150 3.48 5.81 5-5 b ² G ₋ y ² G ² 4429.938 C 20 3.54 6.33 3-2 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | ĕ | | 3.08 5. | | | | *5237.35 \$
5222.39 | B | 3
10 | 3.43
3.42 | 5.79
5.78 | 5-4
4-3 | | 4430.486 | | 30 | 3.54 | 6.33 | 2-1 | | | C 100 3.31 5.44 3-6 r5pe-5D 5139.654 C 100 3.41 5.81 3-3 550.655 B 0 3.54 7.04 3-4 a*D-1-20*C 75 3.31 5.44 2-2 (189) 516.57 B 100*3.41 5.81 5-4 3388.50 B 5 3.54 7.19 2-3 (280) 516.57 B 12 3.41 5.81 3-4 3388.50 B 5 3.54 7.19 2-3 (280) 516.57 B 12 3.41 5.81 3-4 4.5 3388.50 B 5 3.54 7.19 2-3 (280) 516.57 B 12 3.41 5.81 3-4 4.5 3388.50 B 5 3.54 7.19 2-3 (280) 516.57 B 12 3.31 5.44 3-2 (189) 4831.637 C 15 3.41 5.98 5-6 b30.390.77 B 5 3.64 7.19 2-3 (280) 516.40 3.31 5.44 3-2 (189) 4831.637 C 15 3.41 5.98 5-6 b30.390.77 B 5 3.64 7.19 2-3 (280) 516.40 3.31 5.44 3-1 4831.637 C 15 3.41 5.98 3-4 5 (280) 516.40 3.31 5.44 3-1 4831.637 C 15 3.41 5.98 3-4 5 (280) 516.40 3.31 5.44 3-1 4831.637 C 15 3.41 5.98 3-4 5 (280) 516.40 3.31 5.44 3-1 4831.637 C 15 3.41 5.98 3-4 5 (280) 516.40 3.31 5.44 3-1 4831.637 C 15 3.41 5.98 3-4 5 (280) 516.40 3.31 5.47 3-2 (189) 4596.38 B 6 3.42 6.11 4-4 (210) 3902.108 C 10 3.68 6.01 3-3 (237) 516.40 3.31 5.67 3-2 (189) 4596.38 B 6 3.42 6.11 4-4 (210) 3902.108 C 10 3.65 6.82 3-3 y5pe_c5p 12 3.31 5.67 3-2 (189) 4596.38 B 6 3.43 6.13 5-5 b30.45 6.10 3-3 (238) 516.50 3-5 8 5 3.31 5.99 1-2 4596.38 B 1 3.43 6.13 5-5 b30.45 6.10 3-3 5 8 6.03 5-4 r5pe_r5p 4596.38 B 1 3.43 6.13 5-5 b30.45 6.10 3-3 5 8 6.03 5-4 r5pe_r5p 4596.39 1 3 3 3 3 3 5.67 3-2 1 4596.38 B 1 3.43 6.13 5-5 b30.45 6.10 3 3.84 6.10 3-3 5 8 6.03 5-4 r5pe_r5p 4596.39 1 3 3 3 3 3 5.00 5 3 3 3 3 5.00 5 3 3 3 3 5.00 5 3 3 3 3 5.00 5 3 3 3 3 5.00 5 3 3 3 5 5.64 6.10 3 3 3 5 5 5 5 3 3 3 3 5 5.64 6.10 3 3 3 5 5 5 5 3 3 3 3 5 5 5 5 3 3 3 3 | A | 75 | 3.31 4.6 | 68 a | -3 | | 5196.443 | C. | 100* | 3.43 | 5.81 | 5-5 | b ³ g_y ³ ge | 4422.697 | C | 10 | 3.54 | 6.33 | 3-2 | | | C 50 3.31 5.44 1-2 5137.94 B 12 3.41 5.81 3-4 3386.50 B 5 3.54 7.19 2-3 (236) C 50 3.31 5.44 2-2 4.46.29 B 40 3.43 5.98 5-6 b3G-3He 3391.11 B 1 3.54 7.18 2-2 C 50 3.31 5.44 2-2 4.46.29 B 40 3.43 5.98 5-6 b3G-3He 3391.11 B 1 3.54 7.18 2-2 C 50 3.31 5.44 2-1 4851.4855 C 35 5.42 5.96 3-4 C 40 3.31 5.44 2-1 4851.4855 C 35 5.42 5.96 3-4 C 40 3.31 5.44 2-1 4851.4855 C 35 5.42 5.96 3-4 C 40 3.31 5.47 3-2 4.48.29 B 40 3.43 5.98 3-6 4.5 (208) C 40 3.31 5.47 3-2 4.48.29 B 40 3.43 5.98 3-6 4.5 (208) C 40 3.31 5.47 3-2 4.88.1 3-1 4.88.1 3-1 4.88.1 3-2 5.88 | | 100 | 3.31 5.4 | 44 3 | -4 | z ⁵ pe_e ⁵ D | 5139.654
5196.57 | C | 100
100* | 3.41
3.43 | 5.81
5.81 | 3-3
5-4 | (207) | | - | • | | | 3-4 | a ³ D_u ³ G•
(235) | | C 50 3.31 5.44 1-1 4451.465 C 25 3.42 5.96 4-5 (208) B 10 3.31 5.44 2-1 4831.637 C 15 3.41 5.96 3-4 C 40 3.31 5.44 2-1 C 40 3.31 5.44 2-1 B 18w 3.31 5.67 3-2 259-258 4602.51 B 7 3.43 6.12 5-5 590-w70-1 B 18w 3.31 5.67 3-2 2 (189) 4596.38 B 6 3.42 6.11 4-4 (210) 3902.108 C 10 3.65 6.82 2-3 y59-2-3 B 18w 3.31 5.67 3-2 2 (189) 4596.38 B 6 3.43 6.13 5-5 590-w70-1 B 18w 3.31 5.67 3-2 2 (199) 4590.38 B 6 3.43 6.13 5-5 590-w70-1 B 18w 3.31 5.67 3-2 2 (199) 4590.38 B 6 3.43 6.13 5-5 590-w70-1 B 18w 3.31 5.67 3-2 2 (190) 4590.38 B 6 3.43 6.13 5-5 590-w70-1 B 4 3.31 6.03 3-4 259-250 B 5w 3.43 6.13 5-5 590-w70-1 B 5 w 3.31 5.99 1-2 4595.08 B 5 w 3.43 6.13 5-5 590.250 C 100 3.66 6.03 5-4 259-2-50 B 6 3.31 6.01 3-3 4585.08 B 5 w 3.43 6.13 5-5 590.250 C 75 3.24 6.01 4-3 (238) B 6 0 3.31 6.01 3-3 4585.08 B 5 w 3.43 6.13 5-4 50-2-39-60 B 6 0 3.31 6.01 3-3 5 850.08 C 18 3.43 6.13 5-4 50-2-39-60 B 6 0 3.31 6.01 3-3 5 850.08 B 15 3.43 6.13 5-4 50-2-39-60 C 50 3.36 6.03 3-4 259-2-50 B 6 0 3.31 6.01 3-3 5 850.09 5 5 5 50-2-39-7 5 500.250 C 75 3.24 6.03 4-4 (210) 300.250 3 | | 50
50 | 3.31 5.4
3.31 5.4 | 44 1
44 3 | -2
-3 | (188) | 5137.94 | B | 13 |
3.41 | 5.81 | 3-4 | | 3386.50
3390.77 | В | 5 | 3.54 | 7.19 | 2-3 | | | B 18w 3.31 5.67 3-2 \$\frac{5}{2}\tau_{0}\$ \$\frac{4}{5}\tau_{0}\$\$\frac{1}{2}\tau_{0}\$\$\frac{1}{2}\tau_{0}\$\tau_{0}\$\frac{1}{2}\tau_{0}\$\tau | C
B | 50
10 | 3.31 5.4 | 44 1 | -1 | | 4851.465 | C | 25 | 3.42 | 5.96 | 4-5 | (308)
p.g-la. | 3391.11 | В | <u> </u> | | | - | | | B 15w 3.31 5.67 2-2 (189) 4596.38 B 6 3.42 6.11 4-4 (210) 3902.108 C 10 3.65 6.82 2-3 y ⁵⁹⁻² 0-2 (238) B 4 3.31 6.03 3-4 z ⁵ P ⁻ -f ⁵ D 4560.28 B 1 3.41 6.11 5.5 3 (211) 5698.330 C 100 3.86 6.03 5-4 z ⁵ P ⁻ -f ⁵ D 4560.28 B 1 3.41 6.11 5.5 3 (211) 5698.330 C 75 3.84 6.01 4-3 (239) B 5 3.31 6.01 2-3 (190) *4595.05 B 5 5 3.43 6.13 5-5 53 - 5694.730 C 75 3.84 6.01 4-3 (239) B 6 3.31 6.01 3-3 4556.08 C 18 3.43 6.13 5-4 b ³ Q-x ⁵ F ⁰ 5642.362 C 50 3.84 6.03 4-4 5855.30 B 15 3.42 6.13 4-31 (212) 5694.731 C 50 3.82 6.07 3-2 8 589.787 B 10 3.41 6.13 3-2 5648.18 F (1) 3.81 5.99 2-2 4555.30 B 15 3.42 6.13 4-31 (212) 5694.731 C 50 3.82 6.03 3-4 6.03 | | 40 | 3.31 5.4 | d4 1 | _0 | | | В | | 3.42 | 6.09 | 4-3 | _b 3 _{0—x} 3 _D • | 5240.468 | c | 60 | 3.65 | 6.01 | 2-3 | y ⁵ p°-f ⁵ D † | | ## 4585.78 ## 5 3.43 6.03 3-4 25p-f5p 4580.28 ## 1 3.41 6.11 3-3 (211) 5698.330 | В | 15 u | 3.31 5.6 | 67 a | -3 | (189) | 4602.51
4596.38 | | | | | | (210) | 3902.108 | C | 10 | 3.65 | 6.82 | 2-3 | y ⁵ p°-e ³ D | | B 5w 3.31 5.99 1-2 B 6 3.31 5.99 1-2 B 6 3.31 5.99 1-2 B 8v 3.31 5.99 2-2 B 8v 3.31 5.99 2-2 B 5w 3.31 5.99 2-2 B 5w 3.31 5.99 2-2 B 5w 3.31 5.99 3-1 B 5w 3.31 5.99 3-1 B 5w 3.31 5.99 3-2 3-1 B 5w 3.31 5.99 3-2 5-2 B 3w 3.81 6.01 3-2 B 3w 3.81 6.01 3-2 B 3w 3.81 6.01 3-2 B 3w 3.81 6.01 3-3 | В | 4 | 3.31 6.0 | 03 3 | -4 | z ⁵ pe_f ⁵ D | 4560.26 | В | 1 | 3.41 | 6.11 | 3-3 | | 5698.330
5694.730 | | 100 | | | | ,5,0,75n | | B 5w 3.31 5.99 3-1 4532.75 B 10 3.41 6.13 3-2 559.87 B 18 3.81 6.03 3-4 559.87 B 18 3.82 6.75 3-4 3.43 6.75 3-4 559.87 B 18 3.43 6.75 3-4 559.87 B 18 3.82 6.75 3-2 559.87 B 18 3.43 6.75 3-4 559.87 B 1 | B
B
B | 6 | 3.31 5.9
3.31 6.0 | 99 1
01 3 | 2
-3 | | 4585.088 | c | 18 | 3.43
3.42 | 6.13 | 5-4 | | 5682.483
5642.362 | C | 75
50
50 | 3.82
3.84 | 5.99
6.03 | 3-2
4-4
3-3 | | | C 35 3.35 5.64 1-1 (191) 3970.07 B 7 3.42 6.53 4-5 (213) C 35 3.36 5.64 1-1 *3941.15 B 3 3.41 6.54 -4 4275.973 C 15 3.86 6.75 5-5 $z^5F^-e^-e^5F$ C 40 3.35 5.64 1-0 *3941.15 B 3 3.41 6.54 -4 4260.19 B 5w 3.84 6.74 4-4 (240) C 75 3.35 5.65 1-2 3806.829 C 10 3.43 6.68 5-5 $b^3Qv^3Q^0$ † 4391.964 C 15 3.86 6.75 4-5 4 C 35 3.35 5.64 0-1 3812.250 C 12 3.42 6.68 4-4 (214) *4269.02 B 5w 3.82 6.71 3-2 B 5 | c - | | | | | b ³ P-y ³ Pe | 4532.75 | В | 10 | 3.41 | 6.13 | | | 5648.18
5597.87 | В | (1)
18 | 3.82 | 6.03 | 3-4 | | | C 75 3.35 5.65 1-2 3808.839 C 10 3.43 6.88 5-5 b*3- | C | 35
35 | 3.35 5.6 | 64 1
64 2 | -1
-1 | (191) | 3970.07 | В | 7 | 3.42 | 6.53 | 4-5 | (213) | 4275.973 | C | 15
5w | 3.86 | 6.75 | 5-5 | z ⁵ F°-e ⁵ F†
(340) | | P Cr 3.36 5.70 2-3 b ³ P-y ³ p ⁶ C 30 3.35 5.69 1-1 (192) 3736.45 B 4 3.43 6.74 5-4 b ³ G-q ⁵ P ⁶ † 4148.52 B 2 3.84 6.82 4-3 z ⁵ P ⁶ -e ³ P B 15 3.35 5.69 0-1 (215) 4163.94 B 2 3.82 6.79 3-2 (241) C 15 3.35 5.69 1-1 3688.63 B 5 3.42 6.78 5-6 b ³ G-y ³ H ⁶ † 4174.795 C 10 3.81 6.77 2-17 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 | C | 75 | 3.35 5.0 | 65 1 | -2
-1 | | 3812.250 | C | 13 | 3.42 | 6.66 | 4-4 | | 4291.964
*4269.02 | C
B | 15
5w | 3.86
3.82 | 6.74
6.71 | 3-2 | | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | °C
B | 30
15 | 3.35 5.0
3.35 5.0 | 69 1
69 0 | -3
-1 | _ე ეგ_უპე∘
(193) | | | | | | | b ³ G-q ⁵ F* †
(215) | 4148.58 | В | 3
2 | 3.84 | 6.82 | 4-3 | z ⁵ F°-e ³ D† | | C 50 3.36 5.72 2-3 b ² P- π ² P ² 6029.28 B 18 3.83 5.88 6-6 a ² I-z ³ I ² 6047.685 D 18 3.83 5.87 5-5 (242) (2 | В | 10 | 3.36 5.6
3.35 5.6 | 69 2
69 1 | -2
-1 | | 3689.63 | В | 6 | 3.42 | 6.76 | 4-5 | p3G_#3H• + | 4174.795 | | 10 | | | 8-19
- | 1 | | C 50 3.36 5.78 3-2 3673.59 B 2 3.41 6.77 3-4 5746.432 C 25 3.83 5.96 7-6 a ² L-y ⁵ H ^o C 50 3.35 5.72 1-1 5791.781 C 20 3.83 5.96 6-5 (243) B 20 3.36 5.73 2-1 3345.14 B 5 3.43 7.12 5-5 b ³ G-t ³ G ^o † 5801.14 B 30 3.83 5.96 5-4 | C | 30
45 | 3.35 5.
3.35 5. | 73 1
73 C | -2
 -1 | | 3695.86
3671.94 | В | 5 | 3.43 | 6.77
6.78 | 5–6 | b ³ G-v ³ H°
(217) | 6047.665 | D | 18 | 3.83 | 5.87 | 55 | (342) | | | C | 50 | 3.35 5. | 73 1 | 1-1 | | 3673.59
3345.14 | В | _ | 3.41 | 6.77 | 3-4 | b ³ G_t ³ G• ↑ | 5791.781 | C | 30 | 3.83 | 5.96 | 6-5 | a ³ I-y ³ H°
(243) | | | | | | | | | | | | | | | | | | | , | | | | | itory
lef In | nt | E P
Low High | J | Multiplet
(No) | Labor
I A | rator
Ref | y
Int | E P
Low High | J | Multiplet
(No) | Labo | rator
Ref | y
Int | E P
Low High | J | Multiplet
(No) | |-----------------|-----------------------------------|--|--|---|---|------------------|--------------------------------|--|--|---|---|-----------------------|--|--|--|--| | lnued | | | | | Cr I con | tinue | d | | | | <u>Cr I</u> con | tinue | đ | | | | | C 2
C 1
B | 45*
20
10
1
1 | 3.83 6.50
3.83 6.50
3.83 6.49
3.83 6.50
3.83 6.49
3.83 6.51 | 7-7
6-6
5-5
7-6
6-5 | a ³ I-y ³ I° (344) a ³ I-1° (345) | 3989.986
4001.444
*4012.49 \$
4022.263
4031.130
4003.921
4014.668
4023.739 | 00800000 | 15
35
30
18
7
7 | 3.88 6.99
3.87 6.99
3.87 6.99
3.87 6.99
3.88 6.99
3.87 6.99 | 4-5
3-4
3-3
1-2
5-5
4-4 | <u>a</u> 5 _{F—y} 5g• †
(268)
 8163.22
8235.89
8287.38
8322.06
8338.83
*8166.66
8238.29
8290.62 | A
A
A
A
A | 35
30
25
20
5
7
12
10 | 4.37 5.88
4.38 5.88
4.30 5.88
4.40 5.88
4.40 5.88
4.37 5.88
4.38 5.88
4.39 5.88 | 4-5
3-4
2-3
1-8
0-1
4-4
3-3
2-8 | ₆ 5 _{D-} ,5 _P °
(298) | | C 1 | 13
13
15
?\
3
1gn? | 3.83 6.53
3.83 6.53
3.83 6.54
3.83 6.53
3.83 6.53
3.83 6.53 | 7-6
6-5
5-4
6-6
5-5
5-6 | (345)
a ³ I-x ³ H°
(346) | 3716.531
3714.39
3712.50 | C
B
B | 10w
4w
1w | 3.88 7.30
3.87 7.30
3.87 7.30 | 5-4
4-4
3-4 | (269) | 8323.44
8018.04
8119.13
8185.69
8225.67
8084.98 | A
A
A
A | 5
3
5
5
10 | 4.40 5.88
4.37 5.91
4.38 5.90
4.39 5.90
4.40 5.90
4.38 5.91 | 1-1
4-4
3-3
2-2
1-1
3-4 | c ⁵ D-y ⁵ D°†
(299) | | Č 2 | 35
25
30 | 3.83 6.73
3.83 6.73
3.83 6.71 | 7-8
6-7
5-6 | a ³ I-z ³ K°†
(347) | 4268.788
4204.471 | 0 | 10 | 3.96 6.88 | 6-6 | (270)
a ¹ I-z ¹ I ²
(271) | *8166.66
8216.28
7942.02 | A
A | 7
5
25 | 4.39 5.90
4.40 5.90
4.37 5.92 | 2-3
1-2
4-5 | o ⁵ D_u ⁵ F€ ∳ | | Ċ 2 | 40
20
25
3 | 3.83 6.78
3.83 6.76
3.83 6.76
3.83 6.78 | 7-6
6-5
5-4
6-6 | a ³ I-w ³ H°
(348) | 4192.103 | ,C
B | 15
3N | 3.96 6.9:
3.96 7.4 | 6-5 | (272)
all-rlH°
(273)
all-yll° | 7989.36
8061.27
8138.28
8169.80 | A
A
A | 12
10
8
5 | 4.38 5.93
4.39 5.92
4.40 5.93
4.40 5.91 | 3-4
2-3
1-2
0-1 | (300) | | C 2 | 20
20 | 3.83 6.78 | 56. | a ³ I-v ³ H° | | _ | | | - | (274) | 6729.72 | В | 40 | 4.37 6.20 | 4-5 | c ⁵ D_t ⁵ F° | | C : | 20
15
15
2 | 3.83 6.77
3.83 6.78
3.83 6.77
3.83 6.77 | 7-6
6-5
5-4
6-6 | (249) | *4542.621
4495.275
4531.82 | C
B | 35
12
3 | 4.09 6.8
4.09 6.8
4.08 6.8 | 4-3
3-4 | b ³ F-v ³ F° (275) | *5373.715
*5391.350 | . Q | 30
35 | 4.44 6.73
4.43 6.73 | -
6-5
5-4 | (301)
b ³ H-r ⁵ F°
(302) | | В | 35
7
30 | 3.83 6.77
3.83 6.79
3.83 6.79 | 5-6
7-7
6-7 | a ³ I-z ¹ K° (250) | 4534.841
*4535.731
4553.949 | 000 | 15
60
18 | 4.09 6.8
4.08 6.8
4.08 6.7 | 3-3 | b ³ F-w ³ F° †
(276) | 4592.54
4606.375
4609.894 | B
C
C | 15
15
8 | 4.44 7.18
4.43 7.11
4.43 7.11 | 6-5
5-4
4-3 | b ³ H-t ³ G° 7
(303) | | Ċ : | 20
20
20 | 3.83 6.89
3.83 6.88
3.83 6.87 | 7-7
6-6
5-5 | a ³ I-x ³ I°
(251) | *4531.141
4561.54
4169.838 | G
B | 25
10w | 4.08 6.8
4.08 6.7
4.09 7.0 | 3-1 | (277) | 4376.798
m4371.38
4373.656 | C
P
C | 25
Cr
15 | 4.44 7.26
4.43 7.25
4.43 7.25 | 6-6
5-5
4-4 | b ³ H-t ³ H° †
(304) | | P
B
B | 8
5
5 | 3.83 6.88
3.83 6.87
3.83 6.89
3.83 6.88 | 7-6
6-5
6-7
5-6 | | 4170.202
4174.941 | C | 15
8 | 4.08 7.0
4.08 7.0 | 3-4
3-3 | (278) | 4161.415
4165.519 | G | 15
15 | 4.44 7.40
4.43 7.39 | 6-7
5-6 | b ³ H-w ³ I* | | Č : | Cr
10 | 3.83 7.26
3.83 7.25 | 7-6
6-5 | a ³ I-t ³ H° (252) | 4065.716
4076.061
4077.677 | 000 | 12
10
10 | 4.09 7.1
4.08 7.1
4.08 7.1 | 3-4
2-3 | (279) | 4143.193
4174.15
4043.696 | C
B
C | .3
? | 4.43 7.41
4.44 7.39
4.44 7.49 | 4-5
6-6
6-7 | b ³ H-v ³ I°↑ | | Ċ : | 10
12 | 3.83 7.40
3.83 7.39 | 7-7
6-6 | a ³ I-w ³ I°
(253) | 3976.30
3979,324 | B
C | 6
5
7 | 4.09 7.1
4.08 7.1
4.08 7.1 | 3-3
3-2 | 03F-u3F* †
(280) | 4056.793
4071.000
3958.08 | C | 5
5 | 4.43 7.47
4.43 7.46
4.44 7.55 | 5-6
4-5
6-6 | (306)
b ³ H-8 ³ H ^o | | C | 10
10
10 | 3.83 7.41
3.83 7.49
3.83 7.47 | 5-5
7-7
6-6 | a ³ I-v ³ I°
(354) | 3564.30
3562.48
*3565.55
3569.14 | B
B
B | ?
4
2
5 | 4.09 7.5
4.08 7.5
4.08 7.5
4.09 7.5 | 3-4 | b ³ F-8 ³ G°
(281) | 3979.22
3998.85
3562.29 | B
B | 6
4
5 | 4.43 7.53
4.43 7.51
4.44 7.90 | 5-51
4-4
6-6 | _b 3 _{H−q} 3 _H • | | B
C
B | 8
5
4 | 3.83 7.46
3.83 7.55
3.83 7.53 | 5–5
7–6
6–5 | a ³ I-s ³ H°
(255) | 6661.076
6669.257 | C | 50
40 | 4.17 6.0
4.16 6.0 | | z ⁵ p°-f ⁵ p
(383) | 3564.953
•3574.039 | Ċ | 15
——— | 4.43 7.89
4.43 7.88 | 5–5
4–4
– | (308) | | | 6
15
10 | 3.83 7.51
3.83 5.69
3.83 5.68 | 5-4
-
3-4
2-3 | b ³ D-y ³ F°
(356) | 6657.54
6734.16
6715.38
6680.19
6597.556 | BBBBC | 30w
30
35
35w
40 | 4.14 5.9
4.17 6.0
4.16 5.0
4.14 5.9
4.16 6.0 | 2-2
4-3
3-0
3-1 | •=== | 5263.750
5278.262
5887.68 | D
C
B | 40
40
10w | 4.47 6.82
4.45 6.79
4.43 6.77 | 4-3
3-2
8-1 | z ³ F° 39
(309) | | c : | 10
20 | 3.83 5.67
3.83 5.98 | 1-3
3-3 | b ³ D-x ³ P° | 6612.17
4796.169 | B | 40
-40w | 4.14 6.0
4.17 6.7 | 2-3
4-5 | z ⁵ D°-e ⁵ F† | 4503.05 | В | 13 | 4.68 7.43 | 2-1
- | e ⁵ g_x ³ ge
(310) | | в (| 25
50 | 3.83 5.97
3.83 6.13 | 3-1
3-4 | (257)
b ³ D-x ³ F° | 4783.06
4775.53 | B | 15w
10w | 4.16 6.7
4.14 6.7
4.13 6.7 | 2-3 | (283) | 4656.837
4564.166 | D | 10
40 | 4.76 7.41
4.76 7.46 | 3-5
5-6 | a ¹ H-w ³ I°
(311)
a ¹ H-y ¹ I° | | C S | 35
30
25
10 | 3.83 6.13
3.83 6.13
3.83 6.13
3.83 6.13 | 3-3
1-3
3-3
2-3 | (258) | *4769.80
4816.41
4805.24
4796.84 | B
B
B | 4w
10w
15w
12w | 4.12 6.7
4.17 6.7
4.16 6.7
4.14 6.7 | 0-1
4-4
3-3 | | 3926.649 | C | 10 | 4.76 7.90 | 5-6 | a ¹ H-y ¹ I ^a
(312)
a ¹ H-q ³ H ^a
(313) | | C
B | 30
22
25 | 3.83 6.33
3.83 6.33
3.83 6.32 | 3-2
3-1
1-0 | b ³ D-w ³ pe
(259) | 3566.10
3568.36 | B
B | 25n
3w | 4.17 7.6
4.16 7.6 | 4_3 | _z 5 _D e_f5 _P
(384) | 6135.759
•6762.41 | C | 25
 | 4.80 6.82
5.26 7.08 | 3-3
-
6-6 | z ³ D°-e ³ D
(314)
z ⁵ G°-e ⁵ G† | | B : | 15
12
6 | 3.83 6.33
3.83 6.33 | 2-3
1-1 | .3n _3nn | 5285.38
5309.47 | ВВ | 7 8 | 4.17 6.54
4.17 6.49 | | b ¹ I-y ³ I°
(285) | 6757.78
6751.28
6744.66 | B
B | 25
40
15 | 5.26 7.08
5.25 7.08
5.25 7.08 | 5-5
4-4
3-3 | (315) | | B
B
B | 1 4 0 . | 3.83 6.80
3.83 6.83
3.83 6.85
3.83 6.83 | 3-4
2-3
1-2
3-3 | (360)
p ₃ D-A ₃ L _e | 4595.590
4514.373 | c
c | 45
20 | 4.17 6.8
4.17 6.9 | | b ¹ I-z ¹ I°
(286)
b ¹ I-u ³ H° | 6738.81
7908.30 | B | 20 | 5.60 7.16 | 2-2
-
6-5 | z ³ H°-e ³ G | | | 2
10 | 3.83 6.85
3.83 6.82 | 2-2
3-4 | b ³ D-w ³ F° | *4521.141
4506.853 | Ċ
O | 25
30 | 4.17 6.9 | 65 | (287)
bli-zlho | 7910.50
7917.85 | Ā | 18
18 | 5.60 7.16
5.60 7.16 | 5-4
4-3 | (316) | | C
B | 10
8
5
12 | 3.83 6.80
3.83 6.79
3.83 6.80
3.83 6.79 | 2-3
1-3
3-3
2-2 | (261) | 3747.264 | C | 7 | 4.17 7.4 | 6-6 | (389)
(388)
(388) | | | _ | ed Lines of <u>Cr</u> | I | | | B | 2
7 | 3.83 6.79
3.83 6.99 | 3-2
3-2 | b ³ D_v ³ P° | 4757.326
4743.113
*4751.04 | C
B | 15
12w
5w | 4.23 6.8
4.18 6.7
4.17 6.7 | 1-3 | z ³ p•_e ³ D†
(290) | 7771.74
6789.17
5854.27
5796.757 | A
C
B
C | 15
18
75
40 | | | | | B
B | 4
5
3 | 3.83 7.00
3.83 7.34
3.83 7.34 | 2-1
3-4
2-3 | (262)
b ³ D_t ³ F°
(263) | 8167.94 | A | 4 | 4.19 5.7 | | (391) | 5753.692
5712.635
5681.198 | C | 25
10
60 | A
A | | | | B | 20 | 3.83 7.33 | 1-3
-
5-5 | a ⁵ F-x ⁵ F° † | 4699.589
4723.18
4741.089 | C
B
D | 25
8
13 | 4.19 6.8
4.19 6.8
4.19 6.7 | 2-3 | (393) | 5385.28
5370.356
5078.711 | B
C | 20 ∀
40
40 | | | | | В : | 18
18
10
9 | 3.87 5.59
3.87 5.59
3.87 5.58
3.87 5.58 | 4-4
3-3
2-2
1-1 | (264) | 4488.051
4232.222 | C
C | 30
15 | 4.19 6.9
4.19 7.1 | | (293) | 4884.949
4752.084
4614.73 | ОСВС | 25
50
10 | IIIA | | | | D : | 18
13 | 3.88 5.77
3.87 5.77 | 5-5
4-4 | a5r_w5r°
(265) | 4000.59 | ₽. | 4 | 4.19 7.3 | _ | c ³ D_t ³ P°
(295) | 4611.968
4594.403
4586.99 | Ö
B | 15
8
8 | | | | | F
P | 0r+
(1)
13 | 3.88 6.43
3.87 6.43
3.87 6.42
3.87 6.42 | 5-4
4-3
3-3
1-01 | (266) | 8707.95
8718.70
8732.17
8786.96
8773.56 | A
A
A
A | 12
8
3
4
5 | 4.37 5.7
4.38 5.8
4.39 5.8
4.38 5.7
4.39 5.8 | 3-2
3-1
3-3 | | 4489.471
4403.498
4323.523
4301.178 | 0000 | 5w
40
30
25 | IA
IA
IA
IA | | | | P | | 3.87 6.43 | 4-4 | | 8297.58 | A | 3 | 4.39 5.8 | | c ⁵ D-x ⁵ H | 4261.615
4206.899 | C | 13
10 | A
IA | | | | B
B | 20
용명
설퍼 | 3.88 6.64
3.87 6.62
3.87 6.61 | 5-4
4-3
3-3 | a ⁵ F-8 ⁵ D° †
(267) | | | | | | (397) | 4200.103
4126.925
3999.679 | 000 | 13
6
7 | III | | | | ory
r Int | E P | J Multiplet | Laboratory I A Ref Int | EP J Multiplet Low High (No) | Laboratory
I A Rof Int | E P J Multiplet | |---|---|--|---
---|--|--| | ued | | | Cr II continued | | Cr II continued | | | (10n)*
50w
30w
3N | A
A
A
(III
(III | | *3180.73 \$ A 75
3197.12 A 75
3209.31 A 50
3217.44 A 50
3181.428 B 20
3196.96 A 20
3208.62 A 20 | 2.53 6.41 $5\frac{1}{2}$ $4\frac{4}{9}$ $2\frac{4}{7}$ ° (9) 2.53 6.39 $4\frac{2}{2}$ $3\frac{2}{7}$ (2) 2.53 6.38 $3\frac{2}{2}$ $2\frac{1}{2}$ 2.53 6.37 $3\frac{2}{2}$ $2\frac{1}{2}$ 2.53 6.39 $3\frac{2}{2}$ $3\frac{2}{2}$ 3.53 6.38 $3\frac{2}{2}$ $2\frac{2}{2}$ | 5626.60 P
5497.86 P
•5419.36 A 1
5671.62 P
5525.90 P
5701.46 P | 3.81 6.00 $2\frac{1}{2}$ $3\frac{1}{2}$ $b^4Pz^6P^0$
3.74 5.99 $1\frac{1}{2}$ $-2\frac{1}{2}$ (23)
3.70 5.97 $\frac{1}{2}$ $-\frac{1}{2}$
3.81 5.99 $2\frac{1}{2}$ $-\frac{1}{2}$
3.81 5.97 $2\frac{1}{2}$ $-\frac{1}{2}$
3.81 5.97 $2\frac{1}{2}$ $-\frac{1}{2}$ | | 2N
7w
4w
10w
3n | A
A
IN
IN
IA | | 3935.18 P
3964.64 P
3985.96 P
3964.35 P | 2.69 5.83 2½-3½ 44P-z6F°
2.69 5.83 2½-3½ (10)
2.69 5.79 ½-1½
2.69 5.81 2½-2½ | 5407.62 A 10
5346.54 A 5
5318.41 A 4
5510.68 A 7
5430.90 A 10
5249.40 A 10
5246.75 A 15 | 3.81 6.09 22-32 b ⁴ P-2 ⁴ P°
3.74 6.05 12-12 (23)
3.70 6.02 3-2
3.81 6.05 22-12
3.74 6.02 12-2
3.74 6.09 12-2
3.76 6.05 3-12 | | 4N
5n
5
12
8n
7n | IA
III
III
III
IA | | 3986.03 P
3999.00 P
3985.74 P
3999.07 P
3748.68 A 7
*3761.90 A 8 | 2.69 5.79 12-12
2.69 5.78 2-2
2.69 5.78 2-12
2.69 5.78 12-2
2.69 5.99 22-22 a ⁴ P-z ⁶ P ^o
2.69 5.97 12-14 (11) | 5322.78 P
5153.49 A 15
5097.29 A 7
5305.85 A 25
5191.46 A 2
5116.06 A 2
5346.12 P | 3.81 6.13 $2\frac{1}{2} - 2\frac{1}{2}$ $0^4P - 2^6$ 0^9 3.74 6.14 $1\frac{1}{2} - 2\frac{1}{2}$ (24) 3.70 6.12 $\frac{1}{2} - 1\frac{1}{2}$ 3.81 6.14 $2\frac{1}{2} - \frac{1}{2}$ 3.74 6.13 $1\frac{1}{2} - 1\frac{1}{2}$ 3.70 6.11 $\frac{1}{2} - \frac{1}{2}$ | | 4n
5n
3n
30w
5w | III
IV
IV | | 3761.69 A 7
*3761.90 A 8
3631.49 A 50
3677.93 A 30
3712.97 A 35 | 3.69 6.09 $3\frac{1}{2}$ $-3\frac{1}{2}$ $a^4P-z^4P^0$
3.69 6.05 $1\frac{1}{2}$ -1 $\frac{1}{2}$ (13) | 5346.12 P
5210.87 A 7
4777.78 P
4679.87 P
4621.41 P | 3.81 6.12 2½-1½
3.74 6.11 1½-½
3.81 6.39 2½-3½ b ⁴ P-z ⁴ F°
3.74 6.38 12-3½ (25)
3.70 6.37 3-1½ | | 20w
15w
2N | A
A
III
III | | 3677.69 A 40
3713.04 A 15
3631.73 A 40
3677.86 A 50 | 3.69 6.05 3 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 4805.18 P
4698.64 P
4834.97 P | 3.81 6.38 3½-2½ 3.74 6.37 1½-1½ 3.81 6.37 2½-1½ 3.81 6.76 2½-3½ 5 ⁴ P z ⁴ D ⁰ | | 5w
7w
3w
3w | A
III
III
III | | 3593.02 P
3585.54 A 40
3603.80 A 40
3585.31 A 60
3603.86 A 30
3613.21 A 30
3613.21 A 30 | 3.69 6.14 12-24 (13)
3.69 6.13 2-14
3.69 6.14 22-24
3.69 6.11 12-12
3.69 6.11 2-12
3.69 6.12 22-12 | *4111.01 A 18
4072.56 A 4
4207.35 A 4
4133.41 A 7
4086.14 A 8
4239.81 A 1 | 3.70 6.73 ½-1½
3.81 6.74 2½-2½
3.74 6.73 1½-1½
3.70 6.72 ½-½
3.81 6.73 2½-1½ | | 10 | al B List | - | 3613.26 A 15
3336.16 A 2
3349.68 P | 2.69 6.11 1½-½ 3.69 6.39 2½-3½ a ⁴ P-z ⁴ F° 2.69 6.38 1½-3½ (14) 2.69 6.76 3½-3½ a ⁴ P-z ⁴ P° | 2976.718 B 35
*2961.732 B 50
2953.358 B 35
3011.42 A 7
2984.69 A 10 | 3.81 7.96 $2\frac{1}{2}-2\frac{1}{2}$ $b^4P-y^4D^0$?
3.74 7.91 $1\frac{1}{2}-1\frac{1}{2}$ (27)
3.70 7.88 $\frac{1}{2}-\frac{1}{2}$
3.81 7.91 $2\frac{1}{2}-\frac{1}{2}$
3.74 7.88 $1\frac{1}{2}-\frac{1}{2}$ | | 10
8
12 | 3.44 5.83
3.42 5.79
3.47 5.83
3.44 5.81
3.42 5.78
3.41 5.78
3.41 5.78
3.42 5.79
3.43 5.79 | 1 | 3033.927 B 30
3047.76 A 25
*3059.521 B 25
3047.83 A 20
*3055.521 B 25
3067.18 A 20
3059.41 A 10
m3067.23 P Cr* | 2.69 6.73 1-14
2.69 6.73 2-14
2.69 6.74 22-24
2.69 6.73 12-14
2.69 6.73 22-14
2.69 6.73 22-14
2.69 6.73 12-14
2.69 6.73 12-14 | 3971.906 B 75
3979.741 B 80
3985.325 B 75
2989.194 B 70
3988.056 C 12
3992.40 A 10
3994.737 B 30
3973.64 A 10 | 3.75 7.90 62-62 a ⁴ H-z ⁴ H ^o 3.74 7.88 52-52 (28) 3.73 7.86 42-42 3.72 7.85 32-32 3.75 7.88 62-52 3.74 7.86 52-42 3.73 7.85 42-32 3.73 7.85 42-52 | | 4
30
30
35
35
4
6 | 3.47 6.00
3.44 5.99
3.42 5.97
3.47 5.99
3.44 6.00
3.43 5.99
3.41 5.97 | 3-3-2 a ⁴ D-z ⁶ po
3-3-2 (3)
1-1-1-3
3-3-3-3
3-3-3-3
1-3-3-3
1-3-3-3
1-3-3-3
1-3-3-3
1-3-3-3
1-3-3-3-3 | 4456.84 P
4507.19 P
4571.24 P
4571.24 P
4504.53 P
4545.83 P
4572.83 P
4582.47 P
4573.63 P
4590.00 P | 3.09 5.86 34-44 b4p_c6pe
3.09 5.83 22-32 (16)
3.09 5.83 22-32
3.09 5.83 22-32
3.09 5.81 22-32
3.09 5.81 22-32
3.09 5.78 22-32
3.09 5.78 22-32
3.09 5.78 22-32
3.09 5.78 22-32 | 5369.25 P
5410.39 P
5378.07 P
5409.28 P
5425.29 P
5392.95 P
5419.36 A 1
5430.41 P
5354.68 P | 3.85 6.15 42-42 a ⁴ F.z ⁶ D ⁹ 3.85 6.13 32-32 (29) 3.84 6.12 12-12 3.85 6.13 42-32 3.85 6.14 32-22 3.85 6.14 32-22 3.84 6.11 12-2 3.84 6.11 12-2 3.85 6.16 32-42 | | 125
75
60
100
75
12
35 | 3.44 6.05
3.43 6.03
3.44 6.05
3.43 6.05
3.41 6.05
3.41 6.05
3.47 6.15 | 12-25
22-25
12-15
12-25
12-25
12-25 | 4336.33 P
4364.19 P
4380.33 P
4381.80 P
4381.80 P
4383.69 P
4383.49 P
4378.94 P | 3.09 6.00 3\(\frac{1}{2}\)-3\(\frac{1}{2}\) b\(\frac{4}{2}\)-z\(\frac{5}{2}\)pc (17) 3.09 5.97 1\(\frac{1}{2}\)-1\(\frac{7}{2}\) 3.09 5.97 3\(\frac{1}{2}\)-1\(\frac{7}{2}\) 3.09 5.97 3\(\frac{1}{2}\)-1\(\frac{7}{2}\) 3.09 5.97 3\(\frac{1}{2}\)-1\(\frac{7}{2}\) 3.09 5.99 1\(\frac{1}{2}\)-2\(\frac{7}{2}\) 3.09 5.97 \(\frac{7}{2}\)-1\(\frac{7}{2}\) | 5395.41 P
5368.10 P
4824.13 A 75
4848.24 A 60
4864.32 A 50
4876.41 A 50
4876.41 A 50
4876.48 P | 3.84 6.13 22-32
3.85 6.41 42-42 44-24 47
3.85 6.39 32-32 (30)
3.84 6.38 32-22
3.85 6.37 12-12
3.85 6.39 42-32
3.85 6.39 42-32 | | 6
25
20
3
50
50
40
150 | 3.44 6.13
3.43 6.14
3.41 6.13
2.47 6.13
2.44 6.14
3.43 6.11
3.47 6.14 | 34-34 (4)
14-34 (4)
15-34 (4)
15-34 (4)
15-34 (4)
15-34 (4)
15-34 (4)
15-34 (4) | *4111.01 A 18
4173.80 A 2
4217.07 A 1
4113.34 A 5
4171.92 A 3
4215.77 A 2
4113.59 A 1 | 3.09 6.09 33-23 b4D-z ⁴ P°
3.09 6.05 23-15 (18)
3.09 6.02 14-5
3.09 6.09 25-25
3.09 6.02 12-15
3.09 6.02 2-15
3.09 6.02 12-25 | 4884.57 A 10
4813.35 A 25
4836.22 A 25
4856.19 A 30
4242.38 A 30
4261.92 A 30
4275.57 A 30 | 3.84 6.37 $2\frac{1}{2}-1\frac{1}{2}$
3.85 6.41 $3\frac{1}{2}-4\frac{1}{2}$
3.84 6.38 $1\frac{1}{2}-2\frac{1}{2}$
3.85 6.76 $4\frac{1}{2}-2\frac{1}{2}$ $4^{4}F-z^{4}D^{6}$
3.85 6.76 $3\frac{1}{2}-2\frac{1}{2}$ (31)
3.84 6.73 $3\frac{1}{2}-1\frac{1}{2}$ | | 75
40
135
100
75
60 | 2.44 6.12
2.43 6.11
2.47 6.41
2.44 6.39
2.43 6.38
2.41 6.37 | 31-41 a ⁴ D-z ⁴ F* 32-33 (5) 12-32 (5) | 4170.58 P
4030.38 P
4063.94 P
4053.45 A 1
4075.63 P
4061.77 P | 3.09 6.15 3 3-4 5 6 19 3.09 6.13 23-3 (19) 3.09 6.14 12-23 3.09 6.14 12-23 3.09 6.12 3-12 3.09 6.13 3-3-3 | 4284.21 A 30
4233.25 A 10
4252.62 A 10
4269.28 A 10
4224.09 P
4246.41 A 3 | 3.84 6.76 $3\frac{1}{2} - \frac{1}{2}$ 3.84 6.76 $3\frac{1}{2} - 3\frac{1}{2}$ 3.84 6.76 $3\frac{1}{2} - 2\frac{1}{2}$ 3.84 6.73 $1\frac{1}{2} - 1\frac{1}{2}$ 3.84 6.76 $3\frac{1}{2} - 3\frac{1}{2}$ 3.84 6.76 $3\frac{1}{2} - 3\frac{1}{2}$ 3.85 7.88 $4\frac{1}{2} - 2\frac{1}{2}$ | | 50
40
40
5
10 | 2.47 6.39
2.44 6.38
2.43 6.37
2.47 6.38
2.44 6.37 | | 4054.11 A 8
4078.87 A 3
4087.63 A 2
4051.97 A 13
4077.50 A 4
4088.90 A 1 | 3.09 6.14 3½-3½
3.09 6.12 3½-1½
3.09 6.11 1½- ½ | *3072.47 A 8 2966.051 B 40 3003.924 B 35 3034.54 A 15 | 3.85 7.86 3½-4½ (32) 3.85 8.01 4½-3½ a ⁴ F-y ⁴ D° 3.85 7.96 3½-2½ (33) 3.84 7.91 2½-1½ | | | 3.53 5.86
3.53 5.86
3.53 5.83
3.53 5.86
3.53 5.86
3.53 5.86 | 3 45-45 (6)
5 35-35
1 25-25
3 55-45
5 45-35 | 3715.19 A 20
3738.38 A 25
3754.59 A 20
3765.62 A 8
3736.56 A 1
3755.13 A 2 | 3.09 6.41 3½ 4½ b ⁴ D-z ⁴ F°
3.09 6.38 3½ 3½
3.09 6.38 1½ 3½
3.09 5.37 ½ 1½
3.09 8.39 3½ 3½
3.09 6.38 3½ 3½ | 5055.44 A 12
2999.30 A 8
 | 3.84 7.95 2½-2½ a ² D-z ⁴ P° 3.89 6.05 1½-1½ (34) 3.87 6.05 2½-1½ | | | 2.53 5.85
2.53 5.75
2.53 5.86
2.53 5.86
2.53 5.85 | 3 | 3766.65 A 4
3753.26 P
3767.18 P | 3.09 6.37 13-13
3.09 6.38 34-34
3.09 6.37 22-12
3.09 6.76 34-34 b4p-z4p- | 5806.31 P
5610.01 P
5464.36 P
5500.61 P | 3.89 6.09 15-25 | | (1)
3 | 2.53 6.00
2.53 6.1
2.53 6.1
2.53 6.1 |) 4½-3½ a*G-z°P° | *3379.835\$ B 60
3393.86 A 30
3402.43 A 25
3378.337 B 25
3394.32 A 35
m3403.29 P Cr | 3.09 6.76 34.34 b4p.z4p° 3.09 6.74 32.32 (31) 3.09 6.73 12.12 3.09 6.73 32.42 3.09 6.74 32.42 3.09 6.74 32.42 3.09 6.75 32.12 3.09 6.76 32.32 3.09 6.76 32.32 3.09 6.76 32.32 | 5446.57 P
5543.86 P
5488.97 P
5566.06
P
4891.55 P | 3.87 6.13 $2\frac{1}{2}$ $-3\frac{1}{2}$ $a^{2}D - z^{6}D^{9}$
3.89 6.14 $\frac{1}{2}$ $-2\frac{1}{2}$ (35)
3.87 6.14 $\frac{1}{2}$ $-\frac{1}{2}$ $\frac{1}{2}$
3.89 6.12 $\frac{1}{2}$ $-\frac{1}{2}$
3.87 6.13 $\frac{2}{2}$ $-\frac{1}{2}$
3.87 6.39 $2\frac{1}{2}$ $-\frac{1}{2}$
3.87 6.39 $2\frac{1}{2}$ $-\frac{1}{2}$ | | | 2.53 6.1
2.53 6.1
2.53 6.1
2.53 6.1
2.53 6.1
2.53 6.1
2.53 6.1 | 5 45-45
3 35-35
4 25-25
5 35-45 | 3361.770 B 30
3379.371 B 30
3393.00 A 35 | 3.09 6.76 37-37
3.09 6.74 14-37
3.09 6.73 2-12 | 4954.34 P
4962.38 P
4985.46 P
4941.03 P | 3.87 6.39 $2\frac{1}{2}$ - $3\frac{1}{2}$ a^2 D- z^4 r^6 3.89 6.38 $1\frac{1}{2}$ - $3\frac{1}{2}$ (36) 3.87 6.38 $2\frac{1}{2}$ - $3\frac{1}{2}$ 3.89 6.37 $1\frac{1}{2}$ - $1\frac{1}{2}$ 3.87 6.37 $2\frac{1}{2}$ - $1\frac{1}{2}$ | | ory
f Int | Low | P
High | J | Multiplet (No) | Labor
I A | rator
Ref | y
Int | E
Low | P
High | J | Multiplet
(No) | Labo
I A | rator
Ref | y
Int | Low E | p
High | J | Multiplet
(No) | |-----------------|----------------------|----------------------|---|--|-------------------------------|--------------|----------------|----------------------|--------------|---|--|-------------------------------|--------------|--------------|----------------------|----------------------|--|---| | nued | | | | | Cr II con | ntinu | eđ | | | | | Cr II co | ntinu | eđ | | | | | | 1 | 3.87
3.89 | 6.76
6.74 | 2월-3월
1월-2월 | a ² D-z ⁴ D° (37) | 2985.02 | A | 7 | 4.14 | 8.27 | | ъ ⁴ д_z ² р°
(56) | 3529.73
3540.28 | A
P | 3 | 4.41 | 7.90
7.88 | 5}-6}
43-5} | b ² H-z ⁴ H ⁹
(89) | | | 3.87 | 6.74 | 23-25
13-15 | (0.7 | 2970.66 | A | 3 | 4.13 | 8.28 | 2 } -1 | b4g_z2pe | 3552.50
3558.22 | P | | 4.41 | 7.88 | 5\$-5\$
4\$-4\$ | | | • | 3.87
3.89 | 6.73 | 25-15
15- 5 | | 2968.67
2963.46 | A
A | 15.
20 | 4.16
4.15 | 8.31 | 5-5-5-5-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4 | b ⁴ G-y ⁴ G°
(58) | 3570.57
3571.64 | P
P | | 4.41 | 7.86
7.85 | 54-44
44-34 | | | | | | - | 0 4 | 2956.60
•2965.19 | A
A | 10
3 | 4.14
4.15 | 8.31
8.31 | 45-05 | | 3387.73 | A | 5 | 4.41 | 8.05 | 5월-4월 | b ² H-z ⁴ T ³
(90) | | Cr* | 3.99
4.08 | 6.41
6.39 | 31-43
21-31
31-31
31-31
31-21 | a ² F-z ⁴ F°
(38) | 2955.71 | A | 3 | 4.14 | | 3 1 _2 <u>1</u> | . 4 4 | 3357.72 | Ą | .0 | 4.40 | 8.07 | 4월-4월 | b ² H-2 ⁴ G ⁹ | | | 3.99
4.03 | 6.39
6.38 | 3 \$ -3 \$ | | *2961.738
2959.97 | B
A | 50
18 | 4.16
4.15 | 8.32 | 44-34 | b ⁴ G_y ⁴ F°†
(59) | 3368.73
3372.13 | A
A | 10
15 | 4.41
4.40 | 8.07
8.06 | 39-49
4 <u>2</u> -39 | (91) | | 4 | 3.99
4.02 | 6.38
6.37 | 3 2 -12 | | 2951.95
2955.12
2951.40 | A
A | 10
10
10 | 4.14
4.15
4.14 | 8.33 | 51-41
43-3
31-2
43-4
32-3 | 7 | 3335.46
3339.90 | A
A | 30
30 | 4.41 | 8.11 | 51-41 | b ² H-z ² G° | | . 3
. 10 | 4.02 | 6.74
6.73 | 31-21
31-11 | a ² F-z ⁴ D°
(39) | 5501.40 | | | | | —
— | ! | 3324.67 | P | . 50 | 4.40 | 8.11 | -22 | | | 1 | 4.03 | 7.91 | | a ² F-y ⁴ D° | °3421.62 | A | 4 | (4.30
4.38 | 7.88 | 5-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6 | a ² H~z⁴H°
(60) | 3157.52
3147.84 | A
A | 1 | 4.41 | 8.32
8.33 | 5}-5}
4}-5} | b ² H_y ⁴ @ ⁹
(93) | | 30 | 3.99 | 8.07 | 31-41 | a ² F-2 ⁴ G | 3460.03
3450.84 | A
A | 3 | 4.30
4.28 | 7.86 | 54-44
42-3 | | 3135.74 | Ą | 30 | 4.41 | 8.34 | 54-64 | b2H-z2le | | 8
3
2 | 4.02
3.99
4.03 | 8.06
8.06
8.04 | 31-41
21-31
31-31
21-21 | (41) | 3270.14
3264.26 | A
A | 40
35 | 4.30
4.28 | | 51-41
44-3 | a ³ H_z ⁴ G• | 3134.33
3143.91 | A
A | 25
7 | 4.40
4.41 | 8.33
8.33 | 5g-5g | (94) | | . 25 | 3.99 | 8.11 | | a ² F-z ² G | 3250.79 | Ã | 10 | 4.28 | | 45-45 | • | 3026.647
3041.74 | B | 80
50 | 4.41
4.40 | 8.49
8.45 | 5}-5} | b ² H−2 ³ H°
(95) | | 10 | 4.02 | 8.09 | 3}-4}
22-35
32-32 | (43) | 3245.31
3247.01 | A | 5
4 | 4.30 | 8.08 | 5}-6 | a ² H-z ⁴ I*
(62) | 3050.75
3017.80 | D
A | 4 5 | 4.41 | 8.45
8.49 | 5\$-4 \$
4 \$- 5\$ | | | | | | - | 4 4 | 3268.48
3288.04 | A
A | 10
15 | 4.28
4.30 | | 43-4
52-4 | | *2968.21 \$ | A | 3 | 4.41 | 8.57 | | b2H_y4H0 | | 75
20 | 4.06
4.05
4.06 | 6.41 | 41-41
31-31 | b ⁴ F-z ⁴ F° (43) | 3238.77 | Ą | 50 | 4.30 | 8.11
8.09 | 51-4 | a ² H-z ² G*
(63) | 2958.54 | A | 3 | 4.41 | 8.58 | 5출-4출 | pgH-x 30 | | 25
40
15 | 4.05 | 6.38
6.37
6.39 | 24-24
14-19
44-34 | | 3234.06
3219.79 | A | 50
10 | 4.28
4.28 | 8.11 | #2-#2 | | 3625.30 | P | | 4.48 | 7.88 | -
41-51 | (97)
. _გ ვე _{ლ გ} აფი | | 20
12 | 4.05
4.06 | 6.38 | 35-25
35-15 | | 3053.65 | A | 10 | 4.38 | 8.32 | 42-5 | a ³ H-y ⁴ G°
(64) | 3631.51
3644.12 | D
P | (1) | 4.46 | 7.86 | 42043 | . (98) | | 15
10 | 4.05
4.06 | 6.41
6.39 | 3 - 4 - 4 - 5 - 3 - 3 - 5 - 5 - 5 - 5 - 5 - 5 - 5 | | 3050.137
3040.92 | B
A | 100
70 | 4.30 | 8.33 | 51-6
42-5 | a ³ H-y ⁴ G°
(64)
(64)
(65) | 3635.43
*3658.19 | · P | 20 | 4.46 | 7.85
7.85 | 3 1 - 3 1 4 2 - 3 1 2 | ·
9 | | 13 | 4.05 | 6.38 | 1½-2½ | b ⁴ F-z ⁴ D° | 3057.86 | A | 12 | 4.30 | | 5-5-5 | 3 3 . | 3428.94 | A | 7 | 4.46 | 8.06 | 3] -3] | a20-2400 | | 100
75
35 | 4.06
4.05
4.06 | 6.76
6.74
6.73 | 43-33
33-33
32-13 | (44) | 2953.706
2969.67 | A | 45
15 | 4.28
4.30 | | 41-4
52-4 | (66) | 3399.54 | Ā | 18 | 4.48 | 8.11 | 44-44 | 826-2569 | | 25
20 | 4.05
4.05 | 6.72 | 13-3
32-3 | | 3400.08 | A | | 4.28 | 7.91 |
 | a2p_v4ne | 3395.62
3415.47 | A
D | 20 | 4.46 | 8.09
8.09 | 42-32 | (100) | | 20
18 | 4.06
4.05 | 6.74
6.73 | 21-25
15-15 | | 3482.58
3430.42 | A
A | 12
3 | 4.36 | 7.91 | 1 1 | a ² P-y ⁴ D°
(67) | 3199.87 | A | 10 | 4.46 | 8.31 | 3 1 -21 | a ² G_y ⁴ G ^o
(101) | | 3 | 4.06
4.05 | 6.76
6.74 | 23-35
12-25 | | 3369.05 | A | 18 | 4.36 | 8.03 | 12- | | 3079.34
3087.90 | A | 15
20 | 4.48 | 8.49
8.45 | 42-52
32-42 | (101)
23G_Z3H*
(103) | | 8 | 4.06 | 7.88 | 4 2-5 2 | 64F-E4H° | 3291.75
3186.75 | A | 40 | 4.28 | | - 2 - 2 | (68) | 3104.29
3077.24 | ,A | 3 | 4.48 | | 42-42 | a ² G-z ² Fe | | 15
10 | 4.06
4.05 | 8.01
7.96 | 41-31
33-21
33-1 | b ⁴ F-y ⁴ D°
(48) | 3154.10
3163.93 | Ä | 18
2
10 | 4.36
4.28
4.28 | 8.19 | 1-1 | a ² P_y ⁴ P°
(69) | 3077.79
3061.14 | A
A
P | 18
25 | 4.48
4.46
4.46 | 8.49
8.47
8.49 | 32-32
32-32 | (103) | | 15
8 | 4.06
4.05 | 7.91
7.88 | 25-1
12- | 9 | 3159.03 | A | 20 | 4.36 | 8.27 | 13-3 | a ² P-z ² D° | 2954.67 | D | 10 | 4.48 | 8.65 | | 2 ³ G_y ³ G ³
(104) | | 20
4 | 4.05
4.06 | 8.01
7.96 | 3 5 -35 | | 3125.02
3194.63 | A | 15
10 | 4.28 | | 12-1 | a ³ P-z ³ D° | •2957.56 | A | 5 | 4.46 | 8.63 | 3 1 -3 1
 | (104) | | 25
7 | 4.06
4.05 | 8.11
8.07 | 41-51 | b ⁴ F-z ⁴ G*
(47) | 3152.21
3103.48 | A
A | 40 | 4.36
4.28 | 8.28
8.26 | 1}-1 | a ³ p_z ³ pe
(71) | 6053.48
6129.23 | A | 10 | 4.73
4.73 | 6.76
6.74 | 3 1 - 3 2
3 2 - 3 2 | c ⁴ D-z ⁴ D ^o
(105) | | 10
15 | 4.06 | 8.06 | 25-35
15-35 | | 3172.08
3084.46 | Ā | 40
15 | 4.36 | 8.26 | 1 | (/1/ | 6195.18
6239.77 | Ã | 3
1 | 4.74 | 6.73 | 12-12 | (200) | | 15
10 | 4.06
4.05 | 8.07
8.06 | 43-43
33-33 | | 3121.05 | A | 8 | 4.36 | | | | 6112.26
6176.95 | Ä | 3 | 4.73 | 6.74 | 3 \$ -2 \$
2 \$ -1 \$ | · · · · · · · · · · · · · · · · · · · | | 10 | 4.06 | 8.04 | 3 2 -3 <u>5</u> | . 4 2 | 3131.84 | A . | 10 | 4.36 | | 13-2 | (73) | 6226.66
6070.08 | A | 3 | 4.74 | 6.72
6.76 | 23-3 | : | | 4
8w
18 | 4.06
4.05
4.05 | 8.11
8.09
8.11 | 32-45
32-32 | b ⁴ F-z ² G°
(48) | 3074.91
3074.67 | A | 3 | 4.36
4.36 | | 12-2 | a ² P-x ⁴ D°
(73) | 6147.15
6208.18 | A | 3
3 | 4.74
4.74 | 6.74
6.73 | 12-25
2-12 | ·
· | | 12 | 4.06 | 8.09 | | | 3034.05 | A | 5 | 4.36 | 8.43 | 12-1 | a ³ p_z ⁴ ge | 3895.16 | A | 3 | 4.74 | 7.91 | <u>}</u> −1½ | (108) | | 1 | 4.06 | 8.23 | 3 <mark>출-1출</mark>
 | b ⁴ F-z ³ D° (49) | 3008.67 | A | 3 | 4.36 | 8.47 | 12-2 | a ² p_z ² r•
(75) | 3513.03
3565.31 | A
A | 10
5 | 4.73 | 8.24 | 34-24
34-14 | (107) | | 15 | 4.16 | 6.41 | 51-41 | b ⁴ G-z ⁴ F° (50) | 3557.85 | P | | 4.40 | | 31-4
31-3 | | 3584.01
3518.62 | P
A | 3 | 4.74 | 8.18
8.24 | 13-3
33-39
13-13 | | | 12
8
8 | 4.15
4.14
4.13 | 6.39
6.38
6.37 | 32-25 | (50) | 3566.37
•3466.25 | A | 2 | 4.40 | | 21 o | (76) | 3571.37
3588.30 | A
A
P | 3 | 4.74 | 8.19 | *- * | | | 1 3 | 4.15
4.14 | 6.41 | 25-15
45-45
35-35 | | 3508.67 | A
P | ۵ | 4.39 | | 22-1 | b ³ F-y ⁴ D°
(77) | 3524.54
3575.69 | P | | 4.74 | 8.24 | 15-25
5-15 | | | | 4.13 | 6.38 | 25-25 | • | 3376.27 | A | 10 | 4.40 | | 31-4 | b ³ F-z ⁴ I°
(78)
b ³ F-z ⁴ G°
(79) | *3506.61 | A | 1 | 4.74 | 8.26 | 1출- 글 | c ⁴ D_z ² po
(108) | | 50
50
40 | 4.16
4.15 | 7.90
7.88 | 5g6g | b ⁴ G-z ⁴ H° (51) | 3357.40
3367.42 | A
A | 40
13 | 4.40
4.39 | | 31-4
22-3 | 79) | 3478.17
3528.23 | A
A | 3 | 4.73 | 8.27
 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - | (108)
(108)
(108)
(109) | | 40
13 | 4.14
4.13
4.16 | 7.85 | | | 3324.346
3335.28 | В | 50
40 | 4.40 | | 31-4 | b ² F-z ² G°
(80) | *3489.45 | A | а
0 | 4.74 | | | | | 12 | 4.15 | | 42-44
32-3 | | 3212.53 | A
A | 50 | 4.40 | | 37-37 | ; (ου)
L _h 3 _{r-υ} 4 _{De} | 3438.46
3445.04 | A | ,5 | 4.73
4.73 | 8.31
8.31 | 35-35 | . (110)
(110) | | 2 | 4.15 | | 4 2 -32 | b ⁴ G-y ⁴ D° | 3247.33 | A | 8 | 4.39 | 8.19 | 3 1 -1 | b ³ F-y ⁴ P• (81) | 3426.13
3437.93 | D
A | 8 | 4.73 | 8.33
8.32 | 31-41
21-31 | c ⁴ D-y ⁴ 5°
(111) | | 5
7 | 4.16 | 8.10
8.08 | 51-61 | b ⁴ G-y ⁴ D°
(52)
b ⁴ G-z ⁴ I°
(53) | 3183.325
3216.55 | B
A | 40
20 | 4.40 | 8.23 | 31-3 | b ² F-z ² D*
(82) | 3444.34
3449.28 | A | 4
2 | | 8.32 | 1출-3출
출-1출 | | | 5a | 4.15 | 8.05 | 32-42 | (53) | 3179.45 | A | 8 | 4.39 | | 2 <u>4</u> -2 | ************************************** | *3376.72 | A
P | 5 | 4.72 | 8.38 | 3 } -3} | (112) | | 30
Cr+ | 4.16
4.15 | 8.07 | 52-54
42-4 | b ⁴ G-z ⁴ G ⁹
(54) | 3149.12 | A
A | 15
4 | 4.39 | | | | 3382.79
3387.96 | Ā | 3 | 4.74 | 8.38
8.38 | | | | 30
30 | 4.14
4.13 | 8.06
8.04 | 33-3
23-2 | | 3145.77 | A | 15 | 4.40 | 8.32 | 31-2 | b ² F-y ⁴ G•
(84)
b ² F-y ⁴ F•
(85) | 3278.79 | A | 3 | 4.72 | 8.49 | 3] -3] | c4pg2po
(113) | | 5
3 | 4.16
4.15
4.14 | 8.06 | 45-3 | | 3143,74 | Α. | 10 | 4.39 | 8.32 | 3 <u>4</u> -1 | (85) | 3201.26
3205.11 | A
A | 25
25 | 4.73 | 8.58
8.58 | 33-43
23-33 | odp_x450
(114) | | 12
8 | 4.15
4.14 | 8.11 | 44-5
34-4 | | 3098.16
3095.22
3098.88 | A
A | 18
3
3 | 4.40
4.39
4.40 | 8.38 | 21-2 | b ³ F-x ⁴ D ⁶
(86) | 3212.91
3229.89
3200.45 | A | 18
10 | 4.74 | 8.58
8.56
8.58 | 19-29 | | | 8 | 4.13 | 8.06 | 45-03 | | *3094.94 | Â | 10 | 4.39 | | 35-1 | | 3200.45
3208.02
3226.36 | A
A
A | 10
8
4 | | 8.58
8.56 | 21-21
12-12 | | | 7
5 | 4.16 | 8.09 | 5-4-4-4
42-3 | b*G-2 ² G*
(55) | 3015.510
3028.125 | B | 50
40 | 4.40 | 8.47 | 3 1 - 3 | b ² F-z ² F* | 3164.48 | | 1 | 4.74 | 8.64 | | | | 10
7
10 | | 8.11
8.09
8.11 | 32-3 | b ⁴ d-z ² d°
(55) | 3031.63
3012.01 | A | 1 | 4.40
4,39 | 8.47 | 3 1 - 2
2 2 - 3 | | *3196.40 | A | 3 | 4.74 | 8.60 | | (115) | | 15 | | 8.09 | 32-3 | - | 3004.47 | A | 3 | 4.39 | 8.50 | 2] _3 | b ² F_y ⁴ H°
(88) | *3072.47
3102.58 | Å | 8 | 4.73 | 8.75 | 29-35
15-25 | c ⁴ D_y ³ y∘
(118) | | | | | | | | | | | | | ,00/ | | | | - | | | | | | | | | REVI | SE | D M C | JLTI | PLE | T T | ABLE | | | | | | | 45 | |----------|----------|-------------------------------------|---|-------------------------------|--------------|----------|--------------|----------------------|----------------------|--|-------------------------------|--------------|---------------|--------------|--------------|---|---| | 102'3 | | E P | J Multiplet | Labor
I A | atory
Rof | | I.OW
E | P
High | J | Multiplet
(No) | Labor
I A | atorj
Ref | Int | E F | High | ĵ | Multiplet (No) | | 12 | Int | Low High | (100) | | tinue | | 2011 | | | (110) | Cr II con | | | | **** | | (2007) | | mue | 40
40 | 4.78 8.07 | shed 580-2400 | 3461.28 | A | 3 | 4.92 | 8.49 | 3 1 -31 | 25-22pe | 4127.08 | A | 3 | 5.65 | 8.64 | 21-21 | 2D_v2De | | i
L | 10 | 4.75 8.06
4.75 8.04 | 42-43 b ³ G-2 ⁴ G°
32-33 (117)
32-32 | *3466.25
m3482.56 | A
P | Gr+ | 4.91 | 8.47 | 25-25
35-25 | c ² F-z ² Fe
(148) | 4170.86
4181.50 | Ā | 1 | 5.64 | 8.60
8.60 | 15-15
25-15 | c ² D-y ² D°
(181) | | ı | 80 | 4.76 8.11 | # pgG-zgGo | 3445.20 | P | | 4.91 | 8.49 | 45-35 | | 4116.66 | A | 3 | | 8.64 | 1-2-2-2 | | | ì | 35 | 4.75 8.09
4.76 8.09 | 3\$-3\$ (118)
45-3\$ | 3374.99
3377.36 | A
A | 8
5 | 4.92
4.93 | 8.58
8.58 | 31-42
33-25 | c ² F-x ⁴ F°
(149) | 4048.02
4056.07 | P
A | 4 | | 8.69
8.68 | 21-31 | c ² D-x ⁴ G°
(182) | | à | | 4.75 8.11 | 3 <u>4</u> -4 <u>4</u> | °3376.72 | A | 5 | 4.91 | 8.56 | 500 t 5 | | 4066.16 | P | | 5.65 | 8.68 | 25-25 | | | k
L | 30 | 4.76 3.49 | 43-53 b ³ G-2 ² H° 33-44 (119) 42-44 | 3306.95
3314.57 | A.
A | 50
35 | 4.92 | 8-65 | 35-45
26-36 | c ² F-y ² C°
(150) | 3979.51
*4012.50 \$ | A
A | 20
30 | 5.64 | 8.75
8.71 | 22-31
11-21
21-21 | c ² D-y ² F°
(183) | | f | 5 | 4.76 8.45 | 42m42 | 3329.45 | A . | 4 | 4.92 | 8.63 | | c2F_y2H° | 4022.36 | . A. | 3
7 | | 8.71 | | c ² D-x ² F° | | į. | 35
30 | 4.76 8.49 | 3ક્⊾ેટ્રકે (120) | 3275.92 | A | 10
3 | 4.93 | 8.69 | | (101) | 352 3.1 3
m3484.16 | A
P | Orth | | 9.15 | | (184)
c ² D-w ⁴ F° | | | 5
8 | 4.75 8.49 | o‱gg | 3258.01
m3269.75 | A
P | Crop | 4.91 | 8.68 | 31-31
31-31 | | *3489.45 | Å | 2 | | 9.17 | 1출2충 | (185) | | ř | 5 | 4.76 8.54
4.75 8.58 | 3 5 -45 (131) | 3227.48
3241.38 | A
A | 3 | 4.93 | 8.75
8.71 | 31-31
31-31 | c ² F_y ² F°
(153) | 3125.79
3113.59 | A
A | 5
5 | 5.65
5.64 | 9.59
9.60 | 2 - 1 - 1 - 4 | c ² D-y ² P°
(186) | | 1 | 8 | 4.76 8.58 | 42-42 b ² C-x ⁴ F° (132) | 3255.62
3213.46 | Ā | 3
3 | 4.92 | 8.71
8.75 | 35-25
25-35 | ,,,,, | | | - | | | - | | | Ł
L | 25
15 | 4.76 8.65
4.75 8.63 | (122)
41-41 b20-y20°
31-31 (123)
41-31 | 3044.34 | A | 10 | 4.93 | 8.98 | | c ² F-x ² G°
(154) | 6089.69
6179.17 | A
A | 15
10 | 6.46 | 8.49
8.45 | 43-51
32-42 | d ² G-z ² H° (187) | | ļ.
P | 13
Cr | 4.76 8.63
4.75 8.65 | 4½-3½
3½-4½ | 3038.04 | A . | 6 | 4.91 | 8.97 | -3 }- 3∳ | (154) | 6188.00 | P | _ | 6.46 | 8.45 | 45-45 | | | A. | 35 | 4.76 8.69 | | 4227.73 | A | 1 | 4.96 | 7.88 | 6 } -5} | b ² I-z ⁴ H°
(155) | 6081.51
6138.77 | A
A | 3
2 | 6.46
6.46 | 8.49
8.47 | 32-25 | d ² G-z ² F° (188) | | A. | 20
1 | 4.75 8.69
4.76 8.69 | 45-45 | 3650.37 | A · | 40 | 4.96
4.97 | 8.34
8.33 | 6}-6} | (156)
(156) | 5620.63
5678.42 | A
A | 13
10 | 6.46
6.46 | 8.65
8.63 | 41-41 | d ² G_y ² G°
(189) | | A.
A | 40
50 | 4.76 8.75
4.75 8.73 | | 3664.95
3661.44
3653.85 | A. A.
P | 30
3 | 4.96 | 8.33
8.34 | 64-54
53-62 | (130) | 4901.65 | A | 15 | 6.46 | 8.98 | | | | P
P | Gr+ | 4.76 8.73
4.75 8.69 | 46-46
38-38 | *3503.36 \$ | A | 3 | 4.96 | 8.49 | | b ² I-z ² H° | 4912.49 | Ä | 13 | 6.46 | 8.97 | | d ² G-x ² G°
(190) | | Ř. | 8 | 4.75 8.68 | 3 ۇ -2 ۇ | 3539.00
*3506.61 | A
A | 4 | 4.97
4.97 | 8.45
8.49 | 5-4-4-5
5-5-5-5 | b ² I-z ² H° (157) | 4465.78
4511.82 | A
P | 4 | 6.46
6.46 | 9.22
9.19 | 4353
3243 | d ² G-x ² H ²
(191) | | A. | 35
80 | 4.76 8.75
4.75 8.71 | 41-31 b ² G-y ² F°
31-24 (126)
32-32 | *3310.65 | Ā | 35 | 4.96 | 8.69 | | b ² I-y ² H° (158) | 4516.56 | P | _ | 6.46 | 9.19 | 45-45 | | | A. | 34 | 4.75 8.75 | | 3314.06
3258.77 | A | 18
30 | 4.97 | 8.69 | 53-43
cl =1 | 136)
27 -480 | 4256.16
4268.93 | A
A | 5
1 | 6.46
6.46 | 9.35 | 3½-3½ | d ² G-₩ ³ G°
(192) | | P | | 4.92 7.88
4.90 7.86 | | 3283.04
3261.56 | A
A
A | 30
4 | 4.97 | 8.73
8.75 | 51-41 | b ² I-x ⁴ 6°
(159) | 4070.90
4049.14 | A
A | 10
18 | 6.46
6.46 | 9.49
9.50 | 4½-3½
34-24 | d ² G-w ² Fe
(193) | | P | | 4.92 7.86
4.90 7.85 | 45-43
52-33 | *2965.19 | A | 2 | 4.96 | 9.13 | | b ² I-1° | 4067.05 | P | | 6.46 | 9.49 | 3 2-3 2 | | | Þ | | 4.92 7.85 | 42-32 | | | | | | | (100) | 4038.03
4003.33 | A
A | 25
25 | 6.46
6.46 | 9.52
9.54 | 43-53 | զ ² ը_ա ² н•
(194) | | P
P | | 4.92 8.08 | 2층-4층 (128) | 4195.41
4278.10 | A
A | 10 | 5.30
5.31 | 8.24
8.19 | 31-21
11-12 | b ² D-y ⁴ P° (161) | 4007.04 | P | | 6.46 | 9.54 | | | | A | 1 | 4.92 8.05 | 41-45 | 4145.77 | A | 25 | 5.30 | 8.27 | 2}~2} | b ² D-z ² D°
(163) | 3089.75 | A . | 1 | 6.46 | 10, 45 | 4 }- 3 }
 | d ² G-u ² F°
(195) | | P | ~ | 4.92 8.11
4.90 8.07 | 43-53 c ² G-2 ⁴ G°
33-12 (139)
45-42 | 4224.85
4209.02 | A | 30
30 | 5.31
5.30 | 8.23 | 15-15
23-15 | (162) | 5418.87 | A | 7 | 6.66 | 8.58
8.58 | 41-41 | c ⁴ F-X ⁴ F*
(196) | | P. | 3 | 4.93 8.06
4.90 8.06
4.93 8.06 | <i>აგ</i> ⊶აგ | 4161.05
4135.77 | A
P | 2 | 5.31 | 8.27 | 12-02
21-11 | . h2n_22pe | 6271.83
6168.46
6415.59 | A
A
A | 5
2
1 | 6.58
6.66 | 8.58
8.58 | 22-22
42-32 | (190) | | P | | 4.90 8.04 | 32-32 | 4185.50
4151.00 | P
A | 5 | 5.31 | 8.26 | 12-13 | b ² D-z ² P° (163) | 6282.92
6274.94 | Ā
Ā | 2
1 | 6.61 | 8.58
8.58 | 3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | | | Å. | 7
5 | 4.93 8.11 | | 4069.49 | A | 8 | 5.30 | 8.31 | 2g~2g | b ² D-y ⁴ G* | 6088.00 | A | 7 | 6.66 | 8,69 | | c ⁴ F-y ² n°
(197) | | A | 8 | 4.90 8.24 | 34-24 c2c-v4pe | 4081.21 | A | 1 | 5.30 | 8.32 | 3}-3} | b ² D-y ⁴ G°
(164)
b ² D-y ⁴ F°
(165) | 6069.69 | A . | 1 | 6.66 | 8.69 | | | | A. | а | 4.90 8,31 | , , , 1312 | 4082.30
4098.44 | A
A | 10
8 | 5.30
5.31 | 8.32
8.32 | 33-25
12-12 | (165) | 5895.90
5841.86 | A | 4
5 | 6.66
6.61 | 8.75 | 42-52
32-42
22-32 | c ⁴ F-x ⁴ G ⁹
(198) | | A | 3 | 4.90 8.32 | 35-25 coc-yer | 4002.48
4017.96 | A | 5
3 | 5.30
5.31 | 8.38
8.38 | 31-31 | b ² D-x ⁴ D°
(166) | 5827.24
5110.43 | A
A | 5
2 | 6.66 | 8.69
9.07 | | c4F_w4D* | | A. | 5
3 | 4.92 8.38
4.90
8.38 | 43-33 ccG-x4D | 3865.59 | A | 75 | 5.30 | 8.49 | 24-24
15-05 | h2n_z2re | 4857.60 | A | 2 | 6.66 | 9.20 | | (199)
c1F-w1F | | P | • | 4.90 8.38 | | 3905.64
3892.14 | Ā
A | 25 | 5.31 | 8.47 | 13-25 | b ² D-z ² F° (167) | | | | | | - | (200) | | A | 30
25 | 4.92 8.49
4.90 8.45 | i 3½4⅓ (135) | 3701.90 | A | 4 | 5.30 | 8.63 | 21_34 | h2n_v2ge | 5137.09
5091.14 | A
A | 7 | 6.79
6.80 | 9.20 | 23-25
13-15 | c ⁴ P-x ⁴ P° (201) | | Α. | 2 | 4.03 8.48 | | 3694.98 | Ą | 4 | 5.30 | 8.64 | 33-33 | pap-yapo | 5076.15 | A | 4 | 6.79 | 0.00 | 3½-1½ | | | A. | 35
25 | 4.93 8.49
4.90 8.47 | ' 3½~2½ (136) | 3707.13
m3631.48 | A
P | 3
Cr* | 5.31 | 8,84 | 1½-3½ | (169) | Strongest | Uncl | assifie | Lines | of <u>Cr</u> | · II | | | A
A | 18
18 | 4.93 8.65
4.90 8.63 | 43-43 c ² G-y ² G°
32-33 (137)
32-45 | 3657.94 | Ā | 1 | 5.31 | 8.68 | 12-25 | (170) | 6305.60
5913.87 | A
A | <u>4</u>
3 | | | | | | Ä | 30 | | 32-42 | 3576.23
3622.45 | P
A | 1 | 5.30
5.31 | 8.75
8.71 | 31-31
13-35 | b ² 9_3 ² Fe (171) | 1952.78
3814.00 | Ā | 10
12 | | | | | | A.
A. | 15
15 | 4.92 8.69
4.90 8.69 | 41-51 c ³ G-y ² H°
32-42 (138) | 3610.85 | P | | | | 3-3-3-3 | | 3801.21 | A | 10 Cr : | [? | | | | | A | ą | 4.90 8.71 | . 3½-2½ o²(Ly2Fe | 3276.28
•3286.34 § | A
A | 0 | 5.30
5.31 | 9.06
9.06 | 75-13
12- 3 | b ² D-# ⁴ D°
(172) | 3778.69
3750.56 | A
A | 6
12 | | | | | | Ą | 18 | 4,92 8,75 | 43-53 c3G-x4G | 3202.52 | Ą | 15 | 5.30 | 9.15 | | b ² D-x ² F° (173) | 3711.29
3495.56 | A
A | 7
20 | | | | | | A
A | 12
7 | 4.90 8.73
4.92 8.73 | 32-22 020-y2re (139) (139) (139) (139) (139) (140) (140) (140) (140) | 3178.79
3169.85 | A
A | 7
2₩ | 5.30 | 9.19 | నిక్రాచిక్త | ī | 3198.00 | A
 | 15 | | | | | | A | 5 | 4.90 9.07 | ' 3½-3½ c ² G-w ⁴ D*
(141) | 3190.69 | A | 6 | 5.31 | 9.17 | 크출파크출 | b2D-w4Fe | | | | | | | | | ā | (1) | 4.93 8.08 | | 3141.80 | A | 4 | 5.30 | 9.22 | 3g-1g | (174)
b ² D-x ⁴ P*
(175) | Mn I I | P 7.4 | O Ana | LB L | ist B | | 1941 | | P | | 4.93 8.11 | 32-42 c ² y-2 ⁴ 1°
(142)
33-42 c ² y-2 ³ G°
22-23 (143)
32-32 | 4761.42 | Ā. | 1 | 5.65 | 8.24 | 3}-3 <u>è</u> | c ² D_y ⁴ P°
(176) | 5394.674
5432.548 | B
B | 10
4 | 0.00 | 2.29
2.27 | 21-31
21-21 | a ⁶ S-z ⁸ P* | | P
A | 1 | 4.91 8.09
4.92 8.09 |) 32~32 (143)
 32~32 | 4832.97 | P | • | | | | | 4030.755 / | / в | 200R | 0.00 | 3.06 | 2 1 -31 | a65-z6pe | | A
A | 15
3 | 4.92 8.24
4.91 8.19 | 31-21 c2F_y4po | 4697.62 | A. | 2 | 5.65
5.65 | 8.27 | న్లానక్
మ్య | (177)
(177)
(178) | 4033.073
4034.490 | B | 150R
100R | 0.00 | 3.06
3.06 | 22-22
22-12 | a ⁶ S-z ⁶ P• (2) | | A. | 25 | 4.92 8.27 | . 27-27 6gk-2gDs | 4684.77
4715.13
4671.36 | A
D
P | 1 | 5.64
5.64 | 8,28
8,26
8,28 | 15-1 | (178) | 3224.761
3216.946 | B | 10
8 | 0.00 | 3.83
3.84 | 21-21
21-11 | a ⁵ S-z ⁴ P° (3) | | A
P | 20 | 4.91 8.23
4.91 8.27 | 5 2 <u>5</u> 1 <u>5</u> (145) | 4341.09 | A | 7 | 5.65 | 8,49 | 21.31 | c ² D-z ² Fe | | - | | | | | | | A. | 80 | 4.91 8.28 | s -1 -1 - 2 - 2 - 2 - 2 | *4363.93 §
4374.61 | A
P | 3 | 5.64 | 8.47
8.47 | 1 \$ 2 \$
32-2 \$ | c ² D-z ² F° (179) | 5341.065
5420.362 | B | 20
10 | | 4.42
4.41 | 4½3½
3½2½ | a ⁶ D-y ⁶ P°
(4) | | 3 | | 4.92 8.33 | (148)
33-43 03F-y4F0 | 4204.83 | P | | 5.65 | | 2j-3j | c ² D-x ⁴ F° | *5481.396
5407.424 | B | 4
5 | 2.15
2.13 | 4.41
4.43 | 2-1-1-3
3-3-3 | • | | P | | 4.91 8.32
4.92 8.32 | 3 3 3 -3 3 | 4199.03
4209.84 | P | | 5.65 | 8.58
8.58 | 13~25
25~35 | c ² D-x ⁴ F° (180) | 5470.638
5516.771 | В | 8 7 | 2.17 | 4.41 | 23-25 | | | ¥
b | 10 | 4.91 8.32
4.93 8.32 | 32-22
32-23 | 4322.00
4232.96 | A
P | 1 | | 8.56
8.56 | 15-15
25-15 | • | 5457.471
5505.869 | В | 2 | 2.17 | 4.42 | 12-25 | | | à | ? | 4.91 8.33 | 5 4g-1g | | | | | | _ | | 5 537.7 56 | В | 5 | 2.18 | 4.41 | 2-12 | • | | .y
Int | EP J Multiplet
Low High (No) | Laboratory
I A Ref Int | E P J Multiplet | Laboratory
I A Ref Int | EP J Enltiplet Low High (No) | |---|---|---|---|--|--| | 50r
20
8 (2)
5
20
15
10 | 2.11 5.16 4 4 a a D 2 b p a 3 b 2 5 c 1 1 5 c 1 4 5 a 3 b 2 5 c 1
4 5 a 3 b 2 5 c 1 | Mn I continued 4762.376 B 30 4768.450 B 20 4765.859 B 10 4761.526 B 10 4709.715 B 10 4729.108 B 8 4671.688 B 3 4701.159 B 3 | 2.88 5.47 3½-4½ a ⁴ D-z ⁴ F° 2.91 5.50 3½-3½ (31) 2.93 5.52 1½-3½ 2.94 5.53 3½-3½ 2.91 5.52 3½-3½ 2.91 5.53 3½-1½ 2.88 5.53 3½-3½ 2.93 5.53 3½-1½ 2.88 5.53 3½-3½ 2.88 5.65 3½-3½ a ⁴ D-z ⁴ D° | Mn I continued 4447.532 B (3) 4131.430 B (1) 4123.543 B (1) 4110.903 B (2) 4155.525 B (2) 4137.257 B (3) 3115.465 B 6 3108.635 B (1) 3107.774 B (1) | 3.36 6.33 3½-3½ a ⁴ p-x ⁴ p°
3.36 6.35 1½-1½ (37)
3.36 6.37 1½-½
3.36 6.33 1½-½
3.36 6.35 ½-1½
3.36 7.33 1½-3½
3.36 7.33 3½-3½ a ⁴ p-x ⁴ p°
3.36 7.33 3½-3½ (38)
3.36 7.33 3½-3½ | | 12
12
10
20r
20r
12
10
10
10
10
8
(1)
4 | 2.17 5.39 12-28 2.11 5.35 42-51 aGD_rGF° 2.13 5.36 33-42 (6) 2.15 5.37 23-23 2.17 5.38 12-23 2.18 5.39 42-43 2.13 5.35 42-23 2.11 5.36 42-23 2.15 5.38 32-25 2.17 5.38 12-12 2.18 5.38 22-22 2.17 5.38 12-12 2.18 5.38 22-22 2.17 5.38 32-22 2.17 5.38 32-22 2.17 5.38 32-22 2.18 5.38 32-22 2.18 5.38 32-22 2.18 5.38 32-22 2.18 5.38 32-22 2.18 5.38 32-22 | 4451.586 B 15 4464.677 B 8 4470.138 B 6 4472.792 B 5 4414.879 B 10 4436.352 B 8 4453.005 B 6 4502.230 B 7 4498.887 B 7 4490.081 B 5 4235.290 B 8 4235.140 B 8 4235.140 B 6 4239.785 B 5 4281.099 B 6 4265.924 B 6 | 2.91 5.67 24-24 (22) 2.94 5.70 4-24 2.94 5.70 4-2 2.91 5.69 24-1 2.93 5.70 14-2 2.93 5.70 14-2 2.93 5.70 14-2 2.93 5.67 14-2 2.93 5.67 14-2 2.94 5.69 2-1 2.94 5.69 2-1 2.94 5.84 14-2 2.93 5.84 14-2 2.93 5.84 14-2 2.93 5.84 14-1 2.93 5.84 14-1 2.93 5.84 14-1 2.93 5.79 24-24 2.93 5.79 24-24 2.93 5.79 24-24 2.93 5.79 24-24 2.93 5.79 24-24 2.93 5.79 24-24 2.93 5.79 24-24 2.93 5.79 24-24 2.93 5.79 24-24 2.93 5.82 14-14 | 6491.712 B 15
6440.974 B 8
6384.689 B 4
6356.057 C (2)
6413.92 C (3)
6382.169 B (5)
6382.169 B (3)
6349.748 C (1)
6519.371 B (3)
6443.492 B (3)
6443.492 B (3)
4431.932 B (1)
4431.932 B (1) | 3.75 5.65 3½-3½ b⁴D-z⁴D° 3.76 5.67 3½-3½ (39) 3.76 5.67 3½-3½ 3.75 5.67 3½-3½ 3.76 5.69 3½-1½ 3.76 5.69 3½-1½ 3.76 5.69 3½-1½ 3.76 5.69 3½-1½ 3.76 5.69 3½-1½ 3.76 5.69 3½-1½ 3.76 5.69 3½-1½ 3.76 6.54 1½-1½ b⁴D-v ⁶ P° | | 5
5
4
(1)
4
(1)
(1) | 3.17 5.39 $1\frac{1}{2} - \frac{1}{2}$ 2.11 5.47 $4\frac{1}{2} - 4\frac{1}{2}$ $a^{6}D - 2^{4}P^{6}$ 2.13 5.50 $3\frac{1}{2} - 3\frac{1}{2}$ 2.11 5.50 $4\frac{1}{2} - 3\frac{1}{2}$ 2.13 5.50 $4\frac{1}{2} - 3\frac{1}{2}$ 2.13 5.50 $3\frac{1}{2} - 3\frac{1}{2}$ 2.17 5.53 $1\frac{1}{2} - 3\frac{1}{2}$ 2.18 5.55 $\frac{1}{2} - 3\frac{1}{2}$ | 4312-550 B 3
4384-084 B (4)
3696-568 B 8
3728-889 B (1)
3750-763 B (2)
3763-377 B (2)
3054-115 B (1)
3736-931 B (1) | 2.93 5.79 15-25
2.94 5.83 2-15
2.88 6.21 3-45 4P-y ⁴ F°
2.91 6.22 25-35 (24)
2.93 6.22 15-25
2.94 6.23 2-15
2.94 6.23 2-15
2.94 6.23 2-15
2.95 6.23 25-25 | 3455.04 C (2) 5377.628 B 6 6 5399.489 B 4 5413.687 B 2 4644.315 D (2) 4644.319 B (in) 4838.244 B (1) 4825.593 B (1) | 3.76 7.32 3½-3½ b ⁴ D-x ⁴ F° 3.76 7.33 1½-3½ (41) 3.83 6.12 2½-1½ 2 ⁴ P°-e ⁴ S 3.84 6.12 1½-1½ (42) 3.84 6.12 ½-1½ 3.83 6.38 1½-1½ (43) 3.84 6.38 1½-1½ (43) 3.84 6.39 ½-2 3.84 6.39 1½-2 3.84 6.39 1½-2 3.84 6.39 1½-2 3.84 6.39 1½-2 3.84 6.39 1½-2 3.84 6.39 1½-2 3.84 6.39 1½-2 | | 40
30
30
30
30
13
15
15 | 2.11 5.55 $4\frac{1}{2}-3\frac{1}{2}$ $a^{6}p_{-}x^{6}p^{6}$
2.13 5.57 $3\frac{1}{2}-3\frac{1}{2}$ (8)
2.15 5.59 $3\frac{1}{2}-3\frac{1}{2}$
2.13 5.55 $3\frac{1}{2}-3\frac{1}{2}$
2.15 5.57 $3\frac{1}{2}-3\frac{1}{2}$
2.17 5.59 $\frac{1}{2}-3\frac{1}{2}$
2.18 5.55 $3\frac{1}{2}-3\frac{1}{2}$
2.18 5.59 $\frac{1}{2}-3\frac{1}{2}$
2.18 5.69 $\frac{1}{2}-3\frac{1}{2}$
2.17 5.86 $\frac{1}{2}-3\frac{1}{2}$
2.18 5.86 $\frac{1}{2}-3\frac{1}{2}$ | 3601.782 C (1) 3605.891 B (1) 3583.676 B (2) 3589.973 C (1) 3407.960 C (1) 6021.802 C 50 6016.637 C 40 6013.498 B 30 4462.022 B 20 | 3.91 6.35 34-14
2.93 6.37 12-2
3.91 6.53 32-32 49-v ⁵ p°
(36)
3.06 5.11 33-32 2 ⁶ p°-g ⁶ s
3.06 5.11 33-32 (37)
3.06 5.11 13-32 | 3936.467 B 10
3800.552 B 4
3785.421 B (1)
3774.645 B (1)
9843.28 A 150 | 3.83 6.97 22-22 z ⁴ P°-1 (44) 3.83 7.07 22-32 z ⁴ P°-e ⁴ D 3.84 7.10 12-32 (45) 3.83 7.10 22-22 | | (1)
5
8
(3)
4
5
5 | 2.18 5.86 $\frac{1}{2}$ -1 $\frac{1}{2}$ 2.13 5.89 $\frac{3}{12}$ -2 $\frac{1}{2}$ $\frac{3}{10}$ -2° 2.17 5.89 $\frac{1}{12}$ -2 $\frac{1}{2}$ $\frac{3}{10}$ -4° 2.17 5.90 $\frac{1}{2}$ -1 $\frac{1}{2}$ $\frac{3}{10}$ -4° 2.18 5.90 $\frac{1}{2}$ -1 $\frac{1}{2}$ $\frac{3}{10}$ -3° 2.11 5.90 $\frac{4}{2}$ -3 $\frac{1}{2}$ $\frac{3}{10}$ -3° 2.15 5.90 $\frac{3}{2}$ -3 $\frac{3}{2}$ (13) | 4459.262 B 12
4455.221 B 6
4461.085 B 8
4457.549 B 8
4455.318 B 6
4460.377 B 3
4457.045 B 5
4455.012 B 5
4050.392 B 5 | 3.06 5.83 32-42 26pe_e6b
3.06 5.83 12-23
3.06 5.83 12-23
3.06 5.83 32-24
3.06 5.83 12-12
3.06 5.83 12-12
3.06 5.83 12-12
3.06 5.83 12-12
3.06 5.83 12-12
3.06 6.10 32-24 26pe_r6s
3.06 6.10 22-22 (39) | 9172.09 A 100
9114.02 A 50
9084.29 A 30
*4110.903 B (2)
4123.757 C (1)
4105.365 B (3)
4113.876 B (2) | 4.33 5.67 34-34 (46) 4.33 5.69 34-12 4.34 5.70 12-2 4.31 7.32 44-44 a 4F-x ⁴ F ⁰ 4.33 7.33 32-34 (47) 4.33 7.33 34-34 4.31 7.32 44-34 4.31 7.33 44-34 | | 7
10
30
30
15
12
10 | 2.15 5.90 22-32
2.11 5.91 32- a ⁶ p5°
2.13 5.91 32- (13)
2.11 5.93 42-5½ a ⁶ py ⁶ p°
2.13 5.95 32-32
2.15 5.95 32-32
2.16 5.96 3-12
2.18 5.96 3-12
2.18 5.96 42-42 | 3317.305 B 10n
3314.876 C 6n
3313.534 B (4)
3316.440 C 5n
3314.393 C 6n | 3.06 6.78 3½-4½ z ⁶ P°-g ⁶ D
3.06 6.78 3½-3½ (30)
3.06 6.78 1½-3½
3.06 6.78 3½-3½
3.06 6.78 3½-3½ | 8740.93 A 1000w
8703.76 A 500w
8703.77 A 200w
8703.76 A 500w
8703.78 A 300w
8703.00 A 300w
8703.00 A 300w
8703.00 A 300w
8703.00 A 300w | 4.31 7.36 44-54 a4p-y4go 4.33 7.37 32-42 4.33 7.38 32-32 4.43 7.38 12-32 4.42 5.83 32-32 (49) 4.41 5.83 12-32 4.44 5.83 32-32 4.41 5.83 32-32 4.41 5.83 32-32 4.41 5.83 32-32 4.41 5.83 32-32 4.41 5.83 32-32 4.41 5.83 32-32 | | 12
12
13
10
5
6
5
5
5
40 | 2.13 5.95 32-32
2.15 5.96 22-22
2.17 5.96 12-12
2.18 5.96 | *5481.396 B 4
5480.644 C (1)
5444.096 C (1n)
5510.174 C (1)
5255.325 B 4
5196.591 B 3
5150.890 B 3
52517.937 B 3
5260.771 B (3)
5197.316 B 1 | 3.12 5.37 44-34 (31) 3.12 5.38 34-34 (31) 3.13 5.36 42-42 3.13 5.36 42-42 3.12 5.47 51-44 a ⁴ G-2 ⁴ F° 3.12 5.50 42-35 (32) 3.12 5.53 22-12 3.13 5.47 42-42 3.13 5.50 33-35 | 8734.60 A 300w
8699.13 A 100w
8670.92 A 200w
7386.51 A 4001
7283.80 A 3501
6605.546 D 6n
6586.343 B (1) | 4.42 5.83
3\frac{1}{2}\frac{1}{4}\frac{1}{4}\frac{1}{2}\frac{1}{2}\frac{1}{4}\frac{1}{4}\frac{1}{2}\frac{1}{2}\frac{1}{4}\frac{1}{4}\frac{1}{2}\frac{1}{2}\frac{1}{4}\frac{1}{4}\frac{1}{2} | | 20
20
20
(2)
10
15
50
50 | 2.11. 5.95 4\$-3\frac{1}{2}.2\fr | 5149.13 B (1) 3986.826 B 3 3987.098 B (1) 3985.241 B 3 3982.583 B (2) 3989.958 C (1) 3987.464 B (2) 3984.177 B (1) 3986.395 C (2) 3047.035 B 15 | 3.12 6.21 5½-4½ a ⁴ G-y ⁴ F° 3.12 6.23 4½-32 (33) 3.12 6.23 3½-1½ 3.12 6.23 3½-1½ 3.13 6.21 4½-4½ 3.12 6.23 3½-3½ 3.12 6.23 3½-3½ 3.12 6.23 3½-3½ | 8431.20 A 20Ns
8409.88 A 15Ns
8395.87 A 10Ns
7764.72 A 250nl
7733.24 A 150nl
7709.98 A 40Nl | 4.41 7.11 2½-1½ y ⁶ P°-e ⁴ D (52) 5.11 6.58 2½-3½ e ⁶ S-u ⁶ P° 5.11 6.58 3½-3½ (53) 5.11 6.58 3½-1½ 5.35 6.94 5½-4½ z ⁶ F°-f ⁶ D† 5.36 6.96 4½-3½ (54) 5.37 6.97 3½-2½ 5.38 6.98 3½-1½ | | (1)
50
50
30
40
40
50
30 | 2.39 5.11 3½-3½ z ⁸ P°-e ⁶ S ↑ (17) 2.39 5.77 3½-3½ z ⁶ P°-e ⁶ D 2.27 5.77 3½-3½ (18) 2.27 5.77 3½-3½ 2.29 5.77 3½-3½ 2.29 5.77 3½-3½ 2.27 5.77 2½-3½ 2.27 5.77 3½-3½ 2.31 5.77 4½-3½ 2.31 5.77 3½-3½ 2.32 5.77 3½-3½ 2.37 5.77 3½-3½ | 3045.593 B 13
3043.356 B 9
3040.603 B 12
3043.770 B (3)
3043.143 B (3)
3041.224 B 4
3048.864 B 5
3045.808 B 5
3042.733 B 4 | 3.12 7.17 45-45 (34) 3.12 7.18 35-35 3.12 7.18 35-35 3.12 7.18 55-45 3.12 7.18 45-35 3.12 7.18 35-35 3.12 7.17 45-55 3.12 7.17 35-45 3.12 7.17 35-45 | 7708.52 A 10N1 7677.46 A 2N1 7680.22 A 200 7712.42 A 100n 7734.43 A 50n 7755.15 A 20N1 8929.73 A 60n | 5.47 7.07 12-27
5.47 7.07 42-32 24F°-9 ⁴ D†
5.50 7.10 32-32 (55)
5.52 7.11 22-12
5.53 7.12 12-2 | | 50
15
15
15
15 | 2.31 6.19 4½-3½ 2 ⁸ P°-1 ⁸ S
2.29 6.19 3½-3½ (19)
3.27 6.19 3½-3½ | 3011.376 B 7
3007.655 B 6
3014.668 B 5
3011.162 B 5
3008.365 B 4 | 3.12 7.20 53-65 a ⁴ G-2 ⁴ H° 3.12 7.21 49-52 (35) 3.12 7.22 32-32 3.12 7.22 29-32 3.12 7.21 59-52 3.12 7.23 32-32 3.12 7.23 32-32 3.36 5.66 22-32 a ⁴ P-2 ⁴ P° | 9826.06 A 15n
8901.0 A 2p†
9429.58 A 30n
9476.57 A 4n
9535.72 A 5n
9336.47 A 40n | 5.55 6.94 3 4 4 x 6P - r 6P † 5.57 6.96 a 4 3 4 4 x 6P - r 6P † 5.59 6.97 1 2 3 2 4P - r 6P † 5.67 6.97 3 4 3 4 (57) 5.65 6.97 3 4 3 4 2 4P - r 6P † 5.67 6.97 3 4 3 4 2 4P - r 6P † 5.68 6.97 3 4 3 4 2 4P - 1 | | (1)
(1)
(2) | 2.88 5.36 $3\frac{1}{2}$ $4\frac{1}{2}$ 4^{4} -2^{6} F° 2.91 5.37 $2\frac{1}{2}$ $3\frac{1}{2}$ (20) 2.93 5.38 $1\frac{1}{2}$ 2.94 5.39 $\frac{1}{2}$ 2.88 5.37 $3\frac{1}{2}$ $-3\frac{1}{2}$ | 5388.521 B (3)
5348.069 B (1)
5317.095 B (2)
5334.804 C (1)
5307.53 P
5392.861 C (1) | 3.36 5.66 $2\frac{1}{2}-2\frac{1}{2}$ $a^4P-z^4P^\circ$
3.36 5.67 $1\frac{1}{2}-2\frac{1}{2}$ (36)
3.37 5.69 $\frac{1}{2}-\frac{1}{2}$
3.36 5.69 $1\frac{1}{2}-\frac{1}{2}$
3.37 5.70 $\frac{1}{2}-\frac{1}{2}$ | 9503.12 A 8n
9633.02 A 4p?
8654.63 A 40n
8659.38 A 10n | 5.65 6.97 3\frac{1}{2}-2\frac{1}{2}\frac{2}{4}D^2-1
5.67 6.97 2\frac{1}{2}-2\frac{1}{2}\$ (58)
5.68 6.97 1\frac{1}{2}-2\frac{1}{2}\$ 2\frac{4}{2}D^2-e^4D^2
5.65 7.07 3\frac{1}{2}-3\frac{1}{2}\frac{2}{4}D^2-e^4D^2
 | | atory
Ref Int | E P
Low Hig | J
P | Multiplet
(No) | Labo:
I A | rator
Ref | | E P
Low Hig | gh | J | Multiplet
(No) | Labor
I A | | y
Int | E
Low | | J | Multiplet
(No) | |--------------------------------------|--|--------------------------------------|--|--|-----------------------|----------------------------|--|------------------------------|---|---|--|-----------------------|----------------------------|---|---|---|--| | inued | | | | Mn II co | ntinu | eđ | | | | | in II con | ntinu | red | | | | | | A 100
A 40
A 15 | | | y ⁴ P°-e ⁴ D†
(60) | 3474.037
3482.905
3488.676
3496.814
3497.536 | A
A
A
A | 50
40
40
20
35 | 1.80 5.3
1.83 5.3
1.84 5.3
1.83 5.3 | 37 2
38 1
35 2 | 3-3
3-2
1-1
3-3
1-2 | a ⁵ p_ z,5pe
cont | 6122.438
6125.855
6128.725
6130.794
6131.917 | A
A
A
A | 40
25
30
15
15 | 10.14 | 12.16
12.16
12.16
12.16 | 4-5
3-4
2-3
1-2
0-1 | e ⁵ D-x ⁵ F° (13) | | - | fied Lines of | <u>Un I</u> | | 3495.831 | A | 40 | 1.85 5.3 | 38 (|) -1 | | 6122.799
6126.210 | A
A | 8
10 | 10.14
10.14 | 12.16
12.16 | 4-4
3-3 | | | A 15
A 40
A 40
A 25
A 15 | nl | | | 7415.78
7369.73
7347.78
7353.58
7330.54 | P
P
P
P | | 3.69 5.3
3.69 5.3
3.70 5.3
3.69 5.3 | 37 2
38 : | 3-3
3-2
1-1
3-3 | a ⁵ P- z ⁵ P° (4) | 6129.022
6131.005
6123.164
6126.516
6129.255 | A
A
A
A | 10
-5
-1
0 | 10.14
10.14
10.14 | 13.16 | 2-2
1-1
4-3
3-2
2-1 | ı | | B (56
B (68
B (38
B 44 | } | | | 7432.27
7387.10
4755.728 | P
P
A | On | 3.69 5.3
3.70 5.3
5.37 7.9 | 35 2 | 3-3
L-2 | a ⁵ F-z ⁵ G° | 3800.240
3801.633
3802.958
3803.881
3804.476 | A
A
A
A | 3
0
0 | 10.14
10.14
10.14 | 13.39
13.39
13.39
13.39
13.39 | 4-5
3-4
2-3
1-2
0-1 | 6 5 _{D- V} 5 _F 0
(14) | | B 4
B 3
B 4 | IA | | | 4764.7
4738.29
4730.361
4727.9 | P
B
B
P | = | 5.37 7.9
5.36 7.9
5.35 7.9
5.35 7.9 | 96 3
96 2 | 1-5
3-4
3-3
1-3 | (5) | 3134.819
3135.507
3136.315 | A
A
A | 1
0
0 | 10.14 | 14.08
14.08
14.08 | 4-5
3-4
2-3 | e ⁵ D_ r ⁵ F° (15) | | B 4 B 5 5 B 6 |
A
A
A
A
IA | | | 4343.987
4326.756
4292.246
4283.772
4284.425
4325.1
4345.6
4300.197 | A
A
A
P
P | 2N
(3)
ON
O
O | 5.37 8.2
5.37 8.2
5.36 8.2
5.35 8.2
5.37 8.2
5.37 8.2
5.36 8.2 | 33 4
33 3
33 1
33 1 | 5-5
1-4
3-3
3-3
1-1
5-4
4-5 | a ⁵ F-z ⁵ F°
(6) | 6105.381
6050.446
6008.295
6107.293
6051.860
6009.298
6108.8 | A
A
A
A
A | 5
3
0
1
1 | 10.29
10.28
10.31
10.29 | 12.33
12.33
12.33 | 4-5
3-4
2-3
4-4
3-3
2-2
4-3 | y ⁷ po-f ⁷ D | | B 4
B 5
B 4
B 4 | IA
A
A | | | 4206.375
4259.203
4253.02
4244.26 | A
C
C | ON
On
(3)
(1) | 5.37 8.3
5.37 8.3
5.36 8.3
5.35 8.3 | 36 3 | 5-4
4-3
3-2
3-1 | a ⁵ F-z ⁵ D° (7) | 6052.892
6009.962
4530.034 | A
A | 0
1
——— | 10.29 | 12.33
12.33
13.35 | 3-2
2-1
-
4-3 | x ^{7pe} - g ^{7g} | | B 3
B 3
B 3 | A
IĄ | | | 3685.049
3708.06
3709.88
3717.53 | A C C C | -1N
(1)
(1)
(1) | 5.37 8.7
5.37 8.7
5.36 8.6
5.35 8.6 | 70 4
38 3 | 5-5
4-4
3-3 | a ⁵ F_y ⁵ F° (8) | 4510.210
4496.989
4639.150 | A
A
A | 3 3 | 10.61 | 13.35 | 3-3
2-3
-
3-2 | (17)
w 5po_g 5g | | B 30
B (10
B (15 | n IV | | | 3724.81
3706.91
3729.49
3725.29
3686.20 | 00000 | | 5.35 8.6
5.37 8.6
5.37 8.6
5.36 8.6
5.37 8.7 | 56 1
70 5
58 4 | 1-1
5-4
1-3
3-2
1-5 | | 4647.585
4652.816
6446.281 | A | 2
1
50N | 10.73 | 13.39 | 3-3
1-3 | (18) | | B 15 | n IV | | | *3509.971 | Ā | 0 | 5.37 8.8
5.37 8.9 | | | a ⁵ F-y ⁵ D° | | ^ | | | | | (19) | | B 5
B 8 | IV IV | | | 3482.06
3457.809
3449.5
3446.0 | C
A
P
P | (i)
On | 5.37 8.9
5.36 8.9
5.35 8.9
5.35 8.9 | 93 3
93 2 | 1-3
3-3
3-1
1-0 | (9) | 6463.637
6463.195
6462.799
6462.454
6463.210 | A
A
A
A | 12
10
7
5
3 | 12.16
12.16
12.16
12.16
12.16 | 14.06
14.06
14.06 | 5-6
4-5
3-4
2-3
1-8 | x ⁵ F°- £ ⁵ G
(30) | | P 15.6
A 30
A 8 | | A Aug
6 2-3
4 2-3 | z 1941
a ⁵ g_ z ⁷ p°
(1) | 3029.041
3039.551
3046.266 | A
A
A | 50
40
30 | 5.35 9.4
5.37 9.4
5.38 9.4 | 1 3 2 | 3-2
3-2
1-3 | z ⁵ p•_ e ⁵ s
(10) | 3050.661
3043.138
3034.810 | A
A
A | 35
6
6 | 7 | ! | 2-2
1-1
3-1 | 3p_ 3po
(31) | | P
P
P | 1.77 4.7
1.80 4.7
1.82 4.7 | 79 4-4
76 3-3 | a ⁵ p_ z ⁷ p° (2) | 5302.320
5299.278
5296.968
5295.292
5294.216 | A
A
A
A | 30
25
20
15
10 | 9.83 12.1
9.83 12.1
9.83 12.1
9.83 13.1
9.83 13.1 | 15 4
15 3 | 5-
4-
3-
3- | e ⁷ D_ z ⁷ F° | 3033.591
3059.064
3049.027 | A
A
A | 10
8 | or pre | paration | 1-0
1-2
0-1 | ist of | | P
P
P | 1.80 4.3
1.80 4.3
1.83 4.3
1.84 4.3 | 74 3-3
79 3-4
76 3-3
74 1-3 | £ F | 3466.336
3465.037
3464.043
3463.330
3462.878 | A
A
A
A | 9
8
7
6
5 | 9.82 13.3
9.82 13.3
9.82 13.3
9.82 13.3
9.82 13.3 | 38 4
38 3 | 5-
4-
3-
3- | e ⁷ D_y ⁷ F° | strongest | ane | | or True! | or an | | | | A 100
A 75
A 40 | 1.77 5.3
1.80 5.3
1.82 5.3 | 7 3⊸8 | a ⁵ p ₋ z ⁵ p° | | | | | | | | | | | | | | | e_{i} | ory EP | J Multiplet | Laboratory | E P J | Multiplet
(No) | Laboratory
I A Ref Int | E P
Low High | J Multiplet | |--|---|--|--|--|---|---------------------------------------|---| | .858 Anal A List A F | Feb 1943 | Fe I continued | | | Fe I continued | | | | 0.05 2.41 3
1 0.09 2.44 8 | 1-5 a ⁵ D-z ⁷ D°
3-4 (1)
3-3
1-2 | 8047.60 0 15
8204.10 P ©
8310.98 P
8382.23 P © | 0.86 2.39 5-5
0.91 2.41 4-4
0.95 2.44 3-3
0.99 2.46 2-2 | a ⁵ F-z ⁷ D°
(13) | 3850.820 B 12
3814.526 J 5
3876.043 J 4 | 0.99 4.19
1.01 4.24
1.01 4.19 | 2-2 a ⁵ F-z ³ F ⁹
1-1 cont
1-3 | | 1 0.12 2.47 0 | 0-1
4-4 | 8425.89 P ©
7912.866 E 6 | 1.01 2.47 1-1
0.86 3.41 5-4 | | 3581.195// B 250R
3647.844 B 100R | 0.86 4.30
0.91 4.29 | 5-6 a ⁵ F-z ⁵ G°
4-5 (23) | | 2 0.09 2.46 2 | 3–3
3–2
1–1 | 8075.13 0 4
8204.93 P ©
8307.61 P © | 0.91 2.44 4-3
0.95 2.46 3-3
0.99 2.47 2-1 | | 3631.464 B 125R
3618.769 B 125R
3608.861 B 100r | 0.95 4.35
0.99 4.40
1.01 4.43 | 3-4
2-3
1-2 | | (1) 0.00 3.44 4
© 0.05 3.46 3 | 4-3
3-2
3-1 | 8349.05 P ©
8447.63 P © | 0.91 2.39 4-5
0.95 2.41 3-4 | | 3589.107 B 8
3585.708 J 20
3585.320 B 30 | 0.86 4.29
0.91 4.35
0.95 4.40 | 55
44
33 | | 9 0.00 3.83 4 | 4-5 a5D-z7F° | 6358.692 I 3
m6462.72 P Fe | 0.86 2.80 5-6
0.91 2.82 4-5 | (13) | 3586.985 G 30
3528.94 P | 0.99 4.43
0.86 4.35 | 2-2
5-4 | | 8 0.09 2.85 2 | 3-4 (2)
8-3
1-2 | 6547.58 P
6609.68 P ©
6648.08 P © | 0.95 2.84 3-4
0.99 2.85 2-3
1.01 2.86 1-2 | | 3540.709 J 3
3554.122 J 4 | 0.91 4.40
0.95 4.43 | 4_3
3_2 | | 3 0.12 2.87 (
(1) 0.00 2.84 4 | 0-1
4-4 | 6280.625 I 2
6400.335 V (2) | 0.86 2.82 5-5
0.91 2.84 4-4 | | 3513.820 B 30
3521.264 B 25 | 0.86 4.37
0.91 4.42 | 5-5 a ⁵ F-z ³ G°
4-4 (34) | | (1) 0.09 2.86 2
(1) 0.11 2.87 1 | 3-3
8-2
1-1 | 6498.950 V 5
6574.238 V 3
6625.04 V 1 | 0.95 2.85 3-3
0.99 2.86 2-2
1.01 3.87 1-1 | | 3526.167 J 15
3466.501 V 3
3483.006 Q 3 | 0.95 4.45
0.86 4.42
0.91 4.45 | 3-3
5-4
4-3 | | Fe 0.00 2.85 4
2 0.05 2.86 3 | 4-3
3-2
2-1 | 6221.661 U (-)
6353.84 P ©
6464.67 P | 0.86 2.84 5-4
0.91 2.85 4-3
0.95 2.86 3-2 | | 3570.100 G 100R
3565.381 B 60r
3558.518 B 30 | 0.91 4.37
0.95 4.42
0.99 4.45 | 4-5
3-4
2-3 | | Fe 0.11 3.87 | 1-0 | 6551.68 P © 6613.83 P 1 | 0.99 2.87 2-1
1.01 3.87 1-0 | | 3359.496 V 3 | 0.86 4.53 | 5-4 a5r_y3re | | 3 0.05 2.99 3
1 0.09 3.03 | 4-4 a ⁵ D-z ⁷ P°
3-3 (3)
2-2 R | 5956.702 J (3)
*5949.35 V (2)
*5958.23 P (2) | 0.86 2.93 5-4
0.91 2.99 4-3 | a ⁵ F-z ⁷ p° (14) | 3356.332 V 1
3355.517 V (1)
3410.905 V (1)
3396.386 V (1) | 0.91 4.59
0.95 4.63
0.91 4.53 | 4-3 (25)
3-2
4-4 | | (1) 0.00 2.99 (
1) 0.05 3.03 (| 4-3
3-8
3-4 | *5958.23 P (2)
6180.85 P | 0.95 3.03 3-8
0.91 2.93 4-4 | • | 3396.386 V (1)
3364.60 P ©7
3458.273 G 10 | 0.95 4.59
0.99 4.63
0.95 4.53 | 3-3
a-a
3-4 | | 2 0.09 2.99 | 2-3 | 5369.541 I 60
5338.042 I 50 | 0.86 3.20 5-4
0.91 3.23 4-3 | (15) | *3426.383 J 5
*3404.301 V 3 | 0.99 4.59
1.01 4.63 | 2-3
1-2 | | 40R 0.05 3.23 | 4-4 a ⁵ D-z ⁵ D°
3-3 (4)
3-3 | 5371.493 B 50
5405.778 B 40
5434.527 B 30 | 0.95 3.25 3-2
0.99 3.27 2-1
1.01 3.28 1-0 | | 3401.521 A 6
3396.978 A 4 | 0.91 4.54
0.95 4.59 | 4_3 a ⁵ F_y ⁵ P° | | 50r 0.00 3.23 | 1-1
4-3
3-2 | 5397.131 B 40
5429.699 B 40
5446.930 B 40 | 0.91 3.20 4-4
0.95 3.23 3-3 | | 3397.642 V 2
3442.673 J 3 | 0.99 4.62 | 3-1
3-3 | | 100r 0.09 3.27 2
25r 0.11 3.28 | 2-1
1-0 | 5455.613 B 40
5501.469 B 13 | 1.01 3.27 1-1
0.95 3.20 3-4 | | 3427.002 J 3
3417.273 J (1gn
3473.497 V (1)
3446.947 U (1) | 0.99 4.59
) 1.01 4.62
0.99 4.54 | 2-2
1-1
2-3 | | 25R 0.09 3.23 | 3-4
2-3
1-3 | 5506.782 B 18
5497.519 B 15 | 0.99 3.23 2-3
1.01 3.25 1-2 | | 3446.947 U (1)
3845.984 V (3) | 1.01 4.59 | 1-3
4-3 a ⁵ F-y ³ D* | | 20r 0.12 3.27 | 0-1
4-5 a ⁵ D-z ⁵ F° | 5013.071 B 12
5051.636 B 10
5083.342 B 7 | 0.86 3.32 5-5
0.91 3.35 4-4
0.95 3.38 3-3 | (16) | 3230.09 P ©
3223.853 V (1) | 0.95 4.77
0.99 4.81 | 4-3 a ⁵ F-y ³ D°
3-2 (27)
2-1
3-3 | | 150R 0.05 3.35
100R 0.09 3.38 | 3-4 (5)
2-3 | 5107.452 J 6
5123.723 B 6 | 0.99 3.40 2-2
1.01 3.42 1-1 | | 3257.244 V 2
3241.50 P (1) | 0.95 4.71
0.99 4.77
1.01 4.81 | 3-3
1-1 | | 40r 0.12 3.42 | 1-3
0-1
4-4 | 4939.690 B 4
4994.133 B 8
5041.074 J 7 | 0.86 3.35 5-4
0.91 3.38 4-3
0.95 3.40 3-2 | | 3311.451 V (1)
3275.24 P | 0.99 4.71
1.01 4.77 | 2-3
1-8 | | 50r 0.09 3.40 | 4-4
3-3
2-2
1-1 | 5079.742 J 4
5127.363 B 5
5142.932 J 6 | 0.99 3.42 2-1
0.91 3.32 4-5 | | 3057.446 A 40R
3067.244 A 30r | 0.86 4.89
0.91 4.93 | 5-4 a5F-x5p°
4-3 (28) | | 5 0.00 3.38
10 0.05 3.40 | 4-3
3-2 | 5150.843 B 6
5151.915 J 4 | 0.95 3.35 3-4
0.99 3.38 2-3
1.01 3.40 1-2 | | 3075.781 A 35r
3083.742 A 30
3091.578 A 30 | 0.95 4.97
0.99 4.99
1.01 5.00 | 3-3
3-1
1-0 | | | 2-1
4-3 a ⁵ p-z ⁵ p• | m4611.35 P Fe
4598.33 P © | 0.91 3.59 4-3
0.95 3.64 3-2 | | 3099.968 V 15
3100.666 G 20
3100.304 G 20 | 0.91 4.89
0.95 4.93
0.99 4.9? | 4-4
3-3
3-8 | | 75R 0.05 3.64 50r 0.09 3.67 100r 0.05 3.59 | 3-2 (6)
2-1
3-3 | 4597.06 P @
4687.30 P @ | 0.99 3.67 2-1
0.95 3.59 3-3 | | 3099.898 V 30
3134.111 A 10 | 1.01 4.99
0.95 4.89 | 1-1 | | 70r 0.09 3.64 60r 0.11 3.67 | 2–2
1–1 | 4633.05 P
4744.64 P ⊙ | 1.01 3.67 1-1
0.99 3.59 2-3 | | *3125.653 G 15
*3116.633§ A 12 | 0.99 4.93
1.01 4.97 | 2-3
1-3 | | 40 0.11 3.64 | 3-3
1-2
0-1 | 4690.38 P © 4100.745 J 3 | 1.01 3.64 1-2
0.86 3.86 5-4 | | *2984.785\$ V 10
3045.077 G 5
3092.785 V 2 | 0.86 4.99
0.91 4.96
0.95 4.94 | 5-4 a ⁵ F-y ⁷ P°
4-3 (39)
3-2 | | 10 0.00 3.86 | 4_4 a5n_z3re | 4092.512 V (1)
4096.21 P ©
4177.597 J 4 | 0.91 3.93 4-3
0.95 3.97 3-2 | (18) | 3025.283 V 3
3078.014 G 4
| 0.91 4.99
0.95 4.96 | 4-4
3-3 | | 5 0.09 3.97
2 0.00 3.93 | 3–3 (7)
3–3 R
4–3
3–2 | 4152.173 J 4
4139.933 J 3 | 0.91 3.86 4-4
0.95 3.93 3-3
0.99 3.97 2-2 | | 3057.80 P @
3102.64 P @ | 0.99 4.94
0.95 4.99
0.99 4.96 | 3-3
3-4
2-3 | | 8 0.05 3.86 | 3-2
3-4
2-3 | *4239.847 J 2
4197.10 P ©
4169.09 P © | 0.95 3.86 3-4
0.99 3.93 2-3
1.01 3.97 1-2 | | m3134.15 P Fe
2999.512 A 30R | 1.01 4.94 | 1-2
5-5 e ⁵ F-x ⁵ F° | | 7 0.00 3.87
(g) 0.05 3.91 | 4-3 a ⁵ D-z ³ D°
3-2 (8) | 4174.917 J 5
4172.749 J 4
4173.926 J 2 | 0.91 3.87 4-3
0.95 3.91 3-2 | a5F-z3De | 3009.570 C 25r
3018.983 G 15r
3026.462 G 15 | 0.91 5.01
0.95 5.04
0.99 5.08 | 4-4 (30)
3-3
2-2 | | 2 0.09 3.94 7
7 0.05 3.87 | 2-1
3-3 | 4237.085 M (2) | 0.99 3.94 2-1
0.95 3.87 3-3 | | 3031.638 G 15
2969.474 G 10 | 1.01 5.08
0.86 5.01 | 1-1
5-4 | | Fe 0.11 3.94
8 0.09 3.87 | 2-2
1-1
2-3 | 4318.13 P
4303.570 V (1)
4383.87 P ©? | 0.99 3.91 2-2
1.01 3.94 1-1
0.99 3.87 2-3 | | 2987.292 A 10
3003.031 C 10
3016.186 G 12 | 0.91 5.04
0.95 5.06
0.99 5.08 | 4-3
3-3
3-1 | | 4 0.13 3.94 | 1-2
0-1 | 4248.40 P ©
3820.428 I 250R | 1.01 3.91 1-8
0.86 4.09 5-4 | | 3040.428 C 15
3041.745 V 15
3042.666 G 15 | 0.91 4.97
0.95 5.01
0.99 5.04 | 4-5
3-4
2-3 | | 150R 0.05 4.14 | 4-4 a ⁵ D-y ⁵ D°
3-3 (9)
2-2 | 3835.884 B 300R
3834.225 B 100r | 0.91 4.14 4-3
0.95 4.17 3-2 | (30) | 3043.030 G 15 | 1.01 5.06 | 1-3 | | 15r 0.11 4.20 | 3-2
1-1
4-3
3-2 | 3840.439 B 80r
3849.969 B 40
3887.051 B 15 | 0.99 4.30 3-1
1.01 4.31 1-0
0.91 4.09 4-4 | | 3014.176 V 3
3037.782 V 2
*3053.443 U (2) | 0.95 5.05
0.99 5.05
1.01 5.05 | 3-2 a ⁵ F-z ⁵ S ³
2-2 (31)
1-2 | | 100R* 0.05 4.17
100R 0.09 4.20
60R 0.11 4.21 | 3-2
2-1
1-0 | 3878.021 B 60
3872.504 B 60 | 0.95 4.14 3_3
0.99 4.17 2_2
1.01 4.20 1_1 | | Officeries descrip | 1.60 2.99 | _ | | 100R 0.05 4.09 | 3-4
2-3 | 3940.882 B 5
3917.185 B 8 | 0.95 4.09 3-4
0.99 4.14 2-3 | | 7180.020 V 1 | 1.48 3.30 | (32)
4-4 a ³ F-z ⁵ D° | | 50R 0.12 4.20 | 1-3
0-1 | | 1.01 4.17 1-8
0.86 4.16 5-5 | | 7494.73 P ©
6710.31 V 2 | 1.55 3.20
1.48 3.32 | 3-4 (33)
4-5 ₈ 3 ₈₋₂ 5 ₈ 9 | | 60R 0.05 4.20 | 4-5 a ⁵ D-y ⁵ F ² †
3-4 (10)
2-3 | 3734.867 B 300r
3749.487 B 300R
3758.335 B 150R
3763.790 B 100r | 0.91 4.20 4-4
0.95 4.24 3-3 | (21) | 6844.67 P 1
6929.96 P | 1.55 3.35
1.60 3.38 | 3-4 (34)
2-3 | | 40R 0.11 4.26 | 1-3
0-1
2-2 | 3767.194 B 80r
3687.458 B 40r | 1.01 4.28 1-1
0.86 4.20 5-4 | | 6581.23 V 2
6739.54 V 1
6851.64 P 1 | 1.48 3.35
1.55 3.38
1.60 3.40 | 4-4
3-3
2-3 | | 30R 0.11 4.28 | 1-1 | 3709.246 G 75r
3727.621 B 50r
3743.364 G 30
3798.513 B 40 | 0.91 4.24 4.3
0.95 4.26 3.2
0.99 4.28 3.1 | | 6483.95 P ©
6665.43 P ©
6801.87 P © | 1.48 3.38
1.55 3.40
1.60 3.42 | 4-3
3-3
8-1 | | 40R 0.09 4.24 | 3-2 a ⁵ D-z ³ P°
2-1 (11)
1-0 | 3798.513 B 40
3799.549 B 50
3795.004 B 60 | 0.91 4.16 4-5
0.95 4.30 3-4 | · • | 5853.18 V (1) | 1.48 3.59 | 4-3 a3F-25po | | 12r 0.09 4.19
3 0.11 4.24 | 3-3
1-1 | 3787.883 B 50 | 1.01 4.26 1-2 | | 5171.599 B 30
5194.943 I 10 | 1.48 3.86
1.55 3.93 | (35)
4-4 a3F-z3Fe
3-3 (36) | | | 1-2
0-1 | 3812.964 G 40
3790.095 B 12
3786.678 J 8 | 0.95 4.19 3-2
0.99 4.24 2-1
1.01 4.27 1-0 | (23) | 5216.278 B 10
5041.759 B 10
5107.845 J 8 | 1.60 3.97
1.48 3.93
1.55 3.97 | 3-3
4-3
5-8 | | | | , | | | 5332.903 J 4
5307.365 B 2 | 1.55 3.86
1.60 3.93 | 3-4
2-3 | | | REVISED MULTIPLET TABLE FP J Multiplet Laboratory EP J Multiplet Laboratory EP J Multiplet | | | | | | | | | | | | | | |---------------------------------|---|---|--|------------------------------------|--|---|---------------------------|--|----------------------------|--------------------------------------|--|--|---|---| | Int | E P
Low High | J Multiplet
(No) | I A Re | fInt | E P
Low High | J Mult
(N | iplet
(o) | IA | Ref | Int | Low E | P
High | J | Multiplet
(No) | | 40
40
30
15 | 1.48 3.87
1.55 3.91
1.60 3.94
1.55 3.87 | 4-3 a ³ F-z ³ D°
3-2 (37)
2-1
3-3 | Fe I contin
3007.146 V
3055.263 C
3068.175 G
3060.984 G | 8
12
8
4 | 1.48 5.58
1.55 5.59
1.60 5.62
1.55 5.58 | 2-1
3-3 | .x ³ D°
(5) | Fe I conf
4282.406
4315.087
4352.737 | B
B
B | 13
10
9 | 2.17
2.19
3.21 | 5.05
5.05 | 3-2
2-2
1-2 | a ⁵ P-z ⁵ S° (71) | | 20
Fe
4
3
(1) | 1.60 3.91
1.60 3.87
1.48 4.09
1.55 4.14
1.60 4.17
1.48 4.14 | 2-2
2-3
4-4 a ³ F-y ⁵ D°
3-3 (38)
2-2
4-3 | 3093.806 V
3000.452 G
3041.639 V
3067.123 V
2988.468 G
3029.237 V | 8
10
8
2 | 1.60 5.59
1.48 5.59
1.55 5.61
1.60 5.62
1.48 5.61
1.55 5.62 | 2-2
4-5 a ³ F-
3-4 (5
2-3
4-4
3-3 | .y ³ Go
66) | 4001.666
3977.743
3974.766
3949.954
3943.339
4030.194
4009.714 | J
V
I
V
I | 5
(1)
10
2
(3) | 2.17
2.19
2.21
2.17
2.19
2.19
2.21 | 5.25
5.29
5.32
5.29
5.32
5.25
5.25 | 3-3
2-2
1-1
3-2
2-1
2-3
1-2 | a ⁵ P-x ⁵ P°
(72) | | 9
5
(2) | 1.55 4.09
1.60 4.14
1.48 4.16
1.55 4.20
1.60 4.24 | 3-4
2-3
4-5 a ³ F-y ⁵ F°
3-4 (39)
2-3 | 2976.50 F
2962.11 W
3004.62 W
3034.51 W | (1)
(2) | 1.48 5.63
1.48 5.64
1.55 5.66
1.60 5.67 | 4-3
4-5 a ³ F- | 57) | 3852.574
3816.340
3807.534
*3790.756
3778.697 | I
G
J
J | 6
4
7
1
(1) | 2.17
2.19
2.21
2.17
2.19 | 5.37
5.42
5.45
5.42
5.42 | 3-4
2-3
1-2
3-3
2-2 | a ⁵ P-w ⁵ D°
(73) | | 8
5
2
(2)
(2) | 1.48 4.30
1.55 4.34
1.60 4.36
1.48 4.34
1.55 4.26
1.60 4.38 | 4-4
3-3
2-3
4-3
3-2
3-1 | 11973.01 I
11882.80 I
11884.12 I
11638.25 I
11607.57 I
11689.98 I | 7
3
7
12 | 3.17 3.30
3.19 3.23
2.31 3.25
3.17 3.23
2.19 3.25 | 2-3 (5
1-2
3-3
2-2 | .z ⁵ p°
i8) | 3774.823
3753.610
3746.486
3768.030
3776.454
3781.188 | 9977 | 5 8 1 3 | 2.21
2.17
2.19
2.21
2.21 | 5.48
5.45
5.48
5.49 | 1-1
3-2
2-1
1-0 | a5p_w5F° | | ©
(1)
45r
30 | 1.55 4.19
1.60 4.34
1.60 4.19
1.48 4.29
1.55 4.35 | 3-3 $a^{3}F_{-2}^{3}P^{0}$
2-1 (40)
2-3 (40)
4-5 $a^{3}F_{-2}^{5}G^{0}$. | 11689.98 I
11374.02 I
11422.30 I
11593.55 I
10395.75 I
10340.77 I | 3
6
5 | 2.21 3.27
2.17 3.25
2.19 3.27
3.21 3.28
2.17 3.35
3.19 3.38 | | -z ⁵ pe | 3792.834
3756.069
3764.21
3779.486
3739.317
3751.09 | J
V
J
P
J
P | (1)
1
0
2
1 | 2.19
2.21
2.17
2.19
2.21
2.17
2.19 | 5.45
5.47
5.45
5.47
5.48
5.47
5.48 | 2-3
1-2
3-3
2-2
1-1
3-2
2-1 | (74) | | 30
15
10
2
(1) | 1.60 4.40
1.48 4.35
1.55 4.40
1.60 4.43
1.48 4.40
1.55 4.43 | 2-3
4-4
3-3
2-3
4-3
3-2 | 10379.01 F
10155.18 F
10167.4 F
10265.23 F
9987.88 F | 0
0
1
0 | 2.21 3.40
2.17 3.38
2.19 3.40
2.21 3.42
2.17 3.40
3.19 3.43 | 1-2
3-3
3-2
1-1
3-2
2-1 | | *3721.278
m3726.89
3739.120
*3702.500
3711.30 | P
P
J
P | 2
Fe
1 | 2.17
2.19
2.21
2.17
2.19 | 5.48
5.50
5.51
5.50
5.51 | 3-4
2-3
1-2
3-3
2-2 | a ⁵ p_v ⁵ p°
(75) | | 35
35
35
30
35 | 1.48 4.37
1.55 4.48
1.60 4.45
1.48 4.48
1.55 4.45 | 4-5 8 ³ F-2 ³ G°
3-4 (42)
2-3
4-4
3-3 | 8688.633 E
8514.075 E
8468.413 E
8387.781 E
8387.063 E | 1500
150
300
1300
1300 | 3.17 3.59
3.19 3.64
3.31 3.67
3.17 3.64
3.19 3.67 | 3-3 a ⁵ P-
2-2 (6
1-1
3-2.
3-1 | -z ^{5pe}
60) | 3725.65
3687.100
3698.03
3707.918
3732.399 | PJP GB | 8
10 | 2.21
2.17
2.19
2.17
2.17
2.19 | 5.53
5.51
5.53
5.49
5.49 | 1-1
3-2
2-1
3-3
2-2 | a ⁵ P-y ⁵ S°
(76) | | 10
60r
45
40
30 | 1.48 4.45
1.48 4.53
1.55 4.59
1.60 4.63
1.48 4.59 | 4-3
4-4 a ³ F-y ³ F°
3-3 (43)
3-2
4-3
3-3 | 8824.227
8661.908
7267.00
7101.28
7037.04 | 600
© | 2.19 3.59
2.21 3.64
2.17 3.86
2.19 3.93
2.21 3.97 | 3-3
1-2
3-4 a ⁵ p-
3-3 (6
1-3 | .z ³ F° | 3760.534
*3612.940
3628.094
3618.96
3604.96
3592.881 | G
J
P
P | 6
1
1 | 3.21
2.17
2.19
2.21
2.17 | 5.49
5.58
5.59
5.62
5.59 | 1-3
3-3
2-3
1-1
3-3 | a ⁵ P-x ³ D°
(77) | | 25
30
25
4
(2)
© | 1.55 4.63
1.55 4.53
1.60 4.59
1.48 4.54
1.55 4.59
1.60 4.63 | 3-4
3-3
4-3 a ³ F-y ⁵ P°
3-2 (44)
2-1 | 6430.851 E
6335.335 E
6297.800 I
6265.140 E
6219.290 I
6213.438 I | 10
5
6
6 | 3.17 4.09
3.19 4.14
3.31
4.17
3.17 4.14
3.19 4.17
2.21 4.30 | 3-4 a ⁵ p-
2-3 (6
1-2
3-3
2-2
1-1 | .y ⁵ D° | 3636.186
3654.66
3497.110
3497.15
3509.870 | # \$ \$ U | (1)
2
(1)
10
(1)
(1) | 2.19
2.19
2.21
2.17
2.19
2.21 | 5.62
5.58
5.59
5.70
5.72
5.73 | 2-1
2-3
1-2
3-3
2-2
1-1 | a ⁵ p_w ⁵ pc
(78) | | (1)
Fe
©
100r
75r | 1.55 4.54
1.60 4.59
1.60 4.54
1.48 4.71
1.55 4.77 | 3-3
3-2
2-3
4-3 a ³ F-y ³ D°
3-2 (45) | 6151.624 I
6136.999 J
6173.343 J
6062.89 W | (2)
(2)
3 | 2.17 4.17
2.19 4.20
2.21 4.21
2.17 4.20
2.19 4.24 | 3-3
2-1
1-0
3-4 a ⁵ p- | .y ⁵ F° | 3475.651
3485.342
3518.86
3521.833
3462.353 | J
A
W
J | (2)
2 | 2.17
2.19
2.19
2.21
2.21 | 5.72
5.73
5.70
5.72 | 3-2
2-1
2-3
1-2 | a ⁵ P-z ³ S° | | 80r
20
20
10 | 1.60 4.81
1.55 4.71
1.60 4.77
1.60 1.71 | 3-1
3-3
2-2
3-3
4-4 a ³ F-x ⁵ D ⁹ | 5015.25 F
5958.34 F
5943.58 F
5963.35 V
5881.76 F
5892.80 F | (1)
(0) | 3.13 4.36
3.17 4.34
3.19 4.36
3.11 4.30
3.17 4.36
3.19 4.38 | 1-3
1-3
3-3
2-3
1-1
3-3 | | 3486.556
3487.121
3445.151 | Ŭ
A
A | (1)
20
20 | 2.19
2.21
2.17
2.19 | 5.75
5.77
5.77 | 2-1
1-1
3-4
2-3 | (79)
(79)
a ⁵ p _{-u} 5pc
(81) | | (1)
2
1
(1)
0
1 | 1.55 4.93
1.60 4.97
1.48 4.93
1.55 4.97
1.60 4.99
1.55 4.89
1.60 4.93 | 3-3 (46)
2-2
4-3
3-2
2-1
3-4
2-3 | 6097.08 F
6009.45 F
m6013.21 F
6163.560 V
6082.718 V
6240.656 F | ©
N1
(1) | 3.17 4.19
3.19 4.34
3.31 4.37
3.19 4.19
3.31 4.24
2.31 4.19 | 3-2 a ⁵ P- | .z ³ pe
64) | 3451.915
3428.284
3428.192
3417.842
2407.53
3394.583 | 99999 | 10
10
8
12
0
5 | 2.21
2.17
2.19
2.21
0.17
2.19 | 5.79
5.77
5.79
5.82
5.79
5.82 | 1-2
3-3
2-2
1-1
3-8
2-1 | | | 00000 | 1.48 4.99
1.48 4.96
1.55 4.94
1.55 4.99
1.60 4.96 | 4-4 a ³ F-y ⁷ P°
4-3 (47)
3-2
3-4
2-3 | m5224.30 F
5143.73 F
5102.24 F
5202.339 E | T1
© | 2.17 4.53
2.19 4.59
2.21 4.63
2.17 4.54 | 3-4 a ⁵ P-
2-3 (6
1-3
3-3 a ⁵ P- | .y ⁵ pe | *3426.383
3426.637
3477.850
3447.278
3150.338
3471.27 |]
}
}
} | 5d
(2)
8
10
5 | 2.17
2.19
2.21
2.19
3.31
2.21 | | 3-2
2-1
1-0
2-2
1-1
1-2 | a ⁵ P-y ³ P°
(83) | | (1)
(1)
(1)
(1)
(1) | 1.48 4.97
1.48 5.01
1.55 5.04
1.60 5.06
1.48 5.04
1.55 5.06 | 4-5 a ³ F-x ⁵ F° 4-4 (48) 3-3 2-2 4-3 3-3 | 5145.105 T
5131.475 J
5098.703 J
5079.226 J
5250.650 E
5198.714 B | (2)
8
6
6 | 2.19 4.59
2.21 4.62
2.17 4.59
2.19 4.62
2.19 4.54
2.21 4.59 | 2-2 (6
1-1
3-2
2-1
2-3
1-2 | s6) | 3407.461
3404.357
3415.530
3383.981
3392.304
3372.070 | A G G G G | 20d
6
4
8
8 | 2.17
2.19
2.21
2.17
2.19
2.17 | 5.79
5.81
5.63
5.81
5.93
5.83 | 3-4
2-3
1-2
3-3
3-3
3-2 | a ⁵ P-x ³ F°
(83) | | (2)
(1)
(1) | 1.60 5.08
1.48 5.25
1.55 5.29
1.56 5.25 | 2-1
4-3 8 ³ F-x ⁵ P°
3-2 (49)
3-3 | 4847.09 F
4771.702 J
4745.129 U
4731.77 F
4700.42 F
*4889.009 U
4817.773 U | (1)
(1) | 3.17 4.71
3.19 4.77
3.31 4.81
3.17 4.77
3.19 4.81
2.19 4.71 | 3-2 (6
1-1
3-3
3-1
2-3 | y ³ D°
37) | 3382.403
3392.652
3399.336
3406.803 | G
G
A
J | 3
15
15 | 2.17
2.17
2.19
2.21 | 5.82
5.80
5.82
5.84 | 3-4
3-3
2-2
1-1 | a ⁵ P-z ³ H°
(84)
a ⁵ P-w ³ D°
(85) | | (1)
(1)
(1)
(1) | 1.48 5.30
1.55 5.31
1.60 5.33
1.48 5.31
1.55 5.32 | 4-5 a ³ F-y ⁵ G°
3-4 (50)
2-3
4-5 a ³ F-z ⁵ H°
3-4 (51) | 4528.619 E
4494.568 E
4482.257 J
4459.121 E | 18
13
6
10 | 2.17 4.89
2.19 4.93
2.31 4.97
3.17 4.93 | 2-3 (6
1-2
3-3 | -x ⁵ D° | 3379.017
*3383.692
3413.135
3423.656
3327.961 | G
G
A
G | 6
5
15
7
(1) | 2.17
3.19
2.19
2.21
2.17 | 5.82
5.84
5.80
5.82
5.87 | 3-2
2-1
2-3
1-2
3-4 | _a 5p _{-w} 5ge | | (1)
5
©
5 | 1.60 5.35
1.48 5.37
1.55 5.45
1.60 5.45
1.48 5.42
1.55 5.45 | 2-3
4-4 a ³ F-w ⁵ D°
3-3 (52)
2-3
4-3
3-2 | 4442.343 E
4447.722 E
4407.714 J
4408.419 E
4430.618 E | 9
5
6
6 | 2.19 4.97
2.21 4.99
2.17 4.97
2.19 4.99
2.21 5.00 | 2-2
1-1
3-3
2-1
1-0 | 70 | 3346.942
3366.870
3389.748
3343.243 | Λ
Α
Α | 1
5
2
(1) | 2.17
2.19
2.21
2.17 | 5.85
5.85
5.85
5.86 | 3-2
2-2
1-2 | (86)
₂ 5p ₋₁ 0
(87)
a ⁵ p _{-z} ¹ G ^c | | (1)
(-)
0
0 | 1.60 5.48
1.60 5.48
1.48 5.50
1.55 5.48
1.48 5.48
1.55 5.50 | 3-1
4-3 a ³ F-v ⁵ D°
3-4 (53)
4-4
3-3 | 4371.00 P
4447.134 J
4518.58 F
4412.43 F
4478.040 U
4448.835 J | (2)Mn1
©
(1) | 2.17 4.99
7 2.19 4.96
2.21 4.94
2.17 4.96
2.19 4.94
2.17 4.94 | 3-4 a ⁵ P-
2-3 (6
1-2
3-3
2-3
3-3 | 9) | 3351.529
3374.221 | Å. | (1) | 2.19
2.21 | 5.87
5.87 | 2-1
1-1 | (88)
a5p_y3se
(89) | | 1 | 1.80 5.51
1.55 5.49 | 3-2 a ³ F-y ⁵ S° (54) | 4338.260 J
4324.961 Y
4329.54 P
4292.13 P
4292.293 Y
4308.54 P
M4259.95 P
4271.65 P | (1)
©
(1)
Fe | 2.17 5.01
2.19 5.04
2.21 5.06
2.17 5.04
2.19 5.06
2.21 5.08
2.17 5.06
2.19 5.08 | 3-4 a ⁵ p ₋
2-3 (7
1-2
3-3
2-2
1-1
3-2
2-1 | .x ⁵ F° | 3286.755
3284.588
3292.590
3265.616
3271.002
3305.971
3306.356 | A GG A C C | 20
5
8
15
15
20
20 | 2.17
2.19
3.21
2.17
2.19
3.19
2.21 | 5.92
5.95
5.96
5.96
5.95
5.95
5.95 | 3-3
2-3
1-1
3-2
2-1
3-3
1-2 | (91) | | REVISED | MULTLFLET | TABLE | |---------|-----------|-------| | | | | | REVI | SE | D M U | 11 1 1 1 1 1 E | r T | ABLE | | | | | | | |---------------------|-------------------------------------|-------------------|--|----------------------------------|--------------|-------------------------------|-------------------------------------|-------------------|---|-----------------------------------|--------------|------------------|-------------------------------------|-------------------|---| | oratory | E P | J | 為:ltiplet
(No) | Labor
I A | atory
Ref | Tnt. | EP
Low High | Ĵ | Multiplet
(No) | Labor
I A | etory
Ref | Int | E P
Low High | J | Multiplat (No) | | Ref Int | Low High | | (10) | Fe I cont | | | 300 113000 | | ,, | Fe I cont | | | | | | | ntinued | 2.17 5.92 | | 5n5ma | 4037.725 | A | (1) | 2.27 5.33 | 2_3 | 25 To | 3030.61 | P | 0 | 2.27 6.34 | 2-3 | a3p_v3Fe | | A (5) | 2.17 5.92
2.19 5.94
2.21 5.96 | 3_4
3_3
1_2 | 25p_45 _{F0} | 4225.79 | P | `ô′ | 2.27 5.33
2.41 5.33 | 2-3
1-2 | a ³ p-y ⁵ Qe
(118) | 2976.126 | · G | 5 | 2.27 6.42 | 2-3 | (145)
a3P_u3D ⁹ † | | A 6
7 (1) | 2.17 5.94
2.19 5.96 | 3-3 | | 4007.233 | A | (1gn) | 2.27 5.35 | 2-3 | a ³ p_z ⁵ H°
(119) | 3053.065
3078.436 | A
G | 5 | 2.41 6.46
2.47 6.48 | 1-2
0-1 | (146) | | V 4
V 3
A 8 | 2.21 5.97
2.17 5.96 | 1-1
3-2 | | 3913.635
4058.766 | J
V | 4
3 | 2.27 5.42
2.41 5.45 | 2-3
1-3 | a3p_w5p°
(130) | 3033.104 | A | (1) | 2.41 6.48 | 1-1 | 2- 2 | | A 8
V 5 | 3.19 5.97 | 3-1 | | 4101.684
3874.053 | A
A | $\{\frac{1}{1}\}$ | 2.47 5.48
2.27 5.45 | 0-1
2-3 | | 3063.939 | 4 | (2) | 2.41 6.44 | 1-1 | e ³ P_t ³ Do 4
(147)
e ³ P_v ³ Po † | | G 8 | 2.19 5.98 | 2-3 | a ⁵ P-w ³ G°
(93)
a ⁵ P-x ³ P° | *4021.622
3840.20 | ¥
P | (1)
© | 3.41 5.48
2.27 5.48 | 1-1
2-1 | | 2996.386
2960.303 | A.
G | 5
1 | 2.41 6.53
2.47 6.64 | 1-2
0-1 | (148) | | V 4
V 6 | 2.17 5.96
2.19 5.99 | 3-2
2-1 | a ⁵ P _{-X} 3p°
(95) | 4013.89 | P | | 2.41 5.49 | 1-0 | a3p_w5re | .0.0. | P - | | 3.41 3.63 | -
4-3 | z ⁷ D°-b ³ D | | P 0 | 2.21 5.98
2.19 5.96 | 1-0
2-3 | | 3876.671 | U | (1) | 2.27 5.45 | 2-3 | 121)
23p_w5pc | 10191.51
5871.04 | ٧ . | ©?
(4) | 2.46 4.56 | 2-3 | 27D0_d3F | | G 5
G 5 | 2.21 5.99
2.21 5.96 | 1-1
1-3 | | 3819.62
3981.106 | P
V | (1) | 2.27 5.50
2.41 5.51 | 2-3
1-2
0-1 | (123) | 5908.24 | Ÿ | (1)
(3) | 3.47 4.56 | 1-2 | (150) | | V (1) | 2.17 6.01 | 3-4 | a ⁵ P_y ¹ G°
(97)
a ⁵ P_2° | 4043.69
3803.24 | P
P | 0 .
0 0 | 2.47 5.53
2.27 5.51
2.41 5.53 | 2-2 | | 4260.479
4235.942 | H | 35
25 | 2.39 5.29
2.41 5.33 | 5-5
4-4 | z ⁷ D°-e ⁷ D
(152) | | V 4 | a.ã1 6.06 | 1-3 | 25p_20 | 3965.83
3825.404 | J | (1gn) | 2.27 5.49 | 3-2 | a ³ P-y ⁵ 3° | 4222.219
4210.358 | J
J | 13
15 | 3.44 5.36
2.47 5.40 | 3-3 | ,, | | A 3 | 2.17 6.08
2.19 6.08 | 3-4
2-3 | (98)
85p_w ³ F•
(99) | 4005.38 | ř | 0 | 8.41 5.49 | 1-0 | (193) | 4187.802 | J
J | 20
20 | 2.39 5.33
2.41 5.36 | 5-4
4-3 | | | s (-) | 2.19 6.10 | 2-2 | | 3724.380
3885.512 | B | 8
5 | 2.27 5.58
2.41 5.59 | 2-3
1-2 | a ³ P-x ³ D°
(124) | 4187.044
4191.436 | j | 20
15 | 3.44 5.39
3.46 5.40 | 3-3 | | | P C | 2.17 6.07
2.19 6.08 | 3-3
2-2 | a ⁵ P~v ³ D° | 3918.319
3715.911 | đ
J | 3 | 3.47 5.62
2.27 5.59 | 0-1
3-3 | | 4299.248
4271.159 | I
J | 18
20 | 2.41 5.29
2.44 5.33 | 4-5
3-4 | | | P
P (1) | 2.31 6.09
3.17 6.08 | 1-1
3-3 | | 3845.170
3678.98 | K
W | (5)
(1) | 2.41
5.62
2.27 5.63 | 1-1
3-1 | | 4250.125
4233.608 | J
I | 25
18 | 2.46 5.36
2.47 5.39 | 2-3
1-2 | | | P © | 2.19 6.09
2.19 6.07 | 2-1
2-3 | | 3677.477 | ٧ | (2) | 2.27 5.62 | 2-3 | a3p_y3ge | 3947.393
3920.645 | n
A | {1
1} | 3.39 5.52
2.41 5.56 | 5-4
4-3 | z ⁷ p°-e ⁵ p
(153) | | U (1) | 2.21 6.08 | 1-3 | a ⁵ P_3° | 3630.67 | P | ©? | 2.27 5.67 | 2-3 | (135)
a3p_x5ge | 3908.68
3905.66 | P | 00 | 2.44 5.60
2.46 5.62 | 3-2
2-1 | (155) | | V (3r
S (1) |) 2.19 6.08
2.17 6.20 | 2-3
3-2 | (101) | 3601.43
3735.71 | P
P | 0 | 2.27 5.70
2.41 5.73 | 2-3
1-3 | (126)
a3p_w5pe
(127) | 3908.90
3980.65 | P
₩ | (1) | 3.47 5.63
3.41 5.52 | 1-0 | | | S (1)
P
W (1) | 2.19 6.18
2.21 6.17 | 2-1 | (102) | *3790.756
m3578.67 | J
P | 1
Cr | 2.47 5.73
2.27 5.72 | 0-1
3-3 | | 3950.78
m3932.59 | P | `⊙
Fe | 3.44 5.56
3.46 5.60 | 3-3
2-2 | | | P '6 | 2.19 6.20 | 2-2 | | 3722.24
3566.31 | P | 00 | 3.41 5.73
3.27 5.73 | 1-1
2-1 | | 3922.08
4011.71 | ₽
₩ | $\binom{0}{1}$ | 2.47 5.62
2.44 5.52 | 1-1
3-4 | | | s (-) | 2.17 6.25 | 3-4 | a ⁵ p_x ¹ G°
(103) | 3542.243 | ٧ | .1. | 2.27 5.75 | 2-1 | a3p-z3se | 3975.21
3949.23 | ₩
P | (1)
© | 2.46 5.56
2.47 5.60 | 2-3
1-3 | | | 6 6
6 3 | 2.17 6.31
2.19 6.34 | | | 3696.03
3763.57 | ₩
P | (1)
© | 3.41 5.75
3.47 5.75 | 1-1
0-1 | (128) | 3615.01
3594.10 | P
P | 0 | 2.39 5.80
2.41 5.85 | 5-5
4-4 | z [?] D°-e ⁵ F
(154) | | U (2) | 2.21 6.37
2.21 6.32 | 1-2
1-2 | | 3524.236
3657.143 | G
V | 4 | 2.27 5.77
2.41 5.79 | 2-3
1-3 | a ³ P-u ⁵ D°
(130) | 3570.60
3554.65 | P
P | ő | 2.44 5.90
2.46 5.93 | 3-3
2-3 | , | | | | | (105) | *3683.616
3506.498 | Ŭ
G | (<u>1</u>) | 2.47 5.83
2.27 5.79 | 0-1
3-3 | | 3544.88 | P | 0 | 2.47 5.95 | 1-1 | 7-0 .7-1 | | E 4
P 0 | 2.27 3.59
2.41 3.64 | 2-3 | (106) | 3618.91
3471.350 | P
U | <u>ө</u> . | 2.41 5.82
2.27 5.83 | 2-1 | | 3225.789
3196.930 | A
A | 25
20 | 2.39 6.21
3.41 6.25 | 5-6
4-5 | z ⁷ D°-e ⁷ F
(155) | | P 0
F 1 | 2.47 3.67
2.27 3.64 | 2-2 | 3 | 3619.66
3526.465 | P
J | ©
4 | 3.41 5.82
3.27 5.77 | 1-0
3-3 | | 3180.223
*3200.475
3192.799 | G
A
G | 20
15
8 | 2.44 6.33
2.46 6.31
2.47 6.34 | 3-4
2-3 | | | P
E 10 | 2.41 3.67
2.27 3.67 | 1-1
2-1 | | 3655.35
3504.866 | P | | 2.41 5.79
3.27 5.79 | 1-1
2-1 | (131) | 3175.447
3160.658 | A
A | 12
10 | 2.39 6.28
2.41 6.32 | 1-2
5-5
4-4 | | | P Fe
P Fe | 2.27 3.93
2.41 3.97 | 2-3
1-8 | | 3686.260
3678.863 | j
J | 3 | 3.41 5.76
2.41 5.77 | 1-0 | 1 | *3184.631
*3181.922 | V
U | (2) | 2.44 6.31
2.46 6.34 | 3-3
2-3 | | | 0 4 | 2.27 3.87 | | | 3721.396 | Ā | 1 | 2.47 5.79 | 0-1 | | 3205.400
3139.661 | A
U | 15
(1) | 2.47 6.32
3.39 6.32 | 1-1
5-4 | | | E 8 | 2.41 3.91
2.47 3.94 | 1-2
0-1 | (108) | 3481.558
3616.326 | n
A | (1) | 2.27 5.81
2.41 5.83 | 2-3
1-2 | | 3165.005
3166.24 | P | 3
⊚ | 2.41 6.31
2.44 6.34 | 4-3
3-2 | | | P 0 | 2.27 3.91
2.41 3.94 | 1-1 | | m3490.74 | P | Co | 2.27 5.80 | 2-3 | | 3194.422 | Ā | 3
30 | 2.46 6.32
2.39 6.22 | 2-1
5-5 | z ⁷ D°-f ⁷ D | | P 0 | 2.37 3.94 | | | 3624.30
3670.810
*3476.336 | A
A
A | (1)
1
(2-) | 3.41 5.83
3.47 5.84
3.27 5.82 | 1-3
0-1
3-3 | | 3222.069
3199.530
3214.044 | A
G
V | 15
20 | 2.41 6.27
2.44 6.38 | 4-4
3-3 | (156) | | V 20
V 10 | 2.27 4.14
2.41 4.17
2.47 4.30 | 1-2 | 3 (109) | 3606.53
m3459.95 | P | (2 ₁₁)
©
Fe | 2.27 5.82
2.41 5.84
2.27 5.84 | 1-1
2-1 | | 3215.940
3221.936 | A
y | 12 | 2.46 6.30
2.47 6.30 | 2-2 | | | I 20
V 1 | 3.27 4.17
3.41 4.20 | 2-2 | } | 3442.364 | v | 5 | 2.27 5.85 | 3-2 | | 3178.015
3194.03 | A
P | 10 | 2.39 6.27
2.41 6.26 | 5-4
4-3 | | | V (1 | | 21 | | 3587.424 | J | 5 | 2.41 5.85 | 1-2 | (134) | 3199.93
3210.830 | P
G | 10 | 2.44 6.30
2.46 6.30 | 3-2
2-1 | | | P | 2.27 4.34 | | | 3426.337
3569.99 | ₩
U | (2)
(1) | 2.27 5.87
2.41 5.87 | 2-1 | . (135) | 3244.190
3219.581 | A
G
P | 15
12 | 2.41 6.22
2.44 6.27 | 4-5
3-4
2-3 | | | P ©
P 1 | 2.41 4.26
2.47 4.38 | | (110) | 3632.979
3393.915 | J
V | 3
(1) | 2.47 5.87
2.27 5.91 | 0-1 | 30300 | 3230.16
3227.067 | 4 | 3 | 2.46 6.28
2.47 6.30 | 1-2 | | | B 200 | 2.27 4.19
2.41 4.24 | 2- | 3 a ³ P-z ³ P° | m3378.73 | ,
P | Fe | 2.27 5.92 | 2-3 | (136) | 3217.380
3227.798 | A
G | 10
15 | 2.39 8.22
2.41 6.24 | 5-4
4-3 | | | I 6 | 3.27 4.24
3.41 4.27 | 2- | l | 3494.15
3538.55 | W | {i} | 2.41 5.95
2.47 5.96 | 1-2
0-1 | 3 (137)
L | 3230.963
3228 262 | A
G | 10
5 | 2.44 6.26
2.46 6.28 | 3-3
2-1 | | | I 150
I 100 | 3.41 4.19
3.47 4.34 | 1- | 3 | 3356.407
3478.788 | H
V | (1) | 2.27 5.95
2.41 5.96 | 2-2 | L | 3228.900
3239.436 | G
A | 3
15 | 2.47 6.29
2.41 6.22 | 1-0 | | | Λ (3 | 3.27 4.59 | 2_ | a ³ P-y ³ Fo | 3342.225 | ٧ | 5 | 2.27 5.96
2.27 5.96 | 2-1
2-2 | | 3248.206
3247.297
m3239.46 | Q
V
P | 10
3
Fe | 2.44 6.34
2.46 6.36
2.47 6.38 | 3-3
2-2
1-1 | | | P 6 | 2.41 4.63
2.27 4.63 | | 2 (113) | 3347.927
3484.97 | A
W | (1) | 2.27 5.96
2.41 5.96 | 1-2 | 3 (138) | 3259.991
3264.716 | Q. | (8) | 2.44 6.33
2.46 6.34 | 3-4
3-3 | | | V (2 | | | | 3340.566
3451.628 | Ā | 6 | 2.27 5.96
2.41 5.99 | 2-2
1-3 | | 3258 - 62 | Þ | `õ′ | 2.47 6.26 | 1-2 | 3 | | P (1 | 2.47 4.6 | 3 0- | 1 | 3317.121
3458.304 | G. | 3
4 | 2.27 5.99
2.41 5.98 | 2-1
1-0 | <u>1</u>
0 | 3211.989
3219.806 | G. | 10
10 | 2.39 6.23
2.41 6.25 | 5-4
4-3 | (158) | | P 6 | 2.41 4.5 | š 1- | 1 | 3477.007
3510.443 | A. | (2) | 8.41 5.06
3.47 5.99 | 0- | | 3233.967 | G
P | 13 | 8.44 6.88
2.41 6.23 | 3-3
4-4 | | | B 15 | 2.27 4.7 | <u> </u> | 3 a ³ P-y ³ D° | 3388.81 | P | (1) | 2.41 6.06 | 1-2 | 3 a ³ P-20 | 3240.11
3230.210
3254.46 | V
P | 9
6 | 2.44 6.25
2.46 6.28
2.44 6.23 | 3-3
2-2
3-4 | } | | P Fe
J 4 | 2.47 4.8 | 10- | 1 | *3239.029
3345.679 | A
A | {1
1} | 3.27 6.08
3.41 6.10 | | | 3256.52
3241.43 | P | 0 | 3.46 6.25
3.47 6.28 | 2-3 | 3 | | В 3
У (а | 3.27 4.7°
3.41 4.8
3.27 4.8 | i 1- | 1 | *3250.400 | v | (3) | 2.27 6.07 | 2-2 | 3 a3p_v3po | 3207.092 | 4 | 2 | 2.39 6.24 | 5-6 | z ⁷ D°-e ⁵ G | | J (; | | 3 2- | 3 a ³ P-x ⁵ D° | 3367.161
3416.688 | V. | 11
11
11
11
11 | 2.41 6.08
2.47 6.09 | 1- | 2 (142)
1 | 3210.230
3201.891 | g
s | (-) | 2.41 6.26
2.44 6.29 | 4-5
3-4 | ļ · | | Ρ .0 | 3.47 4.9 | 9 0- | 1 | 3239.029
3360.935 | A
A | {1}
1 | 3.27 6.08
2.41 6.09 | 1-: | 1 | 3193.314
3188.819 | g
G | 7 | 2.46 6.32
2.47 6.34
2.39 6.26 | 2-3
1-2
5-5 | 3 | | J (2
P (| 2.41 4.9 | 9 1- | 1 | 3233.304
3214.624 | A
A | (1) | 3.27 6.09
2.27 6.11 | | 2 a3p_z1po | 3188.567
*3182.076
m3177.52 | G
V
P | 4
3
Fe* | 2.41 6.39
2.44 6.32 | 3-3
3-3 | ł | | V (: | | | 2 a3p_,5go | | v | 5 | 2.27 6.20 | | (143) | m3177.96
3160.77 | P | Fe | 2.46 6.34
2.39 6.29 | 2-2
5-4 | 3 | | υ (: | | | (116)
3 g3p_x5pe | 3143.888
*3278.741
3157.15 | Ý | 4 | 2.41 6.18
2.27 6.18 | 1-
3- | 1 (144)
1 | 3157.992
*3162.335 | ប | (2)
2n | 2.41 6.32
2.44 6.34 | 4-3
3-2 | 3 | | P
P | 3.41 5.8
2.47 5.3 | 9 1- | .2 (117)
-1 | 3288.660
3263.378 | A
A | (s)
(a)
(a) | 2.41 6.17
2.41 6.20 | 1- | .0
-2 | | | | | | | | ₽. | 1) 2.27 5.2
3 2.41 5.3 | 2 1. | -1 | 3331.778 | . 7 | (8) | 3.47 6.18 | 3 0- | -1 | | | | | | | | ۸ (| 1) 2.27 5.3 | 12 2- | -1 | REVI | SE: | D H A | LTIP | LES | r T | ABLE | | | | | | | 51 | |--------------------------------|--|--|--|--|---|---|--|--|---|---|--|----------------------------|---------------------------------|--|--|--|--| | y
Int | E P
Low High | J | Multiplet
(No) | Labor
1 A | atory
Ref | TUL | E P | ıgn | J | Multiplet (No) | Labor
I A | ator
Rer | y
Int | LOW I | High | J | Multiplet (No) | | đ. | | | | Fe I cont | inued | | | | | • • | Fe I cont | | | | | | • | | 8 8 4 8 8 9 (1)
(1) | 2.39 6.29
2.41 6.32
2.44 6.34
2.46 6.35
2.47 6.36
2.39 6.33
2.41 6.34
2.44 6.35 | 5-8
4-5
3-4
2-3
1-2
5-5
4-4
3-3 | z ⁷ p°-e ⁷ G
(160) | 3623.187
3650.280
3659.516
3619.76
3637.251
3653.763
3672.69 | A A A A A A A A A A A A A A A A A A A | 8
5
8
(1)
1
1 | 3.42 5
3.44 5
3.39 5
3.42 5
3.42 5 | .80
.80
.83
.80
.82
.80 | 6-6
5-5
4-4
6-5
5-4
5-6
4-5 | a ³ H-z ³ H° (180) |
7069.54
6950.82
6860.29
6839.828
6783.71
6746.96
m6677.96
6672.88 | P
V
V
V
P
P | 1
1
4
2
©
Fe | 2.58
2.60
2.55
2.58
2.60
2.55 | 4.29
4.35
4.40
4.35
4.40
4.43
4.40
4.43 | 4-5
3-4
3-3
4-4
3-3
2-2
4-3
3-2 | გ3 _{F—2} 5 ცა
(205) | | ⊙
15
₽e | 3.46 6.36
3.47 6.37
3.39 6.34
2.41 6.35
3.44 6.36
3.46 6.37
2.39 6.31 | 3-3
1-1
5-4
4-3
3-3
3-1
5-5 | 2 ⁷ D°-2 ⁵ F | 3573.842
3596.30
3595.87
3566.59
3574.37
3583.56
3603.573
3617.97 | *************************************** | 3
1
1
1
1
1
1
1
1
1
0 | 3.44 5
3.44 5
3.39 5
3.42 5
3.44 5 | .85
.87
.85
.87
.89
.85 | 6-6
5-5
4-4
6-5
4-3
5-6
4-5 | a ³ H_w ⁵ G°
(181) | 6783.27
6712.68
6646.98
6609.116
6575.022
6475.632 | P
V
I
I | ©
(1)
30
30
13 | 2.58
2.60
2.55
2.58 | 4.37
4.42
4.45
4.43
4.45
4.45 | 4-5
3-4
2-3
4-4
3-3
4-3 | b ³ F-z ³ G•
(206) | | ©
©
6n | 2.41 6.35
2.44 6.37
2.46 6.38
3.47 6.39
2.39 6.35
2.41 6.37
2.44 6.38 | 4-4
3-3
3-2
1-1
5-4
4-3
3-2 | (161) | 3543.09
3531.43
3528.24
3572.32
3552.42
3593.80 | * P P U P | (1)
(0)
(1)
(1)
(0) | 3.43 5
3.44 5
3.42 5
3.44 5 | .05
.92
.94
.88 | 6-5
5-4
4-3
5-5
4-4
4-5 | a ³ H-v ⁵ F° (182) | 6230.728
6137.696
6065.487
6051.00
6005.53
6322.693
6200.323 | B
B
P
V
I
J | 25
18
15
©
(1)
5 | 3.58
3.60
3.55
3.58
3.58 | 4.53
4.59
4.63
4.59
4.63
4.53
4.53 | 4-4
3-3
2-2
4-3
3-2
3-4
2-3 | ъ ³ F-у ³ F°
(207) | | 5
3
(1)
3 | 2.46 6.39
2.41 6.31
2.44 6.35
2.46 6.37
2.47 6.38 | 3-1
4-5
3-4
2-3
1-3 | z ⁷ D°-e ⁵ s | 3514.62
3546.21
3564.56
3543.39
3567.36
3564.51 | TO P W W P | (1)
(1)
(1)
(1)
(0) | 3.43 5
3.44 5
3.43 5
3.44 5 | .91
.90
.91
.91 | 6-5
5-4
4-3
5-5
4-4
4-5 | a ³ H-x ³ G° (183) | 6199.475
6139.65
6106.84
6290.55
6202.31
6356.293 | U
P
P
P | (1)
0
0
0
(1) | 2.58
2.58
2.58
2.60 | 4.54
4.59
4.62
4.54
4.59
4.54 | 4-3
3-2
3-1
3-3
2-2
2-3 | b ³ F-y ⁵ P° (208) | | 15
(1)
(1)
6 | 2.46 6.31
2.47 6.31
2.44 6.34
2.41 6.37
2.44 6.37 | 3-4
4-3
3-3 | | 3486.279
3478.382
3484.84
3494.25 | V
W
P | (1)
(1gn)
(1)
0 | 2.42 5
2.44 5
2.42 5 | .95
.97
.98
.95 | 6-5
5-4
4-3
5-5
6-5 | a ³ H-w ³ G° (185) | 5701.553
5615.308
5567.401
5778.47
5667.67
5833.93 | 7
7
7
7
P
P | (2)
(2)
(1)
© | 2.58
2.60
2.58
2.60 | 4.71
4.77
4.81
4.71
4.77 | 4-3
3-2
2-1
3-3
2-2
2-3 | (209) | | ©
©
(1)
(1)
(1) | 3.46 6.40
3.44 6.43
3.46 6.48
2.44 6.40
2.46 6.43
3.47 6.48 | 2-3
4-3
3-2
2-1
3-3
2-3
1-1 | z ⁷ D°-e ⁵ p
(165) | *3475.867
3496.19
3437.631
3457.512
3390.25
3394.085 | y
V
V | (1)
(1)
(1)
(1)
(1) | 2.44 5
3.42 6
3.44 6
2.43 6 | .97
.97
.01
.01 | 5-5
4-5
5-4
4-4
5-4
4-3 | (186) a ³ H-y ¹ Go (187) a ³ H-w ³ Fo (188) | 5265.94
*5235.392
5173.21
5164.70
m5162.38
5331.48
5380.91 | P P P P P | (2)
©
Fe | 2.58
2.55
2.58
2.60
2.58 | 4.89
4.93
4.93
4.97
4.99
4.89
4.89 | 4-4
3-3
4-3
3-2
2-1
3-4
2-3 | b ³ F-x ⁵ D°
(210) | | ©7
5
6 | 2.44 3.87
2.39 4.16
2.43 4.30 | -
4-3
6-5
5-4 | (166)
a3H-y5po | 3395.90
3327.498
3334.223
•3339.202 | A
A
A | ©?
(3)
(3) | 2.39 6
2.42 6 | .08
.10
.13 | 4-3
6-6
5-5
4-4 | a ³ H-3°
(189)
a ³ H-y ³ H°
(190) | 5069.60
5010.30
5006.72
5003.85 | P
P
P | 0000 | 2.55
2.58 | 5.01
5.01
5.04
5.06 | 3-4
4-4
3-3
2-2 | b ³ F-x ⁵ F° (211) | | 1
©
(1)
Fe | 3.44 4.34
2.43 4.16
3.44 4.30
3.39 4.30 | 5-4
4-3
5-5
4-4
6-6 | ₂ 3 _{K-2} 5 _G e | 3308.75
3320.650
3353.268
3352.929 | A
A
A | (3)
(1)
(1) | 2.39 6
2.42 6
2.42 6
3.44 6 | 6.12
6.14
6.10
6.13 | 6-5
5-4
5-6
4-5 | 311 340 | 4566.68
*4488.917
4513.73
4509.13 | P
J
P
P | (2)
(0
(0 | 2.55
2.58 | 5.35
5.30
5.31
5.33 | 4-5
3-4
2-2 | b ³ F-x ⁵ P°
(212)
b ³ F-y ⁵ G°
(213) | | 60
30
1000
400
10 | 3.42 4.35
3.39 4.39
2.42 4.35
3.44 4.40
3.43 4.30
3.44 4.39 | 5-5
4-4
6-5
5-4
4-3
5-6
4-5 | | 3324.541
3331.616
3325.468
3350.284
3369.14 | ь
л
д
д | 4
3
4
(3)
© | 3.43 6
3.44 6
3.44 6
3.44 6 | 3.11
3.13
3.15
3.11
3.13 | 6-5
5-4
4-3
5-5
4-4
4-5 | a ³ H_V ³ G° (191) | *4373.563
4337.58
4319.45
4294.04
4288.962
4277.41 | J
P
P
V
P | (3)
©
(1) | 2.58
2.55
2.55
2.58 | 5.37
5.42
5.45
5.42
5.45
5.45 | 4-4
3-3
2-2
4-3
3-8
2-1 | b ³ F-w ⁵ D° (214) | | 30
30
30
3
4
©? | 8.39 4.37
2.42 4.43
3.44 4.45
3.42 4.37
2.44 4.43
3.44 4.37 | 6-5
5-4
4-3
5-5
4-4
4-5 | (169) | *3225.607
3243.118
3160.342
3178.970
3155.80
3183.58 | V
V
P
P | (1)
(2)
3
0
0 | 2.44 6
2.39 6
2.42 6
2.39 6 | 3.25
3.25
3.30
3.30
3.30 | 5-4
4-4
6-6
5-5
6-5
5-6 | a ³ H-x ¹ G°
(193)
a ³ H-x ³ H°
(193a) | 4235.65
4318.81
4322.70
4275.72
4270.31
4283.40 | PPPUPP | 0
0
0
(1)
0
0 | 2.58
2.60
2.55
2.58 | 5.46
5.43
5.45
5.43
5.47
5.48 | 4-5
3-4
3-3
4-4
3-3
2-1 | b ³ F-w ⁵ F°
(215) | | 0 | 3.43 4.53
3.44 4.59 | 5-4
4-3 | | 3155.293
*3172.067 | A
A | 3 | | 3.33
3.33 | 5-4
4-4 | a ³ H-v ³ F°
(193) | 4246.79
4251.88 | P
P | 0 | | 5.48
5.50 | 3-4
2-3 | (316) | | (3)
0
0
0 | 8.44 4.53
8.42 5.88
8.44 5.30
8.43 5.31
8.44 5.33 | 4-4
5-6
4-5
5-4
4-3 | a ³ H-y ⁵ G°
(171) | m3125.68
3119.495
3130.435
3148.430
3135.863
3165.08 | P
G
U
U | Fe 5 6 (3) (1) © | 3.39 6
3.43 6
3.44 6
3.44 6 | 3.34
3.38
3.40
3.34
3.38 | 6-5
5-4
4-3
5-5
4-4
4-5 | a ³ H-u ³ G°
(194) | 4067.275
4095.975
4078.365
4106.266
*4123.748
4134.19 | B
I
J
V
J
P | 4
4
(1)
(1)
© | 2.55
2.58
2.60
2.58
2.60 | 5.58
5.59
5.62
5.58
5.59
5.58 | 4-3
3-3
2-1
3-3
2-3
2-3 | b ³ F-x ³ D° (217) | | (1)
0
0
0 | 3.39 5.35
3.43 5.31
3.39 5.31
3.42 5.32
3.44 5.35
3.43 5.35 | 6-6
5-5
6-5
5-4
4-3
5-6 | (172) | 3144.98
3161.55
3100.838
*3106.542§ | P
P
V | ©
©
(3)
(1) | 2.39 | 3.35
3.35
3.37 | 5-4
4-4
6-5
4-3 | a ³ H-4°
(195)
a ³ H-6°
(196a)
a ³ H-u ³ D° | 4055.046
4071.52
4076.498
4033.19
4049.336
4011.416 | V
V
P
V | 3
(1)
(1)
(1)
(1) | 2.55
2.58
2.60
2.55
2.58 | 5.59
5.61
5.62
5.61
5.62 | 4-5
3-4
2-3
4-4
3-3 | (318) | | (1)
0
0
0
10 | 3.39 5.46
2.42 5.43
3.44 5.45
2.44 5.43
3.39 5.59 | 6-5
5-4
4-3
4-4
6-5 | (173) | 3083.152
3085.638
3030.149
3031.213 | ŭ
V
G | (1)
15
15 | 3.44 6
3.39 6
3.42 6 | 3.45
3.47
3.50 | 4-3
6-8
5-5
4-4 | (196)
a ³ H ₋ t ³ D°
(197)
a ³ H ₋ w ³ H°
(198) | 3985.32
4005.49
4019.05
3968.38 | P
P
U
P | ©
(1) | 2.55
2.58
2.60
2.55 | 5.62
5.64
5.66
5.67
5.66 | 4-3
4-5
3-4
2-3
4-4 | b ³ F-x ⁵ G°
(319) | | 8
(8)
(a)
3 | 3.43 5.61
3.44 5.63
3.48 5.59
3.44 5.61 | 5-4
4-3
5-5
4-4 | (175) | 3009.098
3015.913
3046.989
3045.594 | A
A
A | 12
3
4
{1} | 3.43 6
3.43 6
3.44 6 | 3.51
3.50
3.51
3.47
3.50 | 6-5
5-4
5-6
4-5 | 3 3 | 3998.64
*4010.77
3955.77
3964.46
3921.27 | P
P
P
U | (1)
(0)
(1) | 2.60
2.55
2.58 | 5.67
5.67
5.67
5.57
5.70 | 3-3
2-8
4-3
3-3 | b ³ F-z ³ I° | | Fe (1)
©
(1)
8 | 2.39 5.63
2.39 5.64
2.42 5.66
2.44 5.67
2.42 5.63
2.39 5.68 | 6-6
6-5
5-4
4-3
5-6
8-7 | (176) | 3005.302
3039.322
3019.391
3018.134
3004.119 | A
A
G | (3)
(1)
(1)
(2) | 3.43 6
3.44 6
3.39 6
3.43 6 | 3.50
3.48
3.53
3.48
3.53 | 6-7
5-6
4-5
6-6
5-5 | a ³ H_y ³ I° (199) | 3833.311
3864.31
3867.45
3829.771
3842.975 | J P P D D | 5
©
(2)
(1) | 2.55
2.58
2.60
2.55
2.58 | 5.77
5.77
5.79
5.79
5.79 | 4-4
3-3
2-2
4-3
3-8 | (220)
b ³ F-u ⁵ D°
(221) | | 6
8
(1gn)
(1) | 3.42 5.68
3.44 5.70
3.39 5.68
3.42 5.70 | 5-6
4-5
6-6
5-5 | (177) | *2986.655\$
2980.60 | P
P
E | (1)
©
— | 3.44 | 3.55
3.58
 | 5-6
4-4
- | a ³ H-z ¹ I°
(300)
a ³ H-9°†
(301)
b ³ F-z ³ F° | 3824.73
3867.925
3808.731
3813.059
3801.834 | Py | 1
4
5? | 2.58
2.55
2.58
2.60 | 5.82
5.77
5.79
5.81
5.83 | 2-1
3-4
4-4
3-3
3-3 |)3F-x3F° | | (1)
© | 3.43 5.77
3.44 5.77
3.44 5.77
3.43 5.79
3.44 5.81 | 5-4
4-3
4-4
5-4
4-3 | (178)
. a ³ H-x ³ F° | 9148.11
9010.55
9359.420
9246.54
9173.20 | F
E
F
P | 3
3
3
8 | 2.60 3
2.55 3
2.58 3 | 3.93
3.97
3.87
3.91
3.94 | 3-3
2-3
4-3
3-3
2-1 |
(303)
b ³ F-2 ³ Do | 3779.424
3797.948
3842.90
3837.132 | y
J
J | (1)
0
1 | 2.60 | 5.81
5.83
5.79
5.81 | 4-3
3-2
3-4
2-3 | b ³ F-z ³ n° | | {\frac{1}{1}} | 2.44 5.79 | 4-4 | | 7481.534
7430.58
7400.87 | y
H
P | (1)
1
0 | 2.55
2.58 | 1.20
1.24
1.26 | 4-4
3-3
3-2 | გ ³ F_ყ ⁵ F°
(204) | *3811.05
3777.448 | J
J | (1)
(1)
2 | 2.55
2.58
2.55 | 5.80
5.82
5.82 | 4-5
3-4
4-4 | (223) | | ator;
Ref | y
Int | E P
Low High | J | Multiplet
(No) | Labor
I A | rator
Ref | y
Int | E : | P
High | J | Multiplet
(No) | Labor
I A | rator;
Ref | Int | E I | P
High | J | Multiplet (No) | |--------------|-------------------|-------------------------------------|-------------------|---|-----------------------------------|--------------|-------------------------|----------------------|----------------------|-------------------|---|----------------------------------|---------------|-------------------|----------------------|----------------------|-------------------|--| | inue | a. | | | | Fe I con | tinue | d | | | | | Fe I cont | tinue | i | | | | | | P
P | Fe
Fe | 2.55 5.80
2.58 5.82 | 4-3
3-2 | b ³ F_ա ³ D°
(234) | 3253.954 | ٧ | (3) | 2.60 | 6.39 | 3-3 | b ³ F-x ¹ D°
(257)
b ³ F-u ³ D° | 3971.82 | W | (1) | | 5.85 | 3–2 | a ³ G-1°
(281)
a ³ G-z ¹ G° | | P
J | ⊙
1 | 2.60 5.84
2.58 5.80 | 2-1
3-3 | | 3191.11
3181.522 | Œ
₩ | (1)
4 | 2.55 | 6.42 | 4-3
3-2 | (258) | 3884.359
3927.61
*3966.630 | J
P | 3
©
10n | 2.68
2.72
2.75 | 5.86
5.86
5.86 | 5-4
4-4
3-4 | (282) | | J
P | 1
© | 2.60 5.82
2.60 5.80 | 2-2
2-3 | | 3176.366
3198.266
3232.16 | V
U
P | (1)
© | 2.60
2.60
2.60 | 6.48
6.46
6.42 | 2-1
2-2
2-3 | | *3861.341 | J | 2 | 2.68 | 5.88 | 5-5 | a ³ Gv ⁵ F° | | P
W | ©
(1) | 2.55 5.85
2.58 5.87 | 4-5
3-4 | _Ե 3 _{F−₩} 5 _G •
(225) | 3166.435 | G. | 6 | 2.55 | 6.45 | 4-3 | b3F-t3De | 3855.329
3813.638 | Ĭ | (1w)
2 | 2.72
2.68 | 5.92
5.92 | 4-4
5-4 | (283) | | Ω
Λ | (1)
(1) | 2.60 5.89
2.55 5.87 | 2-3
4-4 | | 3190.02
3159.25 | ₩
P | (1)
© | 2.58
2.60 | 6.45
6.50 | 3-3
2-2 | (259) | 3826.836
3892.898 | J
V | (1) | 2.72
2.75 | 5.94
5.92 | 4-3
3-4 | | | P
J
V | .©
2
(1) | 2.58 5.89
2.60 5.90
2.55 5.89 | 3-3
2-3
4-3 | | 3126.84
3111.686 | P
U | (3)
© | 2.55
2.55 | 6.50
6.51 | 4-5
4-4 | _{р3} г_ _w 3 _{Н°} | 3827.572
3872.923 | J
V | 1
1 | 2.68
2.73 | 5.91
5.90 | 5-5
4-4 | a ³ G-x ³ G°
(284) | | Ą | {1
1 | 2.58 5.90 | 3-2 | * | 3093.888 | v | (214) | 2.55 | 6.54 | 4-3 | b ³ F-8 ³ De | 3907.464
3830.850 | j
J | (1)
1 | 2.75
2.68 | 5.91
5.90 | 33
54 | ,, | | V
J | {1
1 | 2.58 5.85
2.60 5.85 | 3-2
2-2 | b ³ F-1°
(336) | 3116.39 | P
P | . 0 | 2.58 | 6.54
6.59 | 3-3
4-3 | (261)
b ³ f-t ⁵ p° | 3869.590
3869.562
3910.845 | X
J | 3*
3*
(3) | 2.72
2.72
2.75 | 5.91
5.91
5.90 | 4-3
4-5
3-4 | | | J
J | 1 1 | 2.55 5.86
2.58 5.86 | 4-4
3-4 | b ³ F-z ¹ G°
(227) | 3052.78
3007.75 | P | 0 | 2.58 | 6.68 | 3-2 | (262) | 3770.305 | ٧ | 3* | 2.68 | 5.95 | 5-5 | ₂ 3 _{G_#} 3 _G o | | В | 6 | 2.55 5.91 | 4-5 | b ³ F-x ³ G° | 3018.25
3054.949 | P | (<u>-</u>) | 2.55
2.60 | 6.64
6.64 | 43
3-3 | b ³ F-x ¹ F°
(263) | 3792.156
3811.892 | l
l | . 2 | 2.72 | 5.97
5.98 | 4-4
3-3 | (287) | | J
₩ | 3
2
(1) | 2.58 5.90
2.60 5.91
2.55 5.90 | 3-4
2-3
4-4 | | 10423.99 | D. | 0 | 2.68 | 3.86 | -
5-4 | a ³ G-z ³ F° | 3751.820
3775.860
*3811.05 | J
U | {1
1
1
1 | 2.68
2.72
2.72 | 5.97
5.98
5.95 | 5-4
4-3
4-5 | | | P | `ó′ | 2.58 5.91 | 3-3 | | 10195.11
10113.86 | F | 2 2 | 2.78
2.75 | 3.93
3.97 | 4-3
3-2 | (264) | 3828.510 | Ÿ | (in) | 2.75 | 5.97 | 3-4 | 7 4 | | ŭ
V | (1) | 2.55 5.92
2.58 5.94 | 3-3 | b ³ F-v ⁵ F°
(229) | 8345.20 | P
P | 0 | 3.68
2.73 | 4.16 | 5-5 | a ³ G-y ⁵ F° | 3748.91
3789.178 | P
J | ⊙
3 | 2.68
2.72 | 5.97
5.97 | 55
45 | a ³ G-z ¹ H°
(289) | | P
₩
P | (1)
© | 2.60 5.96
2.55 5.94
2.58 5.96 | 2-2
4-3
3-2 | | 8303.11
8112.17
8108.33 | P | 0 0 0 | 2.68 | 4.20
4.20
4.34 | 4-4
5-4
4-3 | (265) | 3704.463
3743.78 | B
P | 10
(0) | 2.68
2.72 | 6.01 | 5-4
4-4 | а ³ С—у ¹ С°
(290) | | P
B | 8 | 2.60 5.97
2.58 5.92 | 2-1
3-4 | | 8129.32 | P | © | 2.75 | 4.26 | 3-2 | a ³ G-z ⁵ G° | 3779.213 | U | (1) | 2.75 | 6.01 | 3-4 | | | P | ©
(1) | 2.60 5.94
2.55 5.92 | 2-3
4-3 | b ³ F_v ⁵ pe | 7650.95
7540.44
7481.74 | P
P | 0 | 2.68
2.72
2.75 | 4.29
4.35
4.40 | 5-5
4-4
3-3 | (266) | 3649.508
3669.523
3677.630 | B
B
B | 12
10
12 | 2.68
2.72
2.75 | 6.06
6.08
6.10 | 5-4
4-3
3-2 | a ³ Gw ³ F°
(291) | | V
P | (1)
(1)
(-) | 2.58 5.95
2.60 5.96 | 3-3
3-1 | (231) | 7382.63
7344.18 | P
P | 00 | 2.68 | 4.35 | 5-4
4-3 | | 3687.656
*3703.556 | J | 4 5 | 2.72 | 6.06 | 4-4
3-3 | | | 5
P | (-) | 2.58 5.92
2.60 5.95 | 3-3
2-2 | | 7347.16
7316.77 | P
P | o
o | 2.75
2.68 | 4.43 | 3-2
5-5 | a ³ G-z ³ G• | 3722.028
3684.108 | G
J | (1)
15 | 2.75
2.72 | 6.06 | 3-4
4-3 | a ³ G-v ³ D° | | G
J | 1 2 | 2.55 5.95
2.58 5.97 | 4-5
3-4 | | 7261.00
7228.70 | P | 0 | 2.73 | 4.42 | 4-4
3-3 | (267) | *3703.556
3718.407 | Ţ | 5 3 | 2.75 | 6.08 | 3-2
3-3 | (293) | | V
P | 1
© | 2.60 5.98
2.55 5.97 | 2-3
4-4 | ,, | 7114.55
7100.20 | P
P | ©
©1 | 2.68
2.72 | 4.42
4.45 | 5-4
4-3 | | 3705.71 | P | 0 | 2.75 | 6.08 | 3-3 | a ³ G-3° | | P
P | Fe
© | 2.58 5.98
2.58 5.96 | 3-3
3-2 | b ³ F-x ³ P° | 7471.75
6677.993 | P
B | ©
600 | 2.72 | 4.37 | 4-5
5-4 | a30-y3F0 | 3606.679
3621.463 | G-
B | 20
15 | 2.73 | 6.10 | 5-6
4-5 | (293)
3G-y3H
(294) | | P | .0 | 2.55 6.01 | 4-4 | (235)
b3F_y1g° | 6592.919
6546.245 | B
B | 300
200 | 3.72
2.75 | 4.59
4.63 | 4-3
3-2 | (268) | 3638.296
3584.663 | G
B | 12
8 | 2.75
2.68 | 6.14
6.12 | 3-4
5-5 | , , | | U | (1)
(1) | 2.58 6.01
2.55 6.06 | 3-4
4-4 | | 6806.851
6703.573 | L | 10
10 | 2.73
2.75 | 4.53
4.59 | 4-4
3-3 | | 3605.450
3568.977 | 1
G | 15
4 | 2.73
2.68 | 6.14
6.14 | 4-4
5-4 | | | P
W | Fe (1) | 2.58 6.08
2.60 6.10 | 3-3
2-2 | (238) | 6180.216
6085.267 | v
v | (2) | 2.72
2.75 | 4.71
4.77 | 4-3
3-2 | a ³ G_y ³ D°
(269) | 3603.205
*3618.392 | G
J | 10
2 | 2.68
2.72 | 6.11
6.13 | 5-5
4-4 | a ³ G-v ³ G°
(295) | | G- | 8 | 2.55 6.08
2.58 6.10 | 4-3
3-2 | | 5391.78 | P | • | 2.68 | 4.97 | 55 | a3G-x5F0 | 3622.001
3581.645 | G
G | 12 | 2.75
2.68 | 6.15 | 33
54 | | | ₩ | (1)
3 | 2.55 6.07
2.58 6.08 | 4-3
3-2 | b ³ F-v ³ D°
(239) | 4432.90
4460.12 | P
P | 0 | 2.72
2.75 | 5.50
5.51 | 4-3
3-2 | (270)
a3G_v5p°
(271) | 3589.456
3640.388
3651.469 | G
G
B | 3
15
20 | 2.72
2.73
2.75 | 6.15
6.11
6.13 | 4-3
4-5
3-4 | | | J
J | 3 | 2.60 6.09
2.58 6.07 | 2-1
3-3 | | 4305.13 | P | .0 | 2.72 | 5.58 | 4-3 | a ³ G-x ³ D° | 3527.90 | P | 0 | 2.75 | 6.24 | 3-3 | a ³ G_z ¹ F° | | U
P | ©
(3) | 2.60 6.08
2.60 6.07 | 2-2
2-3 | | *4340.49
*4839.847 | P
J | (1)
2 | 2.75
2.68 | 5.59
5.59 | 3-2
5-5 | (272)
a ³ G-y ³ G° | 3459.429
3493.69 | V
W | (2) | 2.68
2.72 | 6.25
6.25 | 5-4
4-4 | (296)
a ³ G-x ¹ G°
(297) | | ٧ | 1 | 2.58 6.08 | 3–3 | (240) | 4266.968
4288.148 | J
J | 3 | 2.72
2.75 | 5.61
5.62 | 4-4
3-3 | (273) | 3411.88 |
P | (S) | 2.68 | 6.30 | 5-5 | ₈ 3 _{G_11} 5 _{pre} | | Y | Fe
(1) | 2.55 6.12
2.58 6.14 | 4-5
3-4 | (341) | 4215.975
4242.588
m4291.44 | V
V
P | (2)
(1)
(1)
Fe | 2.68 | 5.61
5.62
5.59 | 5-4
4-3
4-5 | | 3411.134
3439.050 | V
V | (1)
(1)
(2) | 2.68
2.72 | 6.30
6.30 | 5-8
4-5 | (398)
e ³ G-x ³ H°
(399) | | y
J | (2) | 2.55 6.11
2.58 6.13 | 4-5
3-4 | | 4313.04 | P | · © | 2.73
2.75 | 5.61 | 3-4 | | 3405.83 | ¥ | | 2.68 | 6.30 | 5-5 | | | Å. | (1) | 2.60 6.15
2.55 6.13 | 2-3
4-4 | | 4184.22
4213.42 | P | (1) | 2.68
2.72
2.75 | 5.63
5.64 | 5-6
4-5 | a ³ (L-x ⁵ (1°
(.274) | 3404.923
3404.755 | Ų
V | {1}
1 | 2.68
2.72 | 6.31 | 5-4
4-3 | a ³ G-t ⁵ D°
(300) | | P | 0 | 2.58 6.15
2.60 6.11 | 3-3
2-2 | b ³ F-z ¹ D° | 4239.01
*4163.676
4194.50 | P
V
P | (1)
© | 2.68
2.72 | 5.66
5.64
5.66 | 3-4
5-5
4-4 | | 3438.10
3434.029 | Y
V | (1w) | 2.73
2.75 | 6.31
6.34 | 4-4
3-3 | | | P | , © | 2.58 6.20 | 3-2 | (243)
b ³ F-# ³ P° | 4224.63
4145.209 | P | (<u>1</u>) | 3.75
2.68 | 5.67
5.66 | 3-3
5-4 | | 3378.676
•3404.301 | G
V | 6 | 2.72 | 6.33 | 5-4
4-3 | a ³ Gv ³ F°
(301) | | P | (1)
© | 3.60 6.18
2.60 6.20 | 3-1
3-2 | | 4180.41
•4215.430 | p
J | о
2 | 2.72
2.75 | 5.67
5.67 | 4-3
3-2 | | 3453.022
3411.353
3440.74 | J
G | (2)
3
0 | 2.75
2.72 | 6.33
6.33 | 3-2
4-4
3-4 | | | A
A | (1) | 3.58 6.34
3.60 6.34 | 3-3
3-3 | b ³ F-z ¹ F°
? (245) | 4113.17 | P | • • | 2.68 | 5.68 | 56 | a ³ G-z ³ I°
(275)
a ³ G-u ⁵ D° | 3366.790 | ٧ | 5 | 2.68 | 6.35 | 5-4 | a3g49 | | . y | (1) | 2.55 6.25 | 4-4 | b ³ F-x ¹ G° |
3998.054
4039.94
*4043.901 | ¥
V | 10
(1) | 2.68
2.72 | 5.77
5.77 | 5-4
4-3 | (276) | 3399.230
3428.41 | P | (1)
©? | 2.72
2.75 | 6.35
6.35 | 4-4
3-4 | (302) | | P | <u>0</u> | 2.55 6.34
2.55 6.37 | 4-4
4-3 | (247) | 4085.26 | P | 5n
© | 2.75 | 5.77
5.77 | 4-4
3-4 | | 3341.906
3373.874 | G. | 5
(1) | 2.68
2.72 | 6.37 | 55
45 | a ³ G6°
(303) | | ₩
P | (1)
© | 2.58 6.40 | 3-2 | ~ | 3971.325
3983.960 | Í | 10 | 2.68
2.72 | 5.79
5.81 | . 5-4
4-3 | a ³ G—x ³ F°
(277) | 3370.786 | Ą | 10 | 2.68 | 6.34 | 5-5 | a3g_u3go | | ٧ | (1) | 2.55 6.30
2.55 6.34 | 4-5
4-3 | (348) | 4007.277
4016.54
4024.109 | J
₩
J | (1)
(1) | 3.75
3.73
3.75 | 5.83
5.79
5.81 | 3-2
4-4
3-3 | | 3369.549
3380.111
3337.666 | 900 | 8
8
6 | 2.72
2.75
2.68 | 6.38
6.40
6.38 | 4-4
3-3
5-4 | (304) | | ٧ | 4 | 2.55 6.33 | 4_4 | (249)
h3r_v3r• | 4057.356 | ٧ | 2 | 2.75 | 5.79 | 3-4 | 7 7 | 3351.750
3403.299 | V | 3
(2)
(1) | 2.73
2.72 | 6.40 | 4-3
4-5 | | | A
A
A | (2)
(1) | 2.58 6.34
2.60 6.32
2.55 6.34 | 3-3
3-2
4-3 | | 3956.681
3997.394
4021.869 | B
I
I | 12
15
12 | 2.68
2.72
2.75 | 5.80
5.80
5.82 | 5-6
4-5
3-4 | a ³ (Lz ³ H°
(278) | 3398.226
*3393.609 | A
A | (1)
(1w) | 2.75
2.75 | 6.38 | 3-4
3-2 | a ³ G-y ¹ Do | | U | (1)
(1) | 2.58 6.32 | 3-2 | | 3952.606
3981.775 | I
J | 8
7 | 2.68
2.72 | 5.80
5.82 | 5-5
4-4 | | 3387.410 | v | 2 | | 6.39 | 3-2 | (305)
a ³ G-x ¹ p° | | A
A | 4
3 | 2.55 6.34
2.58 6.38 | 4-5
3-4 | | 3937.329 | J | 3 | 2.68 | 5.82 | 5-4 | a ³ G-w ³ p° | 3335.72 | P | .07 | 3.72 | 6.42 | 4-3 | (306)
a ³ G-u ³ D• | | ٧ | 3 | 2.55 6.35 | 4-4 | (253) | 3995.996
4017.096
4036.37 | J
P | (1)
© | 2.72
2.75
2.75 | 5.80
5.82
5.80 | 4-3
3-2
3-3 | (279) | 3363.815
3254.734 | v
v | (1)
(2) | 2.75
2.68 | 6.42 | 3-3
5-6 | (307)
a ³ G_w ³ H° | | P | Fe
O | 2.55 6.38
2.58 6.41 | 4-3
3-8 | b3F_u5pe
(254) | 3897.896 | J | 8 | 2.68 | 5.85 | 5-6 | a ³ G-w ⁵ Ge | 3265.55
3275.685 | Ā | 0 | 2.72
3.75 | 6.50
6.51 | 4-5
3-4 | (308) | | V | (1) | 2.58 6.38 | 3-2 | (255) | *3932.629
3945.119
3929.114 | J
J
J | 4
(1) | 2.73
2.75
2.75 | 5.85
5.87
5.89 | 4-5
3-4
3-3 | (280) | 3235.592
3249.037
3219.37 | U
V
P | (1)
(1)
(1) | 2.68
2.73
2.68 | 6.50
6.51
6.51 | 5-5
4-4
5-4 | | | ٧ | (1) | 2.58 6.39 | 3-2 | | 3863.745
3890.844 | V
J | a
a | 2.68
2.72 | 5.87
5.89 | 5-4
4-3 | | | - | • | | | | | | | | | | | 3907.937 | В | 4 | 2.75 | 5.90 | 3-2 | | | | | | | | | | ry
Int | E P
Low High | J Multiplet
(No) | Laboratory I A Ref Int | E P
Low High | J Multiplet (No) | Laborator
I A Ref | y
Int | E P
Low High | J Multiple
(No) |)t | |----------------------|--|---|---|--|---|--|--------------------|--|---|------------| | ed | | | Fe I continued | | 5-4 z ⁷ F°-e ⁷ P | Fe I continue | | 0.00 4.07 | 2-3 b ³ P-x ⁵ D° | | | Fe
© | 2.68 6.48
2.72 6.53 | 5-6 a ³ G-y ³ I°
4-5 (309) | 3618.30 P ©
3620.23 W (1)
*3602.534 G 3 | 2.82 6.23
2.84 6.25
2.85 6.28 | 4-3 (324)
3-2 | 5835.58 P
5747.85 P | 0 | 2.82 4.93
2.82 4.97 | 2-2 (343) | | | 2n
10 | 2.68 6.58
2.72 6.63 | 5-4 a ³ G-9°
(310)
4-5 a ³ G-y ¹ H° | 3638.16 P ©
3635.28 P
3613.15 W (1) | 2.84 6.23
2.85 6.25
2.86 6.28 | 4-4
3-3
2-2 | 5552.85 P
5532.13 P
5529.80 P | o
o | 2.82 5.04
2.83 5.06
2.85 5.08 | 2-3 b ³ P-x ⁵ F ⁶
1-2 (344)
0-1 | | | © | 2.75 6.64 | 3-3 a ³ G-x ¹ F° | 3653.35 P ©
3646.10 P ©
3620.00 P | 2.85 6.23
2.86 6.25
2.87 6.28 | 3-4
2-3
1-3 | 5536.59 P
5570.06 P | 0 | 2.82 5.05
2.83 5.05 | 2-2 b ³ P-z ⁵ S ⁶
1-2 (345) | • | | (2)
(1)
(1) | 2.68 6.66
2.72 6.70
2.75 6.74 | (312)
5-5 a ³ g-t ³ g°
4-4 (313)
3-3 | 3586.75 P (2)
3588.615 G 3 | 2.80 6.24
2.82 6.26 | 6-6 z ⁷ F°-e ⁵ G
5-5 (325) | 4741.533 B
4707.487 J | (2) | 2.82 5.42
2.83 5.45 | 2-3 b ³ P-w ⁵ D°
1-2 (346) | , | | 3 | 2.68 6.70
2.72 6.74 | 5-4
4-3 | 3572.60 U (1)
3556.68 W (1)
3563.61 P © | 2.84 6.29
2.85 6.32
2.80 6.26 | 4-4
3-3
6-5 | 4680.475 V
4683.565 J
4657.598 V | (1)
(2)
(1) | 2.85 5.48
2.82 5.45
2.83 5.48 | 0-1
3-2
1-1 | | | (-) | 2.68 6.67
2.72 6.67 | 5-5 a ³ G-13°
4-5 (314) | 3612.068 | 2.82 6.24
2.84 6.26
2.85 6.29 | 5-6
4-5
3-4 | 4687.387 J
4685.03 P | (1)
© | 2.82 5.45
2.83 5.47
2.85 5.48 | 2-3 b ³ P-w ⁵ F ³
1-3 (347)
0-1 | 9 | | (1)
(1)
(0) | 2.68 6.70
2.72 6.70
2.75 6.70 | 5-4 a ³ G-13°
4-4 (315a)
3-4 | 3567.045 V 2
3554.50 W 3 | 2.86 6.32
2.87 6.34 | 2-3
1-2
6-7 z ⁷ F°-e ⁷ G | 4687.67 P
4661.33 P
4664.71 P | 0 | 2.82 5.47
2.83 5.48 | 2-2
1-1 | | | (-) | 2.72 6.77 | 4-4 a ³ G-w ¹ G°
(315)
5-6 a ³ G-v ³ H° | 3570.243 V 20
3554.922 G 40
3541.083 G 15 | 2.80 6.25
3.82 6.29
3.84 6.32 | 5-6 (326)
4-5 | 4641.22 P
4604.23 P
4603.34 P | 0 | 2.82 5.48
2.82 5.50
2.83 5.51 | 2-1
2-3 b ³ p _{-y} 5 _p s | • | | 10
6
7 | 2.68 6.85
2.72 6.84
2.75 6.84 | 4-5 (316)
3-4 | 3542.076 Q 15
3536.556 Q 15
3533.201 Q 10 | 2.85 6.34
2.86 6.35
2.87 6.36 | 3-4
2-3
1-3 | 4603.34 P
4605.10 P
4580.46 P
4582.941 U | ©
(4) | 2.83 5.51
2.85 5.53
2.82 5.51
2.83 5.53 | 1-2 (348)
0-1
2-2
1-1 | | | re
(-) | 2.72 6.84 | 5-5
4-4- | 3535.008 J 5
3530.385 G 3
3522.268 G (3) | 3.87 6.37
2.80 6.29
3.83 6.33 | 0-1
6-6
5-5
4-4 | 4612.64 P
4635.846 J | (1)
(1) | 2.82 5.49
2.83 5.49 | 2-2 b ³ p-y ⁵ s ⁶ | • | | 5 | 2.75 6.89 | 3-3 a ³ G_w ¹ F°
- (317)
6-5 z ⁷ F°-e ⁷ D | 3527.792 | 2.84 6.34
2.85 6.35
2.86 6.36
2.87 6.37 | 3-3
2-3
1-1 | 4466.554 B
4476.021 I | 12
10 | 2.82 5.58
2.83 5.59 | 2-3 b ³ P-x ³ D ⁴
1-2 (350) | ю. | | 60
60
50 | 2.80 5.29
2.82 5.33
2.84 5.36
2.85 5.39 | 6-5 z'F'-e'D
5-4 (318)
4-3
3-8 | 3498.18 P © | 3.80 6.32
3.83 6.34
3.84 6.35 | 6-5
5-4
4-3 | 4443.197 B
4454.383 B
4422.570 B | 5
6 | 2.85 5.62
2.82 5.59
2.83 5.62 | 0_1
2_3
1_1 | | | 25
15
20
20 | 2.86 5.40
2.82 5.29
2.84 5.33 | 3-5
2-1
5-5
4-4 | 3509.12 W (1)
3512.239 U (1)
3516.55 W (1)
3523.30 W (1) | 2.85 6.36
2.86 6.37 | 3-2
3-1 | 4401.447 V
4290.870 J | (2)
(1) | 2.82 5.62
2.82 5.70 | 2-1
3-3 b ³ P-w ⁵ P | .0 | | 30
85
30 | 2.85 5.36
0.86 5.30
2.87 5.40 | 3-3
3-3
1-1 | 3513.59 P 9
3493.57 P 9
3537.896 J 4 | 2.80 6.31
2.82 6.35
2.82 6.31 | 6-5 z ⁷ F°-f ⁵ F
5-4 (327)
5-5 | 4278.38 P
4279.864 J
4258.619 J | {1}
1} | 2.83 5.72
2.85 5.73
2.82 5.73 | 1-3 (351)
0-1
3-2 | | | (2)
7
10 | 2.84 5.29
2.85 5.33
2.86 5.36 | 4_5
3_4
2_3 | 3513.08 \ \(\) (1)
3506.33 \ \(\) (1)
3506.58 \ \(P \) \(\) | 2.84 6.35
2.86 6.38
2.87 6.39 | 4-4
2-3
1-1 | 4260.73 P
4241.112 V | (1) | 2.83 5.73
2.82 5.73 | 1-1
2-1 | _ | | 13
13 | 2.87 5.39
2.87 5.40 | 1-3
0-1 | 3556.877 G 7
3526.23 W (3)
3518.68 W (1) | 2.84 6.31
2.85 6.35
2.86 6.37 | 4-5
3-4
3-3 | 4207.130 J
4226.426 J
4245.258 I | 4
3
6 | 2.82 5.75
2.83 5.75
2.85 5.75 | 2-1 b ³ P-z ³ S ⁴
1-1 (352)
0-1 | • | | (1)
(1)
(1) | 2.82 5.52
2.84 5.52
2.85 5.56 | 5-4 z ⁷ F°-e ⁵ D
4-4 (319)
3-3 | m3512.68 P Co
3509.73 P © | 2.87 6.38
2.87 6.39 | 1-2
0-1
3-3 z ⁷ F°-e ⁵ S | 4181.758 J
4175.640 B | 15
10 | 2.82 5.77
2.83 5.79 | 2-3 b ³ p-u ⁵ p ⁴ | j e | | (1)
©
© | 2.86 5.60
2.87 5.62
2.85 5.52 | 3-3
1-1
3-4 | *3565.583 J 3
*3575.976 G 2
3582.69 W (2) | 2.85 6.31
2.86 6.31
2.87 6.31 | 3-3 z'F°-e°S
3-3 (338)
1-3 | m4143.83 P
4156.803 B
4125.884 J | Fe
12
(2) | 2.85 5.82
2.82 5.79
2.83 5.82 | 0-1
2-2
1-1 | | | (i)
(i) | 2.86 5.56
2.87 5.60
2.87 5.63 | 3-3
1-3
0-1 | 3525.856 U (1)
3540.121 G 3 | 2.84 6.34
2.85 6.34 | 4-4 z ⁷ F°-g ⁵ D
3-4 (329) | 4107.492 B
4126.88 U | (1) | 2.82 5.82
2.83 5.82 | 2-1
1-0 | | | (<u>1</u>) | 2.80 5.80
2.85 5.93 | 6-5 z ⁷ F°-e ⁵ F
3-3 (330) | 3512.80 P ©
3522.896 U (1) | 2.85 6.37
2.86 6.37 | 3-3 z ⁷ F°-e ⁷ S
2-3 (330) | 4184.895 B
4173.322 J
4154.502 J
4213.650 B | 10
2
12
5 | 2.82 5.77
2.83 5.79
2.82 5.79
2.83 5.76 | 2-2 b ³ P-y ³ P'
1-1 (355)
2-1
1-0 | - | | 0
0
0 | 2.86 5.95
2.82 5.80
2.84 5.85
2.85 5.90 | 2-1
5-5
4-4
3-3 | 3490.04 P ©7
3215.637 V (3) | 2.86 6.40
2.82 6.63 | 2-3 z ⁷ F°-e ⁵ P
(331)
5-5 z ⁷ F°-e ³ G | 4203.987 B
4191.685 J | 10
(2) | 2.83 5.77
2.85 5.79 | 1-3
0-1 | | | (1)
(1)
(0) | 2.85 5.90
2.87 5.95
2.85 5.85
2.87 5.93 | 1-1
3-4
1-3 | *3209.297 G 6
3196.147 V 2 | 2.80 6.64
2.83 6.68 | (338)
6-5 z [?] F°-g [?] D
5-4 (333) | 4131.806 B
4133.533 J
*4104.133 K | 5
4
3 | 2.82 5.81
2.83 5.83
2.82 5.83 | 2-3 b ³ P-x ³ F
1-2 (356)
3-2 | 10 | | (1)
(1%)
30 | 2.87 5.95
2.80 6.21 | 0-1
6-6 z
⁷ F°-e ⁷ F | *3182.076 V 3 3173.608 U (1) 3181.85 W (3) 3173.40 W (1) | 2.84 6.72
2.85 6.74
2.86 6.74 | 4-3
3-2
3-3 | 4134.681 B
4138.903 J | 12 | 2.82 5.80
2.83 5.82 | 2-3 b ³ P-w ³ D
1-2 (357) |)° | | 6
5
3 | 2.82 6.28
2.84 6.32
3.85 6.31 | 5-5 (321)
4-4
3-3 | 3173.40 W (1)
3187.16 P ©
3175.97 W (1) | 2.87 6.76
2.87 6.74
2.87 6.76 | 1-1
1-3
0-1 | 4127.612 B
4114.449 B
4109.808 J | 7
5
9 | 2.85 5.84
2.82 5.82
2.83 5.84 | 0-1
2-2
1-1 | | | (1)
(2) | 2.86 6.34
2.87 6.32
2.80 6.28 | 2-3
1-1
6-5 | 2976.922 U (1)
2990.33 P © | 2.82 6.97
2.84 6.97 | 5-5 z ⁷ F°-1 †
4-5 (334) | 4091.561 J
4066.979 B | (1)
6 | 2.82 5.84
2.82 5.85
2.83 5.85 | 2-1
2-2 b ³ P-1°
1-2 (358) | | | | 2.82 6.32
2.84 6.31
2.85 6.34 | 5-4
4-3
3-3 | 2974.78 W (1) | 2.82 6.97 | 5- z ⁷ F°-2
- (335) | 4085.011 J
4044.614 J | 4
6 | 2.82 5.87 | 2-1 b ³ P-y ³ S | 30 | | (1)
©
(1) | 3.86 6.32
3.82 6.21
3.84 6.28 | 3-1
5-6
4-5 | 11149.34 D 2
10881.65 D 1 | 2.82 3.93
2.83 3.97 | 2-3 b ³ P-z ³ F°
1-2 (336) | 4062.446 J
4079.848 J | 10
4 | 2.83 5.87
2.85 5.87 | 1-1 (359)
0-1 | | | @ a 0) | 3.85 6.32
3.86 6.31
2.87 6.34 | 3-4
3-3
1-3 | 11783.28 D 6
11439.06 D 15 | 2.82 3.87
2.83 3.91 | 2-3 b ³ P-z ³ D°
1-2 (337) | 4000.02 W
3978.466 V | (1)
(1) | 2.82 5.90
2.82 5.92 | 2-3 b ³ P-w ⁵ G
(360)
2-3 b ³ P-y ⁵ P |) 0 | | (1)
Fe | 2.87 6.32
2.80 6.22 | 0-1
6-5 z ⁷ F°-f ⁷ D | 11251.09 D 3
11298.83 D 3
11119.80 D 10 | 2.85 3.94
2.82 3.91
2.83 3.94 | 0-1
2-2
1-1 | 3964.522 J
3961.147 J
*3947.533 J | (2)
5 | 2.83 5.95
2.85 5.96
2.82 5.95 | 1-2 (361)
0-1
2-3 | | | . 2 | 3.82 6.37
2.84 6.28
3.85 6.30
2.86 6.30 | 5-4 (322)
4-3
3-2
2-1 | 10987.23 P ©
9370.57 P
9210.030 E 6 | 2.82 3.94
2.82 4.14
2.83 4.17 | 2-1
2-3 b ³ P-y ⁵ D° | 3944.748 J
m3927.93 P
3953.863 V | (2)
Fe | 2.83 5.96
2.82 5.96 | 1-1
2-1
3-3 b ³ P-v ⁵ F | 50 | | ?
8
2 | 2.82 6.22
2.84 6.27
2.85 6.28 | 5-5
4-4
3-3 | 9117.10 F 2
9118.888 E 25 | 2.85 4.20
2.82 4.17 | 1-2 (338)
0-1
3-3 | 3952.704 V
3935.815 B | (1)
(1)
8 | 2.82 5.94
2.83 5.96
2.82 5.96 | 1-2 (363)
2-3 | | | (1)
(1) | 2.86 6.30
2.87 6.30
2.84 6.22 | 3-3
1-1
4-5 | 9030.67 F 1
8943.00 F 2
8946.25 F 1 | 2.83 4.20
2.82 4.20
2.83 4.21 | 1-1
2-1
1-0 | 3935.31 W
3918.58 P
3925.646 J | (2)
©
4 | 2.83 5.97
2.82 5.97
2.82 5.96 | 1-1
2-1
2-3 b ³ P-x ³ P | 00 | | · `@´ | 2.85 6.27
2.86 6.28
2.87 6.30 | 3-4
2-3 | 8999.561 E 200
8757.192 E 25
8674.751 E 60 | 2.83 4.19
2.83 4.24
2.82 4.24 | 2-2 b ³ P-z ³ P ⁹
1-1 (339)
2-1 | 3909.830 J
3893.316 V
3918.418 J | 3
(1)
4 | 2.83 5.99
2.82 5.99
2.83 5.98 | 1-1 (364)
3-1
1-0 | | | (ī)
6 | 2.87 6.30
3.82 6.22 | 0-1
5-4 z ⁷ F*-f ⁵ D | 8611.807 E 40
9088.336 E 50
8838.433 E 30 | 2.83 4.27
2.83 4.19
2.85 4.24 | 1-0
1-3
0-1 | 3942.443 B
3925.946 J | 6 | 2.83 5.96
2.85 5.99 | 1-3
0-1 | | | 4
2
3 | 2.84 6.24
2.85 6.26
2.86 6.28 | 4-3 (323)
3-2
2-1 | 6979.17 P ©
6859.49 P © | 2.82 4.59
2.83 4.63 | 2-3 b ³ P-y ³ F°
1-2 (340) | *3829.458 V
3801.681 J | 1
3 | 2.83 6.06
2.82 6.07 | 1-2 b ³ p-2°
(366)
2-3 b ³ p-y ³ p |)a | | (1)
2
1 | 3.87 6.29
3.84 6.22
2.85 6.24 | 1-0
4-4
3-3 | 6808.80 P ©
6912.43 P © | 2.83 4.63
2.83 4.62 | 2-3
1-1 b ³ p-y ⁵ pe | 3801.804 J
3809.043 V
3786.176 J | (1)
4 | 2.83 5.08
2.85 6.09
2.82 6.08 | 1-3 (367)
0-1
3-3 | | | ©
(1) | 2.86 6.26
2.87 6.28
2.85 6.22 | 2-2
1-1
3-4 | 6860.96 P 1
6518.376 I 20 | 3.83 4.63
3.83 4.71 | 2-1 (341)
2-3 b ³ p-y ³ p° | 3793.872 J
3778.320 U | (1) | 2.83 6.09
2.83 6.09 | 1-1
2-1 | | | 0
0
0 | 2.86 6.24
2.87 6.36
2.87 6.38 | 1-2 | 6355.038 I 4
6270.238 J (2)
6311.506 V (1) | 2.83 4.77
2.85 4.81
2.82 4.77 | 1-2 (342)
0-1
2-3 | 3768.23 W | (1) | 2.83 6.11 | 1-3 b ³ P-z ¹ D
(368) |)° | | | | | 6229.234 V (1)
6187.41 P © | 2.83 4.81
2.83 4.81 | 1-1
3-1 | | | | | | | | | | | 15+1+4m1 o+ | R E V I
Labor | LSE | | ULTI
El | 5 T E | T T | A S L E | Labor | ratory | | E | P | J | Multiplet | |-----------------|--------------------------|-------------------------------------|---------------------|---|-----------------------------------|-------------|--------------------------|--------------------------------|----------------------|-------------------|--|----------------------------------|-------------|--------------------|----------------------|----------------------|-------------------|--| | ratory
Ref I | nt | E P
Low High | J | Multiplet
(No) | I A | Ref | Int | | H1gh | ٠ | (No) | IA | Ref | Int | Low | High | • | ana sapar v | | ıtinued | | | | b ³ P-w ³ P° | Fe I cont
3649.70 | tinue
P | d.
⊙ | 2.93 | 6.31 | 4-5 | z ⁷ po_f ⁵ F | Fe I cont | v
V | | 2.98 | 5.80 | 4-3 | _р 3 _{G−17} 3 _Д е | | 7
G : | 12
2 | 2.82 6.20
2.83 6.18
2.82 6.18 | 2-2
1-1
2-1 | (369) | 3664.537
3689.37 | G
P | 3 0 | 2.99
3.03 | 6.35 | 3-4
2-3 | (391) | 4385.260 | A | {1
1} | 3.00 | 5.82 | 3-2 | (415) | | A
I | 3
3 | 2.83 6.17
2.83 6.20 | 1-0
1-3 | | *3602.534
*3645.494 | A
G | 3
1 | 2.93
2.99 | 6.35
6.37 | 4-4
3-3 | | 4239.735
4290.382 | ŭ
J | (2)
(1) | 2.94 | 5.85 | 5-6
4-5 | ბ ³ Œუ ⁵ ცი
(416) | | J | 3 | 2.85 6.18
2.82 6.24 | 0-1
2-3 | b ³ P-z ¹ F° | *3707.048
*3752.480 | I
J | 8
(1w) | 2.99
3.03 | 6.31
6.31 | 3-2
2-3 | z ⁷ p°-e ⁵ s
(392) | 4299.65
*4229.516
4259.34 | ₹
J
P | (1)
(1gn)
©? | 3.00
2.94
2.98 | 5.87
5.85
5.87 | 3-4
5-5
4-4 | | | P
U | ©7
(1) | 3.82 6.24
3.82 6.34 | 2-3 | (370)
b3p_v3F° | 3623.51 | P | .0 | 2.99 | 6.39 | 3-3 | z [?] po_g5p | 4280.63
4199.37 | P | 0 | 3.00
2.94 | 5.89
5.87 | 3-3
5-4 | | | | (1) | 2.82 6.40 | 2-3 | (371)
b3P_u3g° | *3679.53
3666.85 | ₩ | (1)
© | 2.99
3.03 | 6.34
6.39 | 3-4
2-3 | (393) | 4255.499
4223.73 | V
P | (1)
© | 3.00
2.94 | 5.90
5.86 | 3-2
5-4 | b ³ G-z ¹ Ge | | A
A | (1)
(1) | 2.82 6.38
2.83 6.38 | 2-2
1-2 | (372)
b3p_y1p°
(373) | 3588.52
3650.031 | P
J | ©
4 | 3.93
3.99 | 6.37
6.37 | 4-3
3-3 | z ⁷ p°-e ⁷ S
(394) | 4284.415 | ប៊ | (1) | 3.98 | 5.86 | 4-4 | (417) | | v | (3w) | 2.82 6.39 | 2-2 | b3p_70 | 3694.005 | G- | 30 | 3.03 | 6.37 | 2-3 | z ⁷ po_e ⁵ p | 4196.533
4203.30 | V
U
P | (1) | 3.00 | 5.88 | 5-5
3-3
5-4 | b ³ Gy5ge
(418) | | A | (1) | 2.83 6.39 | 1-2 | (374)
b ³ P _{-x} 1 _D °
(375) | 3554.44
*3584.960
3633.64 | P
J
P | 0
4
0 | 2.93
2.99
3.03 | 6.40
6.43
6.42 | 4-3
3-2
2-1 | (395) | 4140.24
4164.80
4237.67 | Ü
P | (1)
(0) | 2.94
2.98
3.00 | 5.92
5.94
5.92 | 4-3
3-4 | | | J
P | 3
© | 2.82 6.42
2.83 6.46 | 2-3
1-2 | (375)
b3p_u3p°
(376) | 3614.77
3627.35 | P
P | • | 2.99
3.03 | 6.40
6.43 | 3-3
2-2 | | 4156.670 | Ā | (1) | 2.94 | 5.91 | 5-5 | b3G-x3G° | | A
A
A | (1)
(1w) | 2.85 6.48
2.82 6.46
2.83 6.48 | 0-1
2-2
1-1 | | 3657.89
3322.474 | ₩
G- | 1
5n | 3.03
2.93 | 6.40 | 2-3
4-5 | z ⁷ po_g ⁷ D | 4319.41
*4254.938
4160.561 | Y
V | (1)
(1) | 2.98
3.00
2.94 | 5.90
5.91
5.90 | 4-4
3-3
5-4 | (419) | | A | (2) | 2.82 6.48 | 2-1 | 7 7 . | 3338.643
3342.76 | V
P | (3₩) | 2.99
3.03 | 6.58
6.72 | 3-4
2-3 | (396) | *4215.430
4258.956 | J | (1) | 2.98
3.00 | 5.91
5.90 | 4-5
3-4 | | | P
V
V | \1\
1\ | 2.82 6.45
2.83 6.50
2.85 6.44 | 2-3
1-2
0-1 | | 3287.117
3306.703
3320.800 | y
S
V | (1w)
(-)
(2n,e | 2.93
2.99
2.03
m)3.03 | 6.68
6.72
6.74 | 4-4
3-3
2-2 | | 4089.225
*4123.748 | J
J | {1}
{1}
{1} | 2.94 | 5.95
5.97 | 5-5
4-4 | გ3 _{წლშ} ვდი
(488) | | A
A | 11)
11)
11)
11) | 2.82 6.50
2.83 6.44 | 2-2
1-1 | ? | 3285.20 | U | (1) | 2.99 | 6.74 | 3-2 | z ⁷ p•_e ³ p | 4141.862
4067.49 | V
P | 0 | 3.00
2.94 | 5.98
5.97 | 3-3
5-4 | • • | | P
V | ⊙?
4 | 2.82 6.44
2.83 6.53 | 2-1
1-1 | . 7 | 3256.52
3238.535 | P
S | (-) | 2.99
3.03 | 6.77
6.84 | 3-2
2-1 | (397) | 4104.46
4146.071
4161.488 | P
V | (2)
(1) | 2.98
2.98
3.00 | 5.98
5.95
5.97 | 4-3
4-5
3-4 | | | V | 3 | 2.85 6.53 | 0-1 | (378) | *3053.443 | ប | (3) | 2.93 | 6.97 | <u>4</u> | z ⁷ P°-2
(398) | 4064.07 | P | ₀ | 2.94 | 5.97 | 5-5 | h30-s1H0 | | C
P
V | 7
(2) | 2.82 6.53
2.83 6.64
2.82 6.64 | 2-2
1-1
3-1 | | 10086.27 | P | ©? | 3.94 | 4.16 | 5-5 | ъ ³ д-у ⁵ г°
(399) | 4120.211
4011.89 | J
P | 5
© | 2.98
2.94 | 5.97
6.01 | 4-5
5-4 | (423)
b ³ G-y ¹ G ⁸ | | y
V | (2) | 2.83 6.53
2.85 6.64 | 1-3
0-1 | | 9038.84
9375.14 | P | 0 | 2.94
2.98 | 4.30 | 5-6
4-5 | (399)
b ³ G-z ⁵ G°
(400) | 4066.597 | ٧ | (1) | 2.98 | 6.01 | 4-4 | (424) | | V . | (2)
(2) | 2.82 6.57
2.83 6.57 | 3-1
1-1 | b ³ p_z ¹ pe
(380) | 9156.23
9089.413
8975.408 | P
E
E | 30
10 | 3.00
2.94
2.98 | 4.35
4.29
4.35 | 3-4
5-5
4-4 | | *3947.533 | y
J | (1)
5 | 3.00
2.94 | 6.06 | 3-2
5-4 | ხ ³ ც_2°
(425)
ხპც_ყპლი | | ٧ | 3 | 2.82 6.62 | 2-3 | b3p_y1Fo | 8868.42
*8713.19 | F | 3
(10) | 3.00
2.94 | 4.40 |
3-3
5-4 | | 3979.12
3983.83 | p | 0 | 2.98
3.00 | 6.08
6.10 | 4-3
3-3 | (426) | | v | (1W) | 2.82 6.67 | 2-3 | (381)
b ³ P-11° | 8698.71
8621.612 | P
E | ⊙ .
10 | 2.98 | 4.40 | 4-3
5-5 | b ³ 0-z ³ 0° | 4000.466
*4014.28
4035.98 | J
₩
P | (1)
© | 2.98
3.00
3.00 | 6.06
6.08
6.06 | 4-4
3-3
3-4 | | | s | () | 2.83 6.88 | 1-2 | (382)
b3p_w1po
(382a) | 8582.267
8515.08 | E
O | 15
20 | 2.98
3.00 | 4.42 | 4-4
3-3 | (401) | 3996.28 | P | 0 | 2.98 | 6.07 | 4-3 | pog_agge | | I | 40
30 | 2.93 5.29
2.99 5.33 | 4-5
3-4 | | 8343.21
8358.53
8878.26 | P
P
P | ଡ଼
ତ
ତ | 2.94
2.98
2.98 | 4.42
4.45
4.37 | 5-4
4-3
4-5 | | *4014.28
4031.73 | P | (1)
© | 3.00
3.00 | 6.08
6.07 | 3-2
3-3 | (427) | |]
I | 10
20 | 3.03 5.36
2.93 5.33 | 2-3
4-4 | ,000, | 8747.32 | F | 8 | 3.00 | 4.42 | 3-4 | . 3 - 3 | 3981.62
4016.81 | P
P | ତୀ | 2.98
3.00 | 6.08
6.08 | 4-3
3-3 | b ³ G-3°
(428) | | I
J
J | 30
15
10 | 2.99 5.36
3.03 5.39
2.93 5.36 | 3-3
2-2
4-3 | | 7748.381
7664.302
7583.796 | E
E | 125
80
50 | 2.94
2.98
3.00 | 4.53
4.59
4.63 | 5-4
4-3
3-2 | b ³ G_y ³ F°
(402) | 3897.449
3923.68 | J
P | (2)
© | 2.94
2.98 | 6.10
6.12 | 5-6
4-5 | ъ ³ С-у ³ Н°
(429) | | J
J | 10
30 | 2.99 5.39
3.03 5.40 | 3-2
3-1 | | 7954.94
7904.13 | P
P | o
0 | 2.98
2.98 | 4.53 | 4-4
4-3 | -3a -5ne | 3871.750
3903.902
3853.462 | J
J | 4
5
(1) | 2.94
2.98
2.94 | 6.12
6.14
6.14 | 5-5
4-4
5-4 | | | A
A | 3n
(1) | 3.93 5.52
2.99 5.56 | 44
33 | | 7798.90 | P | ŏ | 3.00 | 4.59 | 3-3 | b ³ G_y ⁵ pe
(403) | 3893.391 | ī | 7 | 2.94 | 6.11 | 5-5 | p3G-y3Go | | Λ
Α
Α | (1)
(1)
(1)
(1) | 3.03 5.60
2.93 5.56
2.99 5.60 | 2-2
4-3
3-2 | | 7112.176
6971.95 | v
V | 3
1 | 2.98
3.00 | 4.71 | 4-3
3-2 | b ³ G-y ³ D°
(404) | 3919.069
3918.644
3868.243 | J
J
V | 3
6
(1) | 3.98
3.00
2.94 | 6.13
6.15
6.13 | 4-4
3-3
5-4 | (430) | | P
P | 0 | 3.03 5.62
2.99 5.52 | 2-1
3-4 | | 6310.543
6539.72 | ₩ | (1)
(2) | 2.94
3.00 | 4.89
4.89 | 5-4
3-41 | b ³ G-x ⁵ D°
(405) | 3885.154
3944.890 | A A | {1
1
3 | 2.98
2.98 | 6.15
6.11 | 4-3
4-5 | | | P
G | 0
15n | 3.03 5.56
2.93 6.28 | 2-3
4-5 | | 5261.49
5226.42 | P
P | 00 | 2.94
3.94 | 5.28
5.30 | 5-6
5-5 | ხ ³ ც_ყ ⁵ ცი
(406) | 3953.156
*3976.865 | J
J | 4
(1) | 3.00 | 6.13 | 3-4
3-2 | ე ³ ც_გ¹ ე∘ | | G
J | 30
1w | 2.99 6.32
3.03 6.31
2.93 6.32 | 3-4
3-3 | | 5288.38
5318.04
5196.24 | P
P | 000 | 2.98
3.00
2.94 | 5.31
5.33
5.31 | 4-4
3-3
5-4 | | 3777.061 | J | (1) | 2.98 | 6.24 | 4-3 | (431)
b3G_z1F0 | | Ĭ, | 3n
8
6 | 2.93 6.32
2.99 6.31
3.03 6.34 | 4-4
3-3
2-2 | | °5326.154 | A. | (1) | | 5.32 | | b ³ G-2 ⁵ H° | 3726.06 | P | 0 | | 6.25 | 5-4 | (432)
b ³ G-x ¹ G ⁹
(433) | | J
P
J | 2
0
4 | 2.93 6.31
2.99 6.34
3.03 6.32 | 4-3
3-2
2-1 | | 5265.25
5204.95 | P
P | ©?
©? | 3.00
2.98 | 5.35
5.35 | 3-3
4-3 | (407) | 3716.71
3696.81 | P | 0 | 2.98
3.00 | 6.30
5.34 | 4-5
3-4 | ევშ−რებბა
(შვშ) | | J | 5 | 2.93 6.22 | 4-5 | z ⁷ P°-1 ⁷ D | 4773.52
4787.50 | P
P | 01
01 | 3.00
3.00 | 5.59
5.58 | 3-2
3-3 | b ³ 0-x ³ p°
(408) | 3670.071
3709.535 | J
J | $\binom{3}{1}$ | 2.94
2.98 | 6.30 | 5-6
4-5 | ხ ³ ც–ჯ ³ ყ≎
(435) | | J
P
G | 1 | 2.99 6.27
3.03 6.28
2.93 6.27 | 3-4
2-3
4-4 | | 4647.437
4691.414 | B
B | 6
6 | 2.94
2.98 | 5.59
5.61 | 5-5
4-4 | ხ ^ვ ც_უ ^ვ ცი
(409) | 3663.95
3662.90 | ₩
P | (1) | 2.94
2.94 | 6.30 | 5-5
5-4 | გ ^ვ ც_გ ⁵ ეი | | J
J | 6
1 | 2.99 6.28
3.03 6.30 | 3~3
2 ~ 2 | | 4710.286
4618.765 | B
J | 5 | 3.00
2.94 | 5.62 | 3-3
5-4 | | 3669.68
3708.45 | P
P | 00 | 2.98
2.98 | 6.34
6.31 | 4-3
4-4 | (438) | | P
J
y | ⊙
3
1 | 2.93 6.28
2.99 6.30
3.03 6.30 | 4-3
3-2
3-1 | | 4861.975
*4730.997
4740.343 | J
J
J | (3)
(3)
(1)
(1) | 2.98
2.98
3.00 | 5.62
5.59
5.61 | 4-3
4-5
3-4 | | 3699.55
3632.558 | P | ⊙
3 | 3.00
2.94 | 6.34 | 3-3
5-4 | ე ^ვ ც ∨ ^ვ წ⊛ | | J | 4 | 2.93 6.22 | 4-4 | z ⁷ P°-f ⁵ D | 4626.758 | s | (-) | 2.98 | 5.64 | 4-5
5-5 | b ³ G-x ⁵ G° | 3669.151
3721.606 | Ŋ. | (1) | 3.98
3.00 | 6.34
6.32 | 4-3
3-2 | (437) | | J
P
J | (1)
0
4 | 3.99 6.24
3.03 6.26
2.93 8.24 | 3-3
2-2
4-3 | ! | °4556.129
4603.956
4633.764 | A
A | (1)
(1) | 2.94
2.98
3.00 | 5.64
5.66
5.67 | 4-4
3-3 | (410) | *3623.440
3628.82 | G
P | 1
© | 2.94
2.98 | 6.34
6.38 | 5-5
4-4 | ь ³ С⊸ц ³ Со
(438) | | A
A | (<u>1</u>) | 2.99 6.26
3.03 6.28 | 3-2
2-1 | | 4494.47 | P
P | o | 3.94 | 5.68
5.70 | 56 | b3G-z3I° | 3637.05
3585.193
*3608.146 | y
Y | (2)
3 | 3.00 | 6.40
6.38 | 3-3
5-4 | • | | J
J | 6 | 2.93 6.23
2.99 6.25 | 4-4
3-3 | (388) | 4473.57 | В | ⊚
.3. | 2.94
2.94 | 5.77 | 55
54 | (411)
b ³ G-u ⁵ D* | 3667.999
3658.03 | y
P | 1 9 | 2.98
2.98
3.00 | 6.40
6.34
6.38 | 4-3
4-5
3-4 | | | V
G
P | 1
13
0 | 3.03 6.28
2.93 6.25
2.99 6.28 | 2-2
4-3
3-2 | , | 4418.432
4433.39
4423.145 | y
V | (1)
©
(1) | 2.98
3.00
2.98 | 5.77
5.79
5.77 | 4-3
3-3
4-4 | (413) | 3663.25
3693.008 | ₩
J | (1) | 2.98
3.00 | 6.35
6.35 | 4-4
3-4 | b ³ @_4°
(439) | | J | 3 | 2.93 6.36 | 4-5 | z ⁷ P°-e ⁵ 0 | 4461.80 | P | 0 | 3.00 | 5.77 | 3–3 | n3σ -3-s | 3590.08 | Ħ | (1) | 2.94 | 6.37 | 5-5 | b30-60 | | P
P
| Co
©
1 | 3.99 6.29
3.03 6.32
2.93 6.29 | 3-4
2-3
4-4 | , , ,
, | 4326.762
4351.549
*4373.563 | J
J | (2)
3
(2) | 2.94
2.98
3.00 | 5.79
5.81
5.83 | 5-4
4-3
3-2 | b ³ G-x ³ F°
(413) | 3633.837
*3645.494 | A
A | 1 | 2.98
3.00 | 6.37
6.39 | 4-5
3-3 | (440)
b ³ (-x ¹ p ⁹ | | A.
G- | 8n
2 | 3.99 6.33
3.03 6.34 | 3-3
2-2 | | 4390.460 | Ā | (2) | 2.98 | 5.79 | 4-4 | -3a -3 | 3489.670 | J | 4 | 2.94 | 6.47 | 5-6 | (441)
53G-#3H° | | Å.
G | 6n
(1) | 3.93 6.32
3.99 6.34 | 3-2 | | 4309.382
4367.581
4390.954 | V
J
B | 4
5
4 | 2.94
2.98
3.00 | 5.80
5.80
5.82 | 5-6
4-5
3-4 | b ³ G-z ³ H°
(414) | 3508.494
3516.403
3449.06 | J
G
P | 5
5
0 | 3.98
3.00
2.94 | 6.50
6.51
6.51 | 4-5
3-4
5-4 | (448) | | P
W
P | (1)
(1)
© | 8.93 6.32
3.99 6.34
3.03 6.35 | 3-4 | (390) | 4304.552
4348.939 | J
J
V | (1)
(1)
(1) | a.94
3.98 | 5.80
5.82 | 5-5
4-4 | | *3479.683 | ٧ | (1) | | 6.48 | 5-6 | р ³ С-у ³ х°
(443) | | 8
A | (1)
© | 3.03 6.35
8.99 6.35
8.93 6.35 | 3-3 | | 4286.440 | ٧ | (1) | 2.94 | 5.82 | 5-4 | | | | | | | | (449) | REVI | SE | D M U | LTI | PLE | T T | ABLE | | | | | | | 55 | |-------------------|------------------------|-------------|---|--------------------------------------|--------|---|----------------------|--------------|------------|---|----------------------|---------|--------------|--------------|--------------|------------|---| | r | E P | J | Multiplet | Labor | atory | r | E | | J | Multiplet | Labor | ator | f | EF | | ı | Multiplet | | r
Int | Low High | | (No) | I A | Ref | Int | Low | High | | (No) | | Ref | | Low | High | | (No) | | 1 . | | | | Fe I cont | inued | l | | | | | Fe I cont | inue | i | | | | | | 5 | 2.94 6.58 | 5-4 | ₽3 ^{G-} 8° | 4464.773 | V | (2) | 3.00 | 5.77 | 3-3 | c3P-y3Po | 3426.09 | P | , ⊚ , | 3.10 | 6.70 | 0-1 | c ³ p_t ⁵ pe | | 3
(1) | 3.98 6.58
3.00 6.58 | 3-4 | (444) | 4517.530
4430.197 | B
V | (2)
(2) | 3.06 | 5.79
5.79 | 1-1
2-1 | (472) | 3388.966
3339.588 | A
A | (1ម)
(1W) | 3.06 | 6.70 | 1-1
2-1 | (502) | | | | | . 30 100 | 4564.832 | V
P | (1) | 3.06 | 5.76 | 1-0 | | 3397.221 | ٧ | | | 6.64 | 2-3 | c3P-x1Fe | | o | 3.00 6.62 | 3-3 | b ³ G-y ¹ F°
(445) | 4553.48
4583.73 | P | • | 3.10 | 5.77
5.79 | 0-1 | | | | (1) | | | | (503) | | 2 | 2.94 6.63 | 5-5 | (445)
b ³ G-y ¹ H° | 4393.03 | р | · | 3.00 | 5.81 | 2-3 | c ³ P-x ³ F° | *3181.922 | U | (3) | 3.00 | 6.88 | 2-2 | c ³ P-w ¹ D°
(505) | | (1) | 2.98 6.64 | 4-3 | (446)
b ³ G-x ¹ F | 4372.994 | v | (1) | 3.00 | 5.83 | 2-3 | (473) | 3001.66 | P | (1) | 3.00 | 7.13 | 2-3 | c ³ P-t ³ F | | (1) | 3.00 6.64 | 3 -3 | (447) | 4384.682 | ٧ | (1) | 3.00 | 5.82 | 2-2 | ₀ 3p_#3p• | 3035.25 | P | • | 3.06 | 7.12 | 1-2 | (506) | | • | 2.98 6.65 | 4-3 | b ³ G-10° | | P | | 3.00 | | 2-3 | (474)
c3P-1 | 8931.78 | P | 0 | 3.03 | 4.42 | 4-4 | a1G-z3G° | | 4 | 2.94 6.66 | 5~5 | (448)
b3G_t3go | 4330.81
4414.23 | P | 0 | 3.06 | 5.85
5.85 | 1-2 | (475) | 8689.71 | P | 0 | 3.03 | 4.45 | 4-3 | (507) | | (3) | 2.98 6.70
3.00 6.74 | 4-4
3-3 | (449) | 4305.455 | В | 3 | 3.00 | 5.87 | 2-1 | c ³ P-y ³ S* | 8254.34 | P | 0 | 3.03 | 4.53 | 4-4 | alc-y3re | | (2)
(2)
(2) | 2.94 6.70 | 5-4 | | 4387.897 | J | 3 | 3.06 | 5.87 | 1-1 | (476) | 7941.84 | P | ŏ | 3.03 | 4.59 | 4-3 | ິ(508) | | (21) | 2.98 6.74
2.98 6.66 | 4-3
4-5 | | 4450.320 | J | (3) | 3.10 | 5.87 | 01 | | 7350.55 | P | 0 | 3.03 | 4.71 | 4-3 | a ¹ G-y ³ D° | | {1
1} | 3.00 6.70 | 3-4 | | *4202.755
4260.135 | A
A | {1
1 | 3.00 | 5.94
5.96 |
2-3
1-3 | c ³ p_v ⁵ F°
(476a) | 5038.81 | P | © ? | | 5.48 | 4-4 | (509)
a ¹ G-v ⁵ D° | | (1) | 2.94 6.67 | 55 | b ³ G-13° | 4298.21 | P | 0 | 3.10 | 5.97 | 0-1 | (4rea) | | | | | | | (510) | | • | 2.98 6.67 | 45 | (450) | 4182.384
4239.95 | J
P | 4
© | 3.00 | 5.96
5.97 | 2-2
1-1 | | 4842.19 | P | ⊙? | 3.03 | 5.58 | 4-3 | a1G_x3p° (511) | | {1
1} | 2.94 6.70 | 5-4 | b ³ G-13° | 4162.93 | P | Õ | 3.00 | 5.97 | 3-1 | | 4793.96 | ₽ | (1) | 3.03 | 5.61 | 4-4 | a1G-v3G0 | | (1) | 2.98 6.70
3.00 6.70 | 4-4
3-4 | (450a) | 4254.938 | V | (i) | 3.00 | 5.90 | 2-2 | 63P-w5Ge | 4636.66 | P | • | 3.03 | 5.70 | 4-5 | (513)
a ¹ G-z ³ I° | | Fe | 2.94 6.77 | 5-4 | b ³ G-w ¹ G° | 4335.46 | P | . • | 3.06 | 5.90 | 1-3 | (477) | 4514.189 | J | (2) | 3.03 | 5.77 | 4-4 | (513)
a1G-u5D° | | .2 | 2.98 6.77 | 4-4 | (451) | 4230.584 | Ŭ
₩ | {1
1} | 3.00 | 5.92
5.95 | 2-3 | o ³ P-y ⁵ P° | 4509.306 | Ŭ | (ī) | 3.03 | 5.77 | 4-3 | (514) | | (1) | 3.00 6.77 | 3-4 | | 4273.87
4309.46 | P | (1)
(3) | 3.06
3.10
3.00 | 5.96 | 1-2
0-1 | (478) | 4480.142 | J
V | (3) | 3.03 | 5.79 | 4-4 | a1G-x3F° | | (-)
Fe | 2.94 6.85
2.98 6.84 | 5–6
4–5 | _ბ 3g_v3H°
(453) | 4195.615
4250.90 | J
P | (3)
© | 3.00 | 5.95
5.96 | 33
11 | | 4439.643 | ٧ | (1) | 3.03 | 5.81 | 4-3 | (515) | | (1) | 3.00 6.84 | 3-4 | | | | | | | | c ³ P-w ³ G° | 4456.331 | Ĵ | (1)
(2) | 3.03 | 5.80
5.82 | 4-5
4-4 | a ¹ G-z ³ H°
(516) | | (1)
(2)
(-) | 2.94 6.84
2.98 6.84 | 5-51
4-4 | ſ | 4141.352 | U | (1) | 3.00 | 5.98 | 2-3 | (480)
c ³ P-x ³ P° | 4436.931 | ٧ | | 3.03 | | | | | 0 | 2.94 6.85 | 5-5 | n3a -1vo | 4170.906
4210.39 | В | 5
© | 3.00
3.06 | 5.96
5.99 | 2-2
1-1 | 0 ³ P-x ³ P°
(482) | 4343.699 | J | (8) | 3.03 | 5.87 | 4-4 | a ¹ G_w ⁵ G°
(517) | | | | | b ³ G-x ¹ H ²
(453) | °4134.433 | Y
Y | (1) | 3.00 | 5.99 | 2-1 | (405) | 4369.774 | В | 7 | 3.03 | 5.86 | 4-4 | (517)
a1G-z1G- | | (1) | 3.98 6.89
3.00 6.89 | 4-3
3-3 | b ³ G_w ¹ F°
(454) | 4220.347
4248.228 | j | 4 | 3.06
3.06 | 5.98
5.96 | 1-0
1-3 | | 4298.040 | В | (2) | 3.03 | 5.91 | 4-5 | (518)
a ¹ G-x ³ G° | | 3 | 2.94 6.90 | 5-5 | р ³ G-в ³ G° | 4267.830 | В | 5 | 3.10 | 5.99 | 0-1 | | 4302.191 | J | (2) | 3.03 | 5.90 | 4-4 | (520) | | (ž) | 3.98 6.90 | 4-4 | (455) | m4044.64 | P | Fe | 3.00 | 6.06 | 2-2 | c3P_2° | 4225.956 | J | 3 | 3.03 | 5.95 | 4-5 | alg_w3go | | (3)
(1)
©1 | 3.00 6.93
3.00 6.90 | 3-3
3-4 | | 4117.33 | U | (1) | 3.06 | 6.06 | 1-3 | (484) | *4202.755 | ٧ | (1) | 3.03 | 5.97 | 4-4 | (521) | | ©1 | 2.94 6.96 | 55 | р3 _{С—ц} 3но | 4013.798
4053.82 | V
W | $\begin{Bmatrix} 1 \\ 1 \\ 1 \end{Bmatrix}$ | 3.00 | 6.08 | 2-3
1-2 | с ^{3 р} —w ³ г°
(485) | 4199.098 | J | 20 | 3.03 | 5.97 | 4-5 | a ¹ G-z ¹ H°
(522) | | (1) | 2.94 6.97 | 5-4 | (456) | 3983.35 | ΰ | (1) | 3.00 | 6.10 | 3-3 | (400) | 4143.418 | J | 15 | 3.03 | 6.01 | 4-4 | (523)
a ¹ G-y ¹ G• | | (1) | s.94 6.99 | 5-4 | ь3 _{6—и} 3ге | 4031.243 | v | (3) | 3.00 | 6.07 | 2-3 | _c 3pv3p° | 4074.794 | J | 5 | 3.03 | 6.06 | 4-4 | (523)
a1G_w3r° | | (2) | 2.98 7.01 | 4-3
3-8 | (457) | 4085.38
*4130.035 | P | | 3.06 | 6.08 | 1-2 | (486) | 4052.664 | ٧ | (1) | 3.03 | 6.08 | 4-3 | (524) | | | 3.00 7.02 | | 7 1 - | 4013.822 | J | (1) | 3.00 | 6.08 | 2-2 | | 4070.45 | P | © ? | 3.03 | 6.07 | 4-3 | a1G-v3Do | | (-) | 2.94 7.03 | 5-4 | b ³ G√ ¹ G°
(458) | 4076.232
*4004.976 | J
J | $\binom{1}{1}$ | 3.06 | 6.09
6.09 | 1-1
2-1 | | 3994.117 | J | 2 | 3.03 | 6.12 | 4-5 | (525)
a ¹ G-y ³ H° | | (-) | 2.98 7.05 | 4-5 | (458)
b ³ G-x ³ I° | | _ | | | | | c3p_z1De | 3974.65 | P | õ | 3.03 | 6.14 | 4-4 | (526) | | (i) | 3.98 7.12 | 4-3 | (459)
b ³ G-t ³ F ⁹ † | 3976.392
4046.629 | A. | (1) | 3.00
3.06 | 6.11
6.11 | 2-2
1-2 | (487) | 4017.156 | J | 6 | 3.03 | 6.11 | 4-5 | a1G-v3G0 | | (1)
© | 3.00 7.12
2.98 7.10 | 3-2
4-4 | (460) | 3867.219 | В | 7 | 3.00 | 6.20 | 3-3 | c ³ P_w ³ P° | 3990.379
3955.22 | J
P | 8
© | 3.03
3.03 | 6.13
6.15 | 4-4
4-3 | (527) | | | | - | | 3955.956 | J | ä | 3.06 | 6.18 | 1-1 | (488) | | | | | | 4 7 | a ¹ G-z ¹ F° | | | 3.00 4.19 | 2-2 | $e^{3}P-z^{3}Pe$ | 3888.825
3970.391 | l
A | 3 | 3.00
3.06 | 6.18
6.17 | 2-1
1-0 | | 3843.259 | В | . 8 | 3.03 | 6.24 | | (528) | | 3 | 3.06 4.24
3.00 4.24 | 1-1
3-1 | (461) | 93933.606
4006.631 | J | (3) | 3.06 | 6.20
6.18 | 1-3 | | 3839.259 | В | 7 | 3.03 | 6.25 | 4-4 | ar G-xrGe | | 3 | 3.06 4.27 | 1-0 | | | - | | | | | o3P_z1Fe | 3729.34 | P | 0 | 3.03 | 6.34 | 4-4 | (529)
a1G_u5F°
(530) | | 3
3 | 3.06 4.19
3.10 4.24 | 1-3
0-1 | | 3808.286 | J | (1) | 3.00 | 6.34 | 2-3 | (489)
c3p_t5pe | 3773.364 | A | (1) | 3.03 | 6.30 | 4-5 | alc_x3H° | | • | 3.00 4.45 | 23 | , ₀ 3p_23gs | 36 99.14 7
372 2.23 | J
P | 1
© | 3.00 | 6.34
6.37 | 2-3
1-3 | c ³ P_t ³ D ⁹
(490) | 3732.13 | P | O٩ | 3.03 | 6.34 | 43 | (531)
alg_t5p° | | | | | (468) | 3662.73 | ₽ | 0 | 3.00 | 6.37 | 2-2 | (100) | | | | | | | (532)
a1G-73F0 | | 12 | 3.00 4.71
3.06 4.77 | 3-3
1-2 | (463) | 3693.79
3635.19 | ₽
₩ | о
3 | 3.06
3.00 | 6.40
6.40 | 1-1
3-1 | | *3740.061 | Ÿ | (1) | 3.03 | 6.33 | 4-4 | (532a)
a1G-u3G | | 0 | 3.10 4.81
3.00 4.77 | 0-1
3-3 | | ◆36 79 .53 | 14 | (1) | 3.06 | 6.41 | 1-0 | | 3730.386
3689.897 | A.
G | 3
(1w) | 3.03
3.03 | 6.34
6.38 | 4-5
4-4 | a ¹ G-u ³ G ^o
(533) | | ō | 3.06 4.81 | 1-1 | | 3698.611 | J | ,8, | | 6.34 | | o ³ P-y ³ F° | | • | | | | | | | • | 3.00 4.81 | 2-1 | 7 | 3782.608
3721.189 | J
V | $\binom{1}{1}$ | 3.08
3.00 | 6.32 | 1-2
2-2 | (491) | 3725.498 | J | (1) | 3.03 | 6.35 | 4-4 | a ¹ G-4°
(534)
a ¹ G-6° | | (0) | 3.00 5.25
3.06 5.20 | 2-3
1-3 | ₆ 3p _{-X} 5pe
(464) | 3636.650 | v | 1 | 3.00 | 6.40 | 0-3 | o3p-u3ga | ÷3695.054 | B | 8 | 3.03 | 6.37 | 4-5 | a ¹ G-6°
(534a) | | 0 | 3.10 5.32 | 0-1 | | | | | | | | (493)
c3p_y1D° | 3617.09 | M | (1) | 3.03 | 6.45 | 4-3 | (534g)
alg_t3po
(535) | | (1) | 3.00 5.29
3.06 5.32 | 2-2
1-1 | | 3652.26
3711.411 | P
J | 8 | 3.00
3.06 | 6.38
6.38 | 2-2
1-3 | (494) | 3545.832 | U | (1) | 3.03 | 6.51 | 4-4 | (535)
alg_w3H° | | ·ó | 3.00 5.32 | 2-1 | | *3645.090 | ٧ | а | 3.00 | 6.39 | 2-2 | | 3529.531 | U | (1) | 3.03 | 6.53 | 4-5 | (536)
a ¹ G-y ³ I° | | (-) | 3.00 5.42 | 2-3 | 03p_w5po | 3704.010 | Ÿ | (1) | 3.06 | 6.39 | 1-2 | | | | | | | | (537)
alg_a3pe | | 9 | 3.00 5.45
3.00 5.48 | 2-2
2-1 | (485) | 3617.788 | В | 13 | 3.00 | | 2-3 | | 3522.73 | ₽ | Ġ | 3.03 | 8.54 | 43 | (538) | | 0 | 3.00 5.50 | 2-3 | _ც შე _{თუ} 5ეი | 3632.042
3645.822 | J
J | 10
6 | 3.06
3.10 | | 1-3
0-1 | (496) | 3437.046 | Œ. | 3 | 3.03 | 6.62 | 4-3 | alg_ylFo
(539) | | | 3.06 5.51 | 1-3 | (466) | 3575.374 | J | 4 | 3.00 | 6.46 | 2-3 | | 3429.82 | P | 0 | 3.03 | 6.63 | 4-5 | alG_vluo | | ٥ | 3.10 5.53 | 0-1 | | 3603.828
3548.037 | J
U | (3) | 3.06 | | 1-1
3-1 | | 3425.009 | G | 4 | 3.03 | 6.64 | 4-3 | (540)
ald-xire | | 5
© | 3.00 5.58
3.06 5.59 | 2-3
1-2 | _ი ვ _{ე_ო} ვ _ე ი
(467) | m3586.10 | P | | 3.00 | | 2-3 | ₀ 39_43pe | 3410.031 | U | (i) | 3.03 | 6.65 | 4-3 | (541)
a1G-10° | | ō | 3.10 5.88 | 0-1 | | 3581.916 | Ū | Fe
(1)
(1) | 3.06 | 6.50 | 1-3 | (497) | | | | | | | (542) | | 3
(1) | 3.00 5.59
3.06 5.62 | 2-2
1-1 | | °3690.450
⊞3526.69 | y
P | (1)
Fe | 3.10 | 6.44 | 0-1
3-3 | ĭ | 3329.532 | ٧ | (8) | 3.03 | 6.74 | 4-3 | aig_t3g=
(542a) | | (1)
(1) | 3.00 5.62 | 3-1 | | m3647.43
3590.29 | P | Fe
Ol | 3.06 | 6.44 | 1-1
3-1 | Ŷ | 3395.87 | P | © | 3.03 | 6.67 | 4-5 | a1G-12° | | 0 | 3.00 5.70 | 2-3 | ₆ 39_ ₂ 5 ₂ 0 | | | | 3.00 | | | _ | m3306.35 | p | Fе | 3.03 | 8.77 | 4-4 | (543)
a ¹ G-w ¹ G° | | . <u>ම</u> | 3.06 5.73
3.00 5.73 | 1-1
3-1 | (468) | 3505.065
3559.506 | 3
4 | 3 | 3.00 | | 2-1
1-1 | | 3240.013 | Ū | (1) | 3.03 | 6.84 | 4-5 | (544)
a ¹ G_v ³ H ³ | | | | | | 3600.48 | P | © ? | 3.10 | | 0-1 | | 3238.32 | ₽ | `ō′ | 3.03 | 6.84 | 4-4 | (545) | | (3)
(1) | 3.00 5.75
3.06 5.75 | 2-1
1-1 | | £3497.89 | P | Fa | 3.00 | 6.53 | a-a | c3p_y3pe | 3229.994 | U | (3) | 3.03 | 6.85 | 4~5 | ald-x1H° | | | 3.00 5.77 | 23 | | °3442.979
3392.018 | A
A | (1) | 3.00 | 6.64 | 11
31 | (499) | 3202.562 | v | а | 3.03 | 6.89 | 4-3 | (546)
gig_wips | | (2)
(1)
(3) | 3.06 5.79 | 1-2 | 3 (471) | 3552.113 | Ÿ | 1 | 3.06 | | 1-2 | | | | | | | | (547) | | | 3.10 5.82
3.00 5.79 | 0-1
2-2 | | °3507.39 § | W | (1) | 3.08 | 6.58 | 1-2 | 0 ³ 9-3 ³ 50 | 3190.65i
3190.825 | V
V | (a) | 3.03
3.03 | 6.90
6.90 | 4-5
4-4 | a1g_a3gs
(548) | | (4)
1 | 3.06 5.82
3.00 5.82 | 1-1
2-1 | ļ. | 3459.911 | G- | 4 | 3.00 | | 3-1 | (500) | e3171.353 | A | `5` | 3.03 | 6.93 | 4-3 | • | | `å′ | 3.08 5.82 | 1-0 | 5 | 3512.95 | 4 | (1) | 3.00 | | 1-1 | (501) | 3073.244 | 3 | (-) | 3.03 | 7.05 | 4-5 | a1G-3310 | | | | | | | | | | | | | | | - | | | | (549) | | | ratory
Ref Int. | E P
Low High | J Multiplet (No) | Laboratory
I A Ref In | E P | J Multiplet | Laboratory
I A Ref | Int | E P.
Low High | J | Multiplet
(No) | |---|----------------------------------|--|---|---|---|---|--|-----------------------------|---
---------------------------------|---| | | tinued | | | Fe I continued | | | Fe I continued | | | | | | | P 07
P 0
P 0 | 3.20 5.05 | 4-3 z ⁵ D°-a ¹ F
(550)
4-3 z ⁵ D°-X
3-3 (551) | 3911.00 P
3926.001 V
3941.283 J
3955.352 J | (1) 3.20 6.35
(1) 3.23 6.37
(3) 3.25 6.38
(3) 3.27 6.39 | 4_4 z ⁵ De_f ⁵ F
3-3 (562)
2-2 cont
1-1 | 5980.520 V
5891.12 U
6109.318 V | (2)
(1)
(1) | 3.23 5.31
3.25 5.35
3.29 5.31 | 6-5
5-6
4- 5 | b ³ H-z ⁵ H ^o
(581)
cont | | | P 0
P 0
P 0 | 3.23 5.05
3.25 5.08
3.25 5.05 | 3–3
2–2
2–3 | 3889.33 P
3910.52 P | 3.20 6.37
© 3.23 6.38
(2) 3.25 6.39 | 4-3
3-2
3-1 | 5587.36 P
5675.08 P | ©1
©1 | 3.25 5.46
3.29 5.46 | 5-5
4-5 | b3H_w5pe
(583) | | | P ©7 W (3) P W (3n) | 3.20 5.29
3.23 5.33 | 1-3
4-5 z ⁵ D°-e ⁷ D
3-4 (552)
2-3 | 3997.48 P
*4029.640 Y
4052.466 V | © 3.23 6.31
3n 3.25 6.31
(1) 3.27 6.31 | 3-2 z ⁵ D°-e ⁵ S
2-3 (563)
1-2 | 5209.90 P
5240.36 P
5279.65 P
5277.32 P
5317.394 V | 0
0
0
(1) | 3.22 5.59
3.25 5.61
3.29 5.62
3.25 5.59
3.29 5.61 | 6-5
5-4
4-3
5-5
4-4 | ь ³ н_у ³ д°
(584) | | | A (3)
A (3)
B © | 3.27 5.39
3.28 5.40
3.20 5.33
3.23 5.36 | 1-8
0-1
4-4
3-3 | 3936.79 P
3905.18 P
3889.92 P
3974.397 J | 0 3.20 6.33 0 3.23 6.39 (1) 3.25 6.42 (1) 3.23 6.33 | 4-3 z ⁵ D°-e ³ D
3-2 (564)
2-1
3-3 | *5030.7849 R
5080.95 P
5124.60 P | 5 | 3.22 5.68
3.25 5.68
3.29 5.70 | 6-7
5-6
4-5 | b ³ H-z ³ I°
(585) | | | V (1)
P ©
I 30
I 18 | 3.23 5.39
3.20 5.52 | 2-2
3-2
4-4 z ⁵ D°-e ⁵ D
3-3 (553) | 3911.18 P
4006.16 P | Fe 3.25 6.39 3.27 6.42 © 3.25 6.33 (1) 3.27 6.39 © 3.26 6.42 | 2-3
1-1
2-3
1-3
0-1 | m5018.43 P
5052.97 P
4975.415 U | Fe ⁺
©
(1) | 3.23 5.68
3.25 5.70
3.29 5.77 | 6-6
5-5
4-4 | b ³ H-u ⁵ De | | | A (S) | 3.25 5.60
3.27 5.62 | 2-3
1-1 | 3928.085 J | (1) 3.20 6.34 | 4-4 z ⁵ D°-g ⁵ D | 4867.64 P | 0 | 3.25 5.79 | 5-4 | (586)
b ³ H-x ³ F°
(587) | | | J 5
J 7
J 6 | 3.23 5.60 | 4-3
3-2
2-1 | 3900.519 J
3888.42 P
3884.66 W | 3 3.23 6.39
(1) 3.25 6.43
(1) 3.27 6.45 | 3-3 (565)
2-2
1-1 | 4788.757 J
4839.549 J
*4881.726 J | (4)
(3)
(2) | 3.22 5.80
3.25 5.80 | 6-6
5-5 | b ³ H-z ³ H°
(588) | | | J 5n
I 10 | 3.27 5.63
3.23 5.52 | 1-0
3-4 | 3864.30 P
3858.48 P | © 3.20 6.39
© 3.23 6.43 | 4-3
3-2 | 4782.79 P
4816.67 P | 0 | 3.29 5.82
3.22 5.80
3.25 5.82 | 4-4
6-5
5-4 | | | | I 13
I 10
K (5) | 3.27 5.60 | 2-3
1-2
0-1 | 3863.70 P
3878.19 P
3965.511 J | © 3.25 6.45
© 3.27 6.45
(1) 3.23 6.34 | 2-1
1-0
3-4 | *4845.656 V
4903.10 P | (2)
©† | 3.25 5.80
3.29 5.80 | 5-6
4-3 | b ³ H-w ³ De | | | I 12
B 8 | | 4-5 z ⁵ p°-e ⁵ F
3-4 (554) | 3931.123 J
3909.664 J
3895.44 P | (1) 3.23 6.34
(3) 3.25 6.39
(1) 3.27 6.43
(1) 3.28 6.45 | 2-3
1-2
0-1 | 4737.633 J
4800.55 P | (1) | 3.25 5.86 | 5-4 | (589)
b ³ H-z ¹ G• | | | J 6
J 3 | 3.25 5.90
3.27 5.93 | 2_3
1_3 | | (1) 3.20 6.37 | 4-3 z ⁵ D°-e ⁷ S | 4600.937 J | (1)
(1) | 3.29 5.86
3.22 5.91 | 4-4
6-5 | (590)
b ³ H-x ³ G ^o | | | J 2n
J 5
I 3 | 3.20 5.85
3.23 5.90 | 0-1
4-4
3-3 | 3854.375 U | (2) 3.25 6.37
(1) 3.20 6.40 | 2-3 (566)
4-3 z ⁵ D°-e ⁵ P | 4658.29 U
4714.182 V | (1)
(1n) | 3.25 5.90
3.29 5.91 | 5-4
4-3 | (591) | | | J 3n
J (2n)
V (1) | 3.27 5.95 | 2-2
1-1
4-3 | 3855.846 J | (1w) 3.23 6.43
(1) 3.25 6.42
(1) 3.23 6.40 | 3-2 (567)
2-1
3-3 | 4649.828 U
4518.45 U | (1) | 3.22 5.88
3.22 5.95 | 6-5
6-5 | _Ե 3 _{H_V} 5բ»
(592)
Ե3 _{H—W} 3Ը» | | | y (1)
v (2)
v (1) | 3.23 5.93
3.25 5.95 | 3-3
2-1
4-4 z ⁵ D°-e ³ F | 3885.76 P | © 3.25 6.43
(1) 3.27 6.42
(1) 3.25 6.40
© 3.27 6.43 | 3-3
1-1
2-3
1-3 | 4541.953 U
4575.80 U
4569.06 P | (1)
(1)
(1)
(0) | 3.25 5.97
3.29 5.98
3.25 5.95 | 5-4
4-3
5-5 | (593) | | • | P
P ⊙ | 3.25 6.04 | 3-3 (555)
2-2
3-4 | 3925.201 V | (1) 3.28 6.42 | 0-1 | 4487.74 P
4537.677 J
4505.363 J | (1n)
(3) | 3.23 5.97
3.25 5.97
3.30 5.97 | 6-5
5-5 | b ³ H-z ¹ H°
(594) | | | 1 (5)
1 (5) | 3.25 5.99 | 2-3
4-5 z ⁵ p°-e ⁷ F | 3668.214 U 7 | (1) 3.23 6.59
© 3.25 6.65 | 1-5 s5pe_g5r
3-4 (568)
3-3
1-3 | *4472.731 J | (8) | 3.25 6.01 | | b ³ H-y ¹ G°
(595) | | | P ©
V 3n | 3.23 6.32
3.25 6.31 | 3-4 (556)
2-3 | 3591.485 U
*3636.186 V | (1) 3.28 6.71
2 3.20 6.59 | 0-1
4-4 | 4528.76 P
4446.90 P | 0 | 3.29 6.01
3.29 6.06 | 4-4 | b ³ H_₩ ³ ₽* | | | U (1)
P ©
J (1) | 3.23 6.31 | 1-2
3-3
2-3 | 3582.34 P
*3667.999 V | 3.27 6.713.20 6.56 | 1-1
4-4 z ⁵ D°-h ⁵ D | 4285.445 B
m4299.25 P | 3
Fe | 3.22 6.10
3.25 6.12 | 6-6
5-5 | (596)
b ³ H-y ³ H°
(597) | | | P 0
P 0
P 0 | 3.27 6.32
3.20 6.31 | 1-1
4-3
2-1 | m3647.84 P 1
3618.62 P | Fe 3.23 6.61
© 3.25 6.66 | 3-3 (569)
3-3
1-1 | 4327.92 W
4330.962 V | (a) | 3.29 6.14
3.25 6.10 | 4-4
5-6 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | P 0 | | 4-5 z ⁵ p°-f ⁷ p | 3616.15 P | (1) 3.27 6.68
(1) 3.20 6.61
(1) 3.23 6.66 | 4-3
3-2 | 4280.53 U
4294.939 V | (1)
(1w) | 3.22 6.11
3.25 6.13 | 6-5
5-4? | °53H−43Ge
(598) | | | J (3)
J (1w)
J (1w) | 3.28 6.30 | 0-1 | 3597.05 W
3700.61 P | 3n 3.25 6.68
© 3.23 6.56 | 2-1
3-4 | 4304.87 P
4325.95 P
4346.558 J | (3)
© | 3.29 6.15
3.25 6.11
3.29 6.13 | 4-3
5-5
4-4 | | | | V 5n | 3.23 6.28 | 4-4
3-3
3-3 | 3667.252 Q
3644.798 U
3624.06 P | 3n 3.20 6.56
(1) 3.23 6.61
© 3.25 6.66 | 4-3 z ⁵ D°-£ ⁵ P
3-2 (570)
2-1 | 4167.862 V | (3) | 3.29 6.25 | 4-4 | b ³ H-x ¹ G°
(599) | | | W (1)
U (1)
J (1)
V (1) | 3.27 6.30
3.20 6.28 | 1-1
4-3 | 3671.51 W
*3690.450 V | (1) 3.25 6.61
(1) 3.27 6.61 | 2-2
1-3 | *4038.623 Q
*4099.08 U | { <u>-</u> } | 3.29 6.34
3.29 6.30 | 4-4
4-51 | b3H_u5pe | | | V (1)
P 0 | | 3-2
3-1 | 3651.03 P
•3618.393 J | © 3.20 6.58
2 3.23 6.64 | 4-5 z ⁵ D°-f ⁵ Q
3-4 (571) | 4012.16 W
4004.832 J | {1} | 3.22 6.30
3.22 6.30 | 66
65 | b ³ H-x ³ H° (601) | | | J 8n
J 4n
K 3 | 3.23 6.24 | 4_4 z ⁵ p°_f ⁵ p
3-3 (558)
2-2 | | (1) 3.25 6.69
© 3.25 6.71 | 2-3
2-2 | 4041.911 S | (~) | 3.29 6.34 | | b3H-t5pe | | | J (1)
K 4n | 3.27 6.28
3.20 6.24 | 1-1
4-3 | 3558.08 P
3496.60 P | © 3.23 6.70
© 3.20 6.73 | 3-4 z ⁵ p°-e ⁵ H
4-3 (572) | 4006.314 J
*4041.288 Y | 3
(1) | 3.85 6.33
3.89 6.34 | 5-4
4-3 | (603)
b3H-43he
(809) | | · | J 5n
K 4n
J 2n | 3.25 6.28 | 3-3
2-1
1-0 | | (1) 3.20 6.63
9 3.23 6.67 | 4-5 z ⁵ D°-e ³ G
3-4 (573) | 3956.459 J
3948.779 B | 9
10 | 3.22 6.34
3.25 6.38 | 6-5
5-4 | b ³ H-u ³ G ^e
(604) | | | U (1)
P ©
J 3n | 3.35 6.24 | 3-4
2-3
1-2 | 3621.19 P
3647.56 P | © 3.23 6.64
© 3.25 6.64 | 3-3 2 ⁵ Do-1 ³ D
2-3 (574) | 3967.423 B
3995.199 J
3992.395 U | 8
(1w)
(1) | 3.29 6.40
3.25 6.34
3.29 6.38 | 4-3
5-5
4-4 | ,, | | , | J (1) | 3.28 6.28 | 0-1 | 3583.337 J | 3 3.28 6.72 | 0-17 | 3989.60 P | 6 | 3.85 6.35 | 5_4 | b3H-40 | | | J 8n
J 4
P (1) | 3.25 6.28 | 4-4 z ⁵ D°-e ⁷ P
3-3 (559)
3-3 | 3518.23 P
3473.23 P | © 3.23 6.73
© 3.20 6.75 | 3-4 z ⁵ D°-e ³ H
(575)
4-4 z ⁵ D°-f ³ F | 3916.733 I
3954.715 U | 6
(1) | 3.22 6.37
3.25 6.37 | 6-5
5-5 | (605)
b ³ H-6°
(606) | | | P 0
P 0
P 0 | 3.23 6.28 | 4_3
3_3
3_4 | 3419.157 V (
3502.46 P | (1) 3.23 6.84
© 3.23 6.75 | 3-3 (576)
3-4
3-3 | 3998.46 P
3797.517 B | 0 | 3.89 6.37
3.82 6.47 | 4-5 | b3H_w3H° | | | v (1) | 3.25 6.25 | 3-3 | 3459.29 P | 9 3.25 6.81
9 3.27 6.84 | 1-3 | 3806.697 G
3824.306 V | 13
10
3 | 3.25 6.50
3.29 6.51 | 6-6
5-5
4-4 | (807) | | | J (6)
J 6n
J (4) | 3.23 6.29 | 4_5 z ⁵ p•_ə ⁵ g
3_4 (560)
3_3 | | (3w) 3.27 6.88
© 3.35 6.77
© 3.27 6.84 | 1-0 2 ⁵ p°-e ³ p
3-3 (577)
1-1 | 3771.50 P
3784.27 P | 0 | 3.22 6.50
3.25 6.51 | 6-5
5-4 | | | | J (4)
V (2)
P F°
P ⊙ | 3.27 6.34
3.80 6.89 | 1-2
4-4
3-3 | 3143.990 G | 8 3.30 7.18 | 4-4 z ⁵ p°-1 ⁵ p | 3765.542 B
3681.181 I | 20
10 | 3.22 6.50
3.25 6.48 | 6-7
5-6 | (908)
P3H-y3Ie | | | P
P 0 | 3.25 6.34
3.20 6.32 | 2-3
4-3 | 3132.514 V | 5n 3.23 7.14
(2n) 3.25 7.16
4n 3.20 7.14 | 3-3 (578)
8-8
4-3 | 3805.345 B
3785.706 J
3765.70 W | (1)
(1) | 3.29 6.53
3.22 6.48
3.35 6.53 | 4-5
6-6
5-5 | | | | P ⊙
J 4n | | 3-2
4-5 z ⁵ D°-s [?] 3 | | 5n 3.23 7.16
(1) 3.23 7.13
9 3.27 7.16 | 3-2
3-4
1-3 | 3704.336 ¥
3738.308 B | (1)
10 | 3.22 6.55
3.25 6.55 | 6-6
5-6 | b ³ H-z ¹ I°
(609) | | | J 4n (1) | 3.23 6.34
3.25 6.35 | 3-4 (561)
2-3 | | (3n) 3.27 7.19 | 1-2 2550-4 | 3705.70 P | 0 | 3.25 6.58 | 5-4 | p3H-80 | | | P 0
P 0 | 3.28 6.37
3.23 8.35 | 1-3
0-1
3-3 | | © 3.22 4.37 | (578a)
6-5 b ³ H-z ³ G° | 3586.114 B
*3584.960 J | 10
4 | 3.32 6.66
3.35 6.70 | 6-5
5-4 | (610)
b ³ H-t ³ G°
(611) | | | P ⊙
J 10n | 3.27 6.37
3.20 6.31 | 1-i
4_s "5 _{00_} 25 ₀ | 10616.75 P | 9 3.25 4.48
9 3.29 4.45 | 5-4 (579)
4-3 | 3573.896 G
3620.87 P | 4
© | 3.29 6.74
3.29 6.70 | 4-3
4-4 | | | | J 6n
J 4n | 3.23 6.35
3.25 6.37 | 3-4 (562)
3-3 | 9673.16 F | in 3.25 4.53 | 5-4 b ³ H-y ³ F°
(580)
6-6 b ³ H-z ⁵ H° | 3582.201 J
3613.95 P | 5
© | 3.22 6.67
3.25 6.67 | 6-5
5-5 | b ³ H-13°
(613) | | | <i>J</i> 6 <i>n</i> ₹ (1n) | 3.27 6.38
3.28 6.39 | 1-3
0-1 | 6007.75
P | 9 3.22 5.35
9 3.25 5.31
9 3.29 5.32 | 6-8 b ³ H-2 ⁵ H ³
5-5 (581)
4-4 | 3576.760 B
3613.51 P | 2
0 | 3.25 6.70
3.29 6.70 | 5-4
4-4 | b ³ H-13°
(613a) | | | | | | | | | - | | | | , | | ory
of Int | I | E I |)
High | J | Multiplet
(No) | Labor
I A | atory
Ref | Int | E
Low | P
High | J | Multiplet
(No) | Labor
I A | ator;
Ref | Int | E P | ligh | J | Multiplet (No) | |----------------------|----------------------|----------------------|----------------------|-------------------|---|----------------------------------|--------------|-------------------|----------------------|----------------------|-------------------|---|-----------------------------------|--------------|---------------------------------|------------------|------------------------------|-------------------|---| | med | | | - | | | Fe I cont | inued | | | | | | Fe I cont | | 1 | | | | | | (3) | | 3.25
3.29 | 6.77
6.77 | 5-4
4-4 | b ³ H-w ¹ G ⁶
(613) | 4611.05
4521.65
4565.324 | P
P
V | 0
0
(2n) | 3.29
3.26
3.26 | 5.96
5.99
5.96 | 2-3
1-1
1-3 | a ³ D-x ³ P°
(641)
cont | 3368.25
3391.84 | P
P | 0 | | 3.90
3.93 | 3-4
2-3 | a ³ D-s ³ G°
(678) | | ; (a |) 3 | 3.22 | 6.85
6.34 | 66
55 | b ³ H_v ³ H ³
(614) | 4414.47 | P | (1) | 3.26 | 6.06 | 1-3 | a3n_2° | 3310.498
3292.022 | G
A | (3)
8 | | 3.97
5.99 | 3-4
3-4 | a ³ D-u ³ H°
(879)
a ³ D-u ³ F° | | (3) |) 3
} 3 | 3.29
3.22
3.25 | 6.84
6.84
6.84 | 4-4
6-5
5-4 | | 4368.66
4419.78 | P
P | 0 | 3.24
3.29 | 6.06
6.08 | 3-4
2-3 | (643)
a3D_w3F°
(644) | 3314.742
3282.891 | G. | 7 | 3.29 7
3.26 7 | 7.01 | 2-3
1-2 | (680) | | • • |) 3 | 3.25 | 6.85 | 5-6
6-5 | _b 3 _{H-x} 1 _H a | 4341.57
4343.22 | P | 0 | 3.26
3.24 | 6.10
6.08 | 1-2
3-3 | 7 7 . | 3271.498
3306.495
3263.45 | ۷
۲ | (a)
(a)
(a) | 3.29 7 | 7.01
7.03
7.03 | 3-3
2-3
3-2 | | | 0 |) 3 | 3.25 | 6.85 | 5-5
4-3 | (615)
b ³ H-w ¹ F° | 4343.257
4409.123
4440.972 | J
₹ | (3)
(3) | 3.24
3.29
3.29 | 6.08
6.09
6.07 | 3-2
2-1
2-3 | a ³ D-V ³ D°
(645) | 3253.610 | 4 | 4 | 3.24 | 7.03 | 3-4 | a3D-v1G* | | 5 | | 3.22 | 6.95 | 6-6 | (616)
03H-u3H° | 4377.796 | ý
V | (1) | 3.26 | 6.08 | 1-3
3-3 | a ³ D-3° | 3191.41
3223.08
3193.74 | P
P
P | 000 | 3.29 | 7.10
7.13
7.13 | 3-4
2-3
1-2 | (681)
a3D_t3pe
(682) | | 5
G
(1 | | 3.25
3.20
3.22 | 6.96
6.96 | 5-5
4-4
6-5 | (617) | 4422.882
4304.15 | P | (in)
© | 3.29 | 6.15 | 2 –3 | (646)
a3D_ ∀ 3 G • | 3216.06 | , | | | 7.12 | 3-3 | | | (1
(2
(1
(2 | } | 3.25
3.25
3.29 | 6.97
6.95
6.96 | 5-4
5-6
4-5 | | 4231.525
4299.49 | V
P | (1gn)
_0 | 3.24 | 6.15 | 3-3
3-2 | (647)
a ³ D-z ¹ D° | 7478.87 | P | 0 | | 5.00 | | z ⁵ F°-a ¹ F
(683) | | 0 |) : | 3.25
3.29 | 6.99
7.01 | 54
43 | b ³ H-u ³ F°
(618) | 4374.495
4172.126 | l
A | (1)
5 | 3.29 | 6.11 | 3-2 | (648)
a3D_w3pe | 7340.78
7398.78 | P
P | 0 | 3.42 | 5.08
5.08 | 3-3
1-3 | z ⁵ F°_X
(684) | | (3 | 3) | 3.29 | 6.99 | 4-4 | b ³ H-v ¹ G° | 4268.744
4246.02
4242.730 | J
P
J | 3
(2) | 3.29
3.26
3.29 | 6.18
6.17
6.20 | 3-1
1-0
3-3 | (649) | 6271.289
6249.65
6232.735 | D
D | (1)
©
(-) | 3.35 | 5.29
5.33
5.36 | 5-5
4-4
3-3 | 2 ⁵ F°-e ⁷ D
(685) | | (1 | ; | 3.29 | 7.04 | 4-4
6-7 | (619)
b3H-x3I° | *4329.516 | j | (1gn) | 3.26 | 6.18 | 1-1
3-3 | a3D_z1po | 6219.54
6137.51
6145.42 | Q
P
P | `o`
o | 3.40 | 5.39
5.33
5.36 | 3-3
5-4
4-3 | | | 10 | | 3.25
3.29 | 7.05 | 5-6
4-5 | (620) | 4103.68
4171.904 | Ā | (3)
(3) | 3.24 | 6.24 | 2-3 | (650)
a ³ D-x ¹ G° | 6388.41
6339.96 | P
P | 900 | 3.35 | 5.29 | 4-5
3-4 | | | • | D7 : | 3.24 | 4.45 | 3-3 | 23D_23Ge
(621)
a3D_y3Fe | *4099.08
*3932.629 | IJ
J | (1) | 3.24 | 6.25
6.40 | 3-4
1-3 | (651)
a3D_u5F* | 5615.652
5586.763 | B
B | 50
40 | 3.35 | 5.58
5.56 | 5-4
4-3 | z ⁵ F°_e 5 p
(686) | | 1 | : | 3.24
3.29
3.26 | 4.53
4.59
4.63 | 3-4
3-3
1-2 | (623)
(623) | *3966.532
3914.42
3948.00 | y
P
P | (in) | 3.29
3.26
3.29 | 6.40
6.41
6.41 | 2-3
1-1
3-1 | (652) | 5572.849
5569.625
5576.097 | B
B
J | 30
20
10 | 3.40 | 5.60
5.62
5.63
5.52 | 3-2
2-1
1-0 | | | (1 | ٥. ا | 3.24
3.29 | 4.59
4.63 | 3-3
2-2 | | *4022.744
*4041.288 | ŭ
U | {1
1} | 3.24 | 6.31 | 3-4
3-3 | a ³ D-t ⁵ D°
(654) | 5709.378
5658.826
5624.549 | B
B | 10
10
10 | 3.38 | 5.52
5.56
5.60 | 4-4
3-3
2-2 | | | 25
20 |) | 3.24 | 4.71 | 3-3
3-3 | გ ^ვ უ_უ ^ვ უ•
(623) | 3963.43
3986.176 | P
v | `ó′
5 | 3.26 | 6.37 | 1-3
3-4 | a35~v3p° | 5602.955
5784.69
5712.150 | A
A
T | 10
(1)
(2)
(1) | 3.48
3.38 | 5.62
5.52
5.56 | 1-1
3-4
2-3 | | | | ond? | 3.26
3.24
3.29 | 4.81
4.77
4.81 | 1-1
3-3
3-1 | | 4040.650
4031.968
3976.564 | j
V
V | 4
(1) | 3.29
3.26
3.24 | 6.34
6.32
6.34 | 2-3
1-2
3-3 | (655) | 5658.542
4966.096 | ÿ
B | {i}
8 | 3.42 | 5.60
5.80 | 1-2 | z ⁵ F°-e ⁵ F | | • 6 | • | 3.29
3.26 | 4.71 | 3-3 | 2- 5ma | 4067.60
•4002.665 | P
V | (1) | 3.29 | 6.32 | 3-2 | | 4946.394
4910.027 | J | 4 | 3.35
3.38 | 5.85
5.90 | 4-4
3-3 | (687) | | (1
6 | 9 | 3.24
3.29
3.26 | 5.25
5.39
5.32 | 3-3
3-2
1-1 | a ³ D-x ⁵ P°
(634) | 3969.628 | J | (1) | 3.24 | 6.35 | 3-4 | &3D_4°
(657)
&3D_5° | 4883.151
4863.653
4875.89 | J
ず | (2)
(2)
(1)
(3)
(3) | 3.42 | 5.93
5.95
5.85 | 2-2
1-1
5-4 | | | 6 | 9 | 3.24
3.29 | 5.29
5.25 | 3-2
2-3 | | 3965.446
3929.208 | J
A | (1)
(1)
(1) | 3.24 | 6.35
6.38 | 3
34 | (658)
a3D-u3G° | 4855.683
4843.155
4838.519 | j
j | (3)
(3n) | 3.38
3.40 | 5.90
5.93
5.95 | 4-3
3-2
3-1 | | | 9 | Ð. | 3.24
3.26
3.24 | 5.37
5.45
5.43 | 3-4
1-3
3-3 | გ ³ ე_უ ⁵ ე•
(625) | 3966.824
3925.55 | J
P | (i)
© | 3.29 | 6.40
6.38 | 2-3
3-3 | (659)
გ ^ვ უ_ц ⁵ ლი | 5039.266
5002.800
4950.112 | J
J | (2n)
(2)
(6)
(2) | 3.38 | 5.80
5.85
5.90 | 4-5
3-4
2-3 | | | . 0 | Ð | 3.24 | 5.45 | 3-2
3-4 | 23D-w5pe | 3889.38
3914.50 | P | 0 | 3.26
3.26 | 6.43
6.41 | 1-1
1-3 | (660) | 4907.743
4741.081 | K
J | (a)
(1) | 3.42 | 5.93
5.92 | 1-3
5-4 | _z 5 _{F°-0} 3 _F | | (1
(2
(2 | ŝ)
8) | 3.26 | 5.48
5.47 | 1-1
3-3 | (626) | 3923.03
3985.393
3951.164 | P
J
I | ©
3
9 | 3.24
3.29
3.26 | 6.38
6.38
6.38 | 3-2
3-3
1-3 | a ³ D_y ¹ D°
(661) | 4679.229
4642.58
4807.725 | V
P | (1)
(1)
(2) | 3.35
3.38 | 5.99
6.04
5.92 | 4-3
3-2
4-4 | (688) | | | | 3.24
3.29 | 5.50
5.51 | 3-3
3-2 | ₈ 3 _{D-7} 5 _D 0
(637) | 3914.73
*3976.965 | ¥
J | {1
1} | 3.24 | 6.39 | 3-3
2-2 | a ³ D-x ¹ D°
(662) | 4739.699
4678.41
4860.98 | K
V
P | (2)
(1)
(1) | 3.38
3.40 | 5.99
6.04
5.92 | 3-3
3-2
3-4 | | | Č | o | 3.24 | 5.58 | 3-3
3-3 | a ³ D-x ³ D° | 3883.282 | J
J | (4)
(2) | 3.24 | 6.43 | 3-3 | a3p_u3pe | 4766.87
4701.90 | P | 0 | 3.40 | 5.99
6.04 | 2-3
1-3 | | | | 9 | 3.24 | 5.68 | 1-1
3-2 | 3- 5 | 3894.005
*3829.458
3834.46 | V
P | 1
0 | 3.29
3.26
3.24 | 6.46 | 2-3
1-1
3-3 | (683) | 4259.988
4224.176 | J
A | (2)
6n | 3.35 | 6.21
6.28 | 5-6
4-5 | z ⁵ F°_e ⁷ F
(689) | | (: | 1) | 3.26 | 5.70 | 33
12 | a ³ D_w ⁵ P°
(629) | 3861.60
*3861.341 | IJ
J | (1) | 3.29 | | 2-1
1-2 | 7 7 | 4200.930
*4238.027
4224.509 | A
1 | 3n
4
3n | 3.40
3.42 | 6.32
6.31
6.34 | 3-4
3-3
1-2 | | | (| 1) | 3.24
3.26
3.24 | 5.77
5.82
5.79 | 3-3
1-1
3-2 | a ³ D-u ⁵ D°
(630) | 3846.803
3836.332
3878.726 | B
I
V | 8
4
(2) | 3.24
3.29
3.26 | 6.50 | 3-3
2-3
1-1 | a ³ D-t ³ D°
(664)
? | 4172.641
4161.080
•4208.610 | A
A | (1)
(1)
3n | 3.35 | 6.38
6.32
6.31 | 5-5
4-4
3-3 | | | | | 3.34
3.39 | 5.77
5.79 | 3-2
3-1 | | 3778.509
3911.699
3906.748 | J
U
J | (1)
2 | 3.24
3.29
3.29 | 6.44 | 3-2
3-1
2-3 | ? | 4205.546
4246.59
4111.06 | J
P | (2)
(1)
(1) | 3.42 | 6.34
6.32
6.33 | 2-2
1-1
5-4 | | | (| 0 | 3.29
3.26 | 5.77
5.77 | 2-3
1-3 | ,, | 3810.759
3779.444 | J
J | 2 3* | 3.29 | 6.53 | 3-1
1-1 | a3D-80 | 4168.635
m4176.57
m4327.43 | V
P
P | (1w)
Fe
Fe | 3.35
3.38 | 6.31
6.34
6.32 | 4-3
3-3
3-1 | | | | | 3.24
3.29 | 5.81
5.83 | 3-3
2-2 | | 3802.283 | J | (1) | 3.29 | | 3-3 | a3D_73pe | 4253.52
4228.71 | P. | 0 | 3.32 | 6.22 | 5~5 | ±5p°_17D
(690) | | (| 0 | 3.24 | 5.80
5.88 | 3-3
2-2 | (633) | 3740.247
3751.059 | J
J | (1)
(1) | 3.24
3.29 | 6.58 | 3-3
2-3 | (667) | 4177.07
4256.212 | P
Y | (1)
(3) | 3.32
3.40 | | 4-4
5-4
3-1 | (680) | | • | 0
0 | | 5.84 | 1-1
3-3
3-1 | | 3796.90
3757.459 | U
J | 1 | | 6.57 | 2-3
2-1 | a3p_21pe | 4307.08
4269.87 | P | 0 | 3.38 | 6.22 | 4-5
3-4 | | | , | 0 | 3.28 | | 1-3
3-3 | | 3727.03
3688.476 | .P
V | ©
(1w) | | 6.57 | 1-1
3-4 | a3p_90 | 4245.358
4278.234
4320.36 | J
P | (1) | 3.35 | 6.22
6.24
6.24 | 5-4
4-3
3-3 |
z5F°_£5p
(691) | | ξ. | s) | 3.26 | 5.65 | 3-3
1-3 | (634) | 3643.80
3697.510 | P | (1)
(1w) | 3.24 | 6.62 | 3-3
2-3 | (669)
a3D_yipe | 4320.52
4306.58
4341.23 | Ų
P | (1)
(1)
(1)
(1) | 3.40
3.42 | 6.28
6.22 | 3-2
1-1
3-4 | | | | 1)
© | 3.29
3.26 | | 3-1
1-1 | | *3683.616 | ¥ | (1) | | 6.64 | 33 | a3n_g1ge | 4351.37
•4340.51 | Ď. | (1) | 3.40 | 6.24 | 3-3
1-2 | | | | 9
0 | 3.34 | | 3-3
3-2 | (೦೦೦)
ಇತ್ತಿಗ್ಗಳಿಂ | 3613.45
3600.89 | P
P | 0 | 3.24
3.20 | | 3-3
8-3 | (678) | m4235.96
4864.209 | 2 | Fe
(3)
© | 3.35 | 6.23 | 5-4
4-5
2-3 | z ⁵ p°_0 ⁷ p
(892) | | | 1) | 3.34 | 5.95 | 3-8 | (63?)
გპე_უ5թ» | 3568.828
3573.403 | y
y | (3) | 3.39
3.39 | 6.74 | 3-4
2-3 | (673) | 4336.86
4337.434 | ĵ | 30 | 3.32 | 6.24 | 2-3
5-3 | z5r0_05g | | (| 8,57) | | 5.95 | 2-1
1-3 | | 3598.71 | 8 | .1
.1 | 3.24 | | 33
33 | a3D-110 | 4347.432
4238.816
4235.460 | I
I
J | 13
10n
6n | 3.38
3.40 | 8.36
6.29
8.33 | 4-5
3-4
3-3 | (693) | | | 0
0 | 3.34 | | 3-4
3-3 | (639) | 93851.10
3550.705 | ¥
V | (1)
5 | 3.29 | | 3-4 | a ³ D-13° | 4817.551
4195.337
4198.368 | J
J | 7n
5
(1) | 3.42
3.32 | 6.34
6.26
6.39 | 1-3
5-5
4-4 | | | | 0
0 | 3.26
3.26 | 5.96
5.97 | 1-2
1-1 | (840) | *3431.815
3406.443 | J
J | 3 | 3.29 | 6.88 | 3 | (675)
a3p_w1pa | 4198.818
4198.645
4147.34 | j
J | 4n
0 | 3.38
3.40 | 6.32
6.34
6.29 | 3~3
3~3
5~4 | | | (| (1)
(3)
(1n,g) | 3.29 | 5.29 | 32
31
10 | (641) | *3381.340 | Ą | (3) | 3.3 | | 3~3 | | 4156.480
4169.777 | A
A | (1)
(1) | 3.35 | 6.33 | 4-3
3-3 | | | , | , nua ; jaj l | , | 2,50 | i wi | • | | | | | | | (011) | | | | | | | | | | | | _ | | | | | | | | • . | | | _ | | | | | |--|----------------------|----------------------|-------------------|---|-----------------------|--------------|-------------------|--------------|--------------|------------|---|----------------------|----------|--------------|--------------|--------------|------------|---| | ry
Int | E P
Low | High | J | Hultiplet
(No) | Labor
I A | atory
Ref | Int | E : | P
High | J | Multiplet
(No) | Labor
I A | Ref | Int | E P
Low | H1gh | J | Multipres
(No) | | eđ. | | | | | Fe I cont | inued | | | | | | Fe I cont | inue | đ | | | | | | 5n | | 6.29 | 5-6
4-5 | _E 5 _F •_e ⁷ G
(694) | 8978.17
8729.12 | P
P | ⊙
2 | 3.40 | 4.77 | 1-3
1-1 | a ¹ P-y ³ D° (713) | 4112.09
•3966.532 | P | (in) | | 6.53
6.64 | 3-3
3-1 | a ¹ D-v ³ pe
(766) | | 9n
© | 3.38 | 6.34 | 3-4
3-3 | (034) | 5551.29 | P | 0 | 3.40 | 5.62 | | alp_x3pe | 4059.726 | ٧ | 3 | | 6.57 | 3-1 | a ¹ D-z ¹ Pe | | (1) | 3.42 | 6.35
6.36
6.32 | 1-2
5-5 | | 5245.72 | P | 0 | 3.40 | 5.75 | | (714)
alp_z3ge | 3989.859 | J | (34) | | 6.62 | 2-3 | (767)
alD_ylpo | | }1
11
11 | 3.35 | 6.34 | 4-4
3-3 | | 5226.06 | P | (1) | 3.40 | 5.76 | | (715)
alp_y3pe | 3973.655 | J | 3 | | 6.64 | 3-3 | (768)
alb-xire | | (1)
(1)
(1) | 3.40 | 6.36
6.34 | 3-3
5-4 | | 5167.70 | P | 0 | 3.40 | 5.79 | | (716)
alp_u5pe | 3953.50 | P | 0 | | 6.65 | 3-3 | (769)
a ¹ D-10° | | \ <u>i</u>) | 3.38 | 6.36 | 3-2 | | 5091.73 | P | 0 | 3.40 | 5.82 | 1-1 | (717) | 3845.693 | J | (1) | | 6.74 | 3–3 | (770) | | 3n | | 6.31 | 5-5 | 25F0_£5F | 5029.623 | V | (1) | 3.40 | 5.85 | 1-2 | alp_10
(718)
alp_y5pe | 3682.226 | J | 20 | 3.53 | 6.88 | 2-2 | (771)
aip_wipo | | (1w)
© | | 6.35 | 4-4
3-3 | (695) | 4818.66 | P | 0 | 3.40 | 5.96 | | (719) | 3677.309 | J | 2 | 3.53 | 6.89 | 2-3 | (772)
alp_wire | | {1
4} | 3.40 | 6.38 | 2-3
1-1 | | 4815.22
4779.444 | P | (1) | 3.40
3.40 | 5.96
5.98 | 1-3
1-0 | a1p_x3pe
(730) | 3636.23 | W | (1) | 3.53 | 6.93 | 2-3 | (773)
alp_s3ge | | (iv)
(1) | 3.35 | 6.35
6.37 | 5-4
4-3 | | 4804.59 | P | (1) | 3.40 | 5.97 | 1-1 | alp_v5re | 3538.31 | W | (1) | 3.53 | 7.02 | 2-2 | (774)
alp_u3re | | 0 | 3.38
3.40 | 6.38
6.39 | 3-3
3-1 | | 4647.73 | P | 0 | 3.40 | 6.06 | 1-3 | (721)
alp_20 | *3442.979 | Ā | (1) | 3.53 | 7.13 | 2-3 | (775)
alp_t3re | | 7n
10n | 3.35
3.38 | 6.35 | 4-5
3-4 | | 4566.990 | V | (1) | 3.40 | 6.10 | 1-3 | (723)
alp_w3re | 3434.95 | P | <u> </u> | 3.53 | 7.13 | 2-2 | (776) | | 8n
5n | 3.40
3.43 | 6.37
6.38 | 3-3
1-3 | | 4607.08 | P | 0 | 3.40 | 6.08 | 1-3 | (723)
alp_v3p° | 7094.30 | P | 0 | 3.56 | 5.30 | 5-5 | a1H-y5Q0 | | 3n | 3.38 | 6.31 | 3-2 | 25F0_e5g | 4461.37 | W | (1) | 3.40 | 6.17 | 1-0 | (724)
alp_w3pe
(725) | 6019.36 | P | 0 | 3.56 | 5.61 | 5-4 | (778)
a ¹ H-y ³ G° | | 4 | 3.40 | 6.31 | 3-2 | (696)
z ⁵ F°-e ³ D | 4137.003 | J | 7 | 3.40 | 6.38 | 1-3 | aip_yipo | 5913.35 | P | 0 | 3.56 | 5.64 | 5-5 | (780)
a1H_x5G* | | \(\frac{9}{1}\) | 3.35
3.38
3.40 | 6.33
6.39
6.42 | 4-3
3-3 | (697) | °4137.307 | J | 3n | 3.40 | 6.39 | 1-3 | (736)
aip_xip*
(737) | 5584.768 | V | (1) | 3.56 | 5.77 | 5-4 | (781)
a ¹ H-u ⁵ D ^o
(782) | | (1)
(1)
(1)
(1) | 3.40
3.40 | 6.33 | 2-1
3-3
2-2 | | *4038.623
4003.764 | đ | (<u>-</u>) | 3.40
3.40 | 6.46
6.48 | 1-3
1-1 | alp_u3pe
(728) | 5532.752 | A | (1) | 3.56 | 5.79 | 5-4 | a ¹ H-x ³ F° | | (1) | 3.40 | 6.33 | 2-3 | | 3976.615 | J | 4 | 3.40 | 6.50 | 1-2 | alp_t3pe | •5466.993 | y | (1) | 3.56 | 5.82 | 5-4 | (783)
a1 _{H-z} 3 _H • | | (3) | 3.32
3.35 | 6.22
6.24 | 5-4
4-3 | z ⁵ r°-g ⁵ p
(698) | 4057.68 | P | ō | 3.40 | 6.44 | 1-17 | | 5374.78
•5326.154 | P | (1) | 3.56
3.56 | 5.85
5.87 | 5-5
5-4 | (784)
a ¹ H-w ⁵ G*
(785) | | {3}
1
3 | 3.38 | 6.26 | 3-2 | (000) | 3949.14 | A | (1) | 3.40 | 6.53 | 1-1 | a ¹ P_8°
(730) | 5365.403 | J | 3 | 3.56 | 5.86 | 5-4 | a1H-z1G0 | | (3)
(3) | 3.42 | 6.29 | 1-0
4-4 | | 3940.044
3806.203 | J | (1)
2 | 3.40 | 6.53
6.64 | 1-3
1-1 | aip_v3pe
(731) | 5231.41 | υ | (1) | 3.56 | 5.92 | 5-4 | (786)
a1H_ y 5 y• | | (3)
(1)
(1)
(2) | 3.38 | 6.24 | 3-3
3-3 | | 3885.07 | P | © ? | 3.40 | 6.58 | 1-3 | a1p_s3pe | 5257.65 | P | 0 | 3.56 | 5.91 | 5-5 | (787)
a ¹ H-x ³ G• | | 0 | 3.42
3.38 | 6.28
6.22
6.24 | 1-1
3-4
2-3 | | 3891.928 | J | 3 | 3.40 | 6.57 | 1-1 | (732)
alp_zipo | 5263.874 | ٧ | (1) | 3.56 | 5.90 | 5-4 | (788) | | (<u>1</u>) | 3.40
3.43 | 6.24
6.26 | 2-3
1-3 | | 3543.669 | J | (4) | 3.40 | 6.88 | 1-3 | (733)
alp_wlp° | 5150.19
5115.788 | P
T | (1) | 3.56
3.56 | 5.95
5.97 | 5-5
5-4 | a ¹ H-w ³ GP
(789) | | (1) | 3.40 | 6.37 | 2-3 | z5F0-e7S | 3410.171 | Œ | 3 | 3.40 | 7.03 | 1-3 | (734)
alp_u3re | m5110.36 | P | Fe | 3.56 | 5.97 | 5-5 | a ¹ H-z ¹ R° | | (1) | 3.35 | 6.40 | 4-3 | (699)
z5po_e5p | ≈3314.070§ | v | (1) | 3.40 | 7.13 | 1-2 | (735)
alp_t3F | 5028.129 | J | 4 | 3.56 | 6.01 | 5-4 | (790)
alH_ylge | | $\begin{Bmatrix} \frac{1}{2} \\ 1 \end{Bmatrix}$ | 3.38
3.38 | 6.43
6.40 | 3-2
3-3 | (700) | | - | | | | - | (736) | 4937.43 | W | (1) | 3.56 | 6.06 | 5-4 | (791)
alH-w3pe | | ,
, | 3.40
3.43 | 6.43 | 2-2
1-1 | | 9924.35
9620.93 | P
P | 0 | 3.53
3.53 | 4.77
4.81 | 2-3
2-1 | a ¹ D-y ³ D°
(737) | 4849.67 | P | , © , | 3.56 | 6.10 | 5-6 | (793)
alH-y3H° | | (1)
© | 3.40
3.43 | 6.40
6.43 | 2-3
1-2 | | 6016.66 | я | (2) | 3.53 | 5.58 | 2-3 | a ¹ D-x ³ D° | 4809.94 | ٧ | (1) | 3.56 | 6.13 | 5-5 | (793) | | 3n | 3.32 | 6.55 | 5-5 | 25F0_g5F | 5614.58 | P | 07 | 3.53 | 5.73 | 3-1 | (738)
alp_w5pe | 4843.39
4804.529 | P
V | (1) | 3.56
3.56 | 6.11
6.13 | 5-5
5-4 | a ¹ H-v ³ G ⁶
(794) | | 000 | 3.35 | 6.59
8.55 | 4-4
4-5
3-4 | (701) | 5555.17 | P | 0 | 3.53 | 5.75 | 2-1 | (739)
alp_z3ge | 4587.132 | J | (2) | 3.56 | 6.25 | 5-4 | a ¹ H-x ¹ G ⁹ | | (3) | 3.38 | 6.59
6.56 | 5-4 | z5Fe-h5D | 5467.76 | P
T | ,°\ | 3.53 | 5.79 | 3-3 | (740)
a ¹ D-u ⁵ De | 4502.592 | Y
P | {1
1} | 3.56
3.56 | 6.30 | 5-6
5-5 | (795)
a1H-X3H° | | (a)
© | 3.35 | 6.61 | 4-3 | (703) | 5382.750
5275.30 | T
P | (-)
© | 3.53
3.53 | 5.82
5.87 | 2-1 | (741)
a ¹ D-y ³ S° | 4493.37
4432.572 | ·J | (3) | 3.56 | 6.30 | 5-5 | (796)
a ¹ H-u ³ G° | | (1m)
© | 3.35
3.38 | 6.61 | 4-3
3-2 | z ⁵ F°-r ⁵ P
(703) | 5198.843 | ٧ | (1) | 3.53 | 5.91 | 2-1
2-3 | (748)
alp_x3ge | 4375.48 | ₽ | (3) | 3.56 | 6.36 | 5-4 | (797) | | (i)
© | 3.40
3.40 | 6.66 | 2-1
2-2 | ***** | 5078.53 | P | ۰- <i>۲</i>
0۱ | 3.53 | 5.96 | 3-1 | (743)
a1D_V5pe | 4425.662 | 4 | (1) | 3.56 | 6.35 | 5-4 | a ¹ H-4°
(798) | | ō | 3.40 | 6.56 | 2-3 | _ | 5121.96 | P | ©? | 3.53 | 5.94 | 2-3 | (744)
alp_v5F0 | 4382.777 | ٧ | (3) | 3.56 | 6.37 | 5-5 | a ¹ H-6°
(799a)
a ¹ H-w ³ H° | | (3w)
(0) | 3.32 | 6.56 | 5-6
2-3 | z5F0_f5G
(704) | 5091.72 | P | 0 | 3.53 | 5.96 | 2-2 | (745) | 4301.73
4174-419 | ₩
₩ | {1
1 | 3.56
3.56 | 6.50 | 5-5
5-4 | a1H_w3H°
(799) | | • | 3.42 | 6.71
6.58 | 1-3
5-5 | | *5031.030 | R | 2 | 3.53 | 5.98 | 2-3 | a ¹ D-w ³ G°
(746)
a ¹ D-x ³ P° | 4219.364 | В | 13 | 3.56 | 6.48 | 5-6 | a1H-y310 | | 0 | 3.38 | 6.64 | 5-4
4-3 | | 5020.819 | U | (1) | 3.53 | 5.99 | 3-1 | (748) | 4118.549 | В | 15 | 3.56 | 6.55 | 5-6 | (800)
alH-zlI° | | • | 3.38 | | 3-2 | 5 3 | *4889.009 | U | (1) | 3.53 | | 2-2 | a ¹ D-2°
(749)
a ¹ D-w ³ F° | 4014.534 | В | 10 | 3.56 | 6.63 | 5-5 | (801)
alH-ylHe | | 13 (1) | 3.32 | 6.63 | 5~5
4~4 | z ⁵ F°-e ³ G
(705) | 4844.016 | ۷ . | (2) | 3.53 | 6.08 | 2-3 |
(750) | 3972.920 | ٧ | (1) | 3.56 | 6.66 | 5-5 | (802)
alH-t3G° | | · (1) | 3.35
3.40 | 6.63
6.71 | 4-5
3-3 | | 4869.45 | P
- | ©
(1) | 3.53 | | 2-3 | a1D_∀3D°
(751) | 3846.413 | J | 3 | 3.56 | 6.77 | 5-4 | 803)
81H-w1Ge | | . 00 | 3.35 | 6.64
6.72 | 4-3
2-1 | z ⁵ F°_f ³ D
(706) | 4705.464 | J | (1) | 3.53 | 6.15 | 2-3 | a ¹ D-v ³ G°
(752)
a ¹ D-z ¹ D° | *3748.492\$ | ¥ | 7 | | 6.85 | 5-6
5-5 | (804)
a ¹ H-7 ³ H° | | (1) | 3.40
3.40 | 6.74 | 3-1 | z ⁵ F°-g ⁷ D | 4789.654
4632.14 | B
P | 7 | 3.53
3.53 | 6.11 | 2~2
2~3 | (753)
alp-w3pe | 3756.939
3743.468 | J | 4
6 | 3.56 | 6.84
6.85 | 5-5
5-5 | (805)
a ¹ H-x ¹ H ³ | | (1)
(1) | 3.42
3.38 | 6.76 | 1-1
3-4 | (707) | 4663.183 | Ĵ | (1) | 3.53 | 6.20
6.18 | 3-3 | (754) | | J
.T | | | | 5-5 | (806)
al H-23G* | | (1) | 3.40 | 6.72 | 2-3 | | 4547.851 | В | 4 | 3.53 | 6.24 | 2-3 | a ¹ D-z ¹ F° (755) | 3690.730
3627.05 | J
W | 4 | | 6.90
8.96 | 5-5 | (80?)
a ¹ H-u ³ H° | | . 0 | 3.35 | 6.97 | 4-5 | z5Fe_1
(708) | 4343.86
4304.87 | p | 00 | 3.53
3.53 | 6.37
6.40 | 2-3
2-2 | 1755)
a1D-u5F°
(756) | 3621.718 | V | {1
2} | 3.56 | 6.97 | 5-4 | (808) | | (1) | 3.32 | 6.97 | 5- | (708)
z5F°-2
(709) | 4392.31 | P | 0 | 3.53 | | a-a
a-a | alp_v3re | 3599.684 | Œ | 3 | 3.56 | 6.99 | 5-4 | a ¹ H-u ³ Fe
(809) | | ; (3) | 3.32
3.35 | 7.12
7.14 | 5-4
4-3 | (709)
₂ Sys_15 _D
(710) | 4484.194 | Å | (1) | 3.53 | 6.32 | 3-3 | (757) | 3553.741 | Q | 6 | 3.56 | 7.03 | 5-4 | (809)
a ¹ H-7 ¹ G ⁹
(810) | | (1w)
(2w) | 3.38
3.35 | 7.16 | 3-2
4-4 | , , | 4378.73 | P | 0 | 3.53 | 6.35 | 2- | a ¹ D-5°
(759) | 3538.77
3534.58 | W | {i} | 3.56
3.56 | 7.05 | 5-6
5-5 | a ¹ H-x ³ I°
(811) | | ' (2w) | 3.38
3.38 | 7.14 | 3-3
3-4 | | 4305.20 | U | (1) | 3.53 | 6.40 | a-3 | a ¹ D_u ³ G ⁵ | *3479.683 | ν, | (1) | | 7.10 | 5-4 | a ¹ H-t ³ F | | , 0 | 3.40 | 7.14 | 2-3 | | 4387.100 | J | 3 | 3.53 | | 3-2 | a ¹ D-y ¹ D°
(761)
a ¹ D-x ¹ D° | 3169.09 | P | 6 | | 7.45 | 5-6 | (813)
a ¹ H-t ³ H° | | 8 20 | 3.33
3.35 | 7.16
7.19 | 55
45 | z ⁵ F°-g ⁵ G
(711) | 4317.04 | P | (1) | | 8.39 | 3-3 | (762) | | | | | | - | (813) | | 6 | 3.38
3.40 | 7.22
7.25 | 3-4
3-3 | • | 4219.59
4181.55 | P
P | 0 | 3.53
3.53 | 6.46 | 2-2
2-1 | a1p_u3po
(763) | 8461.41
8767.65 | P | 0 | 3.59
3.64 | 5.05
5.05 | 3-3
2-3 | 2 ⁵ P9-X
(814) | | {i}
{i}
{i} | 3.48
3.38 | 7.35 | 12
33 | | 4151.957 | V | (1)
(2) | 3.53 | 6.50 | 2-2 | alp_t3pc | *7086.76 | v | 3 | 3.59 | 5.33 | 3-4 | z5po_e7p | | | 3.40 | 7.26 | 2-2 | -5m2 · | 4840.378 | Ĵ | | 3.53 | 8.44 | 3-1? | (764) | 7158.508
6953.01 | V
P | 0 | 3.64
3.59 | 5.36 | 2-3
3-3 | (815) | | 7 (2)
7 (1) | 3.40 | 7.19
7.19 | 2-2
1-3 | 2 ⁵ F ⁹ -4
(712) | 4133.00 | P | 9 | 3.53 | 6.53 | 3-1 | a ¹ D-8°
(765) | 7057.96
7135.00 | P | ©
@1 | | 5.39
5.40 | 2-2
1-1 | | | - | | - | inued
I 800
I 400
I 60 | 3.59 5.52
3.64 5.56
3.67 5.60 | 3-4 g5p9-a5D | Fe I cont | inued | | | | | Fe I cont | 1 | | | | | |---------------------------------|-------------------------------------|--|--|-------------|-------------------|--|--------------------------|---|---|------------------|---------------------------------|--|--------------------------|--| | I 400 | 3.84 5.56 | 3_4 _გ 5 _{ლი—მ} 5ე | | | | | | | | THURS | 4 | | | | | K 15 | 3.59 5.56 | 2-3 (816)
1-2
3-3 | 3490.47
3526.96
*3476.336
3507.14 | P
V
P | (3w)
(0 | 3.59 7.13
3.64 7.14
3.59 7.14
3.64 7.16 | 3-4
2-3
3-3
2-2 | 25pe_15p
(835) | 5280.364
5217.927
5223.191
5207.95 | V
T
V
P | (1)
(3)
(1)
(1) | 3.63 5.99
3.62 5.99
3.62 5.98
3.62 5.99 | 3-3
3-1
1-0
1-1 | (880) | | K 15
K 13
K 4 | 3.64 5.60
3.67 5.63
3.50 5.60 | 3-3
1-1
3-3 | *3457.090
3429.746 | A | (3#)
(2) | 3.59 7.16
3.59 7.19 | 3-2
3-2 | g5pe_4 | 5066.28 | P | 0 | 3.62 6.06 | 1-3 | (883)
p ₃ D-3 _e | | X 5
X 6 | 3.64 5.63
3.67 5.63
3.59 5.85 | 3_1
1_0
3_4 z ⁵ p•_e ⁵ F | 3477.98
3510.18 | P
P | | 3.64 7.19
3.67 7.19 | 2-2
1-3
 | (836) | 5065.201
5027.212
4970.496
*5031.030 | Я
У
У | (3)
(3)
(3)
3 | 3.63 6.08
3.62 6.08
3.63 6.10
3.63 6.08 | 3-4
2-3
1-3
3-3 | (883)
P3D-#3 L s | | ₩ (1)
V (1)
P © | 3.64 5.90
3.67 5.93 | 2-3 (817)
1-3 | 5981.38 | P | ⊙ | 3.68 5.68 | 6–6 | 81I-2 ³ I°
(837) | 4979.58 | Ħ | (1) | 3.63 6.10 | 3-3 | 7 7 - | | P 0
P 0
P 0 | 3.59 5.90
3.64 5.93
3.64 5.95 | 3-3
2-2
3-1 | 5649.66
*5538.54 | V V | (<u>1</u>) | 3.62 5.80
3.62 5.85 | 6-5
6-6 | a ¹ I-z ³ H°
(838)
a ¹ I- z ⁵ G° | 5058.50
5054.647
5018.02 | T
P | (1)
1
© | 3.63 6.07
3.62 6.07
3.63 6.08 | 3-3
3-3
1-2 | b ³ D_v ³ De
(884) | | P o | 3.59 5.92 | 3-4 z5pe_e3r | 5521.14 | ė | {i} | 3.62 5.85 | 6-5 | (839) | 5035.025 | R | 3 | 3.63 6.08 | 3-3 | b3D-30 | | P 0 | 3.59 5.99
3.59 6.32 | 3-3 (818)
3-4 z ⁵ po-e ⁷ F | 5465.04
5397.60 | P
Ħ | (1)
(1) | 3.62 5.88
3.62 5.91 | 6-5
6-5 | a ¹ I_v ⁵ F°
(840)
a ¹ I_x ³ G° | 4935.48 | P | . 0 | 3.63 6.13 | 3-4 | (885)
5 ³ D-∀ ³ G•
(886) | | P Fe
P © | 3.64 6.31
3.67 6.34 | 3-3 (319)
1-3 | 5284.416 | T | (-) | 3.62 5.95 | 6-5 | (841)
all-#3ge | 4968.709 | ¥ | (1) | 3.62 6.11 | 3-3 | b3p_g1pe
(887)
b3p_₩3pe | | P Fe (1) J (2n) | 3.59 6.31
3.64 6.34
3.59 6.34 | 3-3
3-2
3-3 | 5343.495 | В | 4 | 3.63 5.97 | 6–5 | (843)
a ¹ 1-z ¹ H°
(843) | °4802.883
°4832.734
°4845.656 | j
J | (3)
(2)
(3)
(1)
(1) | 3.63 6.30
3.63 6.18
3.63 6.17 | 3-2
2-1
1-0 | (888) | | P © | 3.64 6.32
3.59 6.27 | 3-1
3-4 z ⁵ po-1 ⁷ D | 4926.82
4961.908 | P
U | ©
(1) | 3.62 6.12
3.62 8.11 | 6-5
6-5 | a ¹ I-y ³ H°
(844)
a ¹ I-y ³ G° | 4799.412
4824.162 | A
A | {1} | 3.62 6.20
3.62 6.18 | 2-3
1-1 | | | J (4) | 3.64 6.28
3.67 6.30 | 3-3 (820)
1-3 | 4604.85 | P | 0 | 3.62 6.30 | 6-6 | (845)
8 ¹ Î-X ³ H° | 4708.972 | A | (1) | 3.68 6.34 | 2-3 | (889) | | 7 (1)
J (2)
J (3) | 3.59 6.28
3.64 6.30
3.67 6.30 | 3-3
3-2
1-1 | 4595.21
*4531.633 | P
J | (3)
© | 3.62 6.30
3.62 6.34 | 6–5
6–5 | (846)
a ¹ I-u ³ G° | 4708.31
4490.63 | P
P | 0 | 3.63 6.35
3.62 6.37 | 3-4
2-3 | b ³ D_x ¹ G°
(890)
b ³ D_u ⁵ F° | | J 4n
P © | 3.59 6.30
3.64 6.30 | 3_2
3-1 | *4479.613 | J | (3) | 3.62 6.37 | 6-5 | (847)
a ¹ I-6° | 4448.97 | P | • | 3.62 8.40 | 3-2 | (891) | | B 7
B 3n | 3.59 6.22
3.64 6.24 | 3-4 z ⁵ p°-f ⁵ D
2-3 (821) | 4309.036
4338.61 | J
P | (S) | 3.62 6.48
3.62 6.53 | 6-6
6-5 | (848)
a ¹ I-y ³ I°
(849) | 4605.99
4543.22
4481.04 | P
P | 000 | 3.63 6.31
3.62 6.34
3.62 6.37 | 3-4
2-3
1-2 | _ხ ვ _{ე_ჯ} 5 _ე ,
(893) | | V (1)
J 5 | 3.67 6.36
3.59 6.24 | 1-2
3-3
2-3 | 4203.953 | 4 | (1) | 3.62 6.55 | 6-6 | a11-z110 | 4419.30 | ₽ | 6 | 3.62 6.41 | 1-0 | . 3 - 3 | | J (3)
J 3n
J 3n | 3.64 6.26
3.67 6.28
3.59 6.26 | 1-1
3-8 | 4095.63 | P | 0 | 3.62 6.63 | 6–5 | (850)
a ¹ I-y ¹ H ⁹
(851) | *4558.108
4542.422
4568.842 | A
A
1 | (1)
(2)
(1) | 3.63 6.33
3.63 6.34
3.63 6.32 | 3-4
2-3
1-2 | ը3ը_ γ 3բ օ
(894) | | J (4)
J (5) | 3.64 6.28
3.67 6.29 | 2-1
1-0 | *4052.313 | J | (1) | 3.62 6.66 | 6-5 | a ¹ I-t ³ Go
(852)
a ¹ I-12° | 4545.54
4579.68 | P | 0 | 3.63 6.34
3.63 6.32 | 3-3
3-3 | | | B 6
J 3n | 3.59 6.23
3.64 6.25
3.59 6.25 | 3-4 z ⁵ pe-e ⁷ p
3-3 (822)
3-3 | °4047.315
3813.891 | A
A | (1)
2 | 3.62 6.67
3.62 6.85 | 6-5
6-5 | (853)
a ¹ 1-x ¹ H° | 4536.509 | U | (1) | 3.63 6.35 | 3-4 | b ³ D-4°
(896)
b ³ D-5° | | Р ©
К (2) | 3.59 6.25
3.64 6.28
3.59 6.28 | 3-3
2-2
3-3 | 3759.155 | ٧ | (1) | 3.62 6.90 | 6-5 | (854)
a ¹ I-s ³ G°
(855) | 4527.90
4483.78 | P
P | (1)
© | 3.63 6.35
3.63 6.38 | 2-
3-4 | b ³ р_5°
(697)
b ³ р_u ³ д° | | J (2) | 3.59 6.29 | 3-4 2 ⁵ po-e ⁵ G | 3597.24 | ? _ | 0 | 3.62 7.05 | 6-5 | al _{I-x} 3 _I 9
(856) | 4452.33 | P | ŏ | 3.63 6.40 | 3-3 | (898) | | P © (1) | 3.64 6.32
3.59 6.32
3.64 6.34 | 2-3 (823)
3-3
2-2 | 11355.97
10735.19 | D
P | 1 | 3.63 4.71
3.68 4.77 | 3-3
2-3 | _Ե 3 _{D-У} 3 _D e
(858) | 4479.01
4425.79
4386.6 | P
P | ©
(iw) | 3.63 6.38
3.62 6.41
3.62 6.43 | 3-3
2-2
1-1 | _b 3ը_ղ5թ•
(899) | | P 0 | 3.59 6.34
3.59 6.34 | 3-2
3-4 2 5pe_e [†] 7g | 10332.33
7323.38 | P
P | ତ
ତୀ | 3.82 4.81
3.83 5.31 | 1-1
3-4 | b ³ D-y ⁵ Go | 4428.74
4393.70
m4475.99 | P
P | 0
0
Fe | 3.63 6.41
3.62 6.43 | 3-2
2-1 | | | P 0 | 3.59 6.35 | 3-3 (824) | 7263.46 | P | Θî | 3.63 5.33 | 3-3 | (859) | 4418.60 | Ď | 0 | 3.62 6.38
3.62 6.41 | 2-3
1-2 | | | J (4)
P ©
J (3n) | 3.59 6.35
3.64 8.37
3.59 6.37 | 3_4 z5pe_f5r
2-3 (825)
3-3 | 6749.52
6603.67 | P | 0 | 3.63 5.45
3.68 5.49 | 3-2
1-0 | გ3 _{ე_ფ} 5ე•
(860) | *4472.721
4466.183 | J
J | (2)
(1) | 3.63 6.38
3.63 6.39 | 2-2
3-2 | (900) | | J (1)
P ⊚ | 3.64
6.38
3.59 6.38 | 3-3
3-3 | 6474.61 | 4 | (1) | 3.62 5.53 | 1-1 | გპე _{—უ} 5ეი
(861 <u>)</u> | 4463.16 | P | • | 3.62 6.39 | 2-2 | (901) | | P ⊙
I 5n | 3.64 6.39
3.59 6.31 | 3-1
3-2 z ⁵ pe_e ⁵ g | 6603.20
6307.85 | P
P | ©
6 | 3.63 5.49
3.63 5.58 | 3-8
3-3 | გვე_ყნვი
(862)
გვე_ჯვეი | °4461.989
4454.655 | J
J | (4)
(1) | 3.62 6.39
3.62 6.39 | 2-2
1-3 | p ₃ D-x ₁ D ₉ | | I 5n
P © | 3.64 6.31
3.67 6.31 | 3-3 (836)
1-3 | 6301.86 | e
T | ©
(1) | 3.63 5.58
3.63 5.67 | 3-3
3-3 | ~(863)~
b ³ D-x ⁵ 6° | 4360.813 | v
 | (1) | 3.63 6.46 | 3-8 | (903) | | J (1)
J (2)
J (2) | 3.59 6.33
3.64 6.39 | 3_3 <u>z</u> 5po_e ³ p
2_2 (837) | 5762.434 | ¥ | | 3.63 5.77 | 33
34 | (864)
p3p_u5po | *4376.782
4285.832
4373.90 | ъ
Л | (1)
(1) | 3.63 6.45
3.63 6.50
3.63 6.45 | 3-3
2-3
2-3 | (904) | | J (2)
E (2)
F (1) | 3.67 6.42
3.64 6.33
3.67 6.39 | 1-1
3-3
1-3 | 5754.41
5702.434
5707.85 | g
A | (1)
(1)
(0) | 3.63 5.77
3.62 5.79
3.83 5.79 | 3-3
2-3
3-3 | (-866) | 4253.93
4247.29 | P | 0 | 3.62 6.53
3.62 6.53 | 2-1 | b ³ D-8°
(905) | | [4 | 3.59 6.34 | 3-4 z5pe-g5p | 5609.97
•5800.242 | P
V | (1) | 3.62 5.82
3.68 5.82 | 3-1
1-0 | | 4246.090 | J | 3 | 3.63 6.53 | 1-1
3-2 | pgD=6g5s
(202) | | 7 (3)
7 (3)
7 (5) | 3.64 6.39
3.67 6.43
3.59 6.39 | 2-3 (838)
1-2
3-3 | 5760.351
5698.05 | 7 | ${1 \atop i}$ | 3.63 5.77
3.62 5.79 | 3-2
3-1 | გ ^ვ ე_ყ ^ვ ეი
(867) | 4088.587
4243.368
4082.44 | V
भ | (1)
(2)
(2)
(1) | 3.62 6.64
3.62 6.53
3.62 6.64 | 2-2 | (906) | | ? Fe | 3.64 6.43
3.67 6.45
3.59 6.43 | 2-2
1-1
3-3 | 5761.27
5707.068 | A. | | 3.62 5.76 | 1-0 | p3D_g3po | 4236.76 | U | | 3.62 6.53 | 1-2 | . 7- 7 | | (a)
(1)
(2)
(3) | 3.64 6.45
3.67 6.45 | 3-1
1-0 | 5636.708 | Å | {1}
{1} | 3.63 5.79
3.68 5.81 | 3-4
3-3 | (868) | 4239.36
4236.66 | P | 9 | 3.63 6.54
3.62 5.54 | 3-3
2-3 | (907) | | [\{\frac{1}{2}\} | 3.59 6.37
3.64 6.37 | 3-3 2 ⁵ P°-e ⁷ 5
2-3 (829) | 5568.81
5660.79
5611.35 | U
T
P | (1)
(1)
0 | 3.62 5.80
3.62 5.80
3.62 5.82 | 1-1
2-3
1-3 | b³p_q³p°
(869) | 4181.20 | P | 0 | 3.62 6.57 | 1-1 | (908) | | i 4n | 3.59 6.40 | 33 2 ⁵ P°_6 ⁵ p | 5487.49 | P | . © . | 3.83 5.87 | 3-4 | _b 3 _{D-3} 5 _{Ge} | 4173.97
4115.89 | 2 | 9
9 | 3.63 6.58
3.63 6.62 | 3-4
3-3 | P ₃ D-A ₁ be | | (31)
(3)
3n | 3.67 6.42
3.64 6.42 | 2-2 (830)
1-1
3-1 | 5452.119
5411.39 | P | (1)
© | 3.62 5.99
3.62 5.90 | 2-3
2-3 | (870) | 4096.118 | A | (1) | 3.63 6.64 | 2-3 | (910) | | 5n (4) | 3.64 6.40
3.67 6.43 | 2-3
1-3 | 5539.28
°5534.68 | T T | {1
1 | 3.63 5.85
3.63 5.85 | 3-3
2-2 | b ³ D-1°
(871) | 4074.70 | P | 9 | 3.62 6.65 | | ъ ³ р–10°
(912) | | . 0 | 3.59 6.59
3.64 6.85 | 3_4 z ⁵ pe_g ⁵ p
3-3 (831) | 5529.15 | র | (3) | 3.63 5.86 | 3-4 | b ³ D-z ¹ G°
(973)
b3D-y ³ S° | 4020.490
3960.284
3962.65 | V
J
P | (1)
(1)
(9) | 3.63 6.70
3.63 6.74
3.63 6.74 | 3-4
2-3
3-3 | გ ^ვ ეგ ^ვ ცი
(913) | | ' | 3.59 6.65
3.59 6.56 | 3-3
3-3 ₂ 5po_f5p | 5493.33
5482.26 | Þ | 0
0 | 3.62 5.97
3.63 5.87 | 3-1
1-1 | გპე_უპვი
(მ73) | 4058.46 | P | 0 | 3.63 6.67 | 3-3 | b3D-119 | | 0 | 3.64 6.61
3.64 6.66 | 2-2 (832)
2-1 | 5431.40
5414.91 | P
P | 0 | 3.63 5.90
3.63 5.91 | | გ ^ჳ ე_ჳ ³ ცი
(874) | 4055.98
4010.18 | 3T
187 | (1)
(1) | 3.63 6.67
3.63 6.70 | 2-3
3-4 | b ³ D-13° | | ⊚
(1) | 3.64 6.56
3.64 6.64 | 2-3
2-3 2 ⁵ pe_f ³ p | 5386.958
5327.25 | T
P | (1)
© | 3.63 5.92
3.62 5.94 | 3-4
3-3 | გ3 ე_ყ5 _წ ი | 3787.164 | 3 | (1) | 3.62 6.88 | a-a | (915)
b ³ D-w ¹ D° | | `⊚́
⊚† | 3.67 6.67
3.59 6.75 | 1-3 (833) | 5284.27
5294.555 | P
T | (-) | 3.62 5.98
3.62 5.96 | 1-3
3-3 | (875) | 3781.938 | J | (i) | 3.62 6.89 | 3-3 | (913)
b ³ D-y ¹ F°
(917)
b ³ D-s ³ G° | | 9 | 3.84 8.81 | 3_4 g5pe_f3p | 5253.25
5308.788 | P
7 | (1)
© | 3.62 5.97
3.63 5.98 | 1-1
3-2 | | 3767.73
3738.51 | 2 | 9 | 3.63 6.90
3.53 6.93 | 34
23 | 618)
p3D_83Ge | | | | | 5315.78
5270.06
5320.048 | A
b
b | 00 | 3.62 5.95
3.62 5.96 | | (877) | | | | | | | | | | | 5305.41 | P | (1) | 3.63 5.95
3.62 5.95 | | | | | | | | | | | | | | | | REV | SE | D MI | JLTI | PLE | T T | ABLE | | | | | | | | |-------------|-------------------|-------------------------------|--------------|-------------------|--|--|------------------|---|------------------------------|------------------------------|--------------------------|---|--|-------------|---------------------|------------------------------|------------------------------|--------------------------|---| | or
f | y
Int | E P
Low H1 | .gh | J | Multiplet (No) | Labor
I A | rator;
Ref | Int | Fom E | P
High | ٠ ٦ | Multiplet
(No) | I A | Ref | Int | E. | P
High | ĭ | Multiples
(No) | | ue | đ. | | | | | Fe I cont | | | | | | 7 | | tinue | | | | | 2-4 5- | | | ©7
© | 3.63 7.
3.63 7.
3.62 7. | 43 3 | 2~2
3~4
2~3 | b ³ D-u ³ F°
(919)
b ³ D-r ³ G°
(980) | 5050.13
5085.93
5168.18 | P
P
P | 000 | 3.86
3.93
3.93 | 6.31
6.35
6.31 | 4-5
3-4
3-2 | z ³ F°-£ ⁵ F
(963)
z ³ F°-e ⁵ 8 | 4905.15
4978.11
4916.67
4966.30 | W OL PL OL | (1)
0
0 | 3.91
3.94
3.91
3.94 | 6.43
6.43
6.43 | 2-2
1-1
2-1
1-2 | z3po_e5p
(986) | | | (i) | | | 3~3 | , , | 5001.871 | В | 12 | 3.86 | 6.33 | 4-3 | (964)
z3ro_e3p | 4529.562 | 7 | (<u>i</u>) | 3.87 | 6.59 | 3-4 | 2300-g5F | | | (2)
© | | | 4-5
4-4 | b ¹ G-y ³ G•
(931) | 5014.950
5022.244
5129.658
5099.091 | J
T | 10
6
(1)
(1) | 3.93
3.97
3.93
3.97 | 6.39
6.42
6.33
6.39 | 3-2
2-1
3-3
2-2 | (965) | 4479.00
4441.56
4429.20
4358.95 | P. P. P. | 0 0 0 0 | 3.94
3.37
3.91
3.87 | 6.70
6.65
6.70
6.70 | 1-5
5-3
2-2
3-3 | (987) | | : | (1) | | | 4-4
4-3 | b ¹ G-x ³ F°
(922) | 5217.69 | p | © | 3.97 | 6.33 | 2–3 | -3-s -5s | 4404.10 | P | • · · | 3.91 | 6.71 | 2-1 | egpowhap | | | ©î
(4) | | | 4-4
4-4 | b ¹ G-w ⁵ G°
(923)
b ¹ G-z ¹ G° | 4987.83
*5007.289
5019.74
4885.435 | P
J
P
J | (3n)
©
2 | 3.86
3.93
3.97
3.86 | 6.34
6.39
6.43
6.39 | 4-4
3-3
2-2
4-3 | z ³ F°-g ⁵ D
(966) | 4579.05
4498.54
4487.01
4504.23 | P
P | 0000 | 3.87
3.87
3.91
3.94 | 6.56
6.61
6.66
6.68 | 3-4
3-3
2-2
1-1 | (988) | | 1 | (1)
⊙ | 3.68 5. | .92 | 4-4 | (924)
blg_v5p°
(925) | 4938.183
4978.606 | K
J | (3) | 3.93
3.97 | 6.43
6.45 | 3-2
2-1 | | 4568.62
4546.68 | D, D, | 00 | 3.91
3.94 | 6.61
6.66 | 3-3
1-1 | ₂ 3 _D 0 <u>-</u> £5p
(989) | | ! | (3)
© | 3.68 5. | 90 | 4-5
4-4
4-3 | b1g_х ³ G°
(926) | 5058.00
4933.878 | Ø. | (1)
(1) | 3.93 | 6.43 | 3-3 | z ³ F°-e ⁷ S
(967)
z ³ F°-e ⁵ F | 4621.63
4377.330 | P
U | ①
(1) | 3.94 | 6.61
6.69 | 1-3
3-3 | z3po_f5g | | , | ©
© | 3.68 5. | .95 | 4-5
4-4 | b ¹ G-w ³ G°
(927) | 5027.34
5015.30 | Q
P
P | 0 | 3.97
3.97 | 6.42
6.43 | 2-1
2-2 | (968) | 4336.60
*4395.514 | Ā | ⊙
(1₹) | 3.87 | 6.71 | 3-2 | (990)
z ³ D°-a ³ G | | r | (2) | | | | b ¹ G-z ¹ H°
(928) | 4630.785
*4607.655
4526.40 | U
J
P | (1)
3n
© | 3.93
3.97
3.86 | 6.59
6.65
6.59 | 3-4
2-3
4-4 | z ³ F°-g ⁵ F
(969) | 4405.40
4335.89 | ę
U | (1) | 3.91
3.87 | 6.71
6.71 | 2-3
3-3 | (991) | | 1 | (2) | | | 4-4
4-4 | big_yigo
(929)
big_yigo | 4538.84
4438.53
4452.62 | ¥
P | (a)
0 | 3.93
3.86
3.93 | 6.65
6.65
6.70 | 3-3
4-3
3-2 | | 4458.101
4466.939
4440.840 | Å
Å
Å | (3)
(3)
(1) | 3.87
3.91
3.94 | 6.64
6.67
6.72 | 3-3
2-2
1-1 | (998)
(30°_£30 | | ; | 0 | 3.68 6. | .08 | 4-3 | (930)
b ¹ G-3° | 4492.693
*4575.80 | ÿ | (in) | 3.97 | 6.71 | 2-1 | z ³ F°-h ⁵ D | *4395.514
4391.87 | P | (117)
O | 3.87 | 6.67
6.73 | 3-2
2-1 | | | , | ©
© | | | 4-3
4-5 | (931)
b1G-v3G° | 4598.37
*4495.386 | U
P
V | (1)
©
(1) | 3.86
3.93
3.86 | 6.56
6.61
6.61 | 4-4
3-3
4-3 | (970) | *4531.633
4517.60 | ĵ
P | ©
(3) | 3.91
3.94 | 6.64
6.67 | 2-3
1-3 | | | 1 | (1) | 3.68 6. | .24 | 4-3 | (932)
blg_ziro
(933) | 4511.04
4544.50 | P
P | 0 | 3.93
3.97 | 6.66
6.68 | 3-2
2-1 | | 4279.480
*4265.260
4264.743 | y
J
U | (1) | 3.87
3.91
3.94 | 6.75
6.81
6.84 | 3-4
2-3
1-3 | z ³ D°-f ³ y
(993) | | Ţ | (3)
(2n) | | | 4-4
4-5 | b1G-x1G°
(934)
b1G-x3H° | 4593.544
4587.72 | U
P | (1)
© | 3.93
3.97 | 6.61
6.66 | 3-2
3-1 | z ³ F°-f ⁵ p
(971) | 4200.09
4243.786 | Ā | (1₩) | 3.87 | 6.81 | 3-3
3-2 | 23Do~635 | | ı | (1) | | | 45 | (935)
b ¹ G-6°
(936) | 4551.667
4538.58
4450.77 | U
P
P | (1)
0
0 | 3.93
3.97
3.86 | 6.64
6.69
6.64 | 3-4
2-3
4-4 | 2 ³ F°_f ⁵ G
(972) | 4220.05
4310.37
*4265.260 | P
P
J | (a)
(a) | 3.91
3.91
3.94 | 6.84
6.77
6.84 | 2-1
2-2
1-1 | (994) | | J | (1) | | | 4-3 | b1G-u ³ D°
(937) | 4471.81
4429.32 | P | $\begin{Bmatrix} \frac{1}{1}
\end{Bmatrix}$ | 3.93 | 6.69 | 3-3
3-2 | | 4357.53 | P | • | 3.94 | 6.77 | 1-2 | 3-0-5- | | P | ©
@? | | | 4-5
4-4 | piG-a3He | 4456.63
*4490.773 | P
J | (2n) | 3.86
3.93 | 6.63
6.67 | 4-5
3-4 | z ³ F°-e ³ G
(973) | 3839.614
3675.76 | ъ
Л | ⊙
(2₩) | 3.94 | 7.16 | 12
34 | z ³ p°-1 ⁵ p
(995)
z ³ p°-g ⁵ g | | U | (8) | 3.68 6 | .62 | 4_3 | (939)
blg_ylro
(940) | 4494.05
4392.58
4428.57 | P
U
P | (1)
0 | 3.97
3.86
3.93 | 6.71
6.67
6.71 | 2-3
4-4
3-3 | | 3699.41
3683.77 | 5
5 | 0 | 3.91
3.91 | 7.25
7.26 | 2-3
2-3 | (996) | | J
P | (S) | | | 4-3
4-3 | big_xire
(941)
big_10° | 4455.032
*4490.773 | J
J | (2)
(3n) | 3.86
3.93 | 6.64
6.67 | 4-3
3-2 | z ³ F°-1 ³ D
(974) | 3717.73 | P | • | 3.87 | 7.19 | 32
- | z ³ D°-4
(997) | | P | 0 | 3.68 6 | .70 | 4-4 | (942)
big_t3ge
(943) | 4479.97
*4556.129
*4558.108 | P
J | ⊙
4n | 3.97
3.93
3.97 | 6.72
6.64 | 3-3
3-3 | (014) | 9959.18
8096.874 | P | • | 4.06 | 5.30 | 4-5 | c ³ F_y ⁵ Ge
(998) | | P | 0 | | | 4-3
4-4 | b ¹ G-13° | 4625.44 | J
P | (1)
© | 3.97 | 6.67
6.64 | 2-3 | 3 7 | 8422.95
8481.96 | e
O
P | 10
2
0 | 4.06
4.13
4.17 | 5.58
5.59
5.62 | 4-3
3-3
2-1 | c3F-x3D≥
(999) | | J | 3 | 3.68 6 | .77 | 4-4 | (944)
big_wigo
(945) | 4354.28
4394.31
4300.31 | P
P | 000 | 3.86
3.93
3.86 | 6.70
6.73
6.73 | 4-5
3-4
4-4 | z ³ F°-e ³ H
(975) | 8466.54
8680.77
8737.10 | P
P
P | 0
0 | 4.13
4.17
4.17 | 5.58
5.59
5.58 | 3-3
2-2
2-3 | | | P
P | ©
© | | .85
.89 | 4-5
4-3 | bid-xiHe
(916)
bid-xiHe | 4276.684
4286.976 | J | {i}
{i}
{i} | 3.86
3.93 | 6.75 | 4-4
3-3 | 2 ³ F9_£ ³ F
(976) | 7537.44
7967.03 | P
P | ©?
©? | 4.00 | 5.70
5.73 | 4-3
2-3 | 03F-w5P*
(1000) | | J | (1) | | .90 | 4-5 | (947)
b1G-s3go
(948) | 4300.828
4197.38
4369.73 | P
P | (1)
0 | 3.97
3.86
3.93 | 6.84
6.81
6.75 | 2-2
4-3
3-4 | ,, | 7219.686 | I | 5 | 4.06 | 5.77 | 4-4
3-3 | _c 3 _{F−u} 5 _D s
(1001) | | P | 0 | | .97 | 4-4 | blu-u3H°
(949)
blu-u3F° | 3975.85 | À. | (1) | 3.86 | 6.97 | 4_ | z3F0-3 | 7498.56
7617.97
7207.123 | P
V | 1
©
6 | 4.12
4.17
4.06 | 5.77
5.79
5.77 | 2-2
4-3 | (1001) | | P | 0 | 3.68 7 | .01 | 4_4
4_3 | (950) | 3742.14
3673.68 | P | 0 | 3.93
3.86 | 7.22
7.22 | 3-4
4-4 | (977)
2359-g5G
(978) | 7418.874
7454.02
7512.17 | E
V
P | (1)
© | 4.17
4.17 | 5.82
5.77 | 3-0
3-1
3-4 | | | 97
P | (1)
© | | | 4-4 | b ¹ G-v ¹ G°
(951)
b1G-x ³ I° | 3648.22 | P | • | 3.86 | 7.25 | 4–3
– | | 7132.989
*7307.938§ | I
L | 8 | 4.08 | 5.79
5.81 | 4-4
3-3 | c ³ F-x ³ F ³ | | Ħ | (1) | | | 4-3 | (952)
big_t3ge
(953) | 10469.59
10532.21
10143.59 | D
D
P | 30
10 | 3.87
3.91
3.87 | 5.05
5.08
5.08 | 3-3
2-2
3-3 | z ³ D°-X
(979) | 7443.031
7418.32 | L
P
P | 2
0 | 4.17 | 5.83
5.79 | 2-2
3-4 | (1002) | | P | 0 | | | 4-4
4-3 | big_r3go
(954) | 10884.30
10818.36 | D
D | 3 | 3.91
3.94 | 5.05 | 2-3
1-2 | | 7501.35 | P | 0 | 4.06 | 5.81 | 23
45 | 9 ³ F-2 ³ H ³ | | D | 5 | 3.86 5 | .05 | 4-3 | z ³ F°-X | 7486.13
7474.60 | P | 0 | 3.87
3.91 | 5.52
5.56 | 3-4
2-3 | z ³ D°-e ⁵ D
(980) | 7300.59
7024.084 | Y | ©
5 | 4.13 | 5.82
5.32 | 3-4
4-4 | (1003) | | P
P | 0 | | | 4-5
3-4 | (955)
23F9_97D
(956) | 7325.33
6226.77 | P
V | (1) | 3.91 | 5.80
5.85 | 2_2
3_4 | z ³ D°-e ⁵ F | 7068.415
7284.843
7401.689 | L | 40
4
4 | 4.06
4.13
4.17 | 5.80
5.82
5.84 | 4-3
3-2
2-1 | 3 _{F-w} 3 _D o
(1004) | | P
U | ©
(1) | | | 4-4
3-3 | z ³ r ^o -e ⁵ D
(957) | 6221.40
6209.73
6083.67 | ¥
P
P | (1)
0 | 3.91
3.94
3.87 | 5.90
5.93
5.90 | 2-3
1-2
3-3 | (981) | 7348.51
7476.93 | P
P | 0 | 4.13 | 5.80
5.88 | 33 | | | P
P | 000 | 3.97 5
3.86 5
3.97 5 | · 60
· 56 | 3-2
4-3
3-1 | | 6114.41
6008.577 | P | ⊙
9 | 3.91 | 5.93 | 3-4 | 2300-93F | 6793.26
7000.633
7107.461 | A
A | 2
3
4 | 4.06
4.12
4.17 | 5.87
5.89
5.90 | 4-4
3-3
3-2 | _ი პწ—გმცი
(1008) | | P
V | ©
(1) | 3.93 5 | .52 | 3-4 | _z 3 _F e_ ₃ 5 _F | 5934.658
5883.838
5809.249 | K
K
V | 5
4 | 3.91
3.94 | 5.99
6.04 | 2-3
1-3 | (983) | 6745.96
*6933.628 | P
L | 6 | 4.06 | 5.89 | 4-3
3-3 | | | Þ | • | 3.93 5 | .85 | 3~4 | (958) | 5798.194
5678.38 | ъ
А | (a)
(a) | 3.87
3.91
3.87 | 5.99
6.04
6.04 | 3-3
2-2
3-3 | | 6857.25
7120.56 | P. | 4
0 | 4.06 | 5.86
5.86 | 4-4
3-4 | 0 ³ F-2 ¹ G ⁹
(1003) | | X
X | 8
5 | 3.93 5 | .99 | 4-4
3-3
2-2 | z ³ p•_a ³ ş
(959) | 5304.11
5277.59 | p
p | {1
1} | 3.91
3.94 | 6.24
6.28 | 2-3
1-1 | z ³ D°-f ⁵ D
(983) | 6785.88
6963.02 | P
P | 0 | 4.06 | 5.83
5.94 | 4-5
2-3 | 03gy5p⇒
(1007) | | A
A | (1)
(2)
(1) | 3.86 5
3.93 6
3.93 5 | .92 | 4-3
3-2
3-4 | | 5005.720
4985.261 | J
J | 10 | 3.87
3.91 | 6.33 | 3-3
2-2 | z ³ D°-e ³ D
(984) | 6639.90
6796.11
6555.87 | P
P | (a)
a
o | 4.06
4.13
4.06 | 5.92
5.94
5.94 | 4-4
3-3
4-3 | | | ¥
P | 0 | 3.86 6 | .99
.28 | 2-3
4-5 | 2 ³ 5°-8 ⁷ 5 | 4973.108
4896.437
4911.786 | j
U | 3 | 3.94
3.87
3.91 | 6.42
6.39
6.42 | 1-1
3-3
3-1 | / | 6682.23
6942.82 | P
P | Ø.
0 | 4.08 | 5.91
5.90 | 45 | 3 _{m-x} 3 ₆ ,
(1008) | | P | 0 0 | 3.86 6 | .32 | 4-4
3-3 | (960) | 5098.594
5048.454 | K
V | {1
13
3
2) | 3.91 | 6.33 | 2-3
1-2 | | 7105.90 | P | 9 | 4.13 | 5.91 | 23 | | | U
P | {1
1} | | . 30 | 4-4
3-1 | z ³ F°-f ⁷ D
(961) | 4977.653
4970.66 | U
P | (1)
(0) | 3.91
3.94 | 6.39
6.43 | 3-3
1-2 | 23D°-g ⁵ D
(985) | 6623.78
96777.44 | ¥ | ⊙
1 | 4.06 | 5.92
5.95 | 43
32 | (1010)
034-A25a | | r
P
P | 000 | 3.97 6 | | 3-4
3-3 | z³y∙_e [≲] ც
(962) | 4889.113
4909.387
4930.331 | U
J
K | (a)
(a) | | 6.39
6.43
6.45 | 3-3
3-3
1-1 | | 6509.56 | ¥ | (1) | 4.06 | 5.95 | 4-5 | 637_23go
(1018) | | r | v | 3.86 6 | . 29 | 4-4 | | 4870.05 | P | 0 | 3.91 | 6.45 | 2-1 | | | | | | | | | | itor; | y
Int | E P
Low High | J | Multiplet
(No) | Laboratory
I A Ref | Int | E P
Low High | 3 | Multiplet
(No) | Labor
I A | ator
Ref | y
Int | E P
Low High | J Mul | tiplot
No) | |-------------|-------------------------|--|--------------------------|--|--|--------------------------|--|--------------------------|--|---|--------------|----------------------|-------------------------------------|---------------------------------------|------------------------------| | .nue | đ. | | | | Fe I continued | | | | | Fe I cont | | | | _ | _ | | Λ
Λ
Λ | 6d
1
1 | 4.12 5.96
4.17 5.99
4.17 5.96 | 3-3
2-1
3-3 | c ³ F-x ³ P°
(1013) | 8632.42 P
8652.50 P
8355.16 P
8950.20 P | 0000 | 4.09 5.52
4.14 5.56
4.09 5.56
4.14 5.52 | 4-4
3-3
4-3
3-4 | y ⁵ D°-e ⁵ D
(1050) | 5088.16
5063.296
5011.24 | P
T
P | (1)
(-)
© | 4.14 6.56
4.17 6.61
4.30 6.66 | 2-37 (1
1-2 c | o_h5p
066)
ont | | ٧ | (3) | 4.06 6.01 | 4-4 | c ³ F-y ¹ G°
(1014)
c ³ F-w ³ F° | 8878.76 P
8834.04 P | 000 | 4.17 5.56
4.20 5.60 | 2-3
1-2
0-1 | | 4982.507
4983.258
4967.899 | J
J | 8n
5n | 4.09 6.56
4.14 6.61
4.17 6.66 | 4-3 y ⁵ D
3-2 (1
2-1 | °_£5 p
067) | | J
J
P | (3)
3
© | 4.06 6.06
4.12 6.08
4.17 6.10
4.06 6.08 | 4-4
3-3
2-3
4-3 | (1015) | 7207.406 E | ©
800
500 | 4.21 5.62
4.09 5.80
4.14 5.85 | 4-5
3-4 | y ⁵ D°-e ⁵ F
(1051) | 5086.77
*5057.49
5021.68 | P
W
P | (3)
©
(1)
© | 4.14 6.56
4.17 6.61
4.20 6.66 | 3-3
2-2
1-1 | | | U
V | (1)
(-) | 4.12 6.10
4.06 6.07 | 3-2
4-3 | 0 ³ F-v ³ D° | | 250
150
40 | 4.17 5.90
4.20 5.93
4.21 5.95 | 2-3
1-2
0-1 | | •4952.646
4934.023 | V
K | (in)
(2n) | 4.09 6.58
4.14 6.64 | 4-5 y ⁵ 1
3-4 (1 |)°-£ ⁵ G
.068) | | P
V | (1) | 4.13 6.08
4.17 6.09 | 3-3
3-1 | (1016) | 6999.902 I
7016.436 V | 30
60 | 4.09 5.85
4.14 5.90 | 4-4
3-3 | | 4910.328
4910.570 | J
J | (1w)
(1w) | 4.17 6.69
4.20 6.71 | 2-3
1-2 | | | J
J | (3) | 4.06 6.12
4.12 6.14 | 4-5
3-4 | c ³ F-y ³ H°
(1017) | 7022.976 L
7038.251 I
6819.60 P | 50
40
(1) | 4.17 5.93
4.20 5.95
4.09 5.90 | 2-3
1-1
4-3 | | 4835.862
4840.329
4859.12 | K
V
W | (3)
(1n)
(1) | 4.09 6.64
4.14 6.69
4.17 6.71 | 4-4
3-3
2-2 | | | P | °ĕ′ | 4.06 6.14 | 4-4 | 03F_v3ge | 6880.65 V
6933.04 U | 1 | 4.14 5.93
4.17 5.95 | 3-2
2-1 | | *4745.806
4790.56 | B
P | 3n
© | 4.09 6.69
4.14 6.71 | 4-3
3-2 | | | J
J | (3) | 4.06 6.11
4.13 6.13
4.17 6.15 | 4-5
3-4
2-3 | (1018) | 6725.39 V
6653.88 V | (1) | 4.09 5.92
4.14 5.99 | 4-4
3-3 | y ⁵ D°-e ³ F
(1052) | 4842.78
4862.60 | y
P | (1)
© | 4.09 6.63
4.14 6.67 | 3-4 (1 | 0°-e ³ G
.069) | | P
V | (a) | 4.13 6.15
4.17 6.11 | 3-3
2-2 | c ³ F-z ¹ D° | 6916.703 I
6786.88 V
6704.48 P | 60
5
(1) | 4.14 5.92
4.17 5.99
4.20 6.04 | 3-4
3-3
1-3
 | 4858.24
m4840.89 | P
P | ⊙ .
T1 | 4.17 6.71
4.09 6.64 | 2-3
4-3 y ⁵ I | 0°-1°D | | u
U | (1) | 4.12 6.20 | 3-2 | (1019)
c3F_#3pe | *5666.837 U | (1) | 4.14 6.31 | 3-3 | y ⁵ D°-e ⁷ F | 4862.54
4841.80 | ₽
₩ | (1) | 4.14 6.67
4.17 6.72 | 3-2 (1
3-1 | 070) | | P | 00 | 4.06 6.24 | 4-3
3-3 | (1030)
c3r_z1re
(1031) | 5703.09 P
5815.42 P
5737.71 W | 0
(1) | 4.17 6.34
4.20 6.32
4.09 6.31 | 2-2
1-1
1-3 | (1053) | *4939.244
4933.19
4892.86 | J
₽
₩ | (2)
(2) | 4.14 6.64
4.17 6.67
4.20 6.72 | 3-3
3-3
1-1 | | | ٧ | (1) | 4.13 6.25 | 3-4 | c ³ F-x ¹ G° | 5859.96 P
5760.53 P | 0 0 | 4.17 6.28
4.14 6.38 | 2-3
3-3 | y ⁵ D°-f ⁷ D
(1054) | 5012.16
4986.24
4918.03 | P
W | $\binom{\circ}{1}$ | 4.17 6.64
4.20 6.67
4.21 6.72 | 2-3
1-2
0-1 | | | P
P | 0 0 | 4.06 6.30
4.13 6.34 | 4-5
3-4 | (1032)
c3F-u5Fe
(1023) | 5813.33 P
5715.47 P | 0 | 4.17 6.30
4.14 6.30 | 2-2
3-2 | (1001) | 4631.03 | P | 0 | 4.09 6.75 | 4_4 y ⁵ I | 0-13F | | P
V | ©
(1) | 4.06 6.37
4.06 6.30 | 4-3
4-5 | с ³ F-х ³ н° | 5796.67 P
5871.289 U | ©
(1) | 4.17 6.30
4.14 6.24 | 2-1
3-3 | y ⁵ D°_f ⁵ D | 4538.20
*4720.997
4688.38 | P
J
P | (1)
© | 4.09 6.81
4.14 6.75
4.17 6.81 | 4-3 (1
3-4
2-3 | 1071) | | K | (8) | 4.12 6.37 | 3-2 | (1024)
c3F_t5pe | 5928.50 P
5732.86 P
5815.16 V | (1) | 4.20 6.28
4.09 6.24
4.14 6.26 | 1-1
4-3
3-8 | (1055) | 4679.96
4677.59 | P
P | ©
© | 4.20 6.84
4.14 6.77 | 1-2
3-2 y ⁵ I | °-e ³ P | | P
P | Fe
© | 4.06 6.33
4.12 6.34 | 4-4
3-3 | (1025)
c3F_v3F•
(1026) | 5893.24 P
5974.62 P | 00 | 4.14 6.26
4.20 6.29
4.17 6.24 | 1-0
2-3 | • | 4743.93 | P | • | 4.17 6.77 | 2-2 (1 | 1072) | | ₽
V | (1)
(1)
(1) | 4.06 6.34
4.13 6.32
4.12 6.33 | 4_3
3_2
3_4 | | 5844.879 U
5707.70 P | (1)
© | 4.14 6.25
4.09 6.25 | 3-3
4-3 | y ⁵ D°-e ⁷ P
(1056) | 4135.77
4044.49
4085.98 | ti
₽
₩ | (1)
©
(1) | 4.17 7.16
4.09 7.14
4.14 7.16 | 2_2 y ⁵ 7
4-3 (1
3-2 | 15 _D
1073) | | ₩
J | (1)
(2) | 4.17 6.34
4.06 6.37 | 2-3
4-5 | c ³ F-6° | 5760.71 P
5947.30 P | 0 | 4.14 6.28
4.17 6.25 | 3-2
3-3 | | 4163.35
4172.97 | P
P | 00 | 4.17 7.14
4.30 7.16 | 2-3
1-2 | | | ٧ | | 4.06 6.34 | 4-5 | (1028)
c ³ F-u ³ G | 5677.68 P
5721.70 P | 00 | 4.09 6.26
4.14 6.29 | 4-5
3-4 | у ⁵ D°-е ⁵ G
(1057) | 3970.99
3996.79 | P
P | <u>o</u> | 4.09 7.19
4.14 7.22 | 4-5 y ⁵ 1
3-4 (1 | 0°-g ⁵ G
1074) | | J
P | (1)
(2)
(2)
(0 | 4.12 6.38
4.17 6.40
4.06 6.38 | 3-4
2-3
4-4 | (1039) | 5739.78 P
5761.08 P
5644.35 P | 000 | 4.17 6.32
4.20 6.34
4.14 6.32 | 2-3
1-2
3-3 | | 4046.46
4095.27 | P
P | 0 | 4.14 7.19
4.17 7.19 | 3-2 y ⁵ 1
2-2 (1 | 0°_4
1075) | | ₽
₩ | (1n) | 4.12 6.40
4.06 6.40 | 3-3
4-3 | | 5516.29 P
5607.66 P | 0 | 4.09 6.32
4.14 6.34 | 4-3
3-4 | y ⁵ D°-e ⁷ G | 4131.75 | P | <u> </u> | 4.20 7.19 | 1-2 | | | ٧ | (1) | 4.13 6.38 | | c ³ F-y ¹ D°
(1030)
c ³ F-u ³ D° | 5705.32 P
5481.253 V | (S) | 4.20 6.36
4.09 6.34 | 1-3
4-4 | (1058) | 9103.64
•9070.43 | F | 1 2 | 4.16 5.52
4.20 5.56 | 4-3 (1 | °-е ⁵ р
(076) | | V
V | (2)
(1)
(1) | 4.06 6.43
4.13 6.46
4.17 6.48 | 4-3
3-2
2-1 | (1031) | 5568.44 P
5636.00 P | 0 | 4.14 6.35
4.17 6.36 | 3-3
2-2 | | 9084.20
7511.045 | P
E | 1
800 | 4.24 5.60
4.16 5.80 | 3-2
5-5 y ⁵ F | °e5p | | R
T
W | { - } | 4.12 6.42
4.17 6.46
4.17 6.42 | 3-3
2-2
2-3 | | 5551.77 P
5568.07 P
5652.01 P | 000 | 4.09 6.31
4.14 6.35
4.20 6.38 | 4-5
3-4
1-2 | у ⁵ D°-f ⁵ F
(1059) | 7495.088
7445.776
7411.178 | E
E | 400
200
100 | 4.20 5.85
4.24 5.90
4.26 5.93 | 4-4 (1
3-3
3-2 | 1077) | | P | .0 | 4.06 6.45 | 4-3 | c3F_t3De | 5443.41 P
5524.25 P | ©
(1) | 4.09 6.35
4.14 6.37 | 4-4
3-3 | | 7389.425
7306.61 | A
E | 80
3 | 4.28 5.95
4.16 5.85 | 1-1
5-4 | | | P
P | (2)
©
© | 4.12 6.50
4.17 6.44
4.12 6.45 | 3-2
2-1
3-3 | (1032)
? | 5583.97 P
*5666.837 U | ©
(1) | 4.17 6.38
4.14 6.31 | 2-2
3-2 | y ⁵ D°-e ⁵ S | 7288.760
7293.068
7311.101 | I
I
I | 10
15
12 | 4.20 5.90
4.24 5.93
4.26 5.95 | 4-3
3-2
2-1 | | | P
S | ⊙
(-) | 4.17 6.50
4.13 6.51 | 2-2
3-4 | c3F_w3H° | 5493.508 V
5483.111 V | {1} | 4.09 6.33
4.14 6.39 | 4-3
3-2 | (1060)
y ⁵ D°-e ³ D
(1061) | 7710.390
7661.223
7568.925 | E
E | 25
30
30 | 4.20 5.80
4.24 5.85
4.26 5.90 | 4-5
3-4
2-3 | | | V | (1) | 4.17 6.53 | 3-1 | (1033)
c3F_8° | 5481.451 T
5620.527 V
5573.10 V | (1)
(3)
(1)
(1) | 4.17 6.42
4.14 6.33 | 2-1
3-3 | (2222) | 7491.678 | L | 12 | 4.28 5.93 | 1-2 | | | P
P | (1) | 4.06 6.54
4.17 6.58 | 4-3
2-2 | (1034)
c3F-s3D°
(1035) | 5547.00 W
*5715.107 V | (2)
(1) | 4.17 6.39
4.20 6.42
4.17 6.33 | 2-2
1-1
2-3 | | 7008.014
6898.31
6847.60 | V
V
P | 5
3
(1) | 4.16 5.92
4.20 5.99
4.24 6.04 | 5-4 y ⁵ F
4-3 (1
3-2 | 1078) | | * | (1) | 4.17 6.57 | 2-1 | c ³ F-z ¹ P-
(1036)
c ³ F-9° | 5579.34 P
5476.571 J | ©
10 | 4.21 6.42
4.09 6.34 | 0-1
4-4 | y ⁵ D°-g ⁵ D | 7181.222
7038.818
6951.62 | V
P | 10
2
(1) | 4.20 5.92
4.24 5.99
4.26 6.04 | 4-4
3-3
2-2 | | | P
P | ©
' © ? | 4.06 6.58
4.13 6.68 | 4-4
3-2 | c ³ F_9°
(1037)
c ³ F_t ⁵ P° | 5473.908 J
5478.48 V
*5493.850 T | (3)
(1)
(0)
(2) | 4.14 6.39
4.17 6.43 | 3-3
2-2 | (1062) | 7333.62
*7148.69
7022.39 | V
R
P | 1n
(-) | 4.24 5.93
4.26 5.99 | 3-4
2-3 | | | P | 0 | 4.17 6.70 | 2-1 | (1038) | 5353.386 V
5391.493 V | (1) | 4.20 6.45
4.09 6.39
4.14 6.43 | 1-1
4-3
3-2 | | •6005.53 | ٧ | ©
(1)
(2n) | 4.28 6.04
4.16 6.21 | 1-2
5-6 y ⁵ I | e ⁷ F | | P | (1)
©? | 4.06 6.68 | 3-3 | c ³ F-y ¹ F°
(1039)
c ³ F-x ¹ F° | 5429.52 P
5480.872 V
5602.788 V | (3)
(3) | 4.17 6.45
4.20 6.45
4.14 6.34 | 2-1
1-0
3-4 | | *6021.82
6008.35 | W
P | 0 | 4.26 6.31
4.28 6.34 | 2-3 (1
1-2 | (079) | | r
J | (1)
(2) | 4.17 6.64
4.12 6.65 | 2-3
3-3 | c ³ F-10° | 5563.604 I
5543.930 J
5525.552 V | (2)
(3) | 4.17 6.39
4.20 6.43
4.21 6.45 | 2-3
1-2
0-1 | | 5992.65
5961.91 | P | ©?
© | 4.16 6.22
4.20 6.27 | | (080 | | J
J | (a)
(2) | 4.06 6.66
4.12 6.70 | 4-5
3-4 | (1041)
c3F_t3G*
(1042) | ₹5534.68 W | (1) | 4.14 6.37 | 3-3 | у ⁵ D°-е ⁷ S
(1063) | 6060.81
6107.09 | P | (1) | 4.20 6.24
4.24 6.26 | 4-3 y ⁵ 1
3-2 (1 | 0-1 ⁵ D
1081) | | 7 | (1) | 4.17 6.74 | 2-3 | | 5334.32 P
5386.341 V | (1) | 4.09 6.40
4.14 6.43 | 4-3
3-2 | (1063)
y5po_e5p
(1064) | 6032.67
•6127.913 | ۷
J | (1)
(2) | 4.20 6.25
4.26 6.28 | 4-3 y ⁵ F
2-2 (1 | го_е ⁷ Р
1082) | | þ | (1n)
⊙ | 4.13 6.67
4.17 6.67 | 3-3
2-3 | (1043) | 5487.52 P
5453.98 P
5473.18 P | 000 | 4.17 6.43
4.14 6.40
4.17 6.43 | 2-1
3-3
2-2 | | 5940.972
5996.49 | V
P | (2)
© | 4.16 6.24
4.26 6.32 | 5-6 y ⁵ 1
2-3 (1 | ro_e ⁵ @
1083) | | 7 | (1)
(1) | 4.06 6.67
4.13 6.70 | 4-5
3-4 | c ³ F-12°
(1043a)
c ³ F-13° | 5553.22 P
5543.03 P
*5538.54 Y | ©
©
(1) | 4.20 6.42
4.17 6.40
4.20 6.43 | 1-1
2-3
1-2 | | 5877.770
5901.53
59 1 8.93 | U
P
P | (1)
© | 4.16 6.26
4.20 6.29 | 5-5
4-4 | | | ;
2 | `ô´
o | 4.06 6.70 | 4-4 | (1044) | •5007.289 J | (3n) | 4.09 6.55 | 4-5 | y ⁵ D°-g ⁵ F | 5742.95 | P | (1) | 4.24 6.32
4.16 6.31 | 3-3
5-5 y ⁵ 1 | ro_£5p | | , | 0 | 4.12 6.77
4.06 6.85 | 3-4
4-5 | (1045)
c ³ F-x ¹ H° | 5037.136 J
4991.377 J
*4939.244 J | 5n
(3)
(2) | 4.14 6.59
4.17 6.65
4.30 6.70 | 3-4
2-3
1-2 | (1065) | 5738.22
5786.99
5826.64 | P
P | 000 | 4.20 6.35
4.24 6.37
4.26 6.38 | 4-4 (1
3-3
2-2 | 1084) | | , | 0 | 4.17 6.88 | 2-2 | (1046)
c3F_w1D° | 4933.348 K
4925.28 W
4887.189 K | (3n)
(1)
(-) | 4.21 6.71
4.09 6.59
4.17 6.70 | 0-1
4-4
2-2 | | 5859.20
5627.08
5691.69 | V
P
P | (1)
0
0 | 4.28 6.39
4.16 6.35 | 1-1
5-4 | | | } | (1)
© | 4.13 6.89
4.17 6.89 | 3-3
2-3 | | 4983.855 J | 6n | 4.09 6.56 | 4-4 | y ⁵ D°_h ⁵ D | 5753.38
5809.88 | P
P | 0 | 4.24 6.38
4.26 6.39 | 4-3
3-2
2-1 | _ | | , | 0 | 4.06 7.03 | 4-4 | c ³ F-v ¹ G°
(1049) | 4988.963 J
4957.68 P
4969.927 J | (6)
©
(3) | 4.14 6.61
4.17 6.66
4.30 6.68 | 3-3
2-2
1-1 | (1066) | 5858.77
5835.10
5861.11 | P
P | 000 | 4.20 6.31
4.24 6.35
4.26 6.37 | 4-5
3-4
2-3 | | | | | | | | 4888.651 V
4886.335 J
4917.25 W | (3)
(1)
(1)
(1) | 4.09 6.61
4.14 6.66
4.17 6.68 | 4-3
3-2
2-1 | | 5876.27 | P | © , | 4.28 6.38 | 1-2 | | | | EP J Multiplet Laboratory EP J Multiplet Low High (No) I A Ref Int Low High (No) |
--|--| | v (3n) 4.36 6.31 3-3 (1085) 4135.633 J (1) 4.3 | Fe I continued 4.16 7.16 5-6 y ⁵ F°-g ⁵ G 8509.63 P © 4.35 5.80 4-5 2 ⁵ G°-a ⁵ F 4.20 7.19 4-5 (1103) 8496.51 P © 4.40 5.85 3-4 (1136) 4.24 7.22 3-4 (1036) P © 4.43 5.90 2-3 cont | | 7 (2) 4.20 6.33 4-3 $y^2P^2-e^3D$ 4137.42 P \odot 4.2 P (1N) | 4.86 7.25 2-3
4.88 7.86 $1-2$ 7586.044 E 150 4.39 5.92 5-4 $z^5 G^9 - e^3 F$
4.16 7.19 5-5 7531.171 E 60 4.35 5.99 4-3 (1137)
4.20 7.23 4-4 7507.300 L 8 4.40 6.04 3-2 | | ? | 4.24 7.25 3-3 7869.65 0 4 4.35 5.92 4-4 4.26 7.26 2-3 7737.67 P 0 4.40 5.99 3-3 7647.83 P 0 4.43 6.04 2-2 4.34 7.19 3-3 y ⁵ F°-4 4.36 7.19 2-3 (1104) 6428.80 V (1) 4.35 6.27 4-4 z ⁵ G°-2 ⁷ D | | 3 6 4.16 6.34 5-4 y ⁵ p°-g ⁵ D
I 3 4.20 6.39 4-3 (1087)
/ (2) 4.24 6.43 3-2 7239.885 I 6 4.1 | (1138)
6543.98 U (1) 4.35 6.24 4-3 2509-150
4.19 5.90 2-3 23P9-85F (1138) | | 7 (1) 4.28 6.45 1-0 7095.425 I 3 4.1
7 (5) 4.20 6.34 4-4 7213.84 P 0 4.2
I (3) 4.24 6.39 3-3 | 4.24 5.93 1-2 (1105) 6376.22 P | | 7 (1) 4.38 6.45 1-1
7 (2) 4.24 6.34 3-4 5762.992 K 10 4.1
7 (1) 4.26 6.39 3-3 5753.136 J 5 4.2 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | 5618.646 V (1) 4.1
P @ 4.20 6.40 4-3 y ⁵ F°-e ⁵ P *5655.506 V 4 4.2 | 4.27 6.42 0-1 6054.100 U (3) 4.35 6.39 4-3 (1142) 4.19 6.39 3-3 6081.72 P © 4.40 6.43 3-2 4.24 6.42 1-1 6812.04 V (1) 4.35 6.34 4-4 4.19 6.42 2-1 5361.637 U (1) 4.40 6.70 3-2 2 ⁵ G°-g ⁵ F | | P © 4.24 6.40 3-3 5608.98 P © 4.2
P © 4.26 6.43 3-2 5658.32 V (1) 4.2 | 4.19 6.39 2-3 z ³ P°-g ⁵ D 5395.25 W (in) 4.43 6.71 2-1 (1143)
4.24 6.43 1-2 (1108) 5469.39 P © 4.29 6.55 5-5
4.27 6.45 0-1 5512.277 V (1) 4.35 6.59 4-4
4.19 6.43 2-3 5487.16 V (1) 4.40 6.65 3-3 | | K (1) 4.26 6.70 2-2 | 4.44 6.45 1-1 5432.950 U (2n) 4.43 6.70 2-2
4.19 6.45 2-1 5615.18 P O 4.35 6.55 4-5 | | P © 4.16 6.59 5-4 5646.70 P © 4.2
P © 4.20 6.65 4-3 5734.445 U (1) 4.2
P © 4.24 6.70 3-2 517.08 W (1n) 4.2
P © 4.20 6.55 4-5 5661.97 ₽ © 4.2 | 4.19 6.40 8-3 z ² P°-e ² P 5441.331 U (1) 4.89 6.56 5-4 z ² G°-h ² D 4.24 6.43 1-2 (1109) 5466.404 J (3) 4.35 6.61 4-3 (1144) 4.27 6.43 0-1 5446.58 P 4.40 6.66 3-2 4.19 6.43 2-3 5470.17 W (1) 4.43 6.68 2-1 4.24 6.42 1-1 5520.19 P 07 4.43 6.66 2-2 | | V (2) 4.28 6.70 1-2 5085.08 P © 4.2
5041.33 P © 4.2 | 4.19 6.65 a_{-3} $z^{3}P^{o}_{-}g^{5}F$ 5455.433 K (5) 4.30 6.56 6-6 $z^{5}Q^{o}_{-}z^{5}Q^{o}_{-}$ 4.44 6.70 1-2 (1110) m5404.12 P Fe 4.29 6.58 5-5 (1145) 4.27 6.71 0-1 5400.509 J (5) 4.35 6.64 4-4 4.19 6.70 2-2 5389.461 K (5) 4.40 6.69 3-7 | | J 6n 4.20 6.61 4-3 (1090) 4992.80 P © 4.2
K (6n) 4.24 6.66 3-2
P (1) 4.25 5.68 3-1 4993.687 U (1) 4.3 | 4.19 6.70 2-2 5389.461 K (5) 4.40 6.89 3-3
4.24 6.71 1-1 5398.285 V (1) 4.43 6.71 2-2
54.22.15 P 0 4.30 6.58 6-5
4.19 6.66 2-3 2°P"-h ⁵ D 5265.42 P 0 4.29 6.64 5-4
4.24 6.68 1-1 (1111) 5327.86 P 0 4.40 6.71 3-2 | | # (1) 4.24 6.61 3-3 *4952.646 V (1n) 4.1
V (3) 4.26 6.66 3-2
J (3w) 4.28 6.68 1-1 5205.31 P © 4.2 | 4.19 6.68 3-1 5437.19 P 0 4.39 6.56 5-6 5436.512 V (1) 4.35 6.58 4-5 4.34 6.61 1-2 2 ³ P ⁻ -2 ⁵ P 5505.893 T (-) 4.40 6.64 3-4 4.19 6.68 3-1 (1112) 5461.54 W (1n) 4.43 6.69 2-3 | | V (1n) 4.20 6.56 4-3 y ⁵ P°-± ⁵ P
V (2m) 4.24 6.51 3-2 (1091) 4945.65 W (1) 4.:
V (2m) 4.26 6.66 2-1 4995.41 P ⊙ 4.: | 4.19 6.69 2-3 z ³ P°-r ⁵ G 5434.073 I 45n 4.30 6.58 6-7 z ⁵ G°-e ⁵ H 4.34 6.71 1-2 (1113) 5383.374 I 35n 4.39 6.59 5-6 (1146) 4.19 6.71 2-3 5369.965 I 25n 4.35 6.65 4-5 5367.470 I 20n 4.40 6.70 3-4 | | P © 4.26 6.61 2-2
P © 4.28 6.66 1-1 4730.56 P ©7 4.3 | 4.19 6.81 2-3 z ² P°-L*P 5564.874 I 15n 4.43 6.73 2-3
(1114) 5401.27 P © 4.30 6.59 6-6
4.19 6.77 2-2 z ² P°-e ² P 5236.38 P © 4.29 6.65 5-5 | | K (8) 4.30 5.58 4-5 (1093) 4757.583 J (3) 4.3
J (3w) 4.24 6.64 3-4 4655.24 P © 4.3
J (6) 4.25 6.69 2-3 4801.63 P © 4.3
V (1n) 4.28 6.71 1-2 4801.63 P © 4.3 | 4.34 6.64 1-1 (1115) 5267.26 F © 4.55 6.70 4-5 4.19 6.84 2-1 5265.316 U (1) 4.40 6.73 3-3 4.24 6.77 1-2 4.24 6.77 1-2 4.27 6.84 0-1 5290.79 P 4.30 6.63 6-5 z^5 G°-e 3 G | | V (2) 4.34 6.69 3-3
P O 4.34 6.71 3-2 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | Р © 4.16 6.59 5-6 у ⁵ F°-е ⁵ Н | 4.28 5.75 2-1 $b^1Dz^3g^6$ 5409.125 V (1) 4.35 6.63 4-5 (1117) 4.28 5.85 2-2 b^1D1^6 5406.77 P \odot 4.35 6.64 4-3 $z^5G^6-f^3D$ (1118) 5417.03 W (1) 4.40 6.67 3-2 (1148) 5512.40 P \odot 4.40 6.64 3-8 | | P © 4.16 6.65 5-5
P ©7 4.16 6.70 5-4 6756.56 P © 4.: | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | P © 4.20 6.67 4-4 (1094)
P © 4.24 6.71 3-3,
J 10n 4.20 6.63 4-5 | | | V (2) 4.36 6.71 2-3
T (1) 4.30 6.64 4-3 y ⁵ F°-f ³ D 5883.06 P ⊙? 4.3 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | T (-) 4.36 6.72 2-1 5976.18 P O 4.1
U (3) 4.34 6.64 3-3
V (3n) 4.36 6.67 2-2 | $ \begin{array}{cccccccccccccccccccccccccccccc$ | | P © 4.26 6.64 2-3
P © 4.28 6.67 1-3 5856.084 V (2) 4. | (1127)
4.28 6.38 $2-b \frac{b-b-y^2}{b-1}$ 0° 4618.568 V (3w) 4.29 6.97 5-5 x^5 0°-1
(1128)
4.28 6.39 $2-b \frac{b-b-y^2}{b-1}$ 0° 4631.49 W (1) 4.35 7.03 4-4 x^5 0°-3 | | P © 4.16 6.68 5-4 (1096)
P © 4.30 6.72 4-3 5539.831 U (1) 4.1
U (1) 4.16 6.65 5-6 v ⁵ F°-e ³ H | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | P © 4.24 6.73 3-4 (1097) 5469.09 P © 4.2
P © 4.20 6.73 4-4 5376.849 U (2) 4.2
P © 4.24 6.84 3-2 y ⁵ F°-F ³ F | 4.28 6.53 2-8 b ² D-y ³ P ⁹ 8562.13 P 0 4.45 5.90 3-3 (1131) 8331.941 E 200 4.37 5.85 5-4 4.28 6.57 2-1 b ² D-z ² P ⁹ 8339.431 E 80 4.42 5.90 4-3 | | P © 4.30 6.75 4-4 (1098) 4734.100 J (1) 4.
5 (-) 4.24 6.81 3-3
P © 4.36 6.84 2-2 4725.94 V (1n) 4.
P © 4.34 6.75 3-4 | 4.28 6.88 2-2 b ¹ D-m ¹ D ⁹ 8896.00 P © 4.42 5.80 4-5
(1133) 8848.25 P 4.45 5.85 3-4
4.28 6.89 2-3 b ¹ D-m ¹ F ⁹ | | P 0 4.36 6.81 2-3 4333.06 P 0 4.3 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | P 07 4.30 6.97 4 $\begin{array}{c} (1999) & 7937.166 & F & 700 & 4.\\ 79F-3 & 7998.973 & F & 700 & 4.\\ (1100) & 8046.073 & F & 600 & 4.\\ P 07 & 4.20 & 7.03 & 4.4 & y5P-3 & 8095.200 & F & 500 & 4.\\ \end{array}$ | $ \begin{array}{cccccccccccccccccccccccccccccccc$ | | P 0 4.20 7.12 4-4 $y^{5}F^{\circ}-1^{5}D$ 8348.151 E 30 4. U (1) 4.24 7.14 3-3 (1103) 8333.347 E 50 4. | $ \begin{array}{cccccccccccccccccccccccccccccc$ | | | | | _ | | REV | | | | PLE | | | • | | _ | | _ | | 63 | |-------|--------------------------|-------------------------------------|-------------------|--|----------------------------------|---------------|-------------------|----------------------|----------------------|-------------------|--|-----------------------------------|---------------|--------------|----------------------|----------------------|-------------------|--| | ory | Int | E P
Low High | J | Multiplet
(No) | I A | ratory
Ref | | Low | High | J | Multiplet
(No) | I A | rator;
Ref | | E
Low | High | J | Multiplet
(No) | | nued | | | | | Fe I con | tinue | i | | | | | Fe I con | tinue | đ | | | | | | , | ©
© | 4.37 6.23
4.42 6.25 | 5-4
4-3 | z ³ G°-e ⁷ P
(1157) | 5816.36
5855.126 | A
A | (3d)
(1) | 4.53
4.59 | 6.65
6.70 | 4-5
3-4 | y ³ F°-e ⁵ H
(1179) | 6100.29
6100.23 | P) | (1) | $\binom{4.54}{4.59}$ | 6.56 | 3-4
2-3 | y ⁵ P°-h ⁵ D
(1199) | | , | ŏ | 4.45 6.25 | 3–3 | | 5891.16
5696.10 | P | 00 | 4.63 | 6.73
6.70 | 2-3
4-4 | | *5958.22
5947.50 | P | (2) | 4.54
4.59 | 6.61
6.66 | 3-3
3-2 | | | 1 | (1) | 4.42 6.33 | 4-3 | z ³ G°-e
³ D
(1158)
z ³ G°-g ⁵ F | 5769.31 | P | (1) | 4.59 | 6.73 | 3–3 | y3F°-e3G | 5978.17 | P
P | 0 | 4.62 | 6.68 | 1-1
3-3 | y5p o_f 5p | | 1 | (1w)
(2) | 4.37 6.55
4.45 6.65
4.37 6.59 | 5-5
3-3
5-4 | (1159) | 5862.357
*5914.16
5930.173 | K
V
K | 8
8
8 | 4.53
4.59
4.63 | 6.63
6.67
6.71 | 4-5
3-4
3-3 | (1180) | 6098.28
6091.74
5950.13 | P
P | 000 | 4.59 | 6.61
6.61 | 2-2
3-2 | (1200) | | ī | ©
(1) | 4.37 6.59
4.45 6.70
4.42 6.55 | 3-2
4-5 | | 5752.043
5806.727 | J
V | (2)
(2) | 4.53 | 6.67 | 4-4
3-3 | | 5880.00 | v | (3wd) | | 6.64 | 3-4 | y5p0_f5G | | ı | (1) | 4.37 6.56 | 5-4 | z ³ go-h ⁵ D | 5650.31 | P | 0 | 4.53 | 6.71 | 4-3 | 7 7 | 5879.49
5892.46 | P
P | 0 | 4.59
4.63 | 6.69
6.71 | 2-3
1-2 | (1201) | | , | ©?
© | 4.45 6.66
4.42 6.56 | 3-3
4-4 | (1160) | 5859.608
•5914.16 | Y
V | 5
8 | 4.53 | 6.64 | 4-3
3-2 | y ³ F°-f ³ D
(1181) | 5640.46 | W | (1n) | 4.54 | 6.73 | 3-3 | y5pe_e5H | | , | (1) | 4.45 6.61 | 3-3
5-6 | z ³ G°_1 ⁵ G | 5905.673
5686.532 | K
V | 3n
(3) | 4.63
4.53 | 6.72 | 2-1
4-5 | y ³ F°-e ³ H | 5887.46
5867.01 | P
P | 0 | 4.54 | 6.64
6.72 | 3-3
1-1 | (1202)
y ⁵ p°_f ³ D
(1203) | | . ! | (1)
(1)
© | 4.37 6.56
4.42 6.58
4.45 6.64 | 3-6
4-5
3-4 | (1161) | 5747.95
5594.661 | v
v | (3)
(1)
(2) | 4.59 | 6.73 | 3-4 | (1182) | 5778.81 | P | õ | 4.54 | 6.67 | 3-2 | | | Ţ | (<u>i</u>) | 4.42 6.64
4.45 6.69 | 4-4
3-3 | | 5554.895 | I | 4 | 4.53 | 6.75 | 4-4 | y ³ F°-f ³ F | *5759.57
5727.75 | U
U | (2) | 4.54
4.59 | 6.68
6.74 | 3-4
2-2 | y ⁵ P°-g ⁷ D
(1204) | | 1 | (1)
© | 4.37 6.64
4.42 6.69 | 5-4
4-3 | | 5565.708
5598.303 | I
J
P | 4 | 4.59 | 6.81
6.84 | 3-3
2-2 | (1183) | *5620.04 | W | (1) | 4.54 | 6.73 | 3-4 | y5pe_e3H | | , | ©
© | 4.37 6.59
4.42 6.65 | 5-6
4-5 | z ³ G°-e ⁵ H
(1162) | 5421.85
5488.14
5705.988 | P
V | ©
(3) | 4.53
4.59
4.59 | 6.81
6.84
6.75 | 4-3
3-2
3-4 | | 4776.34
4839.77 | ¥
P | (1n)
© | 4.54
4.59 | 7.12
7.14 | 3-4
2-3 | (1205)
y5p0-15p
(1206) | | , | 000 | 4.45 6.70
4.37 6.65 | 3-4
5-5 | (1100) | 5679.023 | ٧ | (2) | 4.63 | 6.81 | 2-3 | | 4749.93
4802.53 | V
P | (1) | 4.54 | 7.14
7.16 | 3-3
2-2 | ,, | | , | 0 | 4.48 6.70 | 3-3 | | 5048.75
5759.270 | U | (1) | 4.50 | 6.77
6.77 | 3–2
3–3 | y ³ Fe-c ³ P
(1184) | 4714.074 | V
J | (1n)
(2n) | 4.64 | 7.16 | 3-3 | y5p o_ 4 | | , | 00 | 4.37 6.70
4.42 6.73 | 5-4
4-3 | | 5057.83 | P | • | 4.53 | 6.97 | 4- | y ³ F°-2
(1185) | 4661.538 | Ü | (211) | 4.54 | | | (1207) | | Ţ | 15n
10n | 4.37 6.63
4.42 6.67 | 5-5
4-4 | z ³ G°-e ³ G
(1163) | 6930.35 | P | · | 4.54 | 6.32 | -
3-4 | y ⁵ po_e ⁷ F | 10333.24
10307.48 | P
P | 0 | 4.57
4.57 | 5.77
5.77 | 4-4
4-3 | d ³ F-u ⁵ D°
(1208) | | 7 | (a) | 4.45 0.71
4.37 8.67 | 3-3
5-4 | ,, | *7145.317
*6951.261 | Ĭ | 25
25 | 4.59
4.54 | 6.31 | 3-3
3-3 | (1186) | 10156.50 | P | 0 | 4.57 | 5.79 | 4-4 | d3F-x3Fe | | į | Fe
(2) | 4.42 6.71
4.42 6.63 | 4-3
4-5 | | 7053.48
6864.31 | P
P
P | ©
©1 | 4.59
4.54
4.59 | 6.34
6.32 | 3-3
3-3 | | 9881.51
9747.24
9950.70 | P
F
P | 1
2
0 | 4.56
4.56
4.57 | 5.81
5.83
5.81 | 3-3
2-2
4-3 | (1209) | | , | (1)
(1) | 4.45 6.67
4.42 6.64 | 3-4
4-3 | z ³ Go_f ³ D | 7115.25
7120.01 | p | 0 | 4.59 | | 2-1
3-4 | y ⁵ P°_f ⁷ D | 10084.42 | P | õ | 4.56 | 5.79 | 3-4 | | | , | `ê′ | 4.45 6.67 | 3-2 | (1164) | 7295.00
7356.81 | V
P | 0 | 4.59
4.62 | 6.30 | 2-3
1-2 | (1187) | 9937.10 | ₽ | ø | 4.57 | 5.82 | 4-4 | a3r_±3µ°
(1210)
d3r_w3p° | | [| 35n
30n | 4.37 6.65
4.42 6.70 | 5-6
4-5 | (1165) | *7222.88
7330.16 | y
P | (1)
© | 4.59 | 6.30 | 2-3 | | 10026.10
9839.38 | P
F
P | 1 | 4.57 | 5.80 | 4-3
3-2 | d3F-w3De | | 3 | 15n
©
(1) | 4.45 6.73
4.37 6.70
4.42 6.73 | 3-4
5-5
4-4 | | 7024.649
\$7320.694 | V
L | 10n
5n | 4.54 | | 3-2
3-4 | y5p o_ £5p | 9771.06
9955.85 | P | 0 | 4.56
4.56 | 5.84
5.80 | 3-1
3-3 | | | ; | (E) | 4.37 6.73 | 5-4 | | 7473.56
7261.54 | ŏ | (1)
3n | 4.59 | 6.24 | 2-3
3-3 | | 9636.69 | Y | (1) | 4.57 | 5.85 | 4–5 | d ³ F-\500
(1213) | |]
 | (in)
(i) | 4.37 6.75
4.42 6.81 | 5-4
4-3 | (1166) | 7382.99
7421.60 | V | 1n
1 | 4.59
4.62 | 6.26
6.28 | 2-2
1-1 | | 9225.55 | 0 | (1) | 4.56 | 5.90 | 3-4 | d3F-x3G°
(1213)
d3F-v5F° | | | `⊙ ´
(-) | 4.45 6.84
4.42 6.75 | 3-2 | | 7175.937
7285.286
7366.37 | V
V | 3 | 4.54
4.59
4.63 | 6.28 | 3-2
3-1
1-0 | | 8848.46
8576.50 | P
P | © | 4.56 | 5.96 | 2-2 | d3F_v5F°
(1214)
d3F_y1G° | | 7 | (1n)
(1) | 4.45 6.81
4.45 6.75 | 3-3
3-4 | | 7292.856 | v | 1
3n | 4.54 | | 3-4 | c n. | 8525.04 | P | 0 | 4.57
4.56 | 6.01
6.01 | 4-4
3-4 | (1215) | | , | ⊙? | 4.42 6.97 | 4-5 | z ³ G°-1
(1167)
z ³ G°-2 | 7430.90
7431.94 | M
P | 1 | 4.59
4.62 | 6.25 | 2-3
1-2 | (1189) | 8253.78 | P | • • | 4.56 | 6.06 | 3-3 | d ³ F-2°
(1216) | | , | ©î | 4.37 6.97 | 5- | (1168) | 7221.22
7295.27 | P | 2n
O | 4.54 | 6.28 | 3-3
2-2 | | *8149.59
8002.55 | O
P | 3
© | 4.56
4.56 | 6.08 | 3-3 | d3F_w3F0
(1217) | | ; | 0 | 4.42 7.14
4.45 7.16 | 4-3
3-2 | (1169) | 7093.10
7034.06 | P
P | •
• | 4.54 | | 3-2
3-4 | | 8196.52
8269.66 | P
P | 0 | 4.57 | 6.08 | 4-3
4-3 | d3F_v3Do | | , | ତ
ତୀ | 4.37 7.19
4.37 7.22 | 5-5
5-4 | (1170) | 7109.67
7161.04 | P
P | 00 | 4.59 | 6.32 | 2-3
1-2 | (1190) | *8149.59 | ô | 3 | 4.56 | 6.08 | 3-2 | (1218) | | , | · | 4.42 7.25 | 4-3
 | 3 | 6917.52
7034.08 | P | © | 4.54
4.59 | 6.34 | 3-3
2-2 | | 7129.30 | P | • | 4.57 | 6.30 | 4-5 | d ³ F-x ³ H°
(1219) | | : | 2
10 | 4.59 5.85
4.53 5.85 | 3-4
4-4 | | 6845.93
6862.481 | P
V | ⊙
4n | 4.54 | | 3-2 | | 7125.28
6949.37
6805.72 | P
P
P | 0 | 4.57 | 6.31 | 3-3 | d3F_t5D°
(1220) | | ; | 3 | 4.59 5.90 | 3-3 | 3 | 6989.64
6803.84 | P
P | ©
#11 | 4.59 | 6.35 | 3-4
2-3
3-3 | (1191) | 6983.53
6822.00 | P
P | ©
0
1 | 4.56
4.57
4.56 | 6.37
6.34
6.37 | 2-2
4-3
3-2 | | | | 150
130 | 4.53 5.92
4.59 5.99 | 4-4
3-3 | (1172) | 6803.30 | P | 0 | 4.54 | 6.35 | 3-4 | | 6711.24
7089.73 | P
P | 00 | 4.56
4.56 | 6.40
6.31 | 2-1
3-4 | | | | 100
20
8 | 4.63 6.04
4.53 5.99
4.59 6.04 | 2-2
4-3
3-2 | | 6920.16
6838.08
6692.47 | P
V
P | ⊙
4nl | 4.59
4.54
4.54 | 6.37
6.37
6.38 | 2-3
3-3
3-2 | (1192) | 6932.49 | P | 0 | 4.56 | | 2-3 | 23m 3m2 | | | 20
8 | 4.59 5.92
4.63 5.99 | 3-4 | ŀ | 6848.86 | P | 1
⊙ | 4.59 | 6.39 | 3-2 | | 7011.364
*6947.501
7010.362 | A
A | 3
3
2 | 4.57
4.56
4.56 | 6.34 | 4-4
3-3
2-2 | d3F_v3F°
(1221) | | : | 60 | 4.53 6.33 | 4-3 | y ³ F°-e ³ D | *6951.261
*7145.317 | ĭ | 25
5 | 4.54
4.59 | | 3-2 | | 7027.60
6976.934 | Ÿ
V | (<u>1</u>) | 4.56
4.56 | 6.32 | 3-2
3-4 | | | ; | 40
20
6 | 4.59 6.39
4.63 6.42 | 3-2
2-1 | | 6881.74 | M | 1 2 | 4.54
4.59 | 6.33 | 3-3
2-2 | v5po_e3n | 6930.64 | ٧ | 1 | 4.56 | 6.34 | 2-3 | | | , | ŏ | 4.59 6.33
4.63 6.39 | 3-3
2-2 | 3 | 6855.74
6833.24
6676.86 | V
V
P | 1 0 | 4.59
4.63
4.54 | 6.42 | 2-2
1-1
3-2 | | 6960.334
6926.40 | y
P | 2
© | 4.57
4.56 | 6.35
6.35 | 4-4
3-4 | d ³ F-4°
(1222) | | 1 | ©
5 | 4.63 6.43
4.53 6.39 | 2-2
4-3 | | 6717.556
7071.88 | | 3 | 4.59 | 6.42 | 2-1
2-3 | | *6947.501 | V | 3 | 4.57 | 6.35 | 4- | d ³ F-5°
(1224) | | ; | 5
5 | 4.59 6.43
4.63 6.45 | | | 6976.306 | | 1 | 4.62 | 6.39 | 1-2 | | 6854.82 | A | 2 | 4.57 | | 4-5 | d3F-6°
(1224a)
d3F-u3G° | | , | ©
(1n) | 4.53 6.55
4.59 6.59 | 4-5
3-4 | y ³ F°-g ⁵ F
4 (1175) | 6841.349
6828.610 | I | 150
80
50 | 4.54
4.59
4.62 | 6.39 | 3-4
2-3
1-2 | (1195) | 6977.445
6804.37
6716.24 | Å. | 4
3
3 | 4.57
4.56
4.56 | 6.38 | 4-5
3-4
2-3 | (1225) | | ; | 6
(1) | 4.53 6.59
4.59 6.65 | 4-4 | | 6663.26
*6713.14 | A
A | (1)
6d | 4.54 | 6.39 | 3-3 | | 6837.00
6732.06 | o
V | 3
1 | 4.57
4.56 | 6.38 | 4-4
3-3 | | | ; | (2n) | 4.63 6.70
4.59 6.70 | 3-2 | 3 | 6752.724
6541.49 | P | 10 | 4.62 | 6.45 | 1-1
3-2 | 1 | 6764.13 | P | 0 | 4.57 | 6.40 | 4-3 | | | , | (2w,d |) 4.63 6.71
4.63 6.66 | | ~ ~ | 6639.71
6733.164 | P
L | 6 | 4.59
4.68 | | 2-1
1-0 | | 6785.76
6769.66 | P
P | 0 | 4.56
4.56 | | 3-2
2-2 | | | ļ | (1)
(1)
(2) | 4.53 6.61
4.59 6.66 | 4-3 | 3 (1176) | 6753.45
6936.48 | P | 00 | 4.54 | 6.37 | 3-3
2-3 | | 6761.07
6745.11 | P
V | ©
1 | 4.56
4.56 | | 3-2
2-2 | | | , | 0 | 4.63 6.68
4.59 6.56 | 2-: | | 6633.764 | . K | 50 | 4.54 | 6.40 | 3-3 | у5ро _{-е} 5р | 6699.14 | ٧ | .2. | 4.57 | 6.42 | 4-3 | d3F-u3De | | , | {1
1} | 4.59 6.61
4.63 6.66 | | | 6705.117
6842.668 | I | 15n
6n | 4.59 | 6.43 | 2-2
1-1 | (1197) | 6667.73 | ٧ | (1) | 4.56 | 6.42 | 3-3 | (1228) | | : | 15 | 4.53 6.58 | | | 6533.97
6726.668
6810.28 | | 8n
20n
20n | 4.54
4.59
4.59 | 6.43 | 3-2
2-1
3-3 | Į. | 6591.32
6364.717 | A
A | (1) | 4.57
4.56 | | 4-3
3-2 | | | : | 10n
(3n) | 4.59 6.64
4.63 6.69 | 3- | 4 (1178)
3 | 6820.43 | Ó | 8n | 4.63 | 6.43 | 1-2 | 3 | 6306.19 | P | 0 | 4.57 | | 4-5 | (1230) | | , | (2n)
© | 4.53 6.64
4.59 6.69 | 3- | 3 | 6012.75
5995.93 | P | 000 | 4.5 | 6.65 | 3-4
2-3 | 3 (1198) | 6271.52
5926.83 | P
P | 0 | 4.56
4.56 | | 3-2
2-1 | d3F-v3Pe | | i | 0
0 | 4.53
6.69
4.59 6.71 | 3- | | 5933.80
5715.80 | P | 0 0 | 4.6 | | 1-2
3-2 | | 6016.95 | P | 0 | 4.57 | | 4-3 | d3F-v1Fe | | | | | | | | | | | | | | 5991.58 | P | 0 | 4.56 | 6.62 | 3-3 | (1232) | | REV | ISED | MULTI | PLET | TABLE | |-----|------|-------|------|-------| | | | | | REV. | SE | D M t | LTI | PLE | T T | ABLE | | | | | | | |--------------------------|---|---------------------------------|--|---|-----------------------|---------------------------|--------------------------------------|--------------------------------------|---------------------------------|--|--|------------------|----------------------------|---|---------------------------------|--| | ory
f Int
ued | E P
Low High | J | Multiplet
(No) | Labor
I A
Fe I con | ator;
Ref | Int | E 1 | P
High | J | Multiplet
(No) | Labor
I A
<u>Fe I</u> cont | Ref | Int | E P
Low High | J | Multiplet
(No) | | 0 0 | 4.56 6.64
4.56 6.64 | 3-3
2-3
4-5 | d ³ F-x ¹ F° (1233)
d ³ F-t ³ G° | 5984.805
5987.057
*5975.355
6170.492 | K
K
J
K | 8
6
4
4n | 4.71
4.77
4.81
4.77 | 6.77
6.84
6.88
6.77 | 3-2
2-1
1-0
2-2 | y ³ D°-e ³ P
(1260) | 7386.394
7351.56
7300.47
7495.67 | L
V
O
P | 8n
4
1n
© | 4.89 6.56
4.93 6.61
4.97 6.66
4.97 6.61 | 4-3
3-2
2-1
2-2 | x ⁵ D°-f ⁵ P
(1275) | | (1)
©
(1)
(1) | 4.57 6.66
4.56 6.70
4.56 6.74
4.57 6.70
4.56 6.74 | 3-4
3-3
4-4
3-3 | (1234) | 6103-190
6293.92 | K
P | 3
© | 4.81 | 6.84 | 1-1
1-3
- | _x 5p•_e ⁷ F | \$7320.694\$
7344.86
7176.886
7155.64 | L
V
V | 5n
2n
2n
3n | 4.89 6.58
4.93 6.64
4.97 6.69
4.99 6.71 | 4-5
3-4
2-3
1-2 | x ⁵ D°-f ⁵ G
(1276) | | (1)
©
(1) | 4.57 6.67
4.56 6.67
4.57 6.67 | 4-3
3-3
4-5 | d ³ F-11°
(1235)
d ³ F-12° | m8920.02
*9157.08
9328.64
8643.29
9006.72 | P | Fe
(2)
©
0 | 4.97
5.00
4.89
4.97 | 6.31
6.32
6.32
6.34 | 2-3
0-1
4-4
2-2 | (1261) | 7068.60
7044.60
7068.02 | P
O
P | (1)
© | 4.89 6.64
4.93 6.69
4.97 6.71 | 4-4
3-3
2-3 | 5-2 7- | | ©
© | 4.57 6.70
4.56 6.70 | 4-4
3-4 | (1236)
d ³ F-13°
(1236a)
d ³ F-v ³ H° | 9253.72
9298.05
9178.57 | P
P
F
P | 0
1n | 4.89
4.89
4.93
4.99 | 6.32
6.32
6.38
6.30 | 1-1
4-5
3-3
1-1 | x ⁵ D°-f ⁷ D
(1262) | 7083.396
7091.91
7066.15
7079.32 | V
P
P | (1)
©
© | 4.89 6.63
4.93 6.67
4.97 6.71
4.89 6.64 | 4-5
3-4
2-3
4-3 | x ⁵ D°-e ³ G
(1277)
x ⁵ D°-f ³ D | | ©
©
(-) | 4.57 6.84
4.56 6.84
4.56 6.88 | 4-5
3-4
3-2 | (1237)
d ³ F_w ¹ D°
(1238) | 9392.77
9242.32
9259.05
9462.97 | F
F | ©
2
15
2 | 4.97
4.89
4.93 | 6.30
6.22
6.24 | 2-1
4-4
3-3 | x ⁵ D°-1 ⁵ D
(1263) | 7091.83
7031.42
7256.13
7225.82 | O
P
P | (1)
©
(1)
© | 4.93 6.67
4.97 6.72
4.93 6.64
4.97 6.67 | 3-2
2-1
3-3
2-2 | (1278) | | 0 000 | 4.56 6.89
4.57 6.90
4.56 6.90
4.56 6.93 | 3-3
4-5
3-4
2-3 | d ³ F-w ¹ F°
(1239)
d ³ F-8 ³ G°
(1240) | 9550.90
9164.51
9318.13
9388.28
*9452.45 | 4
4
4
4 | (1)
3
3n
2 | 4.97
4.89
4.93
4.97
4.99 | 6.24
6.26
6.28
6.29 | 3-2
4-3
3-2
3-1
1-0 | | 7118.12
7396.50
7317.40
7162.37 | P
P
P | 0 0 0 0 | 4.99 6.72
4.97 6.64
4.99 6.67
5.00 6.72 | 1-1
2-3
1-2
0-1 | | | 0 | 4.57 6.96
4.57 6.99 | 4-5
4-4 | d ³ F-u ³ H°
(1241)
d ³ F-u ³ F° | 9214.45
9394.71
9404.80 | F
F
P | 6
3n
© 1 | 4.89
4.93
4.97 | 6.23
6.25
6.28 | 4-4
3-3
2-2 | x ⁵ D°-e ⁷ P
(1364) | 6639.35
6794.60
6712.44 | P
P
P | 000 | 4.89 6.75
4.93 6.75
4.97 6.81 | 4-4
3-4
2-3 | x ⁵ D°-f ³ F
(1279) | | | 4.56 7.01
4.56 7.02
4.56 6.99
4.57 7.10 | 3-3
2-2
3-4
4-4 | (1242)
d ³ F-t ³ F° | 9100.50
9024.47
*9080.48
9116.89 | F
F
P | 5n
15
3n
© | 4.89
4.89
4.93
4.99 | 6.25
6.26
6.29
6.34 | 4-5
3-4
1-2 | x ⁵ D°-e ⁵ G
(1365) | m6705.13
6601.13
6524.76
6824.82
6677.49 | P. P. P. P. P. | Fe 0000 | 4.93 6.77
4.97 6.84
4.99 6.88
4.97 6.77
4.99 6.84 | 3-2
3-1
1-0
2-3
1-1 | x ⁵ D°-e ³ P
(1280) | | ©
©
© | 4.56 7.12
4.56 7.12
4.57 7.12
4.57 7.40 | 3-3
2-2
4-3
4-5 | (1243)
d ³ F-r ³ G° | 8805.21
8887.10
8616.27
8796.42 | P
P
P | 00 | 4.89
4.89
4.89
4.93 | 6.29
6.32
6.34 | 4-4
3-3
4-5
3-4 | x ⁵ D°-e ⁷ G
(1266) | 5531.949
5602.54
5634.53
5496.57 | U
P
P | (1)
©
© | 4.89 7.12
4.93 7.14
4.97 7.16
4.89 7.14 | 4-4
3-3
2-2
4-3 | x ⁵ D°-1 ⁵ D
(1281) | | 000 | 4.57 7.47
4.56 7.50 | 4-5
3-4 | (1244)
d ³ F ₋ t ³ H°
(1245) | 8902.94
8978.04
8538.02
8700.34 | P
P
P | 0000 | 4.97
4.99
4.89
4.93 | 6.35
6.36
6.34
6.35 | 2-3
1-2
4-4
3-3 | (1500) | 5552.70
5685.86
5690.07 | P
P | 000 | 4.93 7.16
4.97 7.14
4.99 7.16 | 3-2
2-3
1-2 | 5 -2 | | 5
1
© | 4.71 5.85
4.77 5.90
4.71 5.90 | 3-4
2-3
3-3 | y ³ D°-e ⁵ F
(1246) | 8956.26
8447.41
8819.42
8710.29 | P
P
P | 0
0
0
20n | 4.99
4.89
4.97 | 6.37
6.35
6.37 | 1-1
4-3
2-1
4-5 | x ⁵ D°-f ⁵ F | 5479.95
5559.64
5613.70 | P
P | 000 | 4.93 7.19
4.97 7.19
4.99 7.19 | 3-2
2-3
1-3 | x ⁵ D°-4
(1383) | | 100
80
60
20 | 4.71 5.92
4.77 5.99
4.81 6.04
4.71 5.99 | 3-4
2-3
1-2
3-3 | y ³ D°-e ³ F
(1247) | 8699.43
8790.62
8846.82
8876.13 | 0
7
7 | (4n)
10n
5
2 | 4.93
4.97
4.99
5.00 | 6.35
6.37
6.38
6.39 | 3-4
2-3
1-2
0-1 | (1267) | 9602.07
8863.64
9382.93 | F
F
P | 2
1p?
3n | 4.99 6.28
4.94 6.34
4.96 6.28 | 4-5
2-2
3-3 | y ⁷ P°-e ⁷ F
(1283)
y ⁷ P°-f ⁷ D | | 10
© | 4.77 6.04
4.71 6.04
4.77 6.31 | 2-3
3-2
2-2 | y ³ D°-e ⁵ S
(1249)
y ³ D°-e ³ D | 8446.56
8592.97
*8713.19
8808.17
8519.05 | P O F P P | (2n)
10
4n
© | 4.89
4.93
4.97
4.99
4.93 | 6.35
6.37
6.38
6.39
6.38 | 4-4
3-3
2-2
1-1
3-2 | | 9944.13
9608.89
9248.80
9811.36 | F
P
P | 3n
©?
©
2 | 4.99 6.23
4.96 6.25
4.94 6.28
4.99 6.25 | 4-4
3-3
2-2
4-3 | (1284)
y?pe_e7p
(1285) | | 25
6
©
1
(1) | 4.71 6.33
4.77 6.39
4.81 6.42
4.71 6.39
4.77 6.42 | 3-3
2-2
1-1
3-2
2-1 | y3D°_e3D
(1250) | *9157.07
8567.78
8493.79 | P
P
P | (a)
o | 4.97
4.89
4.93 | 6.31
6.33
6.39 | 2-2
4-3
3-2 | x ⁵ D°-e ⁵ S
(1268)
x ⁵ D°-e ³ D
(1269) | 9383.40
8967.53
8798.05
8679.61 | PPP | 0 0 0 | 4.96 6.28
4.99 6.37
4.96 6.37
4.94 6.37 | 3-2
4-3
3-3
2-3 | y [?] P°-e [?] 8
(1286) | | ©
2 | 4.77 6.33
4.81 6.39
4.71 6.39 | 2-3
1-2
3-3 | y ³ D°-g ⁵ D | 8466.10
8828.08
8686.77
8592.10 | P
P
P | 0000 | 4.97
4.93
4.97
4.99 | 6.42
6.33
6.39
6.42 | 2-1
3-3
2-2
1-1 | (1200) | 7909.60
6813.55 | P
P | ©1
©1 | 4.99 6.55
4.96 6.77 | 4-5
3-2 | y ⁷ P°_g ⁵ F
(1387)
y ⁷ P°_e ³ P | | (1)
1n
©
© | 4.77 6.43
4.81 6.45
4.71 6.43
4.77 6.45 | 2-2
1-1
3-2
2-1 | (1251) | 9036.74
8819.48
8656.67
8526.685 | P
P
P | (1)
©
©
8 | 4.97
4.99
5.00
4.89 | 6.33
6.39
6.42
6.34 | 2-3
1-2
0-1
4-4 | x ⁵ D°-g ⁵ D | 6245.84
5678.04
5748.15 | V
P
P | (1)
©?
©? | 4.99 6.97
4.96 7.14
4.99 7.14 | 4-5
3-3
4-3 | (1288)
y?P°-1
(1289)
y?P°-15D
(1290) | | ⊙
50n
15n | 4.71 6.43
4.71 6.59
4.77 6.65 | 3-2
3-4
2-3 | y ³ D°-e ⁵ P
(1252)
y ³ D°-g ⁵ F
(1253) | 8471.75
8459.01
8465.23
8275.91 | O
P
P | 2
0
0
4n | 4.93
4.97
4.99
4.93 | 6.39
6.43
6.45
6.43 | 3-3
2-2
1-1
3-2 | (1270) | 5720.79 | P | (in) | 4.99 7.15 | 4–5
- | y [?] p°_h [?] D
(1291) | | ©
Fe+
3
(1) | 4.71 6.65
4.77 6.70
4.81 6.71
4.77 6.71 | 3-3
2-2
1-1
2-1 | | 8342.95
8434.51
8784.44
8663.73
8584.82 | RPFPP | (-)
0 5 0 0 | 4.97
4.99
4.93
4.97
4.99 | 6.45
6.45
6.34
6.39
6.43 | 2-1
1-0
3-4
2-3
1-2 | | 9913.19
9763.913
9658.94
*9868.09
9800.79 | PEFFP | ©
15
3
3
© | 4.97 6.21
5.01 6.28
5.04 6.32
5.06 6.31
5.08 6.34 | 5-6
4-5
3-4
2-3
1-2 | x ⁵ F°-e ⁷ F
(1393) | | (1)
(1n)
© | 4.71 6.56
4.81 6.68
4.71 6.66
4.77 6.68 | 3-4
1-1
3-3
2-1 | y ³ D°-h ⁵ D
(1254) | 8369.87
8816.86 | P
P
P | 0 | 4.89
4.97 | 6.45
6.37
6.37 | 0-1
4-3
2-3 | x ⁵ D°-e ⁷ S
(1271) | *9452.45
9433.29
*9699.70
9693.69 | r
P
F
P | 2
©
6n
1 | 4.97 6.28
5.01 6.32
5.04 6.31
5.06 6.34 | 5-5
4-4
3-3
2-2 | | | 3n
©
.© | 4.71 6.56
4.77 6.61
4.01 0.00
4.71 6.61 | 3-3
2-2
1-1
3-2 | y ³ D°-f ⁵ p
(1255) | 8186.80
8263.86
8480.63
8424.14 | 0
P
P | 10nd?
O
&
2n |
4.93
4.97
4.93 | 6.40
6.43
6.42
6.40 | 4-3
3-2
2-1
3-3 | x ⁵ D°-e ⁵ P
(1272) | 9920.46
9531.22
9878.18
9977.52 | P
P
F | 0
0
0 | 5.08 6.32
5.04 6.34
4.97 6.33
5.04 6.38 | 1-1
3-2
5-5
3-3 | x ⁵ F°-r ⁷ D
(1293) | | (1)
©
1n
© | 4.77 6.66
4.81 6.61
4.71 6.64
4.77 6.69 | 3-1
1-2
3-4
2-3 | | 8446.43
8607.08
8613.93
8571.84
8671.86 | ዋ ዋ ዋ ዋ | 0000 | 4.97
4.99
4.97
4.99
5.00 | 6.43 | 2-2
1-1
2-3
1-2
0-1 | | 10016.67
10080.44
9967.32
9834.04 | P
P
P | 0
0
0 | 5.06 6.30
5.08 6.30
5.06 6.30
4.97 6.22 | 2-2
1-1
3-1
5-4 | x ⁵ F°-1 ⁵ D | | ©
© | 4.71 6.69
4.71 6.71
4.71 6.70 | 3-3
-3-2
3-4 | v3no_e5u | 7440.98
7447.43
7351.160 | Λ
Λ | 2n
1
2n | 4.89
4.93
4.97 | 6.55
6.59
6.65 | 4-5
3-4
2-3 | x ⁵ D°-g ⁵ F
(1273) | 10057.04
10142.82
10137.06
10149.09 | F P P | 3n
3
2
0
0 | 5.01 6.24
5.04 6.26
5.06 6.28
5.08 6.29 | 3-2
3-2
2-1
1-0 | (1894) | | 30n
20n
15n
3n | 4.71 6.64
4.77 6.67
4.81 6.72
4.71 6.67 | 3-3
2-2
1-1
3-2 | (1258) | 7216.68
7194.92
7261.29
7212.47
7127.58 | P
O
P
V
P | ©
1
0
1n
0 | 4.99
5.00
4.89
4.93
4.97 | 6.70
6.71
6.59
6.65
6.70 | 1-2
0-1
4-4
3-3
2-2 | | 9783.96
9980.55
10117.81 | F
F
P | 3
2n
© | 4.97 6.23
5.01 6.25
5.01 6.23 | 5-4
4-3
4-4 | x ⁵ F°-e ⁷ P
(1295) | | (1n)
4n
4n | 4.77 6.72
4.77 6.64
4.81 6.67
4.71 6.75 | 2-1
2-3
1-2 | | 6997.13
7062.80
7389.34 | P
P | 0 | 4.93
4.97
4.89 | 6.70
6.71
6.56 | 3-2
3-1
4-4 | | 9738.624
9889.082
9861.793
9800.335 | | 200
40
30
20 | 4.97 6.24
5.01 6.26
5.04 6.29
5.06 6.32 | 5-6
4-5
3-4
2-3 | x ⁵ F°-e ⁵ G
(1296) | | 4n
5
(1) | 4.77 6.81
4.81 6.84
4.71 6.81 | 3-4
2-3
1-2
3-3 | (1259) | 7353.96
7278.48
7282.39
7181.93
7142.522 | 0
P
V
V | 1n
©
1n
1n
4n | 4.93
4.97
4.99
4.89
4.93 | 6.66
6.68
6.61
6.66 | 3-3
2-2
1-1
4-3
3-2 | | 9763.450
9569.960
9626.562
9634.22
9657.30 | HHHKK | 15
40n
30n
5
4 | 5.08 6.34
4.97 6.26
5.01 6.29
5.04 6.32
5.06 6.34 | 1-2
5-5
4-4
3-3
2-3 | | | | | | | 7191.66
7582.15
7508.53 | O
P
P | (1)
©
© | 4.97
4.93 | 6.68 | 2-1
3-4
2-3 | | 9409.55 | P | © | 5.01 6.32 | 4-3 | | | itor | | EP | | J | Multiplet | Labor
I A | rator
Ref | y | F F | P
H1gh | J | Multiplet
(No) | Labor
I A | rator
Ref | | F I | High | J | Multiplet
(No) | |--------|-------------|--------------|----------------------|-------------------|--|-----------------------|--------------|-------------------|--------------|--------------|--------------|--|---------------------------------|--------------|------------------|--------------|--------------|------------|--| | lnue | Int | Low 1 | High | | (No) | Fe I con | | | Ton | итеп | | (110) | Fe I cont | | | 2011 | | | (110) | | F | 2 | 4.97 | 6.29 | 5-6 | x ⁵ F°-e ⁷ G | 5732.29 | P | 0 | 4.97 | 7.13 | 5-4 | x ⁵ F°-1 ⁵ D | 10353.85 | P | (2n) | | 6.56 | 4-4 | w ⁵ D°-h ⁵ D | | F
P | 10n
1 | 5.01
5.04 | 6.32
6.34 | 4-5
3-4 | (1297) | 5805.76
5835.41 | P | (<u>1</u>) | 5.01
5.04 | 7.14 | 4-3
3-2 | (1313) | 10388.73
10283.87 | P
P | 0 | 5.48 | 6.61
6.68 | 3-3 | (1346) | | P
P | 0 | 5.06
4.97 | 6.35
6.32 | 2-3
5-5 | | 5845.27
5890.48 | P | 000 | 5.01 | 7.12 | 3-3 | | 9951.15
9953.45 | P
P | 0 | 5.37
5.42 | 6.61
6.66 | 4–3
3–2 | | | F
P | 8 | 5.04 | 6.34
6.35 | 4-4
3-3 | | 5952.19
5633.970 | P
V | ©
(2) | 5.06
4.97 | 7.14
7.16 | 2-3
5-6 | x ⁵ F°-g ⁵ G | 10348.16
10364.13 | F
P | 4n
© | 5.37
5.42 | 6.56
6.61 | 4-3
3-8 | w5pe_f5p
(1347) | | P
F | ⊙
5n | | 6.34
6.31 | 5-4
5-5 | x ⁵ F°_f ⁵ F | *5655.506
5655.179 | v
V | 4 | 5.01 | 7.19 | 4-5
3-4 | (1314) | 10153.30 | P | ٠ | 5.42 | 6.64 | 3-4 | ₩5D°_£5G | | F
P | 2n | 5.01 | 6.35
6.37 | 4-4
3-3 | (1298) | 5650.71
5650.01 | Ņ
V | (2)
(1)
(1) | 5.06
5.08 | 7.25 | 2-3
1-2 | | 10019.77 | P
P | 0 | 5.45 | 6.69 | 2-3 | (1348) | | P
P | in
© | 5.08 | 6.39
6.35 | 1-1
5-4 | | 5549.66
5577.03 | P
P | 0 | 4.97
5.01 | 7.19
7.22 | 5~5
4~4 | | 9764.40 | P | • | 5.42 | 6.69 | 3-3 | | | F
P | 3n
⊙ | 5.04 | 6.37
6.38 | 4-3
3-2 | | 5595.06
5614.29 | P | 0 | 5.04 | 7.25
7.26 | 3-3 | | 6943.67 | P | ©1
 | 5.37 | 7.15 | 4–5
- | w ⁵ D°-h ⁷ D
(1349) | | E
F | 10n
20n | 5.04 | 6.31
6.35 | 4-5
3-4 | | 5474.09
5518.57 | P
P | 0 | 4.97
5.01 | 7.22
7.25 | 5-4
4-3 | | 10925.80 | מ | 1 | 5.46 | 6.59 | 5-4 | ₩ ⁵ F°_g ⁵ F
(1350) | | F | 10n
4n | | 6.37
6.38 | 2-3
1-2 | | 11479.87 | P | | 5.00 | 6.08 | -
3-2 | a1F-v3De | 7430.73 | 0 | (1) | 5.46 | 7.12 | 5-4 | w5r°_15p
(1351) | | F | 6n
3 | | 6.31
6.31 | 3-2
2-3 | x ⁵ F°-e ⁵ S
(1299) | 10875.00 | -
P | 0 | 5.00 | 6.14 | 3-4 | (1315)
a1F-y3H° | 7526.72
7537.97 | P
P | 0 0 | 5.48
5.50 | 7.12
7.14 | 4-4
3-3 | v5D°_15p
(1352) | | F | 3 | | 6.33 | 4-3 | x ⁵ F°-e ³ D | 9917.93 | F | 2 | 5.00 | 6.25 | 3-4 | (1316)
alf_x10° | 7461.28
7448.00 | P
P | 00 | 5.48
5.50 | 7.14
7.16 | 4-3
3-2 | | | P | 4nd
2 | 5.06 | 6.39
6.43 | 3-3
2-1 | (1300) | 8852.30 | P | © ? | 5.00 | 6.40 | 3-2 | (1317)
a1F-u5Fe | | | | | | | | | O
P | (1)
© | | 6.39
6.39 | 2-2
1-2 | | 9482.82 | P | 01 | 5.00 | 6.31 | 3-4 | (1318)
alf_t5po
(1319) | | | | | | | | | E
E | 30
20 | | 6.34
6.39 | 5-4
4-3 | x ⁵ F°-g ⁵ D
(1301) | 8959.88 | P | ଫ | 5.00 | 6.38 | 3-3 | alr_u5po
(1320) | Additions | to k | fultiple | ts of F | e I | | | | ī
T | 10 | 5.04 | 6.43 | 3-2 | (1001) | 8559.98 | W | (1) | 5.00 | 6.45 | 3-3 | alF_t3D0
(1321) | 4232.724 | γ. | 1 | 0.11 | | 1-2 | a5D-z?pe | | F | 3 | 5.08 | 6.45 | 1-0
4-4 | | 8171.30 | P | 0 | 5.00 | 6.51 | 3-4 | a1F_w3H°
(1322) | m3199.50 | P | Fe | 0.11 | 3.97 | 1-2 | (3)
a5D-z3F° | | E | 5n
2 | 5.04
5.06 | 6.39
6.43 | 3-3
3-3 | | 7846.47 | P | ଦୀ | 5.00 | 6.58 | 3-2 | 1523)
(1323)
a1F-t3G0 | 3418.507 | G- | 10 | 2.31 | 5.82 | 1-0 | a ⁵ p-u ⁵ p• | | F
P | 2 | | 6.45
6.43 | 1-1
1-2 | | 7107.30 | P
W | (2)
⊙ | 5.00 | 6.74 | 3-3
3-3 | (1324)
alr-wire | | | | | | | (81) | | P
P | 0 | | 6.40
6.43 | 4-3
3-2 | x ⁵ r°_e ⁵ p
(1302) | 6552.77
6124.08 | "
P | (2)
© | 5.00 | 7.03 | 3-2 | (1325)
alr-u3r | Strongest | Uncl | assifie | d Lines | of Fe | I | | | P | © | 4.97 | 6.55 | 55 | x ⁵ F°-g ⁵ F | 6089.566 | L | (1) | 5.00 | 7.03 | 3-4 | (1326)
alf-vlge | 9666.59
9637.55 | F | 2 | A. | | | | | P
P | 0 | 5.06 | 6.59
6.70 | 4-4
3-3 | (1303) | 5041.32 | P | 0 | 5.00 | 7.45 | 3-3 | (1327)
alf-r3G° | 9529.31
9430.08 | F | 2n
3 | IÅ. | | | | | P | 000 | 5.04 | 6.65
6.70
6.59 | 4-3
3-2 | | 9008.37 | F | 2 | 5.05 | 6.43 | -
3-3 | (1328)
X-u ³ D° | 8145.47
8024.50 | 0 | 4
3n | v
v | | | | | P
P | 0 | | 6.65 | 3-4
2-3 | | 8814.50 | P | 2 | 5.05 | 6.45 | 3-3 | (1329)
X-t ³ D° | 7994.473
7808.04 | E | 20
6n | ıv. | | | | | O
P | 5n
© | | 6.56
6.61 | 5-4
4-3 | x ⁵ F°-h ⁵ D
(1304) | 8689.83
8464.02 | P
P | õ | 5.08
5.05 | 6.50
6.50 | 2-2
3-2 | (1330) | 7573.53
7546.177 | Ŏ
L | 2n
4 | IA. | | | | | P | ©
(1) | 5.04
5.01 | 6.66
6.56 | 3-2
4-4 | | 8300.01 | P | 0 | 5.05 | 6.53 | 3-2 | X-v3Pe | •7376.4349 | R | 3n | <u>v</u> | | | | | P | 000 | 5.08 | 6.66 | 2-2 | | 8274.28 | 0 | 6 | 5.05 | 6.54 | 3-3 | (1331)
X-s ³ D°
(1332) | 7254.649
6975.46
6902.80 | A
A | 2
3n | V
V | | | | | P
O | ©?
(1) | | 6.61 | 2-3
4-3 | x ⁵ F°-1 ⁵ P | 8264.27
6700.90 | M
P | 3
⊙ | 5.08 | 6.58
6.89 | 2-2
3-3 | X-w1F° | 6881.46 | М | 3n
1 | Ÿ | | | | | P
P | 4n
© | 5.04 | 6.61 | 3-2 | (1305) | 6841.65 | P | ŏ | 5.08 | 6.89 | 2-3 | (1333) | 6838.86
6793.62 | N
A | 3n
1 | V
V | | | | | P | 0 | 5.06 | 6.61
6.66 | 2-2
1-1 | | 6406.42 | ₩ | (1) | 5.08 | 7.01 | | X-u ³ F•
(1334) | 6755.609
6726.78 | V
D | (3) | IV. | | | | | 0 | 4n | | 6.56 | 5-6 | x5F0_f5G | 6217.288 | ٧ | (1) | 5.05 | 7.03 | 3-4 | X-v1Ge (1335) | 6609.56 | A
A | . 1 | v | | | | | P
P | 1
0
0 | 5.04 | 6.58
6.64
6.71 | 4-5
3-4
1-2 | (1306) | 10013.15 | P | Ó | 5.05 | 6.28 | Ż – 1 | z ⁵ S°-f ⁵ D
(1336) | 6528.53
6501.681
6042.092 | y
J | 4 2 | IÅ* | | | | | P
P | 000 | 5.01 | 6.64 | 4-4
3-3 | | 9683.57 | F | 1 | 5.05 | 6.32 | 2-3 | z5S°-e5G | 5036.294
4552.544 | Ř
J | 6
(3) | • | | | | | P | 0 | 5.06 | 6.71
6.64 | 2~2
5-4 | | 9335.27
9248.13 | P
P | 0 | 5.05
5.05 | 6.37
6.38 | 2-3
2-2 | (1337)
z550-f5F
(1338) | 4237.162 | J | 3 | v | | | | | p | © | | 6.65 | 4-5 | x ⁵ F°-e ⁵ H | °7148.69 | R | (-) | 5.05 | 6.77 | 2-2 | 25s-e3p | 4100.17
3851.58 | ₩ | (3)
(4) | | | | | | P
P | 000 | | 6.70
6.73 | 3-4
2-3
5-5 | (1307) | 5853.48 | P | 07 | 5.05 | 7.16 | 2-2 | (1339)
z ⁵ 5°-1 ⁵ D
(1340) | 3739.527
3681.774 | J
V | 3
1 | IA | | | | | P | 9 | | 6.73 | 4-3 | | 10890.13 | P | ©? | 5.29 | 6.42 | -
2-1 | x ⁵ P°-e ³ D | 3650.801
3656.227 | A
A | 1
3n | ΙV | | | | | P
P | 0 0 | 4.97
5.04 | 6.63
6.71 | 5-5
3-3 | x ⁵ F°-e ³ G
(1308) | 11542.96 | P | ©? | 5.32 | 6.39 | 1-2 | (1341) | 3634.698
3617.317 | Ġ | 4n
2 | IA |
| | | | 0 | 2n
1n | 5.01
5.04 | 6.67 | 4-5
3-4 | | 9233.15 | р | {1}
{1} | 5:30 | 6.63 |
5-5 | y ⁵ G°-e ³ G | 3616.572 | J | 3n | IA | | | | | P
P | ⊚
⊙ | 5.06
5.06 | 6.71 | 2-3 | x5F0_f3D | 9052.56 | P | | 5.31 | | 4-4 | (1342)
y ⁵ G°-h ⁷ D | 3614.550
3567.758 | 7.
G | 2n
3 | IA | | | | | P
P | 900 | 5.06
5.06 | 6.64 | 2-1
3-3
2-2 | (1309) | . 6671.36
6450.99 | ₩ | (2) | 5.30 | 7.15 | 5-5
4-4 | 1343)
y5G°-g5G | 3506.40
3438.306
3262.284 | A
A
A | (3)
(3w)
4 | IV | | | | | p | 6 | 4.97 | | 5-6 | x°F°-e3H | 6402.43 | P | {1
1} | 5.33 | 7.26 | 2-21 | (1344) | 3179.538 | v | 3 | IA | | | | | P | 00 | 5.01 | | 4-5
4-4 | (1310) | 10555.63 | P | • | 5.48 | 6.59 | -
3-4 | w5p°-85₽ | 3139.908
3130.17 | V
W | 4n
(3) | ٧ | | | | | ٧ | (1) | 5.04 | 6.75 | 3-4 | x5F0_f3F | 10362.73
10070.58 | P | 00 | 5.45
5.49 | 6.65
6.71 | 2-3
0-1 | w ⁵ D°-g ⁵ F
(1345) | 3126.175
3102.71 | G-
W | 8n
(4) | IA | | | | | V
G | 3 | | 6.81 | 2-3 | (1311)
5ma z | 10022.34
9676.42 | P
F | 0 | 5.48
5.37 | 6.71
6.65 | 1-1
4-3 | | 2991.632 | G- | 5n | IA | | | | | P | ତ
ତୀ | 4.97
5.01 | 7.02 | 5-4
4-4 | x ⁵ F°-3
(1312) | | | | | | | | | | | | | | | | .y
Int | EP J Multiplet | Laboratory
I A Ref Int | EP J Multiplet | Iaboratory
I A Ref Int | E P
Low High | J Multiplet (No) | |-------------------------------------|---|--|---|--|---|---| | 3.16
9
4
(1)
1 | Anal A List A July 1941 0.98 4.75 3 4 4 4 4 1 2 4 1 2 1 2 1 1 1 1 1 1 1 1 1 | Fe II continued
4602.75 P
4582.12 P
4515.19 P | 2.53 5.21 2 2 2 2 (19) 2.53 5.27 2 2 2 2 (19) 3.53 5.27 2 2 2 2 2 | Fe II continued 5100.66 P 5130.34 P 5136.788 A tr 5150.93 P | 2.79 5.21
2.82 5.23
2.83 5.23
2.84 5.24 | 41-31 b4F-z6F0
31-22 cont
21-12 12-2 | | 8
7
6
4 | 0.98 4.77 35-35
1.04 4.80 25-25
1.07 4.82 15-15
1.09 4.83 5-5
0.98 4.80 35-25 | 4558.58 P
4399.86 P
4480.46 P
4327.04 P | 2.63 5.34 13-23 (20)
2.53 5.34 23-23
2.63 5.39 13-13
2.53 5.39 23-13 | 4993.355 A 1
4893.780 A On
•5036.93 § B 2 | 2.79 5.27
2.82 5.34
2.83 5.27 | 4½-3½ b ⁴ F-z ⁶ po
3½-3½ (36)
3½-3½ | | 0
(3)
11
10
8
5
5 | 1.04 4.83 25-15
1.07 4.83 15-15
1.07 5.21 25-25
1.09 5.23 15-25
1.09 5.23 15-25
1.09 5.24 15-25
1.07 5.24 15-25 | 4177.70 P
4258.35 P
4119.53 P
4211.80 P
4075.95 P
4183.20 P
4124.793 A 1
4205.48 P | 2.53 5.49 23-31 a ² D-z ⁴ D ⁰ 2.63 5.53 13-32 (21) 2.63 5.55 13-12 2.63 5.56 13-12 2.63 5.56 13-12 2.63 5.56 13-12 2.63 5.57 13-22 (22) 2.63 5.57 23-23 (22) 2.63 5.59 13-12 2.63 5.59 13-12 2.63 5.59 13-12 | 4629.336 A 7
4555.590 A 8
4515.337 A 7
4491.401 A 5
4520.225 A 7
4489.185 A 4
4472.921 A 2
4686.750 A 2
4582.835 A 3 | 2.79 5.46
2.82 5.52
2.83 5.57
2.84 5.59
2.79 5.52
2.82 5.57
2.83 5.57
2.83 5.46
2.83 5.46 | 42-42 b4F-24F0 35-35 (37) 36-325 45-35 45-35 35-45 35-45 35-45 | | 2 | 1.66 4.77 $3\frac{1}{2}-3\frac{1}{2}$ 4^4P-2^6 P^6 1.69 4.80 $1\frac{1}{2}-3\frac{1}{2}$ (3) 1.72 4.82 $\frac{1}{2}-\frac{1}{2}$ 1.66 4.80 $\frac{3}{2}-2\frac{1}{2}$ 1.67 4.83 $\frac{1}{2}-\frac{1}{2}$ 1.68 4.83 $\frac{1}{2}-\frac{1}{2}$ 1.68 4.83 $\frac{1}{2}-\frac{1}{2}$ 1.69 4.83 $\frac{1}{2}-\frac{1}{2}$ | 4070.03 P
4168.66 P
4035.54 P
3779.58 P
3833.02 P
3720.17 P
3798.60 P
3896.11 P | 3.53 5.57 3\$-3\$
2.63 5.59 1\$-1\$
2.53 5.59 2\$-1\$
2.53 5.80 3\$\frac{1}{2}\$ \$\frac{1}{2}\$ \$\frac{1}{ | 4534.166 A 2
4583.839 A 11
4549.467 A 10
4522.634 A 9
4508.283 A 8
4630.513 A 3
4576.331 A 4
4541.523 A 4
4648.23 P | 3.84 5.57
2.79 5.49
3.83 5.53
3.83 5.58
3.84 5.58
3.82 5.53
3.83 5.53
3.84 5.53
3.84 5.53 | 1½-3½ 41-3½ 55-3½ 1½-3½ 1½-3½ 25-3½ 1½-1½ 1½-1½ 1½-1½ 1½-1½ | | 3
1
1
2
2 | 1.66 5.21 $2\frac{1}{2}-2\frac{1}{2}a^4Pz^6F^6$
1.69 5.23 $\frac{1}{2}-2\frac{1}{2}$ (4)
1.72 5.23 $\frac{1}{2}-2\frac{1}{2}$
1.65 5.23 $\frac{1}{2}-2\frac{1}{2}$
1.65 5.23 $\frac{1}{2}-2\frac{1}{2}$
1.66 5.23 $\frac{1}{2}-2\frac{1}{2}$
1.69 5.24 $\frac{1}{2}-\frac{1}{2}$ | 5607.12 P
5864.54 P
6021.18 P
5545.26 P
5811.93 P
5986.54 P
5498.19 P
5779.65 P | 3.57 4.77 33-32 b ⁴ P-z ⁶ D ⁹ 3.69 4.80 13-34 (24) 3.77 4.83 3-13 3.77 4.83 3-12 3.57 4.83 2-12 3.57 4.83 2-12 3.59 4.83 13-3 | 4595.68 P
4138.40 P
4088.75 P
4064.75 P
4160.63 P
4104.18 P | 3.84 5.53
3.82 5.80
3.83 5.85
3.84 5.88
3.83 5.80
3.84 5.85 | 1½-3½ 3½-3½ b ⁴ F-z ⁴ P°† 3½-1½ (39) 1½-2½ 1½-1½ | | 3 | 1.66 5.27 2 2 2 4 2 2 5 7 1 1 5 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 | 4670.170 A 0
4871.27 P
5000.73 P | 3.57 5.21 31-31 b4p-z6p°
2.69 5.23 11-31 (25) | 6516.053 B 20
6432.654 B 8
6369.45 B 4 | 2.88 4.77
2.88 4.80
2.88 4.82 | 31-31 a ⁶ 8-z ⁶ D°
21-21 (40)
32-12 | | 13 | 1.69 5.39 $1\frac{1}{2}-1\frac{1}{2}$
1.66 5.39 $3\frac{1}{2}-1\frac{1}{2}$
1.66 5.49 $3\frac{1}{2}-3\frac{1}{2}$ $a^4P-z^4D^9$
1.69 5.53 $1\frac{1}{2}-3\frac{1}{2}$ (6) | 4648.933 A 70
4855.54 P
4991.11 P
4634.60 P
4846.47 P | 2.57 5.23 2-12
2.69 5.23 12-12
2.77 5.24 2-1
2.57 5.23 22-12
2.69 5.24 12-2 | 5284.092 A 3
5256.89 P 1
5238.58 P
5169.030 A 12 | 2.88 5.21
2.88 5.23
2.88 5.23
2.88 5.27 | 31-31 a ⁶ 5-2 ⁶ F° 21-32 (41) 22-12 | | 13
10
9
11
11 | 1.72 5.56 \$-15
1.66 5.53 25-25
1.69 5.56 15-15
1.72 5.58 5-5 | 4580.055 A 1
4665.80 P
4713.18 P | 2.57 5.27 21-31 b4p-z6pe
2.69 5.34 12-32 (26) | 5018.434 A 12
4923.921 A 12
•4731.439§ A 3 | 2.88 5.34
2.88 5.39
2.88 5.49 | 21-31 a ⁶ S-2 ⁶ P°
21-32 (42)
21-31 a ⁶ S-2 ⁴ P°
21-31 a ⁶ S-2 ⁴ P°
21-31 (43)
21-11 | | 4
6
10
8 | 1.66 5.56 $2\frac{1}{2}-1\frac{1}{2}$
1.69 5.58 $1\frac{1}{2}-\frac{1}{2}$
1.66 5.52 $2\frac{1}{2}-3\frac{1}{2}$ $a^4P-z^4F^6$
1.69 5.57 $1\frac{1}{2}-3\frac{1}{2}$ (7) | 4461.43 P
4583.99 P
4386.57 P
4233.167 A 11 | 2.57 5.34 25-25
2.69 5.39 15-15
2.57 5.39 25-15 | 4656.974 A 1
4601.34 P
4663.700 A 0 | 2.88 5.53
2.88 5.56
2.88 5.52 | | | 5
5
(5) | 1.73 5.59 \(\frac{1}{2}\)-1.66 5.57 2\(\frac{1}{2}\)-2\(\frac{1}{2}\) | 4351.764 A 9
4416.817 A 7
4173.450 A 8
4303.166 A 8 | 2.69 5.53 12-32 (27)
2.77 5.56 2-12
2.57 5.53 22-22
2.69 5.56 12-12 | 4227.14 P
4152.98 P | 3.88 5.80
3.88 5.85 | 3½-3½ a ⁵ 5-z ⁴ F° (44) 2½-3½ a ⁵ 5-z ⁴ F° 3½-1½ (45) | | 15
10
9
13
13 | 1.66 5.80 24-24 a ⁴ P-z ⁴ P°† 1.69 5.85 12-12 (8) 1.72 5.88 2-2 1.69 5.80 14-24 1.72 5.85 2-12 | 4385.381 A
7
4128.735 A 3
4273.317 A 3
4178.855 A 8
4296.587 A 6
4359.404 A 2
4123.638 A 4
4558.155 A 3 | 2.77 5.58 2-14
2.57 5.56 2-14
2.69 5.58 12-2
2.69 5.58 12-2
2.69 5.57 12-2
2.77 5.59 2-12
2.57 5.57 22-2
2.57 5.57 22-2
2.69 5.59 12-12 | 6044.53 P 6183.71 P 6150.10 P 6141.01 P 5991.383 B 10 6084.11 B 5 6113.33 B 2 6118.04 P 6185.24 P | 3.14 5.18
3.19 5.20
3.21 5.23
3.14 5.20
3.19 5.23
3.23 5.23
3.23 5.23
3.19 5.18 | 52-52 a ⁴ G-z ⁶ F° 42-42 (46) 32-32 52-42 52-42 32-32 32-32 32-32 32-32 | | | 1.96 4.77 45-35
2.03 4.80 35-25
2.03 4.75 35-45 | 4087.27 P
3824.913 A 4
3908.54 P
3964.57 P | 2.57 5.59 3½-1½
2.57 5.80 3½-3½ b ⁴ P-2 ⁴ P°
2.59 5.85 1½-1½ (39)
2.77 5.88 ½-1½ | 6196.71 P
6178.13 P
5932.05 P
5793.16 P | 3.21 5.20
3.22 5.21
3.19 5.27
3.21 5.34 | 3½-4½
3½-3½
4½-3½ a ⁴ G-z ⁸ yo†
3½-3½ (47)
3½-1½ | | | 1.96 5.46 44-42 a ² C-2 ⁴ F°
2.02 5.52 54-35 (10)
1.96 5.52 44-35
2.02 5.57 34-34
2.02 5.67 34-45 | 23764.09 P Fe
3872.76 P
3974.160 A 3
4002.073 A 2 | 2.77 5.88 1-1
2.57 5.85 2-1
2.69 5.88 1-2
2.69 5.80 12-2
3.77 5.85 2-1
2.62 5.18 63-53 44H-2 ⁶ F° | 5691.36 P 5362.864 A 5 5316.777 A 4 5264.801 A 2 5414.089 A 2 5337.713 A 0 | 3.22 5.39
3.19 5.49
3.21 5.53
3.22 5.56
3.21 5.49
3.22 5.53 | 32-12
42-32 a ⁴ 0-z ⁴ 0°
32-32 (48)
32-32
32-32
32-32
32-32
32-32
32-32
32-32 | | | 3.27 4.83 $1\frac{1}{2} - \frac{1}{2} a^{2}P_{-}z^{5}p^{9}$ 2.27 5.23 $\frac{1}{2} - \frac{1}{2} a^{2}P_{-}z^{5}p^{9}$ 2.33 5.23 $\frac{1}{2} - \frac{1}{2} (12)$ 2.37 5.23 $\frac{1}{2} - \frac{1}{2} (12)$ 2.37 5.24 $\frac{1}{2} - \frac{1}{2}$ 2.27 5.24 $\frac{1}{2} - \frac{1}{2} (12)$ 2.27 5.34 $\frac{1}{2} - \frac{1}{2} (13)$ 2.27 5.39 $\frac{1}{2} - \frac{1}{2} (13)$ | 4843.21 P 4840.00 P 4847.61 P 4867.73 P 4868.82 P 4870.71 P 4903.85 P 4899.90 P | 2.65 5.20 5\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\] 2.68 5.21 \$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\] 2.68 5.23 \$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\] 2.68 5.20 \$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\] 2.66 5.21 \$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\] 2.66 5.18 \$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\frac{1}{2}\$\] 2.66 5.27 \$\frac{1}{2}\$ | 5435.79 P 5316.809 A 8 5375.994 A 7 5334.830 A 7 5197.569 A 6 5435.369 A 2 5325.559 A 3 5354.93 P 5477.67 P | 3.23 5.49
3.14 5.46
3.19 5.52
3.21 5.57
3.23 5.59
3.21 5.52
3.21 5.52
3.22 5.57
3.23 5.52 | 25-35
5-45 a ⁴ G-2 ⁴ F°
45-35 (49)
35-35
35-35
35-35
35-35
35-35
35-35
35-35
35-35
35-35
35-35
35-35
35-35
35-35 | | 4 | | 4644.09 P
4772.77 P
4384.33 P
*4314.389§ A 4 | | 5346.56 P 1
4763.79 P
4780.60 P
4685.95 P | 3.21 5.80
3.22 5.80
3.22 5.85 | 3½-3½ a ⁴ (1-z ⁴ p°
2½-3½ (50)
3½-1½ | | | 2121 2122 | 4278.128 C (1)
4413.600 A 0
4338.70 P
4439.13 P | 2.68 5.57 34-24
2.66 5.46 45-45
2.68 5.52 35-35
2.68 5.46 35-45 | 5728.74 P
5605.91 P | 3.18 5.34
3.18 5.39 | 1 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | 5 | 5 2.33 5.85 1-11 (16)
2.27 5.85 1 1 -11 | 4372.22 P
4332.88 P
4397.27 P | 3.66 5.49 44-3½ a ⁴ H-z ⁴ D°
3.68 5.53 32-3½ (33)
3.68 5.49 32-32 | 5990.59 P 5362.48 P 5519.83 P 5191.58 P 5470.81 P | 3.32 5.39
3.18 5.53
3.32 5.56
3.18 5.56
3.32 5.58 | 2-15
12-25 b ³ p-2 ⁴ p°
5-15 (53)
12-15 5
15- 5 | | 5 | | 6239.36 P
6229.34 P
6219.54 P
6217.95 P | 2.79 4.77 41-32 b ⁴ y-z ⁶ p° 1
2.83 4.80 31-32 (34)
2.83 4.83 32-12
2.84 4.83 12-2 | 5148.19 P
5181.97 P
5445.97 P
5126.19 P | 3.18 5.58
3.18 5.57
3.32 5.59
3.18 5.59 | 1½-2½ b ³ P-2 ⁴ F° 2-1½ (53) 1½-1½ | | | 2.57 5.30 4\$-4\$ (17)
2.51 5.30 5\$-4\$
2.57 5.31 4\$-3\$
2.57 5.18 4\$-5\$ | 5171.63 P
5178.71 P
5180.53 P
5178.95 P
5132.67 P
5146.12 P | 2.79 5.18 44-54 b ⁴ F-2 ⁶ F** 2.83 5.20 35-44 (35) 2.83 5.23 12-34 2.84 5.23 12-34 2.82 5.21 32-34 2.82 5.21 32-34 2.83 5.33 32-34 2.84 5.23 14-14 | 4730.15 P
4886.92 P
4627.86 P
4831.11 P
4577.78 P | 3.18 5.80
3.32 5.85
3.18 5.85
3.32 5.88
3.19 5.88 | 12-2
12-3 b ³ pz ⁴ po
2-12 (54)
12-12
12-2 | | | 2.63 4.80 $1\frac{1}{2}-2\frac{1}{2}a^{2}D-z^{6}D^{6}$ (18) | 5154.40 P
5161.18 P | 3.83 5.23 24-24
2.84 5.23 12-12 | - Griffiani-1-Green | | | | ator
Ref | y
Int | E P
Low High | J | Multiplet
(No) | Labor
I A | atory
Ref In | t | E
Low | P
High | J | Multiplet
(No) | Labor
I A | | ny
Int | Low E | P
High | J Multiplet (No) | |-------------|------------------|-------------------------------------|-------------------------------------|--|---|-----------------|-------------|------------------------------|------------------------------|---|--|----------------------------------|-------------|-----------------|----------------------|----------------------|---| | tinu | .eđ | | | | | ntinued | | | | | | Fe II con | ntin | reg | | | | | A
P
P | 4 | 3.23 5.46
3.25 5.52
3.25 5.46 | 51-41
42-31
42-42 | b ² H-z ⁴ F° (55) | 3388.134
3358.252 | | 2
3 | 3.89 | 7.53 | | b ⁴ D-z ⁴ H° (77) | •2979.096 | A
_ | 3 | 3.95 | | 3½-4½ b²F-z²H°
(100) | | P | | 3.25 5.49 | 4 <u>⋛</u> -3킬
 | b ² H-z ⁴ D°
(56) | 3376.24
3252.40
3250.34
3365.413 | P
P
A | 1 | 3.89
3.87
3.87
3.87 | 7.54
7.67
7.67
7.54 | 33-33
33-13
3-13
3-13
33-23 | b ⁴ D-z ² D ⁶
(78) | 3602.60
3583.54
3607.05 | P
P | | 4.06
4.06
4.06 | 7.48
7.51
7.48 | $6\frac{1}{2}-5\frac{1}{2}$ $a^2I-z^4G^{\circ}$
$5\frac{1}{2}-4\frac{1}{2}$ (101)
$5\frac{1}{2}-5\frac{1}{2}$ | | P
P | | 3.37 5.46
3.41 5.52 | 31-41
21-32
31-32 | a ² F-z ⁴ F° (57) | 3249.911
3362.764 | A : | 0 | 3.87
3.87 | 7.67
7.54 | 12-12
12-22 | | 3511.25
3493.34 | P | | 4.06
4.06 | 7.57
7.60 | 61-71 a ³ I-z ⁴ I* 51-61 (103) 61-61 51-51 | | PP | | 3.37 5.52
3.41 5.57
3.37 5.57 | 31-31
21-31
31-21 | | 3305.634
3193.76 | A : | 1 | 3.89
3.87 | 7.62
7.74 | 31-31
21-31 | b ⁴ D-y ⁴ D°
(79) | 3489.17
3486.08
3481.92 | P
P | | 4.06
4.06
4.06 | 7.60
7.60
7.60 | 65-65
55-55
65-55 | | P | | 3.41 5.59 | 2臺-1臺 | -34 | 3163.86
3177.65
3203.509 | P | | 3.87
3.87 | 7.77
7.76 | 15-15 | | 3495.16 | P | | 4.06 | 7.59 | 5½-4½
5½-4½ a ³ I-z ³ G° | | P | | 3.37 5.49
3.41 5.53
3.37 5.53 | 31-21
31-21 | a ² F-z ⁴ D°
(58) | 3166.22
3177.260 | P
A | 1
1 | 3.89
3.87
3.87 | 7.74
7.77
7.76 | 33-13
13-13 | ·
· | 3426.81
3418.02 | P
P | | 4.06
4.06 | 7.66
7.67 | 53-43 a2I-y4F° | | P | | 3.41 5.56
3.41 5.49 | 25-05 | | *3295.240 \$ 3191.374 3164.26 | | 4
1 | 3.87
3.87
3.87 | 7.62
7.74
7.77 | 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - | | 3398.355
3360.103 | A
A | 4 3 | 4.06 | 7.69
7.74 | | | A
A | 2 | 3.37 7.46
3.41 7.57 | 31-31
31-11 | a ³ F-y ⁴ P°
(59) | 3267.035
3231.702 | | 3
5 | 3.89 | 7.66
7.69 | 31-41 | b ⁴ D-z ² G° (80) | m3356.24
3402.32 | P | Fe ⁺ | 4.06
4.06 | 7.74
7.69 | 6] - 5]
5] - 6] | | P
A | a | 3.37 7.51
3.41 7.53 | 31-41
21-31 | a ³ F-z ⁴ G°
(60) | 3241.685 | Ā | 2 | 3.89 | 7.69 | | | 3220.835 | A | 0 | 4.06 | 7.89 | 5½-4½ a ² I-y ⁴ G°
(106)
5½-4½ a ³ I-y ² G° | | A
A
A | 1
0
7 | 3.37 7.53
3.41 7.54
3.37 7.54 | 35-35
35-35
35-25 | • | 3259.048
3258.773
3247.171 | A 10 | | 3.89
3.87
3.87 | 7.67
7.66
7.67 | 31-41
31-31
12-31 | b ⁴ D-y ⁴ F° (81) | 3131.719
3077.168 | A | 4
10 | 4.06
4.06 | 8.00 | (107) | | A | 3 | 3.37
7.53
3.41 7.55 | 31-41 | a ² F-z ⁴ H° (61) | 3237.815
3268.92
3249.657 | P | 8 ·
4 | 3.87
3.89
3.87 | 7.68
7.66
7.67 | 3-1
3-3
3-3
3-3 | | 3062.234
3080.405 | A | 9 | 4.06
4.06 | 8.09
8.07 | 5½-4½ (108)
5½-5½ | | Ā | 4 | 3.37 7.55 | | a ^S F-z ^S Do+ | 3237.402
32 59.7 5 | A
P | 5 | 3.87
3.89 | 7.68
7.67 | 15-15
35-25 | | 3056.802
3049.18 | A
P | 5 | 4.06 | 8.10
8.11 | $6\frac{1}{2}-5\frac{1}{2}$ $a^{2}I-x^{4}G^{\circ}$
$5\frac{1}{2}-4\frac{1}{2}$ (109)
$5\frac{1}{2}-5\frac{1}{2}$ | | A | 4 | 3.37 7.54
3.41 7.54 | 35-35 | (62) | 3239.87
3177.531 | P
A 1 | | 3.87 | 7.68 | 25-15 | b ⁴ D-x ⁴ D°
(83) | 3060.023
3020.001 | A | 0
10 | 4.06
4.06 | 8.10
8.15 | 52-52
52-42 a ² I-x ⁴ F° | | P | | 3.80 5.57 | 3] _2 | b ² G-z ⁴ F°
(63) | 3135.360
3114.295
3105.548 | A | 9
7
5 | 3.87
3.87
3.87 | 7.81
7.83
7.85 | 3 - 2
1 - 1 | (82) | 3680.98 | P | | 4.13 | 7.48 | (110) | | P | 0 | 3.80 7.51
3.75 7.52 | 3}-4} | b ³ G-z ⁴ G°
(64) | 3144.751
*3116.590§
*3105.166 | A
A | 5
6
5 | 3.89
3.87
3.87 | 7.81
7.83
7.85 | 31-21
31-1 | | 3651.17
3656.50
3641.23 | PPP | | 4.14
4.13 | 7.51
7.51 | 4½-5½ c ² G-z ⁴ G°
3½-4½ (111)
4½-4½
33-34 | | P | 4 | 3.80 7.53
3.75 7.53 | 34-44
42-44 | (64)
b ² G-z ² H°
(65) | 3167.94
3133.048 | P
A | 4 | 3.87
3.87 | 7.77 | 14-3
24-3
14-2 | | 3636.61
3629.99 | P | | 4.14
4.13
4.14 | 7.53
7.53
7.54 | 44-34
34-24 | | P | 7 | 3.80 7.55
3.75 7.55 | 4535 | | 3114.680
3070.591 | A t | 4
r | 3.87
3.89 | 7.83 | \$-12
33-33 | b ⁴ D_y ⁴ G ^o
(83) | 3645.78
3636.90 | P
P | | 4.13
4.14 | 7.52
7.53 | 42-52 c ² G-z ⁴ H°
32-42 (112)
42-42 | | A
A
A | 12
11
2 | 3.75 7.66
3.80 7.69
3.75 7.69 | 41-41
31-31 | b ² G_z ² G°
(66) | 3047.60
3025.99 | P
P | | 3.89
3.87 | 7.94
7.95 | 31-31
31-2 | (83)
b ⁴ D-z ² F°
(84) | 3632.292
3614.873
3610.33 | A
A
P | 3
5 | 4.13
4.14
4.13 | 7.53
7.55
7.55 | 42-42
32-34
42-35 | | Ä | 3 | 3.80 7.66 | | | 3034.712
3038.777 | A | 0
3 | 3.89
3.87 | 7.95
7.94 | 34-24
24-34 | | 3555.08 | P | | 4.13 | 7.60 | 42-52 c ² G-z ⁴ I°
32-42 (113) | | P
A | Fe+
2 | 3.75 7.67
3.79 7.66
3.75 7.66 | 41-41
34-3
44-3
32-2 | b ² G-y ⁴ F°
(67) | 3023.859
2997.749 | A tr | ı
d | 3.87 | 7.95
8.00 | 1분-2분
3분-4분 | ь ⁴ р-у ² с• | 3568.97
3564.54 | P | | 4.14 | 7.59
7.59 | 45-45 | | P | 1 | 3.80 7.67
3.80 7.67 | 38-48 | | 2989.01
2989.367 | P
A t | r | 3.87
3.87 | 8.00
8.00 | 21-11
11-1 | b ⁴ D-y ² Ge
(85)
b ⁴ D-z ² Pe
(86) | 3493.468
3468.680
3464.497 | A
A
A | 10
8
3 | 4.13
4.14
4.13 | 7.66
7.69
7.69 | 41-41 c ² G-z ² G°
31-31 (114)
41-31 | | A
A
A | 4
3
4 | 3.75 7.77
3.80 7.81
3.80 7.77 | 44-34
34-24
34-34 | b ² G-x ⁴ D°
(68) | 2986.91
2989.731
2987.27 | P
A
P | 0 | 3.87
3.87
3.87 | 8.00
8.00
8.00 | 15-14 | | 3497.73
•3484.348§ | P
A | 1 | 4.14 | 7.66 | 25-45 | | P | | 3.75 7.89
3.80 7.89 | 41-51 | b ² G−y ⁴ G•
(69) | 7838.09 | , | _ | 3.95 | 5.53 | | 3r4re+ | 3499.877
3495.616 | Ā | 4 | 4.14 | 7.66
7.66 | 43-43 c ² G-y ⁴ F°
33-33 (115)
42-33 | | Á | 3
2
5 | 3.75 7.89
3.80 7.91
3.75 7.91 | 39-39 | (05) | 7534.83 | P | | 3.93 | 5.57 | | b ² F-z ⁴ F°†
(87) | 3434.17 | P | | 4.13 | 7.74 | 4½-5½ c ² G-z ² I° | | A | 5 | 3.80 7.91 | 44-34
32-22 | | 3519.72
3386.452
3496.67 | - | 1 | 3.95
3.93
3.93 | 7.46
7.57
7.46 | 31-21
31-1
31-2 | b ³ F-y ⁴ P°
(88) | 3391.303
3357.965
3395.336 | A
A
A | 1
0
4 | 4.13
4.14
4.14 | 7.77
7.81
7.77 | 4½-5½ c ² G-z ² I°
(116)
4½-3½ c ² G-x ⁴ D°
3½-3½ (117)
3½-3½ | | A | 8 | 3.80 7.95
3.80 7.94 | 3\$-3\$ | b ² G-z ² F°†
(70) | 3470.242
3430.15 | A : | 1n | 3.95
3.93 | 7.51
7.53 | 31-41
31-31 | b ³ F-z ⁴ G°
(89) | 3287.468
3283.40 | A
P | 1 | 4.13 | 7.89
7.89 | $\frac{4\frac{1}{2}-5\frac{1}{2}}{3\frac{1}{2}-4\frac{1}{2}}$ (118) | | P
P | | 3.89 5.30
3.87 5.31 | 31-41
21-21 | b ⁴ D-z ⁰ F ⁹ †
(71) | 3452.33
3420.184
3442.239 | | 0 | 3.95
3.93
3.95 | 7.53
7.54
7.54 | 31-31
31-21
31-21 | 7 | 3279.649
3273.499
3269.772 | Ā | 2
3
2 | 4.13
4.14
4.13 | 7.89
7.91
7.91 | 45-45
35-35
45-35 | | P | | 3.87 5.23
3.87 5.23 | 2-12 | • | 3448.433 | A | 1 | 3.95 | 7.53 | | b ² F-z ⁴ H° (90) | 3268.512 | A | 3 | 4.14 | 7.91 | 3 1 -21 | | P | | 3.89 5.46
3.87 5.52 | 31-41
31-31 | b ⁴ D-z ⁴ F°†
(72) | 3406.76
3428.64 | P | _ | 3.93
3.95 | 7.55
7.55 | | | 3243.723
3232.791
3247.392 | A
A | 8
7
3 | 4.13
4.14
4.14 | 7.94
7.95
7.94 | 41-31 c ² G-z ² F°
31-21 (119)
31-31 | | P
B | 2 | 3.87 5.57
3.87 5.59
3.89 5.52 | 13-23
33-33
23-23 | | 3436.112
3297.888
3414.144 | Ā | 5
5
2 | | 7.54
7.67
7.54 | 34-24
34-14
34-34 | b ^S F-z ^S D ^o
(91) | 3187.294
3162.799 | A
A | 8 | 4.13
4.14 | 8.00
8.04 | | | P
P | а | 3.87 5.57
3.87 5.59 | 12-12 | • | 3323.066
3276.606 | A : | 8
5 | 3.95
3.93 | 7.66
7.69 | 31-41 | b ² F-z ² G• | 3159.32
3190.84 | P | | 4.13
4.14 | | 41-41 c ² G-y ² G°
31-31 (120)
41-31
31-42 | | 3
3
B | 15
30
50 | 3.89 5.49
3.87 5.53
3.87 5.56 | 3}-3}
3}-3 | b ⁴ D-z ⁴ D°
(73) | *3896.886§ | | ä | 3.95 | 7.69 | 32-32 | 2-44 | 3134.17
3118.74 | P | | | 8.07
8.09 | 4½-5½ c ³ G-z ³ H°†
32-42 (121) | | B
B | 13 | 3.87 5.58
3.89 5.53 | 3-3 | | 3304.433
3325.012 | A
A | 1
1 | 3.95
3.93
3.95 | 7.67
7.66
7.66 | 24-34
34-34 | b ³ F-y ⁴ F°
(93) | 3079.356
3068.757 | A
A | 0 | 4.14 | 8.14
8.16 | 42-32 c ³ G-x ⁴ G°
32-22 (123)
32-42 | | BBB | 40
8
1 | 3.87 5.58
3.87 5.49 | 33-3
33-1
13-
23-3
13-8 | | 3295.06
3315.53
3284.996 | P
P
A | 0 | | 7.67
7.67
7.68 | 34-34
34-34
34-14 | | *3105.166
3071.653 | A | 5
2 | 4.14 | 8.11 | 3½-4½
4½-4½ c ² G-x ⁴ F° | | B | 6
6 | 3.87 5.56 | 2-12 | | 3257.358 | | 1 | | 7.74 | #1 Al | 12- 4-0 | 3040.629 | Ā | ō
O | 4.14 | 8.20 | 41-41 c ² G-x ⁴ F°
31-31 (123)
41-51 c ² G-y ⁴ H° | | A
A | 200
80
301 | 3.89 5.80
3.87 5.85 | 31-21
21-1 | b ⁴ D_z ⁴ P°
(74) | 3230.496
3177.61 | A
P
P | 1 | 3.95 | 7.77 | 31-31
31-31 | (94)
b ³ F-x ⁴ D°
(95) | 3013.802 | Ä | ŏ | 4.14 | 8.23 | 4½-5½ c ³ G-y ⁴ H°
3½-3½ (124) | | A
A
A | 20 | 3.87 5.80
3.87 5.80
3.87 5.85 | 23-33
13-13 | | 3196.63
3158.32
3011.070 | P | 1 | | 7.81
7.83
7.77 | 25-13
25-13
35-35 | | 4270.39
4347.43 | P | | 4.48 | 7.36
7.36 | 3-1 b3D-z4s°
12-12 (105) | | A
B
P | 30
1
2n | 3.87 5.88
3.87 5.80
3.87 5.85 | 13-2
2-1 | | 3129.013
3120.023 | | 1
1 | 3.95
3.95 | 7.89
7.91
7.91 | 31-41
31-31 | b ² F~y ⁴ G°
(96) | 4046.81
4012.467 | P
A | 1 | | 7.53
7.54 | $2\frac{1}{2}-3\frac{1}{2}$ $b^{2}D-z^{4}G^{\circ}$
$1\frac{1}{2}-2\frac{1}{2}$ (136)
$2\frac{1}{2}-2\frac{1}{2}$ | | A
P | 8 | | | b ⁴ D-z ⁴ 8°
(75) | 3097.415
3115.492 | A | 2 | 3.93
3.95 | 7.91
7.91 | 3 1 -31 | | 4032.946 | A | 3
5 | 4.48 | 7.54 | 2½-3½ | | Þ | - | | 2-1 | . (10)
 | 3090.896
3065.315 | Ā | 5
6 | 3.93 | 7.94
7.95 | 31-31
31-31 | b ² F-s ² Fe
(97) | m3845.18
*3863.953 | A
A | Fo
1 | 4.46 | 7.67 | 3 - 2 b ² D-z ² D°
1 - 1 (137)
2 - 1 (137) | | A
A
A | 5
3
3 | 3.89 7.46
3.87 7.57
3.87 7.53 | 25-1 | b ⁴ D_y ⁴ P°
(76) | 3083.024
m3078.44 | P F | 3
'e | 3.93 | | 2525 | | 4004.15
3872.98 | P | | 4.48 | 7.54 | 1 2 -2 2 | | P
P | | 3.87 7.46
3.87 7.57
3.87 7.53 | 24-2
14-1 | | 3044.843
3002.330 | | 5
5 | 3.95
3.93 | 8.00
8.04 | 32-43
22-32 | (98)
p _S E-A _S G ₀ | 3841.35
3860.12
3827.67 | P
P | | 4.46
4.48 | 7.67
7.67
7.68 | 31-31 b ³ D-y ⁴ F°
11-31 (138)
21-31
12-11 | | P | | 3.87 7.46
3.87 7.57 | 13-2 | | 3027.38 | P | | 3.93 | 8.00 | 2출~1 | (99)
p ₃ k-r ₃ b ₀ | 3846.31 | P | | | 7.68 | 32-12 | ory
f Int | E
Low | P
High | J | Multiplet
(No) | Labor
I A | rator
Ref | y
Int | Low E | P
H1gh | J | Multiplet (NO) | Labor
I A | ator
Ref | y
Int | LOW I | High | J , | Multiplet
(No) | |--------------|------------------------|----------------------|--|---|----------------------------------|--------------|----------------|----------------------|----------------------|----------------------------------|--|----------------------------------|-------------|-----------------|----------------------------|----------------------|--|--| | nued | | | | | Fe II cor | ntinu | ed | | | | , | Fe II con | tinu | le d | | | | | | | 4.48 | 7.69 | | b ² D-z ² G°
(129) | 6199.16 | В | 2 | | 7.54 | | c ² F-z ⁴ G°
(162)
c ² F-z ² D° | 4002.549
3938.969 | A
A | 3
4 | 5.89 | 9.01 | 2=-3=
1=-2= | d ² D-x ² F°
(190) | | 1
3 | 4.48
4.46 | 7.74
7.77 | 2=2=2=
1=1==1= | (129)
b ² D-y ⁴ D°
(130) | 6179.378
5813.67
6184.94 | A
B
P | 5
3 | 5.54
5.55
5.55
| 7.54
7.67
7.54 | 31-21
21-11
21-21 | (163) | 3996.36
3975.029 | P | 2 | | | | | | | 4.48
4.46 | 7.77
7.81 | 21-31
11-21
21-31 | b ² D-x ⁴ D°
(131) | 5823.17 | В | 3 | 5.54 | 7.66 | $3\frac{1}{2} - 4\frac{1}{2}$ | c ² F-z ² G°
(164) | 3918.51 | P | | 5.89 | 9.03 | 12-2 | d ² D_y ² P° (191) | | | 4.48
4.46 | 7.81
7.83 | 15-15 | | 5747.88 | P
P | | 5.55 | 7.69
7.67 | 2½~3½ | (164) | 3762.894
m3727.04
3778.37 | A
P
P | 5
Fe | 5.89 | 9.20 | 23-23 | d ² D-x ² D°
(192) | | | 4.48
4.46 | 7.83
7.85 | $2\frac{1}{2}$ $-1\frac{1}{2}$ $\frac{1}{2}$ | | 5797.81
5834.06
5829.12 | P
P | | 5.54
5.55
5.54 | 7.66
7.66 | 35-35
35-35 | c ² F-y ⁴ F° (165) | 3711.974 | A | 1 | 5.93 9
5.89 9 | | | | | 3
2 | 4.48
4.46 | 7.94
7.95 | 23-33
13-23 | b ² D-z ² F°
(132) | 5804.91
5800.02 | P
P | | 5.55
5.54 | 7.67 | 23-23
33-23 | | 3627.168 | A | 1 | | 9.33 | 2 1 -3 1 | d ² D-w ² F° (193) | | Fe | 4.48
4.48 | 7.95
8.00 | 25-25
24-14 | b ² D-z ² P° | 5773.75
5544.76 | P
P | | 5.55
5.54 | 7.68 | 31-31 | c2F-x4D0 | 3321.491
3324.838
3365.640 | A
A
A | 1
1
0 | 5.89 | 9.65
9.60
9.60 | 15-25
24-24 | d ² D-w ² F°
(193)
d ² D-v ² F°
(194) | | 1 | 4.46
4.46 | 8.00
8.00 | 12- 2
12-12 | b ² D-z ² P° (133) | 5160.824 | A | 1 | 5.54 | 7.94 | | | 3261.509 | A | 1 | | 9.71 | 21-21 | d _∞ D-w _∞ Do | | tr | 4.48 | 8.14 | | b ² D-x ⁴ G°
(134) | 5127.866
5124.05
5164.69 | A
P
P | 1 | 5.55
5.54
5.55 | 7.95
7.95
7.94 | 31-31
21-31
31-21
22-32 | (167) | 3303.741 | A | 0 | 5.93 | 9.78 | $3\frac{1}{2}-1\frac{1}{2}$ | (195)
d ² D-w ² p°
(196) | | 0 | 4.46 | 8.18 | 11/2 - 1/2 | (134)
b ² D-z ² S°
(135)
b ² D-x ⁴ F°
(136) | 5019.478 | A | 0 | 5.54 | 8.00 | | c ² F-y ² G°
(168) | 7287.36 | В | 6 | 6.19 | 7.89 | -
4출-5출 | | | | 4.48
4.48 | 8.19
8.22 | 22-33
22-13 | (136) | 4953.979
4810.760 | A
A | 0 . | 5.55
5.54 | 8.04 | 32-32 | (168) | 7264.99
7193.23
7134.99 | B
B
B | 10
8
5 | 6.19 | 7.89
7.91
7.91 | 35-45
25-35
15-25 | c ⁴ F-y ⁴ G°
(197) | | Fe
1 | 4.48
4.46 | 8.27
8.30 | 21-21
11-11 | b ² D-y ² D°
(137) | 4760.15 | P | - | 5.55 | 8.14 | | c ² F-x ⁴ G°
(169) | 6966.9 | В | 3 | | 7.95 | 1½-2½ | c4F-z2Fo | | | 4.48
4.46 | 8.53
8.56 | | b ² D-x ⁴ P° (138) | 4738.52
4661.19
4658.03 | P
P | ~ | 5.54
5.55
5.54 | 8.15
8.19
8.19 | 31-41
21-31
31-31
31-31 | c ² F-x ⁴ F°
(170) | 6482.205
6446.43 | A
B | 1
20 | 6.19 8
6.20 8 | 8.10
8.11 | 41-51
34-44 | (198)
c ⁴ F-x ⁴ G°
(199) | | | 4.48
4.46 | 8.56 | 15-15 | | 4629.90
4626.78 | P | | 5.55
5.54 | 8.21 | 25-25
35-25
25-15 | | 6331.969
6433.85 | B | 12
3 | 6.19 | 8.14
8.11 | 21-31
42-42 | • | | 7 | 4.46
4.48 | 8.53
8.59 | 1½-2½
2½-3½ | . _h 2 _{D_v} 2 _F o | 4610.59
m4526.58 | P
P | Fe | 5.55
5.54 | 8.22 | | .2r_v2no | 6305.318
6175.158 | ВВ | 15
15 | 6.19 8 | 8.15
8.19 | 41-41 | c4F-x4F° | | 8 | 4.46 | 8.60 | 11-21
21-21 | b ² D-y ² F° (139) | 4474.194
4529.56 | Ā | On | 5.55 | 8.30
8.27 | 21-11
21-22 | c ² F-y ² D°
(171) | 6103.54
6045.497 | B | 8 6 | 6.19 | 8.21
8.22 | 22-22
12-12 | c ⁴ F-x ⁴ F°
(200) | | | 4.60 | 7.37 | - | | 4048.831
m4044.01 | A
P | 3
Fe | 5.54
5.55 | 8.59
8.60 | | c ² F-y ² F°
(173) | 4444.563 | A | 1 | 6.19 | 8.97 | 4군-4군 | c4F-w4F° | | | 4.60 | 7.57 | 2-12
2-12 | a ² S-z ⁴ S°
(140)
a ² S-y ⁴ P°
(141) | 4041.64
4051.21 | P
P | ro | 5.54 | 8.60
8.59 | 32-22
22-32 | (115) | 4359.12
4355.03 | P
P | | 6.20 | 9.02 | 41-41
32-31
42-31 | (303)
c _f E_#3Ge | | | 4.60
4.60 | 7.53
7.67 | \$- \$
}-1} | (141)
a ² S-z ² D° | 3935.948
3906.037 | A
A | 6
5 | 5.54
5.55 | 8.68
8.71 | | c ² F-x ² G°
(173) | 4349.28
4364.89
4346.50 | P
P
P | | 6.20 | 9.03
9.03
9.03 | 4½-3½
3½-4½
2½-3½ | | | , | 4.60 | 7.83 | -1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | a ² S-z ² D°
(142)
a ² S-x ⁴ D°
(143) | 3673.35 | P | J | 5.54 | 8.90 | | c ² F-x ² H° | | - | | | | - | | | . 6 | 4.60
4.60 | 7.85
8.00 | 2- 2
1-1- | a ² S-z ² p° | 3604.21
3610.38 | P
P | | 5.54
5.55 | 8.97
8.96 | | (174)
c ² F-w ⁴ D°
(175) | 648 7.4 3
6386.75 | B | 2 | | 8.68
8.71 | | d ² F-x ² G° | | 5 | 4.60 | 8.00 | \$- \$ | (144) | 3608.49
3622.81 | P
P | | 5.54
5.55 | 8.96
8.95 | 35-25
35-15 | • | 5519.72
5497.70 | P
P | | | 9.01 | 31-31
21-21 | d ² F-x ² F°
(204) | | | 4.60 | 8.18 | _ | a ² S-z ² S° (145) | 3606.18
3557.548 | P
A | 2 | 5.55
5.54 | 8.97
9.01 | 31-31 | | 5074.063
5093.470 | A
A | 1 | 6.78 9
6.77 9 | 9.21 | | d ² F-x ² D°
(305) | | | 4.71
4.72 | 7.37
7.37 | 23-13
13-13 | c ² D-z ⁴ S°
(146) | `m3554.50 | P | Fe | 5.55 | 9.02 | 25-25 | c ² F-x ² F° (176) | 4830.40 | P | - | 6.78 | 9.33 | | (306) | | | 4.71
4.72 | 7.46
7.57 | 21-21
14-14 | c ² D-y ⁴ P°†
(147) | 3366.960
3381.003
3368.626 | A
A
A | 3
4
0 | 5.54
5.55
5.55 | 9.21
9.20
9.21 | 34-24
24-14
24-24 | c ² F-x ² D° (177) | 4750.49 | P
A | 2 | 6.77 9 | 9.37 | | | | | 4.71 | 7.54 | 2 1 -21 | c2D-z2D° | 3257.894 | A | 3 | 5.54 | 9.33 | 31-31 | cgr-wgro | 3390.082 | A | 3 | 6.77 10 | 0.41 | | d ² F-V ² D ⁶
(207) | | | 4.72
4.71
4.72 | | 15-15
25-15
11-21 | c ² D-z ² D°
(148) | 3226.378
3224.86
3259.44 | A
P
P | 2 | 5.55
5.54
5.55 | 9.37
9.37
9.33 | 25-25
35-25
25-35 | c ³ F-w ³ F°
(178) | 3451.228
3515.818 | A
A | 2 | 6.78 10
6.77 10 | 0.35 | 3\$-4\$
2\$-3\$ | (308)
_{¶3} Ł-A ₃ Ġo | | | 4.71 | 7.66 | 21-31 | c2D-y4F° | 3045.313 | A | 0 | 5.54 | 9.60 | | c ² F-v ² F° (179) | 7334.66 | В | 8 | 7.24 | 8.92 | -
4출5출 | d ² G-x ² H°
(209) | | | 4.72
4.71
4.72 | 7.67 | 15-25
25-25
11-11 | c ² D-y ⁴ F°
(149) | 3046.675
2959.841 | A
A | 1
4 | 5.55
5.54 | 9.60 | | | 7425.12
6677.33 | P
B | 3 | | 8.90
9.09 | | | | | 4.71 | 7.68 | 21-12 | | *2979.096
2961.119 | A
A | tr | 5.55 | 9.69 | 23-13
23-23 | c ² F-a ² D°
(180) | 6627.28 | В | 5 | 7.24 | 9.10 | 32-42 | d ² G-w ² H° (210) | | . 1 | 4.71
4.71 | 7.69 | 2½-3½ | c ² D-z ² G°
(150)
c ² D-y ⁴ D°
(151) | 3078.698 | A | 8n | 5.80 | 9,81 | | | 5891.36
5795.87 | B
B | 8
4n | 7.24 9
7.24 9 | 9.33 | | d ² G-# ² F°
(211) | | | 4.72 | 7.74 | | | 3076.455
3071.141 | A
A | 6n
4n | 5.85
5.88 | 9.86 | 13-21
13-21
3-13 | z ⁴ P°-e ⁴ D
(181) | 3960.895
4057.457 | A
A | 3 | 7.24 10
7.24 10 | 0.35
0.28 | 4월-4월
3월-3월 | d ² G−v ² G°
(212) | | 1 | 4.71
4.72 | 7.91
7.91 | 25-25
15-25 | c ² D-y ⁴ G°
(152) | 3036.986
3049.011
3055.368 | A
A
A | 5n
5n
4n | 5.85
5.88 | 9.86
9.90
9.92 | 25-25
15-15
5-3 | ·
· | 4354.358 | A | 2n | 7.68 10 | | - | | | 4
4 | 4.71
4.72 | 7.95 | 21-31
12-21 | c ² D-z ² F° (153) | °3010.220\$
3033.445 | A
A | 1
2n | 5.80
5.85 | 9.90 | 25-15
15- 5 | | 4507.195 | Ā | On | 7.74 10 | 0.48 | 2 1 -21
- | у ⁴ D°-f ⁴ D
(213) | | 8 | 4.71
4.71 | | 2½-2½
2½-1½ | | 5952.55 | P | | 5.93 | 8.00 |
21_11 | 42n_22po | 4066.328 | A | 13 | 7.67 1 | 0.70 | 1 2 - 1 2 | z ² D°-e ⁴ F
(214) | | 6
4 | 4.72
4.72 | 8.00
8.00 | 1층- 호
1호-1호 | c ² D-z ² P°
(154) | 5835.50
5826.12 | P
P | | 5.89
5.89 | 8.00 | 1 - 1
1 - 1
1 - 1 | d ² D-z ² P°
(182) | 5785.0 | В | 5N | 7.67 | 9.81 | -
4출-3출 | y4F°-e4D | | 2 | 4.72 | 8.18 | 1之- 글 | c ² D-z ² 5°
(155)
c ² D-y ² D°
(156) | 5856.45 | P | | 5.93 | 8.04 | 2 } -3 | d ² D-y ² G° | 4366.165 | A | tr | 7.67 1 | 0.50 | | (315)
y4F°_f4D
(316) | | Fe | 4.72 | 8.27
8.30 | 21-21
12-15 | (156) | 5451.60
5304.26 | P
P | | 5.93
5.89 | 8.19
8.21 | 2}~3}
13~25 | d ² D-x ⁴ F°
(184) | 6061.04 | В | 3n | 7.77 | 9.81 | -
3출-3출 | -4no_e4n | | 0 | 4.72 | 8.27 | | | 5408.842
5278.955
5382.52 | A
A
P | 0n | 5.93
5.89
5.93 | 8.22 | 21-21
13-13
23-13 | | 4913.366 | A | 1 | 7.83 1 | 0.35 | | | | 7
4 | 4.72 | 8.60
8.60 | 12-23
22-23 | c ² D-y ² F°
(157) | 5272.413 | A | 2 | 5.93 | 8.27 | | | 4598.528
4628.821 | A
A | 1n
On | 7.77 10
7.81 1 | 0.45
0.48 | $3\frac{1}{2} - 3\frac{1}{2}$
$2\frac{1}{2} - 3\frac{1}{2}$ | x ⁴ D°-32
(218)
x ⁴ D°-f ⁴ D | | 4 | 4.71 | 8.71 | - | c ² D-x ² G°
(158) | 5100.840
5173.002 | A
A | 4n
0 | 5.89
5.89 | 8.30 | 12-13
12-23 | d ² D-y ² D°
(185) | 4631.895
4625.549
4652.280 | A
A
A | On
tr
tr | 7.83 1
7.85 1
7.85 1 | 0.50
0.51 | 15-15
5- 12
2-12 | | | 1 | 5.46 | 9.61 |
41-41 | z ⁴ F°-e ⁶ D | 4635.328
4549.214 | A
A | 5
4 | 5.93
5.89 | 8.60 | 21-31
11-25 | d ² D-y ² F° (186) | 4313.034 | A | 1n | 7.77 1 | | 31-41 | x4D0-e4F | | tr | | 9.69 | 2 1 -21 | (159) | 4625.911
4446.248 | A
A | 1
1n | 5.93
5.93 | 8.60 | | | 4319.717
4321.341
4318.216 | A
A
A | in
in
ON | 7.81 1
7.83 1
7.85 1 | 0.67
0.69 | 25-35
15-25
3-15 | x ⁴ D°-e ⁴ F
(220) | | 2 | n 5.49 | 9.61
9.66 | 3}-4
3-3 | z ⁴ D°-e ⁶ D
(160) | 4111.902 | A | 1 | 5.93 | 8.93 | 2½-3½ | (187)
d2D_w4F* | | | | | | - " | . 4-6 | | 1
0
0 | n 5.53
5.56
5.58 | 9.69
9.72
9.73 | 23-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | | 4069.883
4131.17
4081.42 | A
P
P | 1 | 5.89
5.93 | 8.92
8.93
8.91 | 14-2
24-2 | d ² D-x ² G°
(187)
d ² D-w ⁴ F°
(188) | 5081.920
4493.579 | A
A | tr
1n | 7.91 1 | 0.33 | 3½-3½ | 7 y40°-30
(221)
v40°-e4F | |
| | | ` | . 2_ 4 . | 4143.07 | P | | 5.93 | | | | 4449.663
4431.626 | A | 1n
1n | 7.89 1
7.91 1 | 0.67 | 41-31
31-32 | (221)
y ⁴ 0°-e ⁴ F
(222) | | | 5.55 | 7.53
7.55
7.55 | 32-4
22-3 | c ² F-z ⁴ H° (161) | 4061.787
4007.72 | A
P | 1 | 5.93
5.89 | 8.97
8.96 | 2 1 -3
12-2 | d ² D-w ⁴ D°
(189) | m4508.26 | P | Fe ⁺ | 7.89 1 | 0.63 | 4 } -4 }
- | | | | 3.34 | | J2-3 | 4 | | | | | | | | | | | | | | | | | | | REV | ISED | MULTIP | LET | ABLE | | | | | | 69 | |-------------|---------------|--|--|-------------------|--------------------------|------------------|--|-------------------------------|-----------------|--------------|-------------------------------------|-------------------|--| | ato | ry
Int | | tiplet Labor
No) I A | ratory
Ref Int | E P
Low Hi | J
zh | Multiplet (No) | Labor
I A | atory
Ref In | et T. | E P
ow High | J | Multiplet (No) | | tin | | Ton man | | ontinued | 2011 | 5 ** | (110) | Fe III co | | | 24 112 <u>61</u> 1 | | (110) | | A | ın 1n | 8.00 12.13 4½-5½ y ² G | | A 5 | 10.17 14.0 | 03 3-4 | c ³ D-z ⁵ G° | 4323.81 | | | .17 14.02 | 3-3 | d3F-z5G0 | | | | (2 | 23) 3204.76 | A 6 | 10.18 14.0 | 02 1-3 | (6) | 4057.51 | В | 4 11 | .17 14.21 | 4-4 | (32)
d ³ F-z ⁵ H° | | A | 2 | 8.18 10.41 ½-1½ z ² 5 | °-e ⁵ P 3201.90
24) 3206.98 | A 1
A 4 | 10.17 14.0
10.17 14.0 | 02 3-3
02 2-2 | | 3773.80 | B t | r 11 | .17 14.44 | 3-2 | (33)
d3F_z5F° | | A | On | 8.15 10.48 4½-5½ x ⁴ F
8.19 10.52 3½-4½ (2 | ~e ⁴ G
35) 3266.88 | A 20 | 10.26 14.0 |
04 5–6 | ₂ 5 _{F-2} 5 _G 0 | *3697.45\$\$
3845.68 | | | .17 14.51
.16 14.37 | 3-4
2-2 | (34)
d3F_z5p°
(35) | | A | On
On | 8.21 10.55 2½-3½ | 3276.08
3288.81 | A 15 | 10.27 14. | 03 4-5 | (7) | 3586.12 | _ | | .17 14.61 | 4-4 | d3r_z3r° | | A | 0 | 8.19 12.15 $3\frac{1}{2}-4\frac{1}{2}$ x^4 F | °e ⁴ H 3305.22
26) 3339.36 | A 10
A 10 | 10.29 14.0 | 02 2-3
02 1-2 | | 3600.93
3603.88 | A 1 | 0 11 | .17 14.60
.16 14.59 | 3-3
2-2 | (36) | | A | 1 | 8.20 12.13 52-52 y4H
8.22 12.15 42-42 (2 | *3273.53 \$
-e ⁴ H 3280.58 | A 6 | 10.27 14. | 03 4-4 | | 3599.49
3611.72 | Ā | 3 11 | .17 14.60
.17 14.59 | 4-3
3-2 | | | A | | | 3377 - 03 | A 8
A 5
B 1 | | 2-2 | | 3587.53
3593.15 | | | .17 14.61
.16 14.60 | 3-4
2-3 | | | A | tr | 8.40 12.13 4½-5½1y ² H
(2 | °-e ⁴ H 3283.75
28) | Ă a | | 02 4-3 | | 3250.27
3294.85 | | 1 11
1 11 | .17 14.97
.17 14.92 | 3-4
3-2 | d ³ F_y ⁵ F°
(37) | | Unc | lassifie | ed Lines of Fe II | 3109.32
*3129.04 \$ | B 1 | 10.27 14. | 31 4-4 | | 3302.19 | | | .16 14.90 | 2-1 | | | В | 20 | 5070.957 A 2
5061.794 A 1 | 3111.609
3164.67 | A 8 | | 33 4-5
19 2-3 | | 3176.00
3178.03 | A 1 | 0 11 | .17 15.05
.17 15.05 | 4-5
3-4 | d ³ F-z ³ G°
(38) | | B
B
B | 20
5
5 | 5061.794 A 1
5035.773 A 3
5032.794 A 1 | 3013.125
3001.589 | A 20
A 12 | | 36 5-5
38 4-4 | a ⁵ F-z ⁵ F°†
(9) | 3174.09
3176.86
3180.17 | | 2 11 | .16 15.05
.17 15.05
.17 15.05 | 2-3
4-4
3-3 | | | В | 5 | *5030.740§§ A 3 | 3002.99
3015.230 | A 5 | 10.33 14. | 44 1-1 | (0) | 3179.08 | | 1 11 | .17 15.05 | 4-3 | | | B
B | 8
4 | 5022.874 A 1
5004.264 A 3 | 3008.506 | A 5 | 10.28 14. | 38 3-4 | | 3136.43
3110.052 | A 1 | 0 11 | .17 15.10
.17 15.14 | 4-3
3-2 | d ³ F−z ³ D°
(39) | | B
B | 6
5
15 | 4948.848 A 1
4579.523 A 1
4480.687 A 1 | 3000.836
3012.847
3027.46 | B 2 | 10.28 14. | 37 3-2 | 4 ⁵ F-4 ⁵ D°†
(10) | ш 3083.68
3089.649 | | | .16 15.16 | 2-1
4-3 | d3F-y5D° | | В | 13
4n | 4455.258 A 3 | 3055.55
3007.802 | A S | 10.33 14. | 37 1⊸0 | | 3084.09 | | | .17 15.16 | 3-2 | (40) | | B | 4 3 | 4451.545 A 4
4402.875 A 2 | 3023.85
3054.134 | A S | 10.29 14. | 37 2-2
37 1-1 | | *3004.109
3009.998 | B
B | 3 11
1 11 | .17 15.28
.17 15.27 | 4-3
3-2 | d ³ F-x ⁵ P° (41) | | В | 30N | 4368.262 A 1
4361.249 A 2 | 3018.744
3050.463 | A 6 | 10.29 14. | 38 2-3 | | 3004.490 | | | .16 15.27 | 2-2 | , | | B | 4N
8N | 4357.574 A 4
4331.529 A 3 | *3419.49 | A 3 | 10.42 14. |
02 2-3 | c ³ F-z ⁵ G° | 4391.26 | В | 1 11 | .42 14.23 | 5-5 | alH-z5Ho | | B
B | 3
3n | 4286.311 A 1
4263.895 A 1 | 3421.97 | A 3 | | | (11) | 4927.56 | Α | 2 11 | .53 14.03 | -
4-5 | (42)
e ³ F-z ⁵ G° | | В | 10 | 3860.915 A -3 | 3108.85 | . A. 3 | | | .3 _{F_2} 5 _F 0 | 4226.14 | В | | .53 14.45 | 2-3 | e3F_z5F° | | A
A | 3 | 3822.737 A 3
3725.901 A ?2 | 3143.36 | A 2 | 10.45 14. | 38 3-3
 | c ³ F-z ⁵ D°
(13) | m4005.04 | | I 11 | .53 14.61 | 4-4 | e ³ F-z ³ Fo | | B
A | 30
30 | 3652.748 A 1
3624.688 A 2
*3482.426§§ A 2 | 3283.30
3294.50 | A 2 | | | b ¹ F-z ³ F° (14) | 4022.36
4039.12
4021.75 | A
A
P | 3 11 | .53 14.60
.53 14.59
.53 14.60 | 3-3
2-2
4-3 | (45) | | В | 30 | *3473.825 A 2 | 555 1755 | | | | | 4035.82
4005.64 | P
P | 11 | .53 14.59
.53 14.61 | 3-2
3-4 | | | A
A | 2 | 3453.595 A 2
3451.318 A 2 | 4003.41 | A 4 | | | b ³ H-z ⁵ G°
,(15) | 4025.67 | P | 11 | .53 14.60 | 2-3 | | | A | 1 | 3386.724 A 2
3356.265 A 2 | 3464.27
3367.54 | B 1 | | | b ³ H-z ⁵ D°
(16)
b ³ H-z ³ F° | 3990.81 | | | .53 14.62 | | e ³ F_y ⁵ pe
(46)
e ³ F_z ³ pe | | A
A | 2 | *3329.070 A 2 | 3396.71 | A 3 | | | (17) | 3800.43
3500.29 | B
A | | .53 14.78
.53 15.05 | 4-5 | (47)
e3F_23G | | B
B | 4
6 | *3228.600% A ?3 | 3347.70
3329.89 | A 8 | 10.95 14.
10.95 14. | 64 5-5
65 4-4 | (18) | *3501.75
3506.93 | A
A | 8 11
5 11 | .53 15.05
.53 15.05 | 3-4
2-3 | (48) | | A
B | 3 | 3223.444 A 1 | 3373.51
*3333.27 | A 2 | | | | 3501.32
3504.40 | P
A | 2 11 | .53 15.05 | 4-4
3-3 | | | A
B | 2
0
2N | 3171.016 A 1
3165.957 A 3n | 3357.07 | B tr | 10.95 14. | 62 4-3 | _b 3 _{Н-у} 5р∘
(19) | 3503.96
m3452.31 | P
P Fe | | .53 15.05 | 4-3
4-3 | e ³ F-z ³ D° | | B | 15 | 3123.715 A 1
3119.660 A ?1 | 3090.772 | B 1 | 10.95 14. | 94 4-3 | b ³ H-y ⁵ F°
(20) | *3419.49 | A | | .53 15.14 | 3-2 | (49) | | A | 71 | 3115.352 A 2 | 3026.985
m3006.95 | A 6 | II 10.95 15. | 05 5-4 | (21) | 3301.09 | | - | .53 15.27 | 2-2 | e ³ F-x ⁵ P° | | A
A
D | 1
0
3 | 3071.270 A 2
*3063.0148 A 1 | 3006.122
*3004.109 | A 4 | | 05 4-3
05 4-4 | | *3118.75 \$ 3100.31 3098.93 | A
P
P | 11 | .53 15.49
.53 15.51 | 4-4
3-3
2-2 | e ³ F-y ³ F°
(51) | | Ā | ĭ | 2968.906 A 2
2963.897 A 3n | 4305.92 | -A 2 | 11.10 14. | 03 5-5 | c3G_z5G• | 0000130 | • | | | - | | | | | | 4184.09
4196.69 | A 4
B 1 | 11.08 14. | 03 4-5 | | 4590.68
4663.78 | | r 11
1 11 | .54 14.23
.54 14.19 | 4-5
4-3 | c ¹ G—z ⁵ H°
(52) | | ъ | 30.48 | Anol B. Itat A. Tuna | *3947.10 | A 4 | 11.08 14. | 31 4-4 | c ³ G-z ⁵ H° | 4025.07 | A | 3 11 | .54 14.61 | 4-4 | c1G-z3F° | | В | 4 | Anal B List A June
6.21 10.23 4-4 b ³ F | 3663.98 | B tr | | 45 4-3
44 3-3 | | 3515.57
3516.58 | A
P | | .54 15.05
.54 15.05 | 4-5
4-4 | (53)
c ¹ G-z ³ G•
(54) | | B
B | 1 2 | 6.21 10.16 3-3
6.20 10.12 2-3 | 3620.37 | A 3 | | | | 3519.25 | В | 1 11 | .54 15.05 | 4-3 | | | B | 5
1 | 6.21 10.23 3-4
6.20 10.16 2-3 | 3514.87 | <u>A</u> 2 | 11.10 14. | 61 5-4 | (25)
c ³ G_z ³ F° | 3189.74 | Α | 3 11 | .54 15.41 | 43 | c ¹ G-y ³ D°
(55) | | В | 1 | 7.84 10.23 4-4? a ⁵ 3 | 3512.34
3511.93
-z ⁷ P° 3499.57 | P
B tr
A 7 | 11.08 14.
11.07 14. | 60 4-3
59 3-2 | 7 | 5532.65 | В | 1 11 | .98 14.21 | 3-4 | c ¹ F-z ⁵ H° (56) | | , | | | (2) °3501.75
3489.07 | A 8 | | 60 3-3 | | 4714.53 | В | 1 11 | .98 14.60 | . 3-3 | c1F-z3Fe
(57) | | P
P | | 8.21 10.16 2-3 | _z ⁷ P°
(3) 3514.39 | P | 11.10 14. | 61 5~6 | c3G-z3H° | 4671.25 | B 1 | r 11 | .98 14.62 | 3-3 | c1f_y5pe
(58) | | P
P | | 8.22 10.12 1-2
8.21 10.16 3-3 | 3474.41
3448.63 | P
P | 11.08 14.
11.07 14. | 64 4-5
65 3-4 | (27) | 3519.85 | В | 1 .11 | .98 15.49 | 3-4 | c1r_y3r∘
(59) | | P | | 8.21 10.13 3-2
8.21 10.13 3-3 | 3489.48
3458.91 | P
B a | | 65 4-4 | | 3525.17 | A | 3 13 | .07 16.58 | | d ³ D-x ³ P° | | A
B | 10
1 | 8.21 11.00 3-3 a ⁵ p
8.21 11.03 3-2 | -25pe *3473.82 §
(4) 3167.54 | B 5 | | | | 3488.92
3403.51 | A
A | - | .07 16.61 | 1-1 | (60)
d ³ D-x ³ D° | | B | . <u>3</u> | 8.22 11.05 1-1
8.31 11.03 3-2 | *3120.03 \$ | | | | (28)
c ³ G-z ³ G° | 3406.18
*3410.74 | Ã
A | 2 13 | .08 16.70
.07 16.69 | 3-2 | (6î) | | A | 7 | 8.21 11.05 2-1
8.21 11.00 3-3 | 3108.78
3102.55 | P
P | 11.08 15.
11.07 15. | 05 4-4
05 3-3 | (29) | *3410.74 | A | | .08 16.70 | 3-4 | d ³ D_y ⁵ G° | | A | 6 | 8.23 11.03 1-3 | 3130.84
3110.85
3107.950 | A A | 11.08 15. | 05 43 | | *3357.40 | A | 4 13 | .08 16.75 | 3-3 | d ³ D-w ³ D° | | A
B | 4
6 | 8.62 11.03 3-2 | _z ⁵ p∘ 3107.950
(5) | A 6 | 11.08 15.
11.07 15. | 05 4-5
05 3-4 | | 3370.23
*3339.04§§ | A
A | 2n 13 | .07 16.85
.08 16.89 | 1-1
3-3 | (63) | | B
B | 3
4 | 8.62 11.05 2-1
8.62 11.00 3-3 | 3070.072
3035.802 | A 5 | | 10 4-3
14 3-2 | | 3263.04
3238.74 | A
A | 2 13 | 3.07 16.85
3.08 16.89 | 1-2
3-3 | d ³ D-w ³ F°
(64) | | B
B | 6
3
4 | 8.62 11.03 2-2
8.62 11.05 1-1
8.62 11.00 2.3 | 3011.060 | В 1 | | | 0 ³ G-y ⁵ D° | 3264.22 | Α | 2 13 | .07 16.85 | 2-2 | | | B
B | 4
1
2 | 8.62 11.00 2-3
8.62 11.03 1-3
8.61 11.05 0-1 | | | | | (31) | 3096.86
3099.05 | A
A | | 3.07 17.06
3.08 17.06 | 2-3
3-3 | d ³
D-x ³ G°
(65) | | | ω. | 0.01 11.00 0-1 | | | | | | | | | | - | | | 5 E | V T | S | E I |) M | U | ī. | T | Ι | Р | Ŀ | E | T | т | A | В | L | E | |-----|-----|---|-----|-----|---|----|---|---|---|---|---|---|---|---|---|---|---| | y
Int | E P
Low High | J | Multiplet
(No) | Labor
I A | ator;
Ref | Int | E P
Low High | J | Multiplet (No) | Labor
I A | atory
Ref | Int | E P | High | J | Multiplet (No) | |-------------|---|-------------------|--|-------------------------------|--------------|------------------|---|--------------------|--|-----------------------------------|--------------|----------------------------|----------------------|----------------------|---|--| | ued | | | | Fe III co | ntinu | req | | | | Fe III c | ntinu | led. | | | | | | 4 | 13.53 16.23 | 2-2 | c ¹ D_z ¹ D°
(66) | 4098.54 | В | 1 | 15.17 18.18 | 2-2 | y ⁵ D°-e ⁷ D | 5149.33
5100.706 | ВВ | 7
10 | 4143.
4131. | .87
.31 | B
B | 7
6 | | 3 | 13.53 17.12 | 2-1 | c1D-zipe
(67) | 3788.91 | В | tr | 15.17 18.43 | 2-3 | (101)
y ⁵ D°-e ⁷ S
(102)
y ⁵ D°-e ⁵ D | *5030.75\$
5002.02 | B | 6 | 4113 | . 45 | B | ?
? | | 4 | 14.11 16.33 | 5-6 | d3G_y3H° | 3496.29
*3482.36 § | A
B | 4
4d | 15.18 18.71
15.16 18.71 | 4-4
3-4 | y5p°_e5p
(103) | 4948.54 | В | 5 | 4109 | | В | 5 | | 3 | 14.12 16.37
14.12 16.38 | 4-5
3-4 | (68) | 3491.16 | В _ | 3 | 15.17 18.71 | 2-3
- | | 4596.09
4573.14 | B
B
B | 5
5 | 4008
3964 | . 11 | B
B
B | 5
5
8 | | 4
Fe III | 14.11 17.22 | 5-5 | d ³ G−w ³ G° | 4237.21
*4238.7866 | B.
B | 2 5 | 15.27 18.18
15.27 18.18 | 2-2
2-1 | x ⁵ P°-e ⁷ D
(104) | 4559.09
4535.50
4271.47 | B
B | 6
5
6 | 3743
3652
3589 | .65 | B
B | 6
5 | | 3 | 14.13 17.24
14.12 17.24
14.13 17.24 | 4-4
3-3
4-3 | (00) | 4211.51 | В | 3 | 15.25 18.18 | 1-2 | | 4266.88 | В | 5 | 3367 | .02 | В | 6 | | 2 | 14.12 17.34 | 4-3 | d ³ G-y ¹ F° | 3598.22
3572.46 | В | 2
1 | 15.28 18.71
15.25 18.71 | 3-3
1-2 | x ⁵ P°-e ⁵ D
(105) | 4255.20
4249.95 | В | 5
7 | 3338.
3309. | .40 | В | 7
6 | | Fe II | 14.11 17.41
14.12 17.37 | 5-4
4-3 | (70)
d3G_v3F°
(71) | 4462.90 | В - | 3 | 15.42 18.18 | -
2-37 | y ³ D°-e ⁷ D | 4243.85
4235.54 | B | 8
10 | 3304
*3295 | .249 | B
B | 9
6 | | 4 | 14.12 17.38 | 3-2 | (11) | 4467.36 | В | 1 | 15.42 18.18 | 2-17 | (106) | 4222.39
4220.32 | B
B | 8
5 | 3190
3151 | .81
.86 | B
B | 8
5 | | 6
6 | 14.11 17.76
14.12 17.79 | 5-5
4-4 | d ³ G_v ³ G•
(72) | 4100.52 | В | 3 | 15.42 18.43 | 2-3 | y ³ D°-e ⁷ S
(107) | 4210.87
4200.38 | B
B | 10
6 | 3123
3121 | .18
.08 | B
B | 10
10 | | 3 | 14.12 17.79 | 3-3
5-4 | | 4621.39 | В | 3 | 15.51 18.18 | 2-3
3-2 | y ³ F°_e ⁷ D
(108) | 4200.06
4189.10 | В | 6
7 | 3086
3044 | | B | 6
5 | | 4
5 | 14.12 17.79 | 4-3
5-4 | d3G_t3F° | 4616.95
4626.53
4624.42 | B
B
B | 1
1
tr | 15.51 18.18
15.51 18.18
15.51 18.18 | 3-2
2-1
2-2 | (108) | 4179.25
4174.27 | B
B | 5
10 | | | | | | 4 3 | 14.12 17.85
14.12 17.84 | 4-3
3-2 | (73) | 3831.75 | В | tr | 15.49 18.71 | 4-3 | y3F°_e5D | 4154.98
4145.74 | В | 8 | | | | | | 3 | 14.12 17.82 | 4-4 | .3- 1 | 3860.46 | В. | 1 | 15.51 18.71 | 3-3
- | (109) | | | | | | | | | 6
2 | 14.11 17.90
14.12 17.91 | 5-4
4-3 | d ³ G-x ¹ G°
(74)
d ³ G-x ¹ F° | 5436.80
5286.74 | B | 1
tr | 15.91 18.18
15.85 18.18 | 2-3
0-1 | y ³ P°-e ⁷ D
(110) | Co I I | P 7.8 | 4 Anal | A Tat | st B | Feb | 1942 | | 3 | 14.11 18.20 | 5-5 | (75)
d3G-u3G• | 5443.88 | В | ž | 15.91 18.18 | 2-1 | | 4233.996 | E | 2 | | 2.91 | | | | 3 | 14.13 18.17 | 4-4
- | (76) | 4908.74 | В. | 1 | 15.91 18.43 | 2-3
- | y ³ P°-e ⁷ S
(111) | 4339.13
4361.913 | P
A | (1N)
(1n) | 0.10 | 2.94
3.00 | 34-45
25-35 | (1) | | 1 | 14.26 18.19
14.19 18.19 | 6-5
3-4 | z ⁵ H°-e ⁷ D
(77) | 5269.15 | В | 4 | 16.37 18.71 | 5-4 | y ³ H*-e ⁵ D
(112) | 4361.031
4190.718
4252.302 | C
A
A | (1n)
20
13 | 0.00 | 3.05
2.94
3.00 | 15-25
45-45
71 71 | | | | | - | | 5243.3 | Α. | 10 | 18.19 20.54 |
5-4 | e ⁷ D-y ⁷ P° | 4285.782
4303.235 | Ā | 6 3 | 0.17 | 3.05
3.09 | 21-21
1-11 | | | tr
1 | 14.38 18.43
14.44 18.43 | 4-3
2-3 | z ⁵ F°-e ⁷ S
? (78) | 5282.1
5306.6 | A
A | 7
4 | 18.19 20.52
18.18 20.51 | 4-3
3-2 | (113) | *4109.706
4179.90 | E
P | (1d) | 0.00 | 3.00
3.05 | 43-33
32-22 | | | | 44.77.40.40 | - , , | z ⁵ D°-e ⁷ D | *5235.3 \$
*5276.2 \$ | A
A | 5
7 | 18.19 20.54
18.18 20.52 | 3-3 | | 4229.955
4268.032 | A
C | (2n)
(1n) | | 3.09
3.11 | 21-15
15- 5 | | | 1 | 14.37 18.18
14.38 18.43 | 2-2
3-3 | (79)
z5pe_e7s | 5302.5
5229.57
5272.0 | A
B
A | 6
2
3 | 18.18 20.51
18.18 20.54
18.18 20.52 | 2-2
3-4
3-3 | | 4059.321
4088.291 | G
A | (1) | | 3.04.
3.13 | 41-41 | a ⁴ F_z ⁶ p° (2) | | | | - | (80) | 5299.9 | Ā | 5 | 18.18 20.51 | 1-2 | | 4108.488
3956.270 | F
A | (1)
(2) | 0.17 | 3.18
3.12 | 24-24
44-34 | 127 | | tr | 14.43 18.43 | 2-3
- | z ⁵ 5°_e ⁷ 5
(81) | 5033.65 | 0 | 10 | 18.43 80.54 |
3-4 | 675-y7pa | 4011.089
4054.618 | A
A | 2 | 0.17 | 3.18 | 31-21
21-11 | | | 4 | 14.56 17.26 | 4-4 | d ¹ G-y ¹ G°
(82) | 5891.5
5929.5 | C
A | 6
5 | 18.43 20.52
18.43 20.51 | 3-3
3-2 | (114) | 4198.425
4189.50
4177.59 | C
H
H | (a)
(2)
(1)
(1) | 0.17 | 3.04
3.12
3.18 | 35-45
25-35
15-25 | | | 3 | 14.56 17.85 | 4-5 | a1G_y1H°
(83) | 5953.65 | c . | 6 | 18.71 20.78 |
4-3 | e5D_w5p• | 3909.933 |
A | 15 | | | | a4F-z6G0 f | | 2 | 14.56 17.90 | 4-4 | d1G_x1G*
(84)
d1G_x1F* | 5920.0
6901.0 | C
A | ?₩
3 | 18.71 20.79
18.71 20.80 | -2
-1 | (115) | 3979.518 | A
A | 10
10
5 | 0.17 | 3.20 | 3 - 4 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - | a ⁴ F-z ⁶ G° † (3) | | 4 2 | 14.56 17.91
14.56 18.13 | 4-3
4-3 | (85)
d1G_u3ge | 3007.2 | A | 20wn | 18.71 22.81 | | e ⁵ D-w ⁵ F°
(116) | 4057.195
3992.014 | A
G | (1) | | 3.27
3.26 | 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | 6 | 14.56 18.40 | 4-4 | (86)
d1G_w1G° | 6032.30 | c . | 7 | 18.73 20.78 |
2-3 | e5 s_w 5 p • | 3526.847
3575.361 | A
A | 100R
60r | | 3.50
3.55 | 41-41
32-32 | a ⁴ F_z ⁴ F° (4) | | | | - | (87) | 5999.30
5978.90 | CC | 5
5n | 18.73 20.79
18.73 20.80 | 2-2
3-1 | (117) | 3594.870
3602.079 | A
A | 50R
40R | 0.17 | 3.61
3.65 | 23-23
13-13
43-33 | | | tr
tr | 14.61 18.19
14.61 18.18 | 4-5
4-3 | z ³ F°-e ⁷ D
(88) | 4164.79 | Α. | 20 | 20.54 23.51 |
45 | y ⁷ P°-£ ⁷ D | *3474.018
3520.075
3550.592 | F
A
A | 100R
15
20r | 0.10 | 3.55
3.61
3.65 | 3 } -2 } | | | 1 | 14.60 18.71 | 3–3 | z ³ F°-e ⁵ D† | 4137.93
4120.97 | Ā | 10 | 20.52 23.51 20.51 23.50 | 3-4
2-3 | (118) | 3631.390
3652.541 | Ā
Ā | 20r
15 | 0.10 | 3.50
3.55 | 25-15
35-45
25-35 | | | . 1 | 14.64 18.19 | -
5-4 | ,3 _H e_e7 _D | 4166.86
4139.37 | Ā | 9 | 20.54 23.51 | 4-4
3-3 | | 3647.658 | A | 12 | 0.22 | 3.61 | 15-25 | 4 4-04 | | tr
2 | 14.65 18.19
14.65 18.71 | 4-5
4-4 | (90)
z ³ H°-e ⁵ D | 4123.06
4168.41
4140.51 | A
A
A | 8
4
6 | 20.51 23.50
20.54 23.51
20.52 23.50 | 2-2
4-3
3-2 | | 3465.792
3513.478
3529.032 | A
A
A | 100 R
50R
30r | 0.10 | 3.56
3.61
3.67 | 41-51
31-41
21-31 | a ⁴ F-z ⁴ G° † (5) | | ĩ | 14.65 18.71 | 4-3 | (91) | 4122.98 | Ā | 8 | 20.51 23.50 | 2-1 | | 3533.356
3415.519 | Ā
A | 25r
5 | 0.23 | 3.72
3.61 | 13-23 | | | 4 3 | 14.66 18.71 |
23 | y5po_e5D | 4081.19
4053.28 | A
A | 7
5 | 20.54 23.57 20.52 23.57 | 3-3 | y ⁷ P°-f ⁷ S
(119) | 3456.924
3483.80 | A
A | 9
(6) | 0.10 | 3.67
3.72 | 3 1 - 3 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | | 14.67 18.71 | 1-2 | (92) | 4035.54 | A | 4 | 20.51 23.57 | 2–3
— | | 3412.633
3431.582 | C
A | 80R
50r | 0.00 | 3.62
3.70 | 41-31
31-21
21-11 | a ⁴ F-z ⁴ D° (6) | | 1 3 | 14.78 18.18
14.81 18.18 | 2-1
1-3 | (93) | *3954.38
3968.78 | A
A | 12 ·
8 | 20.78 23.90 20.79 23.90 | 3-4
3- 3 | w ⁵ p•_f ⁵ p
(130) | 3442.918
3455.237 | Ā
A | 40r
25r | 0.17 | 3.76
3.80 | 23-13 | | | tr | 14.84 18.18 | 0-1 | | 3978.43
*3954.38 | A
A | 4
12 | 20.80 23.90
20.78 23.90 | 1-2
3-3 | | 3510.426
3502.63 | A
A | 30r
20r | 0.10
0.17 | 3.62
3.70 | 12-35
35-35
25-25
15-15 | | | 3
1 | 14.78 18.71
14.81 18.71 | 2-3
1-2 | z ³ p•_e ⁵ D
(94) | m3969.43
3979.42 | P
A | Fe I
5
3 | 20.79 23.90
20.80 23.90
20.80 23.90 | 2-3
1-1 | | 3491.316
3584.801 | A
C | 15
15 | 0.17 | 3.76 | 15-15
25-35
15-25 | | | 2 | 14.97 18.19 |
4-5 | | 3980.14 | A | | | 1-0
 | . <u> </u> | 3552.720
3153.692 | A
E | 8
(1) | | 3.70
3.91 | | | | 1 | 14.93 18.18 | 2-3 | (95) | 4310.37
4304.81
4296.86 | A
A | 12n
10n | 22.77 25.63
23.77 25.63
22.76 25.63 | 6-7
5-6
4-5 | z ⁷ F°-e ⁷ G
(121) | 3132.218
3237.028 | A
A | 4
8 | 0.10 | 4.04 | 3 - 3 - 4 - 5 | a ⁴ F_z ² G° † (7) | | 3
4
3 | 15.00 18.71
14.97 18.71
14.94 18.71 | 5-4
4-3
3-2 | (96) | 4296.86
4286.13
4273.42 | A
A
A | 10n
10n
7n |
22.76 25.63
22.75 25.63
22.75 25.63 | 4-5
3-4
2-3 | | 3191.297
3136.726 | A
A | 4
5 | | 4.04
3.93 | 35-35 | | | 4 2 | 14.97 18.71
14.92 18.71 | 4-4
2-2 | | | _ | | |
 | | 3219.150
3186.350 | A
A | 5
5 | 0.10 | 3.93
4.05 | 3 - 3 | a ⁴ F_Z ² Fe (8) | | 1 | 14.94 18.71 | 3 -4 | | 4372.4 | A | 20wn | 22.81 25.63 | | w ⁵ F°-e ⁵ G
(122) | 3281.585
3227.752 | A | 3 | 0.17 | 3.93
4.05 | 23-35
15-35 | | | tr | 15.05 18.71 | 4-4 | z ³ g•_e ⁵ D
(97) | Strongest
(Some pos | | | ed Lines of Fe | III | | 3121.415
3139.947 | C
A | 10
13 | 0.00 | 3.95
4.03 | 41-31
31-21
21-1 | a ⁴ F-y ⁴ D° (9) | | 3 | 15.14 18.18 |
2-3 | z3D°-e7D | 6185.1 | В | 2 EG 11 | 5353.78 | В | 5 | 3149.310
*3159.662 | A
A | 10
10 | 0.17
0.22 | 4.09
4.13 | 23-13 | | | 1
3 | 15.14 18.18 | 3-2 | | 5875.6
5854.1 | В | 5 | 5340.92
5339.92 | B | 5
7 | 3203.026
3199.322 | A | 4 | 0.10
0.17 | 3.95
4.03 | 15-1
35-3
25-2
15-1 | .
. | | tr | 15.10 18.43
15.14 18.71 | 3-3
2-2 | _(99)_ | 5587.9
5466.46 | B | 5 | 5291.78
5284.85 | B
B | 5
5 | 3189.752
m3264.83 | A
P
A | 5
Co
(3) | | 4.09
3.95
4.03 | 14-14
24-34
14-24 | • | | 1 | 15.16 18.71 | 1-2 | (100) | 5430.14
5402.27 | B
B | 5
5 | 5272.86
5260.25 | B
B | 6
10 | 3241.05 | ж | (3) | V.05 | 2.00 | -5-05 | ! | | | | _ | | 5387.35
5375.68 | B
B | 5
5 | 5227.53
5216.99 | B
B | 6
8 | | | | | | | | | | | | | 5363.80 | В | 6 | 51,77.73 | В | 5 | atory
Ref I | nt Low | P
High | J Mai | ltiplet
(No) | Labor
I A | ator
Ref | Int | Low E 1 | High | J | Multiplet
(No) | Labor
I A | ator
Ref | y
Int | E I | P
High | J | Multiplet
(No) | |-----------------------|---|--------------------------------------|---|--|--|------------------|----------------------------------|--------------------------------------|--|--|--|--|------------------|----------------------------|--|--|--|--| | inued | | | | | Co I cont | inue | ď | | | | | Co I cont | inue | đ | | | | | | A
A
A | 12r 0.00
13 0.10
15r 0.17
10 0.22
5 0.00 | 4.00
4.01
4.10
4.16
4.01 | 42-53 a ⁴ 33-43 33-43 13-33 13-33 | F_y ⁴ G°
(10) | 3405.120
3409.177
3417.154
3433.045
3334.146 | C
A
A
A | 150R
60r
50r
60R
30r | 0.43
0.51
0.58
0.63
0.43 | 4.05
4.13
4.19
4.22
4.13 | 41-41
31-31
21-31
11-11 | b ⁴ F-y ⁴ F°
(23) | 3326.564
*3314.073
3287.827
3275.66 | C
A
C
A | 2
8
(2)
(1) | 1.70
1.73
1.70
1.73 | 5.41
5.46
5.46
5.50 | | a ⁴ P-w ⁴ F° (43) | | A
A
A
A | 10 0.10
10 0.17
8 0.00
8 0.10 | 4.10
4.16
4.10
4.16 | 42-42
32-32
32-32
42-32
32-32 | • | 3354.374
*3388.163§
3483.410
*3474.018 | A
A
F
A | 20
30r
20r
100R
60r | 0.51
0.58
0.51
0.58
0.63 | 4.19
4.22
4.05
4.13
4.19 | 32-22
23-12
32-42
23-32 | | 3359.284
3401.617
3373.969
3318.398 | A
C
A | 6
2
4 | 1.70
1.73
1.70 | 5.38
5.36
5.36 | | a ⁴ P-x ² F° (44) | | A
A
A | 30R 0.00
30r 0.10
15r 0.17
15r 0.23
15r 0.00 | 4.05
4.13
4.19
4.22
4.13 | 42-43 a ⁴ 32-32 22-32 12-12 42-32 | F_y ⁴ F°
(11) | 3409.646
3370.322
3474.530
•3581.731 | C A A C | (2)
10
6
5 | 0.51
0.58
0.58
0.63 | 4.13
4.34
4.13
4.13 | 31-21
21-21
21-21
11-21 | b ⁴ F-z ² D° †
(24) | 3346.310
3319.561
3345.146
3387.47 | C
E
A | (2)
(1)
1 | 1.73
1.70
1.73
1.78 | 5.42
5.42
5.42
5.42 | 12-12
22-12
12-22
2-12 | a ⁴ p _{-x} 2 _D e
(45) | | A
A | 15r 0.10
12r 0.17
10 0.10
5 0.17
5 0.22 | 4.19
4.22
4.05
4.13
4.19 | 35-25
25-15
35-45
25-35
15-25 | | 3337.171
3333.388
3412.339
3395.370 | A
A
C
A | 8
10
80R
40r | 0.43
0.51
0.51
0.58 | 4.13
4.21
4.13
4.21 | | b ⁴ F-y ² G°
(25) | 3286.545
•3326.27
3258.035
3264.719 | C
A
A
E | (i)
(3) | 1.73
1.78
1.70
1.73 | 5.49
5.49
5.49
5.51 | 1 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | a ⁴ P-z ² S°
(46)
a ⁴ P-y ⁴ P°
(47) | | A
A
A
A
E | 5 0.10
6 0.17
1 0.17
6 0.22
(1) 0.23 | 4.13
4.24
4.13
4.24
4.13 | 32-32 a ⁴
32-12
32-32
12-12 | F-z ³ D°
(13) | 3127.252
3105.929
3193.164
*3159.662
3249.995 | A
A
A
A | 7
3
5
10
6 | 0.43
0.51
0.51
0.58
0.58 | 4.38
4.48
4.38
4.48
4.38 | 41-31
31-31
31-31
21-21 | b ⁴ F-y ³ F° (36) | 3282.232
3239.256
3243.579
3283.777
3303.881 | CECCA | 1
(1)
2
3
4 | 1.78
1.70
1.73
1.73
1.78 | 5.54
5.51
5.54
5.49
5.51 | 20-14-14-14-14-14-14-14-14-14-14-14-14-14- | (* | | | 15r 0.00
7 0.10
5 0.10
4 0.17 | 4.13
4.21
4.13
4.21 | 42-42 a ⁴ 33-32 32-42 33-33 | F_y ² G° †
(13) | 3198.660
4580.139
4699.180 | A
A
A | <u>5</u> | 0.63
0.93
1.04
0.93 | 3.61
3.67 | 212-31
12-32
-
31-41
21-31 | a ² F-z ⁴ G° (37) | 3103.983
3136.999
3113.473
3131.889
3173.140 | C
A
A
A | 5
1
6
1 | 1.70
1.73
1.70
1.73
1.78 | 5.68
5.67
5.67
5.67
5.67 | 21-21
12-13
23-13
13-3
3-13 | a ⁴ P-x ⁴ P°
(48) | | A
P
G | 3 0.43
0.51
(1) 0.58 | 2.91
2.94
3.10 |
41-51 b ⁴
31-41
31-31 | | 4484.513
4619.339
4411.786
4131.318 | Œ
A | (0)
(2)
(1)
(1)
60 | 1.04
0.92
0.92 | 3.67
3.72
3.72
3.91 |
31-41-33-41- | a ³ F-z ³ G°
(28) | 3107.044
3095.716
3137.755
3103.405 | C
A
A | 3
3
4 | 1.70
1.73
1.78
1.73 | 5.68
5.72
5.71
5.71 | 22-32
12-22
2-13
12-13 | a ⁴ P-v ⁴ D° (49) | | A
A
A | (1) 0.58
(1) 0.63
(2) 0.43
2 0.51
2 0.58
(2) 0.63 | 3.05
2.94
3.00
3.05
3.09 | 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | | 4118.774
3952.917
4092.386
4110.532 | A
A
A | 50
25
25
25 | 1.04
0.93
0.93
1.04 | 4.04
4.04
3.93
4.05 | 31-31
32-31
31-31
21-31 | (28)
:
: a ² F-z ² F°
: (29) | 3114.118
*3079.394
3040.812
3109.506 | A
A
A | (10)N1?
5 | 1.70
1.70
1.73 | 5.74
5.71
5.76
5.70 | 22-12
22-12
23-22
13-13 | a ⁴ P-v ² D°
(50) | | A
A
A | 1 0.43
(1) 0.51
1 0.58
(1) 0.63 | 3.00
3.05
3.09
3.11 | 4½-3½
3½-2½
3½-1½
1½- ½ | | 3945.326
4270.437
4066.365
4132.135 | A
A
G | 15
(1n)
15 | 0.93
1.04
0.93 | 4.05
3.93
3.95
4.03 | 31-31
31-31
31-31
31-31 | a ³ F-y ⁴ D°
(30) | 3086.393
3063.25
3145.022
3050.932 | A
A
A | (1)
3
(3) | 1.70
1.73
1.78 | 5.70
5.76
5.70
5.75 | 22-12
12-22
2-12 | | | Δ | 3 0.43
(5) 0.51
1 0.43
(1) 0.51
(1) 0.58 | 3.04
3.12
3.12
3.18
3.22 | 41-42 b ⁴ 32-32 42-32 33-32 32-12 | (15) | 3965.236
3995.306
4045.386
3885.275 | A
A
A | 8
60
80
6 | 0.93
0.93
1.04
0.93 | 4.01
4.10
4.10 | 31-41
21-31
31-31 | a ² F-y ⁴ G° (31) | 3073.520
3039.563
*3024.400
3061.983 | A
A
A
E | 3
{1
1} | 1.73
1.70
1.73
1.73 | 5.75
5.76
5.81
5.76 | 21-11
15- 5 | a4p_y2pe
(52) | | | (1) 0.51
(1) 0.58
(2) 0.51
(1) 0.58
(2) 0.63
20 0.43 | 3.04
3.12
3.18
3.50 | 32-43
23-33
12-33 | lr4po | 3965.011
3811.065
3935.964
3997.901 | E
A
A | 1
5
30
40 | 1.04
0.93
0.93 | 4.16
4.16
4.05
4.13 | 35-35 | a ³ F-y ⁴ F°
(32) | 3096.402
7354.579
7437.16 | A
C | `ā'
——— | 1.78 | 5.76
3.55
3.61 | 1 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | b ⁴ P-z ⁴ F° (53) | | A
A
C
A | 8 0.51
3 0.58
2 0.63
8 0.43
6 0.51 | 3.55
3.61
3.65
3.55
3.61 | 42-42 b ⁴ 32-32 22-22 12-12 42-32 32-32 | (16) | 3841.458
3922.755
3884.601
3842.047 | A
A
A | 5
7
10
30 | 0.92
1.04
1.04 | 4.13
4.19
4.22
4.13 | 35-35
35-15 | | 7478.77
7124.47
7250.12
7084.974 | O C C | (1)
1
1 | 2.00
1.87
1.95 | 3.65
3.61
3.65
3.68 | 25-25
15-15 | | | A
E
A | 5 0.58
(1n) 0.51
2 0.58
20 0.43 | 3.65
3.50
3.55 | 3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | l _{F-2} 460 | 3861.164
3998.554
3845.468
3894.073 | A
A | 20
(1n)
60
60 | 1.04
1.04
0.92
1.04 | 4.34
4.13
4.13
4.21 | 2 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | a ² F-z ² D°
(33)
a ² F-y ² G°
(34) | 7053.872
7016.602
6771.040
6814.950 | A
A
A | 60
35
50
40 | 1.95
2.00
1.87
1.95 | 3.70
3.76
3.70
3.76 | 23-31
12-21
2-12
2-22
12-12 | (54) | | A
A
A | 10 0.51
6 0.58
6 0.63
20 0.43 | 3.61
3.67
3.72
3.61 | 34-44
34-34
14-24
45-44 | (17) | 3745.491
3569.370
3587.186
3460.719 | A | 25
80R
70R | 0.92
0.92 | 4.21
4.38
4.48 | 31-32
31-32
31-32
31-32
31-32 | | 6872.32
6551.466
6678.818
5935.391 | A
A
A | 40
3
5 | 2.00
1.87
1.95 | 3.80
3.76
3.80 | 3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | b ⁴ P-y ⁴ D°
(55) | | A
A | 10 0.51
6 0.58
10 0.43
4 0.51
60 0.43 | 3.67
3.72
3.67
3.72
3.62 | 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - | In4no | 3489.399
3518.340
3618.010 | C
A
A
A | 25
60r
50R | 0.92
1.04
0.92
1.04
1.04 | 4.48
4.38
4.46
4.55
4.46 | | (36)
g-AgDe | 5922.365
5469.305
5381.105
*5651.734 | 000 | (in)
4
5
(in) | 1.95
1.87
1.95
1.95 | 4.13
4.24
4.13 | | b ⁴ P-z ² D° (56) | | A
A
A | 40 0.51
25 0.58
30 0.63
10 0.51
15 0.58 | 3.70
3.76
3.80
3.62 | 34-14
14- 4
34-34 | F_z4D°
(18) | 6450.230
6282.636
6230.968 | A
A
C | 80
40
10 | | |
21-31
11-21 | a ⁴ P-z ⁴ D° (37) | 4781.432
4737.769
4608.908
4920.272 | A
A
A | 3
(0)
1 | 1.87
1.95
1.87
1.95 | 4.46
4.55
4.55
4.46 | 12-25 | • | | A | 13 0.63
(0) 0.58
Co 0.63 | 3.76
3.62 | 25-35
15-25 | hr | 6189.005
6093.144
6118.994
6005.030
5984.092 | A
A
A | 10
10
8
(3) | 1.70
1.73
1.78
1.70 | 3.70
3.76
3.80
3.76 | 34-13
14-13
34-13 | · | 4834.359
4086.300
4068.541
4058.600 | G
A
A | 15
8
6 | 1.87
1.95
2.00 | 4.55
4.89
4.98
5.04 | 15-25 | b ⁴ P-x ⁴ D°
(58) | | C
C
A | 15 0.51
6 0.43
35r 0.51
35r 0.58 | 4.04
4.04
3.91 | 44-34
34-44
32-32 | (19) | 5530.780
*5265.523 | A
F | 3
10
(1) | 1.73
1.70
1.70 | 3.93
4.05 | | a ⁴ P-z ² F° (38) | 3973.144
3990.299
4013.942
3898.485
3947.125 | A
A
A
A | 10
6
7
4
3 | 1.87
1.95
2.00
1.87
1.95 | 4.98
5.04
5.07
5.04
5.07 | 21-21
11-1
21-1
21-1
11-1 | | | A | 30r 0.43
10 0.51
20r 0.51
18 0.58 | 4.05
3.93
4.05 | 31-21
31-31
21-21 | 1F-z ³ Fe
(30) | 5483.354
5369.591
5331.456
5301.042
5330.210 | A
A
A
A | 40
20
15
15
25 | 1.70
1.73
1.78
1.70
1.73 | 3.95
4.03
4.09
4.03
4.09 | 31-31
11-3
11-3
31-3
11-1 | | 3930.076
4023.399
4092.848 | G
A
C | (1)
4
3 | 1.95
2.00 | 5.01
5.01
5.01 | 2-12 | | | r
C | (1) 0.58
3 0.63 | 4.05 | 12-22 | | 5347.931
5165.156
5149.796 | A
A
A | 15
3
4 | 1.78
1.70
1.73 | 4.13
4.09
4.13 | 23-13
12-2 | † | 3856.796
3946.633 | A
A | 3 | 1.87
1.95 | 5.07
5.07 | | 60) | | | 80R 0.43
80R 0.51
60R 0.58
25r 0.63 | 4.03
4:09 | 3 § -2 §
3§-1 § | (31) | 3726.653
3760.401
3813.470 | A
A
C | 5
4
4 | 1.70
1.73
1.78 | 5.01
5.01
5.01 | 21-11
13-13 | 4P_z45°
(40) | 3568.426
3645.190
3732.390 | C
A | 2
5
20 | 1.95 | 5.33
5.33 | | b ⁴ P-x ⁴ G°
(61)
b ⁴ P-z ⁴ P° | | A
A | 25R 0.51
25r 0.58
20r 0.63
7 0.58
8 0.63 | 3.95
4.03
4.09
3.95 | 34-34
24-24
14-14
24-34 | | 3548.438
3577.260
3626.020
3546.707 | A
A
A | 7
3
3
6 | 1.70
1.73
1.78
1.70 | 5.18
5.18
5.18
5.18 | 3-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | a ⁴ P_z ⁴ P° (41) | 3814.457
3878.750
3730.476
3816.318
3816.458 | A
A
A
A | 5
(4)
20
15
15 | 1.87
1.95
2.00
1.87
1.95
1.95 | 5.18
5.18
5.18
5.18
5.18
5.18 | 23-23
13-13
23-13
13-23
13-23 | (62) | | A A | 300R 0.43
80R 0.61
50r 0.58
50r 0.63 | 4.00
4.01
4.10 | 41-51 b ⁴
31-41
23-31 | ^l r_y ⁴ g•
(88) | 3578.903
3579.029
3684.337 | C
A | 6
6
5 | 1.73
1.73
1.78 | 5.18
5.18
5.18 | 13-23 | | *3876.831
3525.872
3654.441 | A
G
A | 20
3
5 | 2.00
1.87
1.95 | 5.18
5.37
5.32 | 2-12
2-12
2-13
13-13
13-13 | D ⁴ P-z ³ P* † (63) | | A
C
A
C
A | 80R 0.43
80R 0.51 | 4.01
4.10
4.16
4.10 | 42-32 | | 3377.060
3422.900
3463.499
3394.916
3480.474
m3448.98 | AAGGAPA | 5
4
3
3
5
Co | 1.70
1.73
1.78 | 5.36
5.34
5.34
5.34
5.34
5.36 | 25-2
13-1 | | 3600.803
3711.646 | Å | 3 3 | 1.95
2.00 | 5.37
5.32 | 12-12 |
| | | | | | | 3400.471 | A | 1 | 1.73 | 5.36 | 12- 1 | 7 | | | | | | | | | R | E | ٧ | Ι | 8 | Ε | D | MUL | T | Ι | P | L | Ε | T | T | A | В | L | 2 | |---|---|---|---|---|---|---|-----|---|---|---|---|---|---|---|---|---|---|---| |---|---|---|---|---|---|---|-----|---|---|---|---|---|---|---|---|---|---|---| | | | | REVI | SEI | IM C | ULTI | PLE | | ABLE | | | | | | | | |--------------|---|---|----------------------------------|-----------------|---------------|----------------------|----------------------|---|--|------------------------|-------------|--------------------|--------------|--------------|---|--| | ory
f Int | E P
Low High | J Multiplet
(No) | Labor
I A | ratory
Ref 1 | Int | FOA. | P
High | J | Multiplet
(No) | Labor
I A | ator
Ref | y
Int | Low E | P
High | J | Multiplet
(No) | | ued | | | Co I con | tinued | | | | | | Co I cont | inue | a. | | | | | | 15
10 | 1.87 5.36 2
1.95 5.34 1 | 13-31 b4P-w4D°
1-31 (64) | 7987.36
7417.38 | A
A | 5
10 | 2.07 | 3.62 | 21-31
11-31
21-31
11-11 | a ² D-z ⁴ D°
(89) | 3578.076
3637.319 | A
A | 6 | 2.27 | 5.72 | 13-23 | a ³ P_V ⁴ D°
(117) | | 2
7
6 | 1.87 5.34 2 | 1-11
1-21
1-21
1-12 | 7590.57
7154.688
7315.73 | C
A
C | 8
(3) | 2.07 | 3.70
3.76
3.76 | 25-25
15-15
25-15 | | 3556.120
3534.769 | G-
A | (1)
4 | 3.27
3.27 | 5.74 | 14-24 | aSp_vSDo | | 3
5 | 2.00 5.36
1.87 5.34 2 | .2-^2
2-1
3-1-1 | 7004.81 | č | 3 | 2.03 | 3,80 | 1ۇ~ ۇ | 2- 2-4 | 3647.081
3596.510 | Ā | 5 | 3.32
3.37 | 5.70
5.70 | \$-1\$
1\$-1\$ | a ² P-v ² D° | | (0) | 1.95 5.36 1 | -{ | 5991.890
5590.744
5688.593 | A
A
C | 20
10
2 | 2.07
2.03
2.07 | 4.13
4.24
4.34 | 25-25
15-15 | a ³ D-z ³ D°
(90) | 3421.029
3387.061 | E | (1) | 2.27
2.27 | | | a ² P-u ⁴ D° (119) | | 8 | 1.95 5.46 1 | . 2-22 (65) | 5883.421 | . А | (3) | 2.03 | 4.13 | 3 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 | | 3478.555 | c | :
8 | 2.27 | | | | | 7
6 | 1.87 5.38 2
1.95 5.36 1 | 3 b ⁴ P-x ² F°
1 2-3 (66) | m5354.01
5034.06 | P
H
C | (3)
6 | 2.07
2.03
2.07 | 4.38
4.48
4.48 | 31-31
11-31
31-31 | a ² D-y ² F°
(91) | 3378.736
3423.35 | A
A | 5
(1) | 2.27 | 5.92
5.92 | 1출- 출 | a ³ P-w ² F°
(130)
a ³ P-y ² S°
(121) | | 7
8 | 1.87 5.42 2
1.95 5.42 1 | 31-31 b ⁴ P-x ² D°
12-12 (67)
32-12 | 5113.232
5176.085 | A | 20 | 2.07 | 4.46 | 31-31 | a ^{3D} -y ^{3D} ° | 3373.226 | A | 7 | 2.27 | 5.93 | 11-1 | a ² p-x ² s° (122) | | .8
.2 | 1.95 5.46 1 | r≨~v≨ | 4899.520
4974.47 | A
G | (<u>1</u>) | 2.07 | 4.55 | 13-13
33-13 | (83)
e ₃ D-A ₃ D _o | 3417.673
3338.519 | C | 5
1 | 2.32 | 5.93
5.97 | | | | (0)
4 | | 호-1호
나 b4P-z ² S° | 5094.955
4371.130 | A
A | 8
5 | 2.03 | 4.46 | 1½-3½
3½-3½ | a ² D-x ⁴ D°†
(93) | 3402.064
*3358.003 | Č | 4 3 | 3.32
3.27 | 5.95
5.95 | 19-1 | a ² P-x ² P°
(123) | | 1 | | l ¹ / ₂ - ¹ / ₂ b ⁴ P-z ² S°
¹ / ₂ - ¹ / ₂ (68)
¹ / ₃ -2 ¹ / ₃ b ⁴ P-x ⁴ P° | 4187.246
4192.856 | A | 4
(2N) | 2.03 | 4.98
5.01 | | | 3382.071
3263.213 | E | 2 | 2.32 | 5.97
6.05 | -1 2 | a ² P-w ² Po † | | (0)
3 | 1.87 5.68 2
1.95 5.67 1
2.00 5.67 | 31-21 b4P-x4P°
11-11 (69) | 4139.452 | A
A | 3 | 2.03 | 5.01 | 21-11
11-11 | (94) | 3226.986 | A | 4 | 3.32 | 6.14 | 후- 후 | (124) | | 12
7
7 | 1.95 5.67 1 | 3}-1}
1}-2}
1}-2} | 3735.928
3749.930
3693.476 | C
A | 12
.9
8 | 2.07
2.03
2.03 | 5.37
5.32
5.37 | 31-11
11-11
11-12 | a ² D-z ² P°
(95) | 3072.664
3107.540 | C
A | (1)
1 | 3.27
3.32 | 6.29
6.29 | 1=1=
================================= | a ² P_v ² P°†
(125) | | å | 1.95 5.68 1
2.00 5.67 | 1 -1 1 | 3755.447 | A
A | 10 | 2.07 | 5.36 | 23-32
12-32 | | 7712.661 | A | 6 | 2.53 | 4.13 |
1] -2] | pSp-zSpe | | 8
8
10 | 1.87 5.68 2
1.95 5.72 1
2.00 5.71 | 31-31 b4P-v4D°
11-21 (70)
1-12 | 3734.139
3777.543
3731.268 | A
A
A | 7
6
2 | 2.03
2.07
2.03 | 5.34
5.34
5.34 | 13-23
21-21
12-12 | (96) | 7610.24
7217.34 | Ö | (s)
S | 2.62
2.53 | 4.24 | 3-15
12-15 | b ² P-z ² D° (126) | | (1)
5 | 1.87 5.73 2
1.95 5.71 1 | 3 1 - 31
1 1 - 11 | 3774.599
3707.465 | A
A | 8 | 2.07
2.03 | 5.34 | 21-13
13- 3 | | 4268.446
4404.932 | A | 2 3 | 2.53
2.62 | 5.42
5.42 | 1 1 2 - 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 | b ² P-x ² D°
(127) | | 6
1
1 | | 2 - 2
3 - 1 - 2 | 3693.106
3605.015 | A
C | 8
5 | 2.07 | 5.41
5.46 | 21-31 | a ² D-w ⁴ F° | 3969.116
3960.997 | A
A | 8
6 | 2.53
3.62 | 5.64
5.73 | | b ³ P_w ³ D° (128) | | 4 | | 1½-2½ b⁴P-√3D°
3½-2½ b4P-√3D° | 3645.440
3559.597 | E | 3 | 2.07 | 5.46 | 21-21
11-11 | a ² D-w ⁴ F° (97) | 3851.848 | Ā | 2 | 2.53 | 5.73 | 15-15 | | | 7
4
6 | 1.95 5.70 1
1.87 5.70 2
1.95 5.76 1 | 3 - 2 b ⁴ P-v ³ D°
1 - 1 (71)
3 - 1 - 1
1 - 2 - 1 | 3733.483
3708.823 | A
A | 12
12 | 2.07 | 5.38
5.36 | 21-31 | a ² D-x ² F°
(98) | 3870.534
3991.831 | A
C | (2) | 2.53
2.62 | 5.73
5.71 | | b ² P-v ⁴ D°†
(129) | | Co | 2.00 5.70 | - 1호 | 3751.625 | Ā | 5 | 2.07 | 5.36 | | | 3819.908
4003.596 | A
A | 4 2 | 2.53
2.62 | 5.76
5.70 | 13-23 | b ² P_∀ ² D° | | (1)
3 | 1.87 5.76 2
1.95 5.81 1
1.95 5.76 1 | 31-11 b4p-y2p°
11-12 (72)
11-12 | 3683.047
3643.181
3684.479 | A
A
C | 20
9
10 | 2.07
2.03
2.07 | 5.42
5.42
5.42 | 23-23
13-13
23-13 | a ² D-x ² D° | 3892.118
3817.940 | A. | 3
(4) | 2.53
2.53 | 5.70 | 15-15 | | | (2)
6 | 2.00 5.81
2.00 5.76 | 1-12
2-12
2-12 | 3641.784 | A | - 6 | 2.03 | 5.42 | 15-95 | | 3863.607
3759.684 | Ĉ | 3 | 2.62 | 5.81
5.81 | 12- 2
12- 2 | b ² P-y ² Pe
(131) | | 10
5 | 1.87 5.79 2
1.95 5.85 1 | 3½-3½ b ⁴ P-u ⁴ D°
1½-3½ (73) | 3585.808
*3521.731 | C | 4
5 | 2.03 | 5.51
5.54 | 22-12
12- 2 | a ² D-y ⁴ P°† | 3925.151
3754.346 | A
A | 3
4 | 2.62 | 5.76
5.82 | 2-12 | | | 7
5 | 2.00 5.88 | 12-22 (73)
1-12
3-23 | 3458.028
m3334.12 | C
P | 3
Co | 2.07
2.03 | 5.64
5.73 | 23-23
13-13 | a ² D-w ² D° | 3631.948 | c | 3 | 2.53 | 5.93 | 13-3 | b ² P-w ² F°
(132)
b ² P-x ² S°
(133) | | Co
6 | 1.95 5.88 1
2.00 5.91 | 1] -1]
1-1] | 3368.67
3421.628 | G
A | (<u>1</u>) | 2.07
2.03 | 5.73
5.64 | 15-45 | • | 3728.840
3591.746 | A
A | 3
4 | 2.62 | 5.93
5.97 | 11 11 | (133)
h2n2ne | | 3 | 1.95 5.91 1 | 3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | 3420.790
3396.457 | A
C | ? | 2.07
2.03 | 5.68
5.67 | 31-21
13-13 | a ² D-x ⁴ P° (102) | 3614.34
3686.477 | Ā | (1)
2 | 2.53 | 5.95 | 15-15 | b ² P-x ² P°
(134) | | (3)
7 | 1.87 5.83 2
1.95 5.82 1
1.87 5.82 2 | 3-3- b ⁴ P-w ² F°
1-2-2 (74)
3-2-2 | 3432.318
3390.396 | C
A | 3
5 | 2.07
2.03 | 5.67
5.67 | 1호- 호 | • | 3504.728
3502.998 | A | 5
(2á) | 2.53
2.62 | 6.05
6.14 | 13-13 | pgp_wgbo | | 3 | 1.95 5.93 1 | 14- } b4p-x2s° | 3424.500
3348.112 | A
A | 10
8 | 2.07 | 5.68
5.72 | 2출-3출
1출-3출 | a ² D_v ⁴ D°† | 3417.353
m3594.87 | E | (2d)
(1d)
Co | 2.53 | 6.14 | 14-14
14-14 | (100) | | 2 | 2.00 5.93
1.87 5.97 2 | | 3355.940
3356.464 | A
A | 3
6 | 2.03 | 5.71
5.75 | | | 3496.070 | C | 3 | 2.69 | 6.22 | -
51-51 | . 24-v2He | | (11) | | 21-11 b4P-x3P° † 11-12 (76) | *3322.198 | A | 8 | 2.03 | 5.75 | 15-15 | a ² D-y ⁴ S° (104) | 3604.469 | A | 4 | 2.77 | 6.20 | | a ² H-y ² H ^o
(136) | | 6
5
4 | 1.87 5.95 2
1.95 5.98 1
2.00 5.99 | 31-31 b4P-t4D°
11-21 (77)
11-12 | 3342.734
3264.842
3308.688 | C
A
E | 8
5
(1) | 2.07
2.03
2.03 | 5.76
5.81
5.76 | 23-13
13- 3
14-14 | a ³ D_y ³ P° | 3469.683
3553.161 | C | (2n)
2 | 2.69
2.77 | 6.25
6.25 | 53-43
43-33 | a ² H-w ² G*
(137) | | 3 | 1.95 5.99 1 | 3 5 -3 5
1 5 -15 | 3331.913 | ç | 3 | 2.07 | 5.79 | | a ² D-u ⁴ D° | 3174.140
*3235.532 | A | 6 | 2.69
2.77 | 6.58 | 53-43
45-35 | a ³ H-v ³ G° | | 3
1
2 | 2.00 6.00
1.87 5.99 2
1.95 6.00 1 | 3 2 | 3232.874
3265.352
3210.219 | A
A
A | (9)
3
5 | | 5.85
5.88 | 13-33
33-33
13-13 | | 3245.750 | A | (1) | 2.77 | 6.58 | | | | 3 | | -2
8 1 -31 b ⁴ P-v ² F°
11-21 (78) | 3180.290 | A | 2 | 2.03 | 5.91 | 15- 5 | | 7388.689
7586.72 | A
C | (4) | 2.71 | 4.38 | 21-31
11-21 | b ² D-y ² F°
(139) | | | | | 3283.466
3260.614
3293.861 | A
C | 9
3 | 2.07
2.03
2.07 | 5.83
5.88
5.82 | 22-32
22-32 | a ³ D-w ³ F° | 6937.81
7054.042 | C
A | 4
10 | 2.71 | 4.46 | 2 2 -2 2 | b ² D-y ² D°†
(140) | | {1
1 | 2.03 3.61 4
2.13 3.67 3 | 4 }-4} a ³ G-z ⁴ G°
3 } -3 } (79) | 3168.060
3154.678 | ç | - 6
5 | 2.07 | 5.97 | 3-1-1 | a ² D-x ² P° | 7285.28
4624.561 | C | 4 | | | | | | 40
Co | 2.03 3.91 4
2.13 4.04 3 | 41-41 a ³ G-z ³ G°
31-31 (80)
41-31 | 3137.454 | C
E | 3 | 2.03 | 5.95
5.97 | 12-12 |
(200) | 5004.187
4904.173 | G
A | (0)
1 | 3.86
3.86 | 5.32 | 15-15 | b ² D-z ² P° (141) | | (2) | 5.10 0.01 | 02-32 | 3109.766
3110.031 | Ĉ | 9
5 | 2.03 | 5.98
6.00 | 2)-3)
1)-2) | (109) | 4543.810
4815.900 | A
A | 6
1 | | | | b ³ D-x ³ D°
(142) | | 6
4 | 2.03 3.93 4
2.13 4.05 3 | 4]-3] a ² G-z ² F°
3] -2] (81)
3]-3] | 6946.31 | σ - | (2) | 2.27 | 4.05 | _
.1 nl | -3n -3me | 4545.985
m4813.45 | A
P | i
Co | 3.71
3.86 | 5.42 | 23-13 | (140) | | (1)
13 | 2.13 3.93 3
3.03 4.13 4 | 3½-3½
11 11 20 200 | 6632.438 | A
O | 15 | 2.27 | 4.13 | 1 2-2 | (110)
a ² P-z ² D° †
(111) | 4375.540 | | | 3.86 | | | | | 10
3- | 2.13 4.31 3
3.03 4.31 4 | 4]-4] a ² g-y ² g-
3] -3] (82)
4]-3] | 5647.234 | A | 15
13 | 2.27 | 4.46 | 2-12
12-32 | a ² p-y ² p° | 4431.608 | A | 3 | 2.86 | | | b ² G-x ² G°
(143) | | (1)
25 | a.13 4.13 | <u>55-45</u> | 5523.310
5408.119 | A
C | 8 | 2.33
2.27 | 4.55
4.55 | 12-12
12-12 | a ² p_y ² p° | 4158.420
4179.226 | A
A | 4
2 | 2.86
2.86 | 5.83
5.82 | | b ² G_w ² F°
(144) | | 15 | 3.13 4.48 | 41-31 a ³ G-y ³ F° 31-22 (83) | 3915.503
3977.184 | A
A | (a)
3 | 2.32 | 5.42
5.42 | 1 1 - 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | a ² P-x ² D° (113) | 3676.552
3702.237 | A
A | 12
13 | 2.86 | 6.23 | 41-51
31-41 | b ³ G—у ^З Н°
(145) | | 6
4 | 2.03 5.36 4
2.13 5.34 3 | 4 } -3 } a ³ G-w ⁴ D°
3 } -3 } (84) | 3917.115
3835.497 | A
C | 8 | 2.27 | 5.43
5.49 | | | 3699.017
3649.329 | C
A | 2n
8 | | 6.20 | | | | 4 | 3.03 5.41 4
3.13 5.46 3 | 41-31 a ³ G-w ⁴ F°†
31-21 (85) | 3893.067 | E | 8 | 2.32 | 5.49 | \$- \$ | a ² p_z ² 5°
(114) | 3634.713 | Á | 7 | | | | b ² G-u ² F°
(146) | | 7
5 | 2.03 5.38 4
2.13 5.36 | 4]-3] a ² G-x ² F°
3] -2] (86) | 3662.158
3611.701
3562.097 | A
A
A | 13
10
6 | 2.32 | 5.64
5.73
5.73 | 15-22
2-12
11-11 | a ² P-w ² D° (115) | 3632.839
3609.752 | A | 7
4 | 2.86 | 6.26 | | b ² G-x ² H° †
(147) | | 4 | | 4 }-5} a ³ G-z ³ H°
3 }-4} (87) | 3620.423 | A | 5 | | | 12-22 | a ² P-x ⁴ P° | 3341.341
3339.15 | A
A | 5
(4) | 2.86
3.86 | 6.56
6.56 | 43-33
33-25 | b ² G—s ² F°
(148) | | 3
4 | | | 3684.960
3633.340
3677.835 | A
A
G | 3 | 3.33
3.37 | 5.67 | 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | a ² P-x ⁴ P°
(116) | *3322.198
*3314.073 | A
A | 8 | | | | ხ ^გ ე_ _V გეი †
(169) | | 3 | 2.13 5.65 | 4½-4½ s ³ G-x ³ G°
3½-3½ (88) | 00111600 | G. | (1) | ಎ.೨ನ | 5.67 | 2 \$ | | 0323.010 | • | | | | -
- | 1044) | | | | | | REVIS | E D M | ULTIPLET | TABLE | | | | 73 | |---------------------------------|---|---|---|---|--|--|--|--|---------------------------------------|---|--| | itor;
lef | Int | E P
Low High | J Multiplet
(No) | Laborato | ry | EP+ J
Low High | Multiplet (No) | Laborato
I A Ref | ry
Int | E P
Low High | J Multiplet
(No) | | .nued | | 20 | ,, | Co I continu | eđ. | | | Co I continu | eđ. | • | | | A
A
A | 30
15
10 | 2.91 5.64
2.94 5.71
3.00 5.77 | 5½-5½ z ⁶ F°-e ⁶ F
4½-4½ (150)
3½-3½ | 3485.368 A
3461.173 A
3446.088 C | 15
15
12 | 3.10 6.64 62-
3.16 6.73 52-
3.20 6.78 42- | 71 z ⁶ g•_e ⁶ H†
61 (162)
51 | 5257.621 A
5158.854 A | 10 | 3.95 6.30
4.03 6.42 | 3½-3½ y4D°-e4P†
3½-1½ (188) | | A
A
A | 5
4
3
4 | 3.05 5.81
3.09 5.85
3.11 5.87
2.91 5.71 | 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | 3437.680 Å
3448.358 C | 6n
4 | 3.24 6.83 3½- | 42
3½ z ⁶ G°-3
(163) | 8093.932 A
7908.679 A
7869.868 A | 8 6 2 | 4.00 5.53
4.01 5.57
4.10 5.66 | 5-4-4 y40°-4-+
4-3- (189)
3-2- | | A
A
A | 3
4
5
4 | 3.94 5.77
3.00 5.81
3.05 5.85
3.09 5.87 | 42-32
32-22
22-12
12-2 | 6908.08 C
7398.72 D
6901.52 C | (5)
(1)
(2)
(1) | 3.39 5.18 21-
3.51 5.18 11-
3.39 5.18 21- | 21 c ³ D_z ⁴ P°
11 (164)
11 22 | 7871.370 A
5342.703 A
5343.381 A | 50
20 | 4.16 5.73
4.00 6.31
4.01 6.32 | 2½-1½
5½-6½ y ⁴ G°-e ⁴ h†
4½-5½ (190) | | A
A
A | 20
15
10
7 | 3.94 5.64
3.00 5.71
3.05 5.77
3.09 5.81 | 45-55
35-45
25-35
15-35 | 7406.23 D
5086.663 A
6474.558 A | (1)
7
(3) | 3.51 5.18 $1\frac{1}{2}$ 3.39 5.43 $2\frac{1}{2}$ 3.51 5.43 $1\frac{1}{2}$ | 2½ c ² D-x ² D°†
1½ (165) | 5276.183 A
5250.003 A
5333.647 A | 8
7
5 | 4.10 6.43
4.16 6.51
4.00 6.32 | 3½-4½
2½-3½
5½-5½ | | A
E
A | 4
{1
0} | 3.11 5.85
2.91 6.61
2.94 6.69 | 2-12
5]-5] z ⁶ F°-2 ⁴ G
42-43 (151)
5]-43 | 5495.682 A
5558.825 A | 3
2 | 3.39 5.64 21-
3.51 5.73 12- | a <u>ł</u> c ³ D−w ³ D°†
1½ (166) | 5334.821 A
5336.163 A
5344.570 A
5545.937 A | (in)
2 | 4.00 6.32
4.01 6.32
4.01 6.32
4.10 6.32 | $5\frac{1}{2}$ $4\frac{1}{2}$ y^4G^0 g^4F^{\dagger} (191) $4\frac{1}{2}$ $3\frac{1}{2}$ $3\frac{1}{2}$ | | A
C
A
A | (1)
(2)
1
3 | 2.92 6.69
2.94 6.61
3.00 6.69
3.05 6.73 | 42-52
32-42
32-32 | 5310.042 A
5368.904 A
4331.331 A | (2)
3 | | 1½ c ³ D-y ³ P°
½ (167)
3½ c ³ D-u ³ F°
2½ (168) | 5325.276 A
5316.772 A
5524.990 A | 10
7
4 | 4.00 6.32
4.01 6.33
4.10 6.33 | 5-5-5- y4-0°-e4-0+
4-4 | | A
C | (1)
8 | 3.09 6.81
2.91 6.62 | 1½-3½
5½-5½ z ⁶ F°-f ⁶ F | 4494.746 A | a | | | 5407.520 A | | 4.16 6.44 | 25-35
 | | A
C
C
A
A
A
C | 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2.94 6.71
3.00 6.78
3.05 6.82
3.91 6.71
3.94 5.78
3.00 6.82
2.94 6.62 | 45-45 (152) 35-35 35-35 45-35 45-35 45-35 45-55 | 6082.431 A 6132.640 A *6000.668 A 5946.484 A 5965.040 F 5846.575 A 5836.399 A | 15
8
5
(a)
2
(2) | 3.50 5.57 42- | 3 5
3 5 | 8372.79 A
*8589.78 A
8379.44 A
8208.57 A
8151.95 A
8055.996 A
8043.306 A | (10)
(3)
(3)
(8)
(6)
2 | 4.05 5.53
4.13 5.57
4.19 5.66
4.22 5.73
4.05 5.57
4.13 5.66
4.19 5.73 | 42-42 y4F°-e4F† 31-32 (193) 22-22 (193) 12-12 42-32 32-22 23-13 | | A
C
A
C | 2 2 2 | 3.00 6.71
3.05 6.78
3.09 6.82
3.11 6.86 | 35-45
25-35
15-35
1-15- | 5212.699 A
5146.753 A
5126.201 A | 25
15
10 | • | 4½ z ⁴ F°-f ⁴ F† | 5453.338 A
5359.200 A
5325.949 A | (1)
6
4 | 4.05 6.32
4.13 6.43
4.19 6.51 | $4\frac{1}{2}-5\frac{1}{2}$ y ⁴ F°-e ⁴ H $3\frac{1}{2}-4\frac{1}{2}$ (194) $3\frac{1}{2}-3\frac{1}{2}$ | | A
A
P | 4
2
Co | 3.91 6.63
2.94 6.71
3.00 6.78 | 51-41 z ⁶ F°-e ⁶ D
41-31 (153)
31-21 | 5122.767 A
5332.652 A
5265.786 A
5219.008 A | 8
5
4
2 | 3.65 6.06 13-
3.55 5.87 33-
3.61 5.95 23- | | 5454.573 A
5637.734 A
5515.990 A | 20
3
(1) | 4.05 6.32
4.13 6.32
4.19 6.43 | 41-41 y4F°-g4F↑ 31-31 (195) 21-31 | | A
A
A | (6)
8
5 | 3.05 6.84
2.94 6.63
3.00 6.71
3.05 6.78 | 25-15
45-45
35-35
25-25 | 3972.506 A
3938.856 A
3951.717 A | 6
3
(in) | | 51 z ⁴ F°-f ⁴ G
41 (171) | 5403.000 A
5444.585 A
8381.776 A | `3´
20
6 | 4.22 6.51
4.05 6.32
4.33 6.51 | 12-12
41-51 y4F°-e4G†
12-31 (196) | | A
E
A | {1
1
2 | 3.09 6.84
3.05 6.71
3.11 6.84 | 1½-1½
3½-3½
½-1½ | 3904.790 E
5352.046 A | 30 | 3.65 6.81 12- | -3 2 | 5425.621 A
5347.499 A
5310.219 A | (2)
4
(1n) | 4.05 6.33
4.13 6.44
4.19 6.51 | 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - | | C
A
A | 8
4
3
3 | 2.91 6.63
2.94 6.71
3.00 6.75
3.05 6.79 | 51-61 z ⁶ F°-e ⁶ G
41-51 (154)
31-41
21-31 | 5280.631 A
5266.302 A
5268.498 A | 20
10
10 | 3.72 6.06 2 2 - | | 5312.650 A
5124.718 A | 8 2 | 4.19 6.51
4.22 6.63 | 2½-3½ y4F°-g2F†
1½-3½ (197) | | Ā
C
A
C | 3
(5w)
(2)
(9) | 3.09 6.85
3.11 6.85
2.91 6.71
3.00 6.79 | 12-25
5-15
5-55
32-35 | 4035.542 A
3991.528 A
3978.864 C
m3972.53 P | 8
4
4
Co | 3.56 6.62 5
3.61 6.71 4
3.67 6.77 3
3.72 6.82 3 | -6} z ⁴ G°-f ⁴ H
-5} (173)
-4}
-3} | 5353.500 A
5362.781 A
5341.328 A | 25
15
7 | 4.13 6.43
4.21 6.53
4.13 6.44 | 41-51 y ² G°-e ² H
31-42 (198)
41-41 y ² G°-e ² G† | | A
C
A | (9)
(2)
(4) | 3.05 6.85
3.09 6.85
2.94 6.79 | 35-25
15-15
45-35 | 6454.998 A | 40 | | | 5339.528 C | 4 | 4.21 6.53 | | | A
C
A | 8
4
4 | 2.94 6.64
3.00 6.72
3.05 6.78 | 41-31 z6ro-e6p | 6595.869 A
6477.861 A
6395.158 A | 13
10
8 | 3.80 5.73 | ·1 2 | 6347.843 A
6351.448 A
5984.253 A | 10
2
3 | 4.38 6.32
4.48 6.43
4.38 6.44 | 3\frac{1}{2} y^2 \text{F}^0 - \text{g}^4 \text{F}^+ \\ 2\frac{1}{2} - 2\frac{1}{2} (300) \\ 3\frac{1}{2} - 4\frac{1}{2} v^2
\text{F}^0 - \text{g}^2 \text{G} | | A
C | 10 | 3.04 5.64
3.18 5.71 | | 5483.962 A
5477.089 A
5470.460 A
5452.305 A | 10
5
4
3 | 3.70 5.95 25-
3.76 6.01 15- | -3 2 | 6049.110 A | 6
 | 4.48 6.53 | 31-41 y ² F°-e ² G
21-31 (201)
- | | A
A
A | 5
3
2 | 3.18 5.77
3.22 5.81
3.24 5.85 | 31-31
11-31
1-11 | 5387.574 C
5326.247 C | 3 . | 3.62 5.95 3½-
3.70 6.01 3½- | -3 ½ | 6591.834 E | (1) | 4.55 6.42 | 1½-½ (303)
 | | A
A
A
A | 15
13
9
6 | 3.04 5.71
3.12 5.77
3.18 5.81
3.22 5.85
3.24 5.87 | 32-32
32-32
22-32
11-12 | 4594.633 A
4635.767 A
4596.903 A | 4
3
5 | | -3½ z ⁴ D°-e ⁴ D†
-3½ (176)
-3½ z ⁴ D°-e ⁴ P†
-1½ (177) | 8819.11 A
8750.13 B | 100
60 | 5.13 6.53
5.22 6.63 | 51-41 x ⁴ G°-h ⁴ F†
41-31 (203) | | A
F | 3
(1)
(2N) | 3.04 5.77
3.12 5.81 | 41-31
31-21 | 4526.794 A
4570.024 A | 3 | | -12 (177)
-42 z ⁴ D°-g ⁴ F† | Strongest Unc | lassifie | d Lines of Co | <u>I</u> | | A | (1) | | 21-11
11-1
11-1
1-1 | 4704.386 A | (3) | 3.70 6.32 22 | -3 2 (178) | 3443.203 C
3177.266 A | 5
8 | III? | | | A
G | 57
3
(2n) | 3.04 6.71
3.12 6.75
3.22 6.85 | 1 2 -3 2 | 7037.797 A
7134.390 A
5133.467 A
5156.366 A | 6
5
15 | 3.91 5.67 42-
4.04 5.77 32-
3.91 6.32 42- | -3½ z ² G°-e ² F†
-2½ (179)
-5½ z ² G°-e ⁴ H | Co II I P 1 | 7.1 An | al C List A | Mar 1942 | | A
A
A | 25
25
20 | 3.10 5.64
3.16 5.71
3.20 5.77 | 6)-5) z ⁶ G°-e ⁶ F† 5)-45 (158) 4)-3) 3)-32 | 5156.366 A
4756.732 A
5125.715 A | 10
(1)
7 | | -5½ z ² G°-e ⁴ H
-4½ (180)
-3½
-5½ z ² G°-e ⁴ G† | 3621.22 A
3578.03 A
3555.93 A | 100
30
10 | 2.19 5.60
2.23 5.68
2.26 5.73 | 3-4 4s ⁵ P-4p ⁵ F°
2-3 (1) | | A
A
A | 15
10
6 | 3.24 5.81
3.27 5.85
3.28 5.87 | 31-21
21-11
11-1 | 5108.903 A
4746.115 A | 10 | | -5½ z ³ G°-e ⁴ G†
-4½ (181)
-3½ z ³ G°-g ² F | 3545.03 A
3517.48 A
3514.21 A | 25
10
5 | 2.19 5.68
2.23 5.73
2.26 5.78 | 3-3
2-2
1-1 | | A
A
A | 3 3 | 3.16 5.64
3.20 5.71
3.24 5.77 | 44-44
32-32 | 4767.142 A | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | -3½ z ³ G°-g ² F
-3½ (183) | 3501.73 A
3440.40 A | 200
100 | 2.19 5.72
2.83 5.81 | 3-4 4s ⁵ P-4p ⁵ D°
2-3 (8) | | A
A
A
E | 3
2
4 | 3.27 5.81
3.28 5.85
3.16 6.62 | 31-31
11-11 | 7743.27 C
8112.13 D
7553.970 A
7634.50 C | (5)
(1)
4
(5) | 3.93 5.53 3
4.05 5.57 2
3.93 5.57 3
4.05 5.66 2 | -4½ z ² F°-e ⁴ F
-3½ (183)
-3½
-2½ | 3423.85 A
3415.78 A
*3388.18 A
3387.73 A | 75
75
50
60 | 2.26 5.87
2.19 5.81
2.23 5.87
2.26 5.91 | 1-2
3-3
2-2
1-1 | | C
A | 3
3 | 3.20 6.71
3.24 6.77
3.27 6.82 | 31-41
25-35 | 5211.832 A
5077.410 A | 3 | | -3½ z ³ F°-e ⁴ D
-3½ (184) | 3358.59 A
3352.80 A
3370.94 A | 10
30
50 | 2.19 5.87
2.23 5.91
2.26 5.92 | 3-2
3-1
1-0 | | A
Ç | (in)
(3) | 3.10 6.63
3.16 6.71 | 61-51 z ⁶ G°-1 ⁶ F†
51-41 (160) | 4795.853 A | а . | 3.93 6.51 3½- | -3½ z ² F°-e ⁴ H
(185) | | | | | | A
C
A | (2)
6
7 | 3.20 6.78
3.10 6.63
3.16 6.71 | 63-63 z600-e60+ | 4785.070 A
4778.233 A | (1) | | -31 z ³ F°-g ³ F
-32 (186) | Measures inac | lequate f
lassified | or preparation of Co | on of list of II. | | A
C
C
E | 4
5n
3
1 | 3.20 6.75
3.24 6.79
3.27 6.85
3.28 6.85 | 45-45
35-35
35-35 | 5254.652 A
5287.785 A
5230.363 G
5210.834 A | | 3.95 6.30 3
4.03 6.37 2
4.09 6.45 1
4.13 6.50 2 | -31 y4D°-e4D†
-21 (187)
-11 - 2 | | - | | | | | | | | ULTIPLE | | | | | | |----------------------|-------------------------------------|--|--|-------------------------------------|---|--|-------------------|-------------------------------------|---| | ory | E P
Low High | J Multiplet (No) | Laboratory
I A Ref Int | E P
Low High | J Multiplet (No) | Laboratory
I A Ref | Int Lo | EP
w High | J Multiplet (No) | | '.61 Anal | | March 1942 | N1 I continued | | | N1 I continued | | | | | , | 0.16 3.29 | 3-3 a3F-z5D° | 3392.992 B 100R | 0.03 3.66 | 3-3 a ³ D-z ³ D° | 3287.221 B | 2 1. | 67 5.42 | 2-2 b ¹ D-x ¹ D° (55) | | 3 8
3 5 | 0.00 3.29
0.16 3.38 | 4-3 (1)
3-2 | 3446.263 B 100R
3423.711 B 50R | 0.11 3.69
0.21 3.82 | 2-2 (30)
1-1
3-2 | *3029.297 B | 3 1. | 67 5.74 | 2-2 b ¹ D-x ³ P° (56) | | , | 0.27 3.45
0.16 3.18 | 2-1
3-4 | 3367.892 B 8
3328.714 B 5
3472.545 B 70R | 0.03 3.69
0.11 3.82
0.11 3.66 | 3-2
2-1
2-3 | 6767.778 C | 20 1. | 82 3.64 | 0-1 a ¹ S-z ³ pe | | 3 15 | 0.00 3.40 | 4-5 a ³ F-z ⁵ G°
3-4 (2) | 3472.545 B 70R
*3548.185 B 30r | 0.21 3.69 | 1-2 | 6177.258 B | | 82 3.82 | (57)
0-1 a ¹ S-z ³ D° | | 3 10
3 5 | 0.16 3.47
0.27 3.53
0.00 3.47 | 3-4 (2)
2-3
4-4 | 3248.457 B 8
3234.649 B 10r | 0.03 3.82
0.11 3.92 | 3-4 a ³ D-z ³ G°
2-3 (21) | 5476.906 B | | 82 4.07 | (58)
0-1 a ¹ 8-z ¹ pe | | 3 10
3 12
1 4 | 0.16 3.53
0.27 3.58 | 3-3
2-2 | 3165.508 B 3 | 0.03 3.92 | 3-3 | 5079.961 B | | 82 4.25 | (59)
0-1 a ¹ S-y ³ p° | | , 4 | 0.00 3.53
0.16 3.58 | 4-3
3-2 | 3243.058 B 25R
3315.663 B 30R | 0.03 3.83
0.11 3.83 | 3-3 a ³ D-z ¹ F°
2-3 (22) | _ | | | (60) | | 3 8 | 0.00 3.52 | 4-5 a ³ F-z ⁵ F* | 3200.423 B 5 | 0.03 3.88 | 3-2 a ³ D-z ¹ D° | 7028.95 P
6928.52 P | | 93 3.68
94 3.72 | 3-3 a ³ P-z ⁵ F*
1-3 (61) | | 15
30R | 0.16 3.59
0.00 3.59 | 3-4 (3)
4-4 | 3271.118 B 10
3362.806 B 6 | 0.11 3.88
0.21 3.88 | 2-2 (23)
1-2 | 7714.37 G | | 93 3.53 | 2-2 a ³ P-z ³ Pe | | 8 2 | 0.16 3.68
0.27 3.72 | 3-3
2-2 | 3114.124 B 208 | | 3-1 a3D-z1P* | 7261.94 G
7197.07 G | 5 1 | 94 3.64 | 1-1 (62)
3-1
1-0 | | 12 | 0.00 3.68
0.16 3.72 | 4-3
3-2 | 3197.113 B 10r
3050.819 B 100R | 0.21 4.07 | 1-1 (24)
3-4 a ³ D-y ³ F° | 6914.562 D
7788.95 G
7414.51 G | 2 1. | 94 3.73
94 3.53
98 3.64 | 1-0
1-3
0-1 | |) 20r | 0.27 3.75
0.16 3.53 | 2-1
3-2 a ³ F-z ³ P° | 3050.819 B 100R
3101.554 B 100R
3134.108 B 60R | 0.11 4.09 | 3-4 a ³ D-y ³ F ⁶
2-3 (25)
1-2 | 7291.48 B | | 93 3.62 | 2-3 a ³ p-z ³ F° | | 20 | 0.27 3.64
0.27 3.53 | 2-1 (4)
2-2 | 3037.935 B 60R
3054.316 B 50R | 0.03 4.09 | 3-3
2-3 | 7110.91 B | • • | 93 3.66 | (63)
2-3 a ³ p-z ³ pe | | : 5' R | 0.00 3.64 | 4-4 a3F-z3F* | 2992.595 B 20F | | 3–3 | 7063.97 B
7001.57 B | (4) 1. | .94 3.69
.93 3.69 | 1-2 (64)
3-3 | | 50R | 0.16 3.62
0.27 3.78 | 3-3 (5)
2-2 | 3002.491 B 100F
3003.629 B 60F | | 3-3 a ³ D-y ³ D°†
2-3 (36) | 6586.328 B
6532.891 B | 6 1 | .94 3.82
.93 3.82 | 1-1
2-1 | | 8
25R | 0.00 3.62
0.16 3.78 | 4-3
3-2 | 3057.638 B 50F
2981.651 B 20F | 0.21 4.25
0.11 4.25 | 1-1
3-1 | *6180.093 B | 2.2 | .93 3.92 | 2-3 a ³ p-z ³ Ge | | 15 | 0.16 3.64
0.27 3.62 | 3-4
2-3 | 3064.623 B 25F
3080.755 B 20F | 0.11 4.14
0.21 4.22 | 3-3
1-3 | 6482.811 B | 5 1 | .93 3.83 | 2-3 a ³ P-z ¹ Fe | | 80R | 0.00 3.66
0.16 3.69 | 4-3 a ³ F-z ³ D° (6) | 2994.460 B 25F | 0.03 4.15 | 3-4 a ³ D-z ¹ G° (37) | 6314.666 C
6364.597 D | 15 1.
(1) 1 | .93 3.88
.94 3.88 | 2-2 a ³ P-z ¹ D ⁶
1-3 (67) | | 25R
25R
15 | 0.16 3.69
0.27 3.82
0.16 3.66 | 3-3
2-1
3-3 | 4298.767 B (2) | 0.42 3.29 | (57)
2-3 a ¹ D-z ⁵ D° | 5754.675 B | | .93 4.07 | 2-1 a ³ P-z ¹ P* | | 30R | 0.27 3.69
0.27 3.66 | 2_2
2_3 | 4164.636 D 1
4074.897 B 3 | 0.42 3.38
0.42 3.45 | 2-3 (28)
2-1 | 5796.078 B
5892.878 C | (2)Fe? 1. | .94 4.07
.98 4.07 | 1-1 (68)
0-1 | | 25R | 0.00 3.82 | 4_5 a3r_z3ge | 3972.171 B 10 | 0.42 3.53 | 2-3 a ¹ D-z ⁵ G° | 5711.905 B | 5 1 | .93 4.09 | 2-3 a ³ p_y ³ r° | | 15r
15r | 0.16 3.82
0.27 3.92 | 3-4 (7)
2-3 | 3904.64 P | 0.42 3.58 | 2-3 (39) | 5592.283 B
5553.693 B | 8 1 | .94 4.15
.93 4.15 | 1-2 (69)
2-2 | | 5 | 0.00 3.82 | 4-4
3-3 | 3783.530 B 301
3730.013 B 15 | 0.48 3.78 | 2-3 a ¹ D-z ⁵ F° | 5587.865 B | | .03 4.14
.94 4.22 | 3-3 a ³ p_y ³ pa | | 3
10r | 0.00 3.92 | 4-3
4-3 a ³ F-z ¹ F° | 3705.12 P
3973.562 B 25 | 0.43 3.75 | 3-1
3-3 a ¹ p-z ³ po | 5424.654 B
5435.871 B
5388.350 B | 5 1 | .94 4.22
.98 4.25
.93 4.22 | 1-3 (70)
0-1
3-3 | | 20R
15 | 0.16 3.83
0.27 3.83 | 4-3 a ³ F-z ¹ F°
3-3 (8)
3-3 | 3973.562 B 25
3831.690 B 20 | 0.42 3.53
0.42 3.64 | 3-3 g-D-Z-F-
3-1 (31) | 5353.415 B | 3 1 | .94 4.25 | 1-1 | | 20R | 0.16 3.88 | 3-2 a ³ F-z ¹ D° | 3858.301 B 401
*3674.15 P 15 | 0.42 3.62
0.42 3.78 | 2-3 a ¹ D-z ³ F°
2-3 (32) | 4762.627 B
4791.00 E | | .93 4.52
.94 4.52 | 2-3 a ³ P-y ¹ D°
1-3 (71) | | 5 | 0.27 3.88 | 3-3 (9) | 3807.144 B 35 | 0.42 3.66 | 3-3 a ¹ D-z ³ D° | 4019.055 D | | .93 5.00 | 2-3 a ³ P-3° | | 6 | 0.27 4.07 | 2-1 a ³ F-z ¹ po
(10)
4-4 a ³ F-y ³ Fo | 3775.572 B 301
3634.941 B 13 | 0.42 3.69
0.42 3.82 | 2-3 (33)
2-1 | 3564.67 P | 1 | .93 5.39 | 2-3 a ³ P- x³F° | | 10r
8 | 0.00 4.07
0.16 4.09 | 3-3 (11) | 3523.074 B 4 | 0.42 3.93 | 2-3 a ¹ D-z ³ G° | 3696.65 P | (0) 1 | .93 5.27 | 2-2 a ^{3p} -y ³ pė | | 8
20R
15r | 0.27 4.15
0.00 4.09
0.16 4.15 | 2-2
4-3
3-2 | 3619.392 B 150 | 0.42 3.83 | 2-3 a ¹ D-z ¹ F° | 3713.336 D
3696.29 P
3713.696 D | 1 | .94 5.27
.93 5.27
.94 5.27 | 1_1 (74)
3_1
1_3 | | 3 4 | 0.16 4.07
0.27 4.09 | 3-4
2-3
 3566.372 B 100F | 0.42 3.88 | 3-3 a ¹ D-z ¹ D° (36) | 3642.387 B | | .98 5.37 | 0_1 a3p_v1pe | | 13R | 0.00 4.14 | 4-3 a ³ F-y ³ D° | 3380.574 B 801 | 0.42 4.07 | 2-1 a ¹ D-z ¹ P° (37) | 3529.625 D | | .93 5.42 | (75)
3-3 a ³ p-x ¹ p° | | 10r
15r | 0.16 4.23
0.27 4.25 | 3-2 (12)
3-1 | 3365.766 B 15
3310.202 B 5 | 0.42 4.09
0.42 4.15 | 3-3 a ¹ D-y ³ F°
2-2 (38) | 3545.16 E | • • • | .94 5.42 | 1-3 (76) | | 4
7 | 0.16 4.14
0.27 4.23 | 3-3
2-2 | 3322.310 B 15 | | 2-3 a ¹ p-y ³ p° | 3176.292 B | | .94 5.83 | 1-1? a ³ p-x ³ p°
(77)
2-3 a ³ p-y ³ p° | | 6
12r | 0.37 4.14 | 2-3
3-4 a ³ F-z ¹ G° | 3250.743 B 9
3225.020 B 10 | 0.42 4.22
0.42 4.25 | 2-2 (39)
2-1 | 3181.740 B
3183.251 B | 4 1 | .93 5.81
.94 5.82 | 2-3 a ³ P-v ³ D ⁶
1-2 (78)
0-1 | | 4 | 0.16 4.15 | 3-4 a ³ F-z ¹ G ⁶
(13)
2-3 a ³ F-y ¹ F ⁶ † | 3101.879 B 40 | 0.42 4.40 | 2-3 a ¹ D-y ¹ Fo (40) | 3183.038 B
3170.715 B
3154.585 B | 3 1
2 1
3 1 | .98 5.85
.93 5.82
.94 5.85 | 2-2
1-1 | | | | (14) | 3012.004 B 75 | 0.42 4.52 | 2-2 a ¹ D-y ¹ D° (41) | 3164.166 B | | .94 5.84 | 1-2 a ³ p_4° | | 5
15
.5 | 0.03 3.18
0.21 3.38 | 3-4 æ ³ D-z ⁵ D°
1-3 (15) | 6128.990 B (3 | 1.67 3.68 | 2-3 b ¹ D-z ⁵ F° | *2991.095 B | 4 1 | .93 6.05 | (?9)
3-3 a ³ P-6° | | (2) | 0.03 3.29
0.21 3.45 | 3-3
1-1 | 6007.313 D 3
5925.81 P | 1.67 3.72
1.67 3.75 | 3-3 (43)
3-1 | | | | _ (80)
4-3 a ¹ G-z ¹ F° | | 10
8
6 | 0.03 3.38
0.11 3.45
0.21 3.48 | 3-3
3-1
1-0 | 6643.641 C 30
6256.365 C 15 | 1.67 3.53
1.67 3.64 | 2-3 b ¹ D-z ³ P° | 11196.70 P
8770.68 A | | .73 3.83 | 4-3 a ¹ G-z ¹ F° (81)
4-3 a ¹ G-y ³ D° | | 12 | 0.03 3.47 | 3-4 a ³ p-z ⁵ g• | 6256.365 C 15
6327.603 B 5 | 1.67 3.62 | 2-1 (43)
2-3 b ¹ D-z ³ F° | 8703.49 A | | .73 4.15 | (83)
4-4 a ¹ G-z ¹ G• | | 15
8 | 0.11 3.53
0.21 3.58 | 2-3 (16)
1-2 | 5847.010 B (3 | | 2-3 (44) | 7385.24 B | | .73 4.40 | (83)
4-3 a ¹ G-y ¹ F° | | 10
7 | 0.03 3.53
0.11 3.58 | 3-3
2-2 | 6191.186 B 12
6108.121 C 8 | 1.67 3.66
1.67 3.69 | 2-3 b ¹ D-z ³ D°
2-3 (45) | 4837.65 P | | .73 5,28 | (84)
4-3 a ¹ G-w ³ D° | | 125R | 0.03 3.59 | 3-4 a3D-z5F° | 5748.343 B 2 | 1.67 3.82 | 3-1 | | | | _ (85) | | 40R
15 | 0.11 3.68
0.21 3.73 | 1-3 | 5709.559 B 13 | 1.67 3.83 | (46) | 4401.547 B
4459.037 B | 20 3 | .18 5.98
.29 6.06 | 4-5 z ⁵ D°-e ⁵ F
3-4 (86) | | 15r
13r
10 | 0.03 3.68
0.11 3.78
0.21 3.75 | 3-3
8-8
1-1 | 5578.734 B 5
5137.075 B 8 | 1.67 3.88
1.67 4.07 | (47) | 4470.483 B
4462.460 B
4436.981 B | 10 3 | .38 6.15
.45 6.22
.48 6.26 | 2-3
1-3
0-1 | | 4
3 | 0.03 3.78
0.11 3.75 | 3-3
2-1 | | | (48) | 4436.981 B
4284.683 B
4325.607 B | 6 3 | .18 6.06
.29 6.15 | 4-4
3-3 | | 200R | 0.03 3.53 | 3-2 a ³ D-z ³ P° | 4976.345 B (2 | | 2-2 (49) | 4359.585 B
4384.543 B | i0 3 | .38 6.22
.45 6.26 | 3-3
1-1 | | 150R
80R | 0.11 3.64
0.21 3.73 | 2-1 (18)
1-0 | 5003.751 B (2
4843.165 B (2
4786.293 B (2 |) 1.67 4.14
1.67 4.22 | 2-3 b ¹ D-y ³ D°
2-2 (50) | 4161.34 P
4231.696 B | . 3 | .18 6.15
.29 6.23 | 4-3
3-8 | | 60R
50R | 0.11 3.53
0.21 3.64 | 2-2
1-1 | | , | 3-1 | 4285.19 P | 3 | .38 6.26 | 3-1 | | 15
150B | 0.21 3.53 | | 4519.986 B 4 | | (51) | 4389.870 B
4574.03 E | (1) 3 | .45 6.26
.38 6.08 | 1-1 2 ⁵ p°-f ³ p
2-3 (87) | | 150R
150R
135R | 0.03 3.64
0.11 3.62
0.31 2.78 | 2 – 3 (19) | 4331.645 B 12 | 1.67 4.53 | (5a) | 4443.441 B | | .48 6.26 | 0-1
3-3 z ⁵ p°-e ³ f | | 70R
30R | 0.03 3.62
0.11 3.78 | 3-3 | 3435.469 B a | 1.67 5.26 | (53) | 4414.30 P
4410.516 B
4565.13 P | 4 3 | 5.29 6.09
5.29 6.09
5.38 6.09 | 3-3 2 ⁵ D°-e ³ F
3-4 (88)
2-3 | | 8 | 0.03 3.78 | | | 2.01 0.01 | (54) | 4367.36 P | | 3.45 6.28 | 1-3 | | | | | | | | | | | | | | | | | REV: | SE | D M U | LTI | PLE | T T | ABLE | | | | | | | 75 | |--------------------------------|--|--|---|--|------------------|--|--|--|---|--|--|-----------------------|------------------------------------|--|--|--|---| | ory
f Int | E P
Low High | J | Multiplet (No) | Labo:
I A | rator;
Ref | | E l | P
High | J | Multiplet (No) | Labor
I A | ator;
Ref | | E I | P
High | J | Multiplet (No) | | neg | now might | | () | Ni I con | | | | | | , , | N1 I cont | | | | | | ,, | | (2)
5
(4) | 3.29 6.33
3.29 6.23
3.38 6.33
3.45 6.42 | 3-3
3-4
2-3
1-3 | z ⁵ D°-f ³ F
(89) | 7393.63
7715.63
7167.01
7826.81 | В
В
В | 10
(7)
(4)
(4) | 3.59
3.68
3.72
3.68 | 5.26
5.28
5.45
5.26 | 4-3
3-2
3-1
3-3 | z ⁵ F°-e ³ D
(109) | 4713.84
4795.84
4864.282
4705.93 | P
E
B
E | (1)
(2n)
(1) | 3.53
3.64
3.73
3.64 | 6.15
6.22
6.26
6.26 | 2-3
1-2
0-1
1-1 | z ³ P°-e ⁵ F
(138) | | (1)
(1) | 3.29 7.00
3.38 7.13
3.45 7.22 | 3-2
2-1
1-0 | z ⁵ p°-f ³ p
(90) | 7917.48
7286.56
8034.56
6928.25 | B
B
B | (2)
(2) | 3.72
3.75
3.72
3.68 | 5.28
5.45
5.26
5.46 | 2-2
1-1
2-3
3-2 | z ⁵ F°-e ¹ D | 4904.413
5139.255
5328.70 | B
B
P | 10
3 | 3.53
3.64
3.73 | 6.04
6.04
6.04 | 2-1
1-1
0-1 | z ³ p°-e ³ S
(129) | | 8 4 5r | 3.45 7.22 | 2-2
4-3
3-2
2-1
1-1 | z ⁵ D°-e ⁵ P
(91) | 5017.591
4998.233
5012.464
4953.204 | B
B
B | 10
2
2
3 | 3.52
3.59
3.68
3.72 | 5.98
6.06
6.15
6.22 | 5-5
4-4
3-3
2-2 | (110)
z5po_e5p
(111) | 4855.414
5082.354
4852.560
4811.999
5085.479 | B
B
B
B | 15
(4)
(2n)
(3)
(2) | 3.53
3.64
3.53
3.64
3.64 | 6.07
6.07
6.07
6.21
6.07 | 2-2
1-1
2-1
1-0
1-2 | z ³ po_e ³ p
(130) | | ,
,
,
,
,
, | 3.48 7.22
3.18 7.01
3.29 7.16
3.29 7.01
3.18 7.02 | 0-1
4-4
3-3
3-4 | z ⁵ p°-1 ³ F
(93)
z ⁵ p°-e ⁵ p† | 4912.030
4866.267
4831.183
4873.437
4857.382
5157.993
5192.524 | 8888888 | 2
10
10
4
3
(2) | 3.75
3.52
3.59
3.68
3.72
3.59
3.68 | 6.26
6.15
6.23
6.26
5.98
6.06 | 1-1
5-4
4-3
3-2
2-1
4-5
3-4 | | 4829.026
5042.195
4870.845
4815.92
4712.069
4513.90 | BBEBP | 15
4
2
(1)
(2) | 3.53
3.64
3.73
3.53
3.64
3.53 | 6.08
6.09
6.26
6.09
6.26
6.26 | 2-3
1-2
0-1
2-2
1-1
2-1 | z ³ P*-r ³ D
(131) | | 3 5 | 3.29 7.13 | 3-3 | (93) | 5096.874
5010.045 | B | (S) | 3.72 | 6.15 | 2-3
1-2 | | 4752.486 | В | 4 | 3.64 | 6.24 | 1-1 | z3po-e1p | | 3 5
3 5
3 41
3 3 | 3.18 7.03
3.29 7.14
3.38 7.23
3.45 7.28
3.48 7.31 | 4-5
3-4
3-3
1-2
0-1 | z ⁵ D°-f ⁵ F
(94) | 4849.13
4976.155
4980.161
5168.660 | P
B
B | (in)
12
6 | 3.52
3.59
3.59
3.68 | 6.07
6.07
6.07
6.07 | 5-5
4-4
4-5
3-4 | z ⁵ F°-e ³ G
(113) | 4913.970
4506.302
4703.808 | B
D
B | 3
(1)
4 | 3.73
3.53
3.64 | 6.24
6.27
6.27 | 0-1
2-2
1-3 | (132)
z ³ P°-f¹D
(133) | | , | 3.18 7.14
3.18 7.14 | 4-4
4-5 | z5p°-e5g | 4873.27
4952.334 | P
D | (1n) | 3.72
3.59 | 6.26 | 2-3
4-3 | z ⁵ F°-f³D | *4490.541
4553.175 | В | (3)
(3) | 3.53
3.64 | | 2-3 | z ^{3po} -e ¹ F
(134)
z ^{3po} -e ¹ S | | } 4 | 3.29 7.05
3.38 7.05 | 3-3
2-3 | (95)
z ⁵ D°-1 ³ D
(96) | 5128.03
4863.931
m5142.98
5216.512
4918.712 | E B P D B | (in)
(1)
(2n)
Ni
2
(2) | 3.68
3.72
3.68
3.72
3.75 | 6.09
6.26
6.08
6.09
6.26 | 3-2
2-1
3-3
2-8
1-1 | (113) | 4231.040
4390.322
4252.107 | B
B
B | 5
(2n)
(2) | 3.53
3.64
3.73 | 6.44
6.45
6.63 | 2-3
1-3
0-1 | (135)
z ³ p°-g ³ p
(136) | | 3 2 | 3.47 5.26
3.53 5.28 | 4-3
3-2 | z ⁵ g°-e ³ D
(97) | 4808.52 | E | (2)
(1)
(2) | 3.52 | 6.09 | 5-4 | 25F°-e3F | 3844.276
3987.090 | B
D | (3N) | 3.53
3.64 | 6.74
6.74 | 2-1
1-1 | z ³ p•_f ³ S
(137) | | } (1)
3 (2)
} (1) | 3.58 5.45
3.53 5.26
3.58 5.28 | 2-1
3-3
2-2 | | 4941.920
4760.23
4937.337 | B
P
B | (2) | 3.59
3.68
3.59 | 6.09
6.28
6.09 | 4-3
3-2
4-4 | (114) | 3701.63 | P | | 3.53 | 6.86 | 2-3 | z ³ po_f ¹ F
(138) | | 3 25
3 15
3 12
3 10 | 3.37 5.98
3.40 6.06
3.47 6.15
3.53 6.22 | 6-5
5-4
4-3
3-2 | z ⁵ G°-e ⁵ F
(98) | 4937.337
5131.770
4836.27
5220.307
4890.45 | D
E
B | (1)
2 | 3.73
3.72
3.75 | 6.09
6.28
6.09
6.28 | 3-3
2-3
2-3
1-2 | | 7617.00
7422.30
7409.39
7525.14 | B
B
B | 5
15
8
2 | 3.64
3.62
3.78
3.63 | 5.26
5.28
5.45
5.26 | 4-3
3-2
2-1
3-3 | z ³ F°-e ³ D
(139) | | 3 6
3 15 | 3.58 6.26
3.40 5.98 | 2-1
5-5 | | 4559.945
4501.692 | B
D | (3)
(1) | 3.58
3.68 | 6.23 | 5-4
3-2 | z ⁵ F°-f ³ F
(115) | 6690.80 | В | (2)
(4) | 3.62 | 5.46 | 3-2 | z3F°-e1D | | 3 10
3 8
3 5
| 3.47 6.06
3.53 6.15
3.58 6.22 | 4-4
3-3
2-2 | • | 4675.639
4655.661
4845.17 | B
B
E | (3)
(1)
(2)
(2)
(1)
(1) | 3.59
3.68
3.68 | 6.23
6.33
6.23 | 4-4
3-3
3-4 | • | 7327.67
5265.748 | В | | 3.78
3.64 | 5.46
5.98 | 3-3
4-5 | (140)
z ³ F°-e ⁵ F | | 3 (3) | 3.47 5.98
3.53 6.06
3.58 6.15
3.37 6.07 | 4-5
3-4
2-3
6-5 | z ⁵ ç•_ə ³ ç | 4738.43
4617.94
4325.361
4521.934 | E
E
B | {1
1}
(1) | 3.72
3.75
3.59
3.72 | 6.33
6.43
6.44
6.45 | 2-3
1-2
4-3
2-3 | z ⁵ F°_g ³ D | 5058.03
5099.322
4886.992
5067.82
4925.578 | B B B B B B | (2)
(2)
5
(3)
(1)
2 | 3.62
3.62
3.78
3.64 | 6.06
6.06
6.15
6.22
6.15 | 3-4
4-4
3-3
2-2
4-3 | (141) | | (1) | 3.47 6.07
3.53 6.26
3.47 6.07 | 4-4
3-3
4-5 | (99) | 3908.931 | В | 8n | 3.59
3.68 | 6.75
6.75 | 4~5 | z ⁵ F°-f ³ G
(117) | 4754.768
4967.551 | B | (1) | 3.62
3.78 | 6.22 | 3-2 | | | 3 (3)
2 (1)
3 (1) | 3.47 6.07
3.53 6.07
3.58 6.26 | 4-5
3-4
2-3 | | 4025.44
3559.930 | D
B | (1N)
2 | 3.68 | 6.75
6.99 | 3~4
5~6 | z ⁵ F°-e ³ H | 5039.259 | В | (2r) | 3.62 | 6.07 | 3-2 | z ³ r°-e ³ p
(142) | | 3 3
P N1 | 3.58 6.26
3.53 6.08
3.58 6.09 | 3-1
3-3
3-3 | z ⁵ G°-f ³ D
(100) | 3496.350
3485.110
3396.50
3542.00 | B
B
P | 5
2n | 3.59
3.68
3.59 | 7.13
7.23
7.23
7.23 | 4-5
3-4
4-4 | (118)
z5F°-13F | 5080.523
5035.374
4984.126
5076.321
4681.05 | B
B
B | 30
12
10
(3) | 3.64
3.62
3.78
3.64
3.62 | 6.07
6.07
6.26
6.07
6.26 | 4-5
3-4
2-3
4-4
3-3 | (143)
z ³ F°-e ³ G
(143) | | 3 (4)
8 (1)
3 (2) | 3.47 6.09 | 5-4
4-3 | z ⁵ G°-e ³ F
(101) | 3611.418 | D | {1
1 | 3.59 | 7.01 | 5-4
4-4 | (119) | 5051.527 | В | (2N) | 3.64 | 6.08 | 4-3 | z3F°-f3D | | 3 2 | 3.47 6.09
3.40 6.23
3.47 6.33 | 4-4
5-4
4-3 | z ⁵ G°-f ³ F
(103) | 3537.634
3482.73
3483.62
*3606.852
3575.958 | D
E
P
B | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 3.52
3.59
3.68
3.59 | 7.01
7.13
7.23
7.01 | 5-5
4-4
3-3
4-5
3-4 | z ⁵ F°-g ³ G
(120) | 4996.850
5010.961
5035.961
5000.335 | B
B | (3n)
(3n) | 3.62
3.62
3.64 | 6.09
6.08 | 3-2
3-3
4-4 | (144)
z ³ F°-e ³ F | | 5 (5)
3 3
0 (1)
5 (1) | 3.47 6.83
3.53 6.33
3.53 6.23
3.58 6.33 | 3-4
3-4
3-3
3-4
3-4 | z ⁵ G°-e ¹ G | 3530.595
3488.293
3599.530
m3624.73 | B
B
D
P | 4
3
(1)
Ni | 3.58
3.59
3.59
3.78 | 7.13
7.02
7.13
7.02
7.13 | 5-4
4-3
4-4
3-3 | z ⁵ F°-e ⁵ D
(121) | 4945.458
4646.94
4995.65
5347.71 | BPPP | ā | 3.62
3.62
3.62
3.63
3.78 | 6.28
6.28
6.09
6.09 | 3-3
2-2
3-2
3-4
2-3 | (145) | | 3 5
3 4
3 4 | | 5-6
4-5
3-4 | (104) | 3421.342
3396.184
3422.878
3444.251 | B
B
B | 7
6
4
5 | 3.52
3.59
3.68
3.72 | 7.13
7.22
7.29
7.31 | 5-6
4-5
3-4
2-3 | z ⁵ F°-e ⁵ H | 4763.950
4547.234
4666.994
4580.619
4400.26 | B
B
B
B
E | 3
2
(3)
(1)
(2) | 3.78
3.64
3.62 | 6.33
6.42
6.33
6.42 | 3-3
2-2
4-3
3-2 | z ³ F°_f ³ F
(146) | | P
P
B 4
3 3 | 3.40 7.13
3.40 7.01
3.47 7.13
3.47 7.01 | 5-4
5-5
4-4
4-5 | z ⁵ G°-g ³ G
(105) | 3337.36
3405.50
3516.234 | p
B | 8 | 3.59
3.68
3.52 | 7.29
7.31
7.03 | 4-4
3-3
5-5 | z5F0_f5F | 4727.851
4832.704
4664.38 | B
B
P | 2 | 3.62
3.78 | 6.23
6.33
6.27 | 3-4
2-3
3-2 | z ³ F°-f ¹ D | | 3 4
3 15 | 3.53 7.13
3.37 7.02 | 3-4
6-7 | z ⁵ G°-e ⁵ H | *3480.183
3476.63
3467.732 | B
B
B | 4
2n
4 | 3.59
3.68
3.72 | 7.14
7.23
7.28 | 4-4
3-3
3-8 | (123) | 4965.14
4647.42 | E
P | (1)
(1) | 3.78
3.62 | 6.27 | 2-2
3-3 | (147)
z ³ F°-e ¹ F | | B 10
B 5 | 3.40 7.13
3.47 7.23 | 5-6
4-5 | (106) | 3467.13
3415.67 | E
P | (1) | 3.75
3.52 | 7.31
7.14 | 1-1
5-4 | | 4946.037 | В | {1
3} | 3.78 | 6.28 | 2-3 | (148)
z ³ F°-g ³ D | | 8 5
9 4
P | 3.53 7.29
3.58 7.31
3.40 7.22
3.37 7.03 | 3-4
2-3
5-5
6-5 | z ⁵ g•_ <u>r</u> 5p | 3428.42
3573.27
3517.03 | P
P
B | 8 | 3.68
3.68
3.72 | 7.28
7.14
7.23
7.03 | 3-2
3-4
2-3
5-6 | z ⁵ F°-e ⁵ G | 4400.870
4355.911
4330.780
4370.041 | 8
8
8 | 3
2
(3) | 3.64
3.62
3.78
3.62 | 6.44
6.45
6.63
6.44 | 4-3
3-2
2-1
3-3 | (149) | | B 2
P N1
P B 8
B 5 | 3.40 7.14
3.47 7.23
3.53 7.28
3.58 7.31
3.40 7.03
3.47 7.14 | 5-4
4-3
3-2
3-1
5-5
4-4 | (107) | 3477.864
3446.559
3511.94
3480.183
m3413.46
3471.63 | BBEBA | 3
4n
(1)
4
N1 | 3.59
3.68
3.72
3.75
3.52
3.68 | 7.14
7.27
7.34
7.30
7.14
7.34 | 4-5
3-4
2-3
1-3
5-5
3-3 | (134) | 4038.27
4009.984
3958.60
4035.96
4230.39 | P B P P P | (3) | | 6.70
6.76
6.90
6.70
6.70 | 4-4
3-3
2-2
4-3
3-3 | z ³ F°-g ³ F
(150) | | P | 3.53 7.23 | 3-3 | | 3471.63 | В | 3 | 3.52 | 7.34 | | z ⁵ F°-g ⁵ F
(135) | 3970.503
3944.136 | B | 10n
12n | 3.64
3.62 | 6.75 | 4-5
3-4 | z ³ F°-f ³ G
(151) | | B 10
B 6
B 4:
B 4 | 3.37 7.03
3.40 7.14
3.47 7.37
3.53 7.34
3.58 7.30 | 6-6
5-5
4-4
3-3 | (108) | 7122.24
7522.78 | B | 100
3
8 | 3.53
3.64 | 5.26
5.28 | 2-3
1-2 | (125)
z ^{3po} _e ³ D
(126) | 3912.310
3511.613
3651.67 | B
D
P | 8n
2 | 3.78
3.63
3.64 | 6.93
7.13 | 2-3
3-41 | z ³ F°-g ³ G
(153)
z ³ F°-e ⁵ D | | Р
Р
Р | 3.40 7.27
3.47 7.34 | 2-2
5-4
4-3 | | 7182.00
7030.06
6842.07 | B
B
B | .8 | 3.73
3.53
3.64 | 5.45
5.28
5.45 | 0-1
2-3
1-1 | | 3537.243 | D | (1) | 3.64 | 7.13 | 4-3 | (153) | | E (1
B 8
B 8 | 3.53 7.30
3.40 7.03
3.47 7.14 | 3-2
5-6
4-5 | | 6432.06
6370.383 | Œ
B | (1)
(4) | 3.53 | 5.45
5.46 | 3-1
3-3 | z ³ po_e ¹ D | 3528.891
m3523.47
3494.703 | B
P
D | (3)
Ni
(1) | 3.64
3.78
3.78 | 7.14
7.28
7.31 | 4-4
2-3
3-1 | z ³ F°-f ⁵ F
(154) | | B 2: | | 2-3 | | 6772.36 | B | `5 | 3.64 | 5.46 | 1-3 | (127) | 3526.540 | В | 3 | | 7.14 | 4-5 | z ³ F°_e ⁵ G
(155) | | | | | | | | | | | | | | | | | | | (100) | | | | | F | IND | ING LIST | | | | | | |-----|---------------|---------------|----------------------|--------|---------------|---------------|----------------------|------------|---------------|--------------------| | 'pe | Element | Multiplet No. | I A | ype | Element | Multiplet No. | IA | Туре | Element | Multiplet No. | | | | | | | | | | _ | _ : | | | | Yb I | 3 | 6560.099 | | He II | 2 | 6634.10 | P . | Fe I | 1258 | | | Zr I | 65 | 6560.68 | | S1 I
D | 62
1 | 6634.36
6635.15 | | Gd II
N1 I | 94
264 | | | Co I
Fe II | 81 | 6561.032
6562.817 | | H | 1 | 6635.68 | P | Fe I | 1155 | | | N I | 21 | 6563.403 | | Co I | 80 | 6636.53 | | La II | 61 | | | T1 II | 91 | 6563.86 | | Hf II | 81 | 6637.01 | | N I | 20 | | | Mn I | 39 | 6565.62 | | Ti I | | 6638.24 | | AII | 20 | | | N II | 45 | 6565.88 | _ | V I | 48 | 6639.35 | P | Fe I | 1279 | | | Fe II | 40 | 6567.22 | P | Fe I
Hf II | 168
90 | 6639.71 | P | Fe I
A II | 1195
20 | | | Ca I | 18 | 6567.39 | | MI II | 90 | 6639.72 | | A 11 | 20 | | | Gd II | 123 | 6568.00 | | Gd II | 121 | 6639.90 | P | Fe I | 1007 | | | Fe I | 1255 | 6569.261 | | Fe I | 1253 | 6640.90 | | 0 11 | · 4 | | | Fe I | 168 | 6569.31 | | Sm II | 62 | 6641.06 | | S II | 25 | | | Al II | 65 | 6527.10 | | He II | 7 | 6642.79 | | La II | 103 | | | Fe I
Fe I | 1253 | 6570.834 | | Mn I
La II | 51
47 | 6643.023 | | Cr I
Sr I | 256
8 | | | Ba II | 1258
2 | 6570.96
6571.22 | | Fe I | 1121 | 6643.536
6643.641 | | N1 I | 43 | | | Ti I | 102 | 6572.781 | | Ca I | 1 | 6643.79 | | AII | 20 | | | La II | 104 | 6572.900 | | Cr I | 16 | 6644.60 | | Hf II | 34 | | | Ba I | 6 | 6574.238 | | Fe I | 13 | 6644.96 | | N I | 20 | | | | | | | | | | | D | • | | | Fe I
N I | 13
21 | 6575.022 | | Fe I
Ti I | 206
286 | 6645.11
6646.52 | | Eu II
N I | 8
20 | | | Ca I | 18 | 6575.180
6576.95 | P | N1 I | 283 | 6646.90 | P | Fe I | 1156 | | | A II | 26 | 6578.03 | - | CII | 2 | 6646.98 | - | Fe I | 206 | | | Cr I | 16 | 6578.51 | | La I | 1 | 6647.06 | | Hf II | 65 | | | Fe I | | 6578.96 | | v I | 32 | 6647.90 | P | Fe I | 551 | | | Sr I | 8 . | 6580.22 | | N1 I | 265 | 6648.08 | P | Fe I | 13 | | | V I
N II | 48
45 | 6580.96
6581.22 | | Cr I
Fe I | 16
34 | 6653.41 | | N I
Cl II | 20
38 | | | Fe II | 40 | 6582.85 | | C II | 2 | 6653.75
6653.78 | | 0 I | 6 5 | | | | | 0002100 | | 0 | 7 | 0000110 | | • • | ••• | | | N I | 21 | 6584.53 | | Hf II | 99 | 6653.88 | | Fe I | 1052 | | | Ne I | 3 | 6584.89 | | YI | 1 | 6656.61 | | NI | 20 | | | Ti I | 102 | 6586.328 | | N1 I | 64 | 6657.54 | | Cr I | 282 | | | Ca I
A II | 18 | 6586.343 | | Mn I | 51 | 6660.49 | | Si II
Cr'I | 282 | | | Fe I | 21
1012 | 6586.69
6587.75 | | Fe II
C I | 22 | 6661.076
6661.39 | | N1 I | 246 | | | Hf II | 69 | 6588.91 | | Sm I | 1 | 6661.68 | | C1 II | 38 | | | Hf II | 49 | 6591.32 | | Fe I | 1229 | 6663.26 | | Fe I | 1195 | | | Cr I | 265 | 6591.834 | | Co I | 202 | 6663.446 | | Fe I | 111 | | | Fe II | 40 | 6592 | P | C IV | 10 | 6665.42 | P | Fe I | 1156 | | | Fe II | | CEOD 450 | | N1 I | 040 | 0005 40 | | Fe I | 34 | | | V II | 230 | 6592.472
6592.91 | P | T1 I | 248
102 | 6665.43
6666.36 | P | A II | 25 | | | Fe I | 342 | 6592.919 | _ | Fe I | 268 | 6666.548 | | Ti I | 101 | |
 Mn I | 39 | 6593.878 | | Fe I | 168 | 6666.94 | | 0 11 | 85 | | | SII | 25 | 6595.326 | | Ba I | 6 | 6667.17 | P | Fe I | 110 | | | N II | 45 | 6595.869 | | Co I | 174 | 6667.42 | P | Fe I | 168 | | | C1 II
Fe I | 59
1280 | 6597.556
6597.607 | | Cr I
Fe I | 282
1253 | 6667.73
6669.257 | | Fe I
Cr I | 1228
282 | | | La II | 33 | 6598.594 | | N1 I | 249 | 6671.36 | | Fe I | 1343 | | | Si I | 52 | 6598.9529 | | Ne I | 6 | 6671.41 | • | La II | 33 | | | | | | | | | | | • | | | | Ba I | 6 | 6599.112 | _ | T1 I | 49 | 6671.43 | P | Fe I | 1255 | | | Si I
Fe I | 62 | 6601.13
6603.20 | P
P | Fe I
Fe I | 1280
862 | 6671.51
6671.88 | | Sm I
Si II | 1 | | | Cr I | 265 | 6603.67 | P | Fe I | 860 | 6672.84 | | V 11 | 229 | | | v I | 48 | 6604.60 | - | Sc II | 19 | 6672.88 | P | Fe I | 205 | | | Hf II | 48 | 6604.67 | | Fe I | 1254 | 6673.84 | P | Fe I | 1254 | | | N1 I | 64 | 6605.546 | | Mn I | 51 | 6675.271 | _ | Ba I | 6 | | | N II
Fe I | 45
1197 | 0005.98
6607.02 | P | V I
Ti II | +6
91 | 0070.80
6677.24 | P | Fe I
Cr I | 1194
256 | | | Cr I | 16 | 6607.82 | r | VI | 59 | 6677.25 | | Ti I | 274 | | | | | 0001102 | | · - | • | 0011120 | | | | | | Fe I | 405 | 6608.03 | | Fe I | 109 | 6677.33 | | Fe II | 210 | | | Fe I | 1195 | 6609.116 | | Fe I | 206 | 6677.49 | P | Fe I | 1280 | | | La I | 100
7 | 6609.20 | | Hf II
Fe I | 105 | 6677.54
6677.96 | P
P | Fe I | 551
20 5 | | | V I | 48 | 6609.56
6609.64 | | Al II | 76 | 6677.993 | | Fe I | 268 | | | Fe I | 1139 | 6609.68 | P | Fe I | 13 | 6678.03 | | Zr II | 128 | | | N II | 45 | 6610.04 | | . Gd II | 108 | 6678.149 | | He I | 46 | | | Mg II | 23 , | 6610.58 | | N II | 31 | 6678.19 | | 0 11 | 85 | | | Fe I | 268 | 6612.17 | | Cr I | 282 | 6678.276 | | Ne I | 6 | | | Ti I | 102 | 6613.74 | | Y II | 26 | 6678.60 | P | Ti I | 213 | | | Sr I | 8 | 6613.83 | P | Fe I | 13 | 6678.818 | | Co I | 54 | | | Fe I | 13 | 6615.03 | P | Fe I | 1155 | 6680.19 | | Cr I | 282 | | | Hf II | | 6617.126 | | Co I | 202 | 6680.26 | | T1 II | 112 | | | Hf II | 111 | 6617.14 | P | N1 I | 248 | 6681.03 | | Cl II | 38 | | | Sr I
Co I | 12
54. | 6617.266 | | Sr I | 8 | 6681.23 | | Gd II
Fe I | 94 | | | Fe I | 13 | 6621.24
6622.28 | | Ni I
Gd II | 97
110 | 6681.34
6682.23 | P
P | Fe I | 1155
1008 | | | Fe I | 1325 | 6622.41 | P | Fe I | 1157 | 6683.2 | - | He II | 7 | | | La II | 109 | 6622.53 | | NI | 20 | 6684.36 | | A 11 | 20 | | | Ti I | 102 | 6623.78 | P | Fe I | 1010 | 6686.04 | | C1 II | 38 | | | Si I | 60 | 000.00 | | 17 7 | 40. | 220M F~ | | Y I | 1 | | | Fe I | 62
1007 | 6624.86
6625.04 | | V I
Fe I | 48
13 | 6687.57
6690.80 | | N1 I | 140 | | | Ti I | 102 | 6627.28 | | Fe II | 210 | 6692.47 | P | Fe I | 1192 | | | Fe I | 1255 | 6627.558 | | Fe I | 1174 | 6693.842 | | Ba I | 6 | | | Y I | 1 | 6627.62 | | 0 11 | 85 | 6695.97 | | Al I | 5 | | | Sc I | 24 | 6630.015 | | Cr I | 16 | 6696.30 | P | Fe I | 1255 | | | Hf II
V I | 66
50 | 6630.5 | | N II | 41 | 6696.39 | | Al II
Al I | 29 | | | V I
Se I | 59
24 | 6632.438
6633.44 | | Co I
Fo I | 111
1259 | 6698.63
6699.14 | | AL I
Fo I | 5
1228 | | | Ti II | 91 | 6633.764 | | Fe I | 1197 | 6699.46 | | Al II | 29 | | | | | | | • | | | | | | | | | | | | REVISE | D M | ULTIF | LET | TA | BLE | | | | | | | 77 | |--------------------|--------------------------|----------------------|--------------------------|--|--|--------------------------|----------------------|----------------------|---------------------------------------|--|----------------------------------|----------------|-------------------|-------------------------|----------------------|--|--| | ry | FOA F | iigh | J. | Multiplet
(No) | Laborator;
I A Ref | Int | E P | ligh | J 1 | Multiplet (No) | Labora | tory
lef In | ıt | E P
Low | H1gh | J 1 | fultiplet
(No) | | ed | TOM I | ırgu | | (110) | Ni I continue | | | | | | Cu I conti | nued | | | | | 0 0 | | (1)
6n | 4.22 6
4.25 6 | | 2-2
1-3 | y ³ D°-f¹D
(251) | 7381.94 B
7559.62 B | (5)
(3)
(2) | 5.34
5.50
5.61 | 7.13 | 4-5 i
3-4
2-3 | (392) (392) | | A 16 | | 3.80
3.77 | 5.33
5.33 | 12- 3
2- 3 | 1 ² P°-5 ² S
(6) | | 2n | 4.22 | 6.28 | 2-3 | y ³ D°-e ¹ F
(252)
y ³ D°-e ¹ S | 7624.75 G
6861.24 B | (3)
(3) | 5.34 | 7.14 | 4-5 | _# 3F°~e3G | | Ä 1 | 30 | 3.77 | 6.17
6.16
6.16 | 13-23
3-13
12-12 | 4 ² P°-4 ² D
(7) | | (2)
(2) | 4.25 | 3.35
3.70 | 1-0
3-4 | (253)
v3D -g3F | 7297.75 B
7220.79 B | (3) | 5.61 | | 2-2
4-5 | "3E13D | 4530.785 | A 1 | 35
LO | 3.00 | | | ₄ 2po_62g
(8) | | (1)
(2) | 4.22 6
4.25 6
4.14 | 6.70
6.90 | 2-3
1-2
3-3 | (254) | 9689.35 A | 3 | 5.42 |
3.70 | 2-3 | v1Do_g3F | 4480.350 | A 1 | | 3.77 | 6.52 | 2- 2 | | | (3) | 4.14 | 7.13 | | y ³ D°_g ³ G
(255) | 8586.20 P | 1 | | 6.86 | | (295)
x1p°_f1F | Cu II I I | P 20.1 | 8 A | nal A | List D | May | 1942 | | | 4.14 | 7.23
7.05 | | y3D°-13D | Strongest Uncl | assifie | d Lines | of <u>Ni-</u>] | Ţ | | 4555.922 | A (1 | 00)
30 | 8.20 1 | 0.91 | | 4p ³ p°-8 ² 3p | | (1) | 4.23 | 7.05 | 2-3 | (256) | 10295.05 A
9396.57 A | 5
20 | | | | | 4832.236
4505.997
4758.421 | A (| 75)
30 | 8.20 | 10.94
10.98 | 3_1
1_0
1_3 | 1 -7 | | (2)Fe1
(5n) | 4.15 | 6.06
6.07 | 4-4
4-5 | z ¹ G°-e ⁵ F
(257)
z ¹ G°-e ³ G | 6362.414 D
6012.251 B
4594.908 B | 20
(5)
(5)
(5n) | | | | | 4889.690
5060.635 | | 30
30 | 8.38 | | 0-1 | | | (51)
(1)
(2) | 4.15 | 6.23 | 4-4 | (258)
z1G°_f3F
(259) | 4142.320 B
4006.136 B | (4)
3 | ٧ | | | | 3686.555 | A (1 | 00) | 8.45 | 11.80 | 3-4 | 4p ³ p°_s ² 1g
(2) | | (1) | | 6.70 | 4-3
4-4 | z1G°_g3F | 3762.618 B
3665.924 B | (3) | III | | | | 4043.502 | Α | 75 | 8.75 | 11.80 | 3-4 | 4p3p°-s2 1g | | 5 | 4.15 | 6.70
6.86 | 4-3
4-3 | (260)
z ¹ G°-f ¹ F | 3647.71 E | an
an | Y. | | | | 4671.686
4681.990 | A
A | 40
50 | 14.14 | 16.78 | 1-2
1-1 | 4d35-4135. | | (1) | 4.15 | 6.94 | 4-4 | (261)
z ¹ G°-f ¹ G
(262) | 3332.180 B
3309.428 B
3268.064 B | 6n
2n
4n | A
A
A | | | | 4673.555 | Ä _ | 30 | 14.14 | 16.78 | 1-0 | • • | | (2)Fe | 4.40 | 6.08 | 3-3 | y ¹ F°-f ³ D | 3264.44 E
3233.88 E | 2n
2 | V
V | | | | 4909.726
4931.653 | A 1 | .00 | 14.27 | 16.78 | 4-5 | 4d ³ G-41 ³ H°†
(5) | | 3
(2n) | 4.40
4.40 | 6.26
6.28 | 3-4
3-3 | y1F°-e10
(264) | 3199.342 B
3151.259 B | 3n
4n | v
v | | | | 4918.373 | | 30 | 14.54 | | 3-4 | 3n .c3mn - | | | | | • | (265)
v1ne_e3p | | | | | | | 4985.503
5088.260
4937.196 | A
A
A | 40
30
20 | 14.33
14.37
14.56 | 16.79 | 3-4
2-3
1-2 | 4d ³ D-4f ³ F° †
(6) | | (1)
{3} | 4.52 | 6.08 | 2-1
2-3
2-2 | (266)
yip*-rop
(267) | <u>N1 II</u> I P 16
*3513.933 B | 8.4 A | | 1st A
6.36 | | 1943
b ² D-z ⁴ D°
(1) | 5051.778 | ,
A | 60 | 14.37 | 16.81 | 4-5 | 4d3F-4f3G0 + | | (3)
(3)
(1) | 4.52 | 6.26 | 2-1 | | 3454.16 A
3373.98 A | 5
4 | 2.94
2.85 | 6.51 | 35-35 | (1) | 5012.611
5067.082 | A
A | 20
30 | 14.36
14.63 | 16.82
17.07 | 3-4
2-3 | (7) | | (5)
(2) | 4.52 | | 2-3
2-1 | y ¹ D°-e ³ F
(268)
y ¹ D°-e ¹ P | 3350.42 A
3274.90 A
3290.69 A | 5
3
1 | 2.85 | 6.62 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 4812.940 | A | 40 | 14.47 | 17.04 | 1-2 | 4d ¹ P-4r ¹ D° (8) | | (2) | 4.52 | | 2-2 | (360)
y10°-f10
(270)
y10°-e1F | 3208.91 A | 1 | | 6.70 | 2 1 _31 | b2D-z4G° | 4953.733 | A | 50 | 14.55 | 17.04 | -
4-5 | 4d ¹ G-4f ¹ H° (9) | | 3 | 4.52 | 6.28 | 2-3
2-3 | (271) | 3032.44 A
3063.93 A | 3 | 2.85 | 6.92
6.97 | 25-35
15-15 | b ² D-z ⁴ F° (3) | 5006.787 | A - | 30 | 14,59 | 17.05 | | 4d1D-4f1F0 | | 2 | | 6.86 | 2-3 | y10°_g3F
(272)
y10°_f1F
(273) | 3769.455 B
3576.762 B | 5 3 | 3.09 | 6.36
6.51 | 21-31
11-21 | a ⁴ Pz ⁴ D° (4) | 5065.448 | A | 40 | 14.63 | 17.06 | 3-4 | (10)
4d1F_4f1G°
(11) | | 2 | 4.52 | 7.00 | 2-3 | y ¹ D°-f ³ P
(274) | 3471.35 C
3608.7 P | 2 | | 6.51 | 3-13
33-23
13-13 | | | | | | | | | | 10 | | 6.70 | 3-4 | (275) | 3407.30 A
3495.6 P | 8 | 3.07
3.09 | 6.62 | 2 1 2 | | <u>Zn I</u> I I | 9.35
A | A n
90 | al A I
0.00 | 1st B
4.01 | May
0-1 | | | (4)Fe
(2) | | 7.00 | 3-2
3-4 | (276)
x ³ D°-13F | 3401.76 A
3290.54 A | 2
1? | 3.06
3.09 | 6.84 | 12- 2
21-31 | a ⁴ P-z ⁴ F° | 4810.534 | ^ - | 65 | | 6.63 | ~ | (1)
4 ³ p°-5 ³ S | | (3) | 5.39 | 7.00 | -
3-2 | (277)
x ³ F°_f ³ P | 2988.05 A | 5 | 3.09 | 7.22 | 2 1 -21 | 4p_72p0 | 4722.159
4680.138 | A
A | 75
45 | 4.01
3.99 | 6.63 | 1-1
0-1 | (2) | | (1) | | 7.01 | 4-5 | (378)
x ³ F°-g ³ G
(279)
x ³ F°-1 ³ D | 3087.07 A | 30 | 3.09 | | | (6)
a ⁴ P-z ³ D°†
(7) | 4292.885 | A | 8 | 4.01 | | 1-0 | 4 ³ p°_5 ¹ s | | (3) | 5.39 | 7.05 | 3-3
- | x3F°-13D
(280) | 3397.82 A | 1 | 3.59 | | - | (8)
Egā ^{-zg} £• | 3345.020
3302.588
3282.333 | A | 150
150
100 | 4.06
4.01
3.99 | 7.75
7.75 | 2-3
1-2
0-1 | 43p6-43D
(4) | | (1) | 5.27 | 6.86 | 2-3
- | y ³ P°-f ¹ F
(281) | 4362.10 C
4244.80 C | 1 | 4.01
4.01 | 6.84
6.92 | 41-31
31-21 | a ² G-z ⁴ F° (9) | 3345.572
3302.941
3345.934 | A | 100
125
30 | 4.06
4.01
4.06 | 7.75 | 2-2
1-1
2-1 | | | (2)
(2)
(1) | 5.28
5.49 | 7.00
7.13 | 3-2
2-1 | | 4384.6
P
4192.07 C | 1 | 4.01
4.01 | 6 .9 6 | 3 ۇ- 3 ۇ | | 3072.062
3035.781 | A | 70
35 | 4.06 | 8.08 | | 4 ³ p°-6 ³ S
(5) | | (1)
(1) | 5.57
5.28 | 7.23 | 1-0
3-4 | | 4067.051 B
3849.58 B | 3 2 | 4.01 | 7.05
7.22 | 41-31
31-21 | 8 ² G-z ² F° (11) | 3018.352 | A
A | 30 | 3.99 | 8.08 | 0-1 | (0) | | N1 | 5.49 | 7.16
7.24
7.16 | 3-4
2-3
1-2
3-3 | (283) | 4071.0 P
4015.50 C | 1 | 4.01 | | | a2G-z2D° | 6362.347 | | 100 | | 7.71 | | 41po_41p
(6)
41po_61s | | | | 6.70 | - | | 3881.92 C | | | | - | z4pe_e4F | 5101.905
4629.814 | A | 12 | 5.77
5.77 | 8.44 | 1-0
1-2 | (7)
41p°-51D | | 30
10 | 5.47 | 6.70 | | y ³ G°-g ³ F
(284)
y ³ G°-f ¹ F | Measures inac | - | | | | (13) | 4113.210 | A | 12 | | 8.77 | | (8)
41P°-61D
(9) | | 10 | 5.59 | 6.86 | J=3 | (200) | stronger uncl | assifi | ed lines | of Ni | II. | | 6928.319
6938.472 | A
A | 10
6 | 6.63 | 8.41
8.40 | 1-2
1-1 | 5 ³ 5-6 ³ P° (10) | | (7) | 5.47 | 6.99
7.12
7.22 | 5-6
4-5
3-4 | (286) | | | | | | 1012 | 6943.202 | | ž
—— | 6.63 | 8.40 | 1-0 | | | (1)
(2)
(3) | 5.32 | 7.01 | 5-5
4-4 | y ³ G°-g ³ G
1 (287) | <u>Cu I</u> I P 7.
3247.540 // A | 1000 | 0.00 | 3.80 | | 1942
4 ² 5_4 ² P°
(1) | g., ** | . n | 20 | 4ma* / | **-* | رد بر
در بر | ıy 1942 | | | 5.59 | 7.23 | 3-3 | 3 | 3273.957 A | 500 | 0.00 | | | | Zn II I
7478.79 | В | 30 | Anal A | List
7.74 | | | | (3)
(2)
(4) | 5.47 | 7.13
7.22
7.29 | 4-5
3-4 | у ³ G°-е ⁵ Н
5 (288)
1 | 5105.541 A
5782.132 A
5700.240 A | 300
300
30 | | 3.80
3.77
3.80 | 23-1
13-1 | 48 ^{2 2} D_4 ² P° (2) | 5894.351
6214.58 | A
B | 20
13 | 5.98
6.09 | 8.08 | 1 2-1: | 4 ² po-d ⁹ s ² ² D | | . 30 | 5.34 | 6.70 |
4-: | 4 w ³ F°_g ³ F
3 (289) | 5700.240 A
3093.989 A
3208.231 A | | 1.38 | 5.37 | 21-3
11-2 | t
148 ^{2 2} D-494P ⁴ D
(3) | 7588.48
7732.50 | B | 15
10 | 10.92 | 13.54 | 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | 5 ² 5-5 ² p° | | . 5 | | 6.70
7.13 | | 1 w3₽°_+3p | 3010.838 A
3194.099 A | 100 | | | | | | | 25 | | | | | | {4}
{1}
{1} | | 7.16 | 4-
3- | 3 (291) | 3063.411 A | 80 | 1.64 | 5.66 | 1 } -1 | ² 4s ² ³ p_4s4p ² p
(4)
14s ² ² p_4s4p ²
(5) | 240 ACDA 96 | Ä | 30 | 11.97 | 14.48 | 11-3 | 4 ² D-4 ² F° (3) | | 7.5 | | 7.24 | 2- | 3 | 2997.364 A
3036.101 A | 80
100 | 1.64 | 5.75 | 13-2 | 148° 50~484p°.
2 (5) | <i>.</i> . | | | | | | | | R | E | v | т | g | E | מ | u | 13 | T. | P | т | p | Ť. | E | rgr. | TABI | . E | |---|---|---|---|---|---|---|---|----|----|---|---|---|----|---|------|------|-----| ry
Int | E P
Low Hig | h | J | Multiplet | _ Labor | ato
Ref | Int | Low E | P
High | J | Multiplet
(No) | | Ref | Tnt | E
Low | P
H1gh | J | Multiplet (No) | |-----------------------|----------------------------------|------------|------------------------------|---|---|-------------|----------------------------|----------------------|--------------------------------------|--|---|---|------------------|--------------------------|------------------------------|------------------------------|---|--| | 7 Ana | l A List | | May 1 | | Br II See | in | troduct10 | n | | | | Y I con | tinue | d | | | | | | 10R
10R | 0.10 3.0
0.00 3.0 | 6 1 | <u>}</u> | 4 ² P°-5 ² S
(1) | Kr I See | in | troduction | n | | | | 6435.02
6191.73
6402.005
6222.59 | A
A
B
A | 500
100?
50
50? | 0.00 | 1.98
1.99
1.99 | 21-21
13-13
23-13
13-23 | a ² D-z ² D°
(2) | | roducti | lon | | | | Kr II See | in | troduction | n | | | | 6138.44 | A | 15? | 0.07 | 2.08 | | a ² D-z ⁴ D°† | | | | | | | | | | | | | | 6023.41
4674.84 | A
A | 201
125 | 0.00 | 3.05
3.71 | | | | | LA List | | June | 1942
4p ¹ D-5s ³ p° | Rb I I F | | 16 Anal | | 1st C
1.58 | May | | 4643.69
4760.98 | A | 150
40 | 0.00 | 3.66
3.66 | 1 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | a ² D-z ² F° (4) | | (20)
(40) | 0.88 4.8
0.88 4.6 | 5 | 2-2
2-1 | (1) | 7947.60 | A | 10R | 0.00 | 1.55 | 1 1 1 1 | (1) | 4128.31
4142.86 | A
A | 300
300 | 0.07 | 3.05 | 21-21
12-12 | a ² D-y ² D°
(5) | | (60) | 0.88 4.9 | | 2-1 | 4p 1D-5s 1P° (2) | 4201.851
4215.556 | B | 8 R
7 R | 0.00 | 2.94
2.93 | 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | (3) | 4235.94
4039.83 | A
A | 100
60 | 0.07 | 2.98
3.05 | 12-42 | | | (30)
(50) | 2.02 4.6
2.02 4.9 | | 0-1
0-1 | 4p 1s_5s3p0
(3)
4p 1s_5s1p0 | Rb II See | 1n | troductio | n | | | | 4174.14
4047.64
4083.71 | A
A | 100
80
100 | 0.07
0.00
0.00 | 3.02
3.05
3.02 | 25-15
15-15
15-15 | a ² D_y ² P° | | (10) | 2.02 6.0 | 4 (| 0–1 | 4p 1g_4d3p°
(5) | | | | | | | | 4102.38
4077.38 | A
A | 350
300 | 0.07 | 3.07
3.03 | | a ² D_y ² F° (?) | | 25
30 | 4.83 5.9
4.65 5.7 | 8 | 1-2 | 5s ³ P°-5p ³ D† | <u>8r I</u> I I
6892.585 | 9 5.0
A | 37 Ana]
200 | | 1st C
1.79 | May :
0-1 | 1948
5 ¹ 8-5 ³ P* | 4167.52
3620.95 | A
A | 100
400 | 0.07 | 3.47 | | | | 25
40 | 4.62 5.7
4.83 6.0 | | 0-1
3-3 | 58 ³ P°-5p ³ P† | 4607.331// | A | 600R | 0.00 | 2.68 | 0-1 | 51g_51pe
(2) | 3592.92
3552.70 | A | 200
40 | 0.00 | 3.43
3.47 | | egg_ _x gpe
(8) | | 35 | 4.65 5.9 | 4 | 1-1 | (7) | 7070.071
6878.313
6791.022 | A
A
A | 2000
1000
500 | 1.84
1.79
1.77 | 3.58
3.58
3.58 | 2-1
1-1
0-1 | 5 ³ P°-6 ³ 8 | 3021.74
2996.94
3045.36
3005.26 | A
A
A | 15
20
20
12 | 0.07
0.00
0.07
0.00 | 4.15
4.13
4.12
4.11 | 21-31
15-31
21-31
15-15 | a ² D-y ⁴ D°
(9) | | | nal A List | | | 1942 | 4962.263
4872.493 | A
A | 40
40 | 1.84 | 4.33
4.32 | 2-3
1-2 | 5 ³ P•_5 ³ D
(4) | 2984.25
2974.59 | A
A | 50
35 | 0.07 | 4.20
4.15 | 31-31
13-31 | a ² D-x ² F° (10) | | 25
20 | 7.70 9.8
7.70 9.7 | | | 5 ² 5-5 ² P° (1) | *4832.075
4967.944
4876.06 | B
A
C | 50
20
15
2 | 1.77
1.84
1.79 | 4.32
4.32
4.32 | 0-1
2-2
1-1
3-1 | | 3022.28
2964.96 | A
A | 12
30. | 0.07 | 4.15
4.23
4.19 | | a ² D-x ² D° † | | (200)
(50)
(10) | 9.80 12.3
9.75 12.3 | 6 1 | 1-21
3-13 | 5 ² P°-5 ² D
(3) | 4971.368
4811.881 | A
A | 2
40 | 1.84 | 4.40 | 3-3 | ₅ 3pe_5p2 3p | 2995.26 | Å | 30.
10 | 0.07 | 4.19 | | | | (10) | 9.80 12.3 | 6 1 | } -1 } | | 4784.320
4876.325
•4832.075
4722.278 | B
B | 30
20
50
30
30 | 1.79 | 4.37
4.37
4.34
4.40
4.37 | 1-1
2-1
1-0
1-3
0-1 | (5) | *5466.46//
5527.54
5581.87
5630.14 | A
A
A | 300
350
150
100 | 1.42
1.39
1.37
1.35 | 3.68
3.63
3.58
3.54 | 41-51
31-41
21-31
11-21 | a ⁴ F-z ⁴ G°†
(13) | | Anal | | | y 194 | | 4741.922
4438.044 | Ą | 25 | 1.77 | 4.62 | 2-1 | 5 ³ po_7 ³ s | 4839.87
4845.67 | A
A | 60
50 | 1.43 | 3.97
3.94 | 41-41
31-31 | a ⁴ F-y ⁴ F° (13) | | 40
20
50 | 2.30 6.3
2.24 6.2
2.30 6.3 | 7 1
6 1 | | 4p ² P°-5s ⁴ P†
(1) | 4361.710
4326.445 | A | 8
8 | 1.79 | 4.62
4.63 | 1-1
0-1 | (6) | 4852.69
4859.84
4906.11 | A
A
A | 50
40
6 | 1.37
1.35
1.42 | 3.91
3.89
3.94 | 24-24
14-14
43-34 | a ⁴ F-y ⁴ F° (13) | | (150)
(100) | 6.53 7.7
6.37 7.6 | | | 5s ⁴ P-5p ⁴ P°
(2) | 3351.246
3322.231
3366.333 | A
A
A | 150
30
50 | 1.84
1.79
1.84 | 5.52
5.51
5.51 | 2-2
1-1
2-1 | 5 ³ pe_4d ² 3p
(7) | 4781.04
4799.30 | A
A
A | 6
10
15 | 1.37
1.39
1.37 | 3.89
3.97
3.94 | 23-13
33-43
23-33 | | | (80)
100 | 6.26 7.5
6.53 7.9 | | | 5s ⁴ P-5p ⁴ D° | 3329.988
3307.534
3301.734 | A
A
A | 30
50n
50 | 1.79
1.79
1.77 | 5.50
5.53
5.51 | 1-0
1-3
0-1 | | 4819.64
4527.25 | A
A | 10
80 | 1.35 | 3.91
4.15 | 15-05 | a ⁴ F_y ⁴ D°† | | 100
50
(140) | 6.37 7.8
6.26 7.7
6.53 7.8 | ο . | 1-21
-11
-21 | (3) | 6408.463 | A | 100 | 2.26 | 4.19 | -
3-4 | 4 ³ D- 4d5p ³ F° | 4527.80
4505.95
4487.47 | A
A
A | 50
50
40 | 1.39
1.37
1.35 | 4.12
4.11
4.10 | 31-21
21-11
11-11 | a ⁴ F-y ⁴ D° †
(14) | | 25
150
(100) | 6.37 7.7
6.26 7.6
6.37 7.6 | 0 1
6 | | | 6503.989
6617.266
6546.791 | A
A | 80
50
20 | 2.25
2.24
2.26 | 4.15
4.11
4.15 | 2-3
1-2
3-3 | (8) | 4475.72
4487.28
4477.45 | A
A
A | 20
20
25 | 1.39
1.37
1.35 | 4.15
4.13
4.11 | 33-33
23-23
12-13 | | | 100
100 | 6.53 7.9
6.26 7.7 | | | 5s ⁴ P-5p ² D°†
(4) | 6643.536
5480.865 | A | 20
40 | 2.25 | 4.11 | 2-2
3-3 | 4 ³ D-4d5p ³ D° | 4513.58 | A | 4 | 1.89 | 4.63 | _ | a2r_v4pe | | 50
50 | 6.53 7.8
6.37 7.8 | | | 5s ⁴ P-5p ⁴ 5°
(5) | 5504.184
5521.765
5534.794 | A | 30
25
15 | 2.25
2.24
2.26 | 4.49
4.48
4.49 | 3-3
1-1
3-3 | (9) | 4581.32 | Ā | 6 | 1.89 | 4.59 | - | a ² F-y ⁴ P°
(15) | | | | | 2 -2 | | 5540.051
5450.836
5486.136 | A
A
A | 15
15
15 | 3.25
3.25
2.24 | 4.48
4.51
4.49 | 2-1
2-3
1-2 | | 6845.24
6950.32 | A
A | 10
8 | 2.36
2.35 | 4.17
4.13 | 21-31
11-31 | z ⁴ P°-e ⁴ D†
(16) | | .78 | Anal B Lis | t C | Jun | e 1943 | 4891.980 | A | 25 | 2.26 | 4.78 | 3-4 | 4 ³ D_4 ³ F° | Strongest | Uncl | Lassifie | d Lines | of <u>Y</u> | <u> </u>
 | | 10
10 | 9.77 11.7
9.72 11.7 | 7 | 1-1
0-1 | 5s ³ P°-5p ¹ P
(1) | 4868-700
4855-045 | Ā | 30 | 2.25
2.24 | 4.78 | 2–3
1–2
– | (10) | 3587.75
3424.16 | A
A | 20
7 | III
IIIA | | | | | 10
10 | 10.06 12.2
9.77 11.9 | 5 : | | .5e ³ p°_5p ³ D† | 5156.040 | A | 8 | 2.49 | 4.88 | _
2-3 | 4 ¹ D-4 ¹ F° (11) | 3278.43
3091.70 | A | . 5
15 | IIIA | | | | | 10 | 10.06 12.3
9.77 12.2 | 4 | 1-1 | 5s ³ p°-5p ³ p† (3) | 6550.244 | A | 60 | 2.68 | 4.56 | 1-2 | 5 ¹ p°_5p ² 1p | | | | | | | | | 10
10 | 9.77 12.3 | .8 | 1-2
3-1 | 58 ³ p°-5p ³ 8† | | | | | | | | <u>Y II</u> I
4204.69 | P 12.
A | .3 Ana
10 | 0.00 | 1st A
2.94 | | 1942
a1s-z3pe | | 8 | 9.77 12.4 | | 1-1 | (4) | <u>Sr II</u> I | | | | List | | 1942 | 3633.13 | A | 200 | | 3.40 | 0-1 | 21g_21po
(2) | | 10
10 | 10.22 12.2 | | | 5s ¹ p°-5p ³ p †
(5)
5s ¹ p°-5p ¹ D | 4077.714//
4215.524 | A | 400r
300r | 0.00 | 3.03
2.93 | 1-1-1-1
2-1-2
2-1-2 | 5 ² 8-5 ² P°
(1) | 3496.08
3112.05 | A
A | 80
4 | 0.00 | 3.53
3.97 | 0-1
0-1 | alg_z3D°
(3) | | 10 | 10.33 13.0 | | | (6) | 10327.314 | A | 1000 | 1.83 | 3.03 | -
3-1-1-1- | 4 ² D_5 ² P° | | | | | | _ | a18_y3po
(4) | | | | | | (1) | 10914.877
10036.658 | A | 300 | 1.80 | 3.03 | - | | 4309.62
4398.02
4423.59 | A
A | 50
50
40 | 0.10 | 3.04
2.94
2.89 | 3-2
3-1
1-0 | 23 _{D-2} 3pe
(5) | | 1 Ans | al B List | C · | June | 1942 | 4305.447
4161.796 | A
A | 40
30 | 3.03
2.93 | 5.89
5.89 | | 5 ² P°-6 ² S
(3) | 4235.73
4358.73
4199.27 | A
A
A | 30
30
5 | 0.10 | 3.04
2.94
3.04 | 2-2
1-1
1-3 | | | 25
15
10 | 5.95 7.3
5.95 7.3
5.95 7.3 | 32 | 2-3
2-3
2-1 | 5 ⁵ 8°-5 ⁵ P | 3464.457
3380.711
3474.887 | A
A | 50
50
10 | 3.03
2.93
3.03 | 6.59
6.58
6.58 | 13-31
3-13
12-12 | | 4047.88
3982.59 | P
A | 150 | 0.18
0.13 | 3.23 | 2-2 | a ³ D-z ¹ D° (6) | | 3 | 6.30 7.4 | | | 5 ³ 5°-5 ³ P | | A | 10 | 3.03 | 0.08 | 15-15 | | 3950.35
3710.30// | A | 200
500 | 0.18 | 3.23 | 1-2
3-4 | a ³ D-z ³ F° | | 2 | 6.30 7.4
6.30 7.4 | 18 | 1-1
1-0 | (3) | <u>YI</u> IP | 6.5 | Anal | A Lie | it C | June 1 | 942 | 3774.33
3788.70
3832.89 | A
A | 300
200
100 | 0.13
0.10
0.18 | 3.36
3.40 | 2-3
1-2
3-3 | (7) | | roduct | ion | | | | 6584.89
6557.40 | A
A | 5
30 | 0.00 | 1.94 | 21-31
13-21 | a ³ D-z ⁴ F° (1) | 3818.34
3878.28 | A
A | 60
20 | 0.13
0.18 | 3.36
3.36 | 3-2
3-2 | | | | | | | | 6793.71
6687.57 | Ā | 80
80 | 0.07 | 1.88 | 3 - 2 - 2 - 2 | • • • | 3776.56
3747.55 | A | 75
40 | 0.13 | 3.40 | 2-1
1-1 | a ³ D_z ¹ P° (8) | | | Int | E P
Low High | J | Multiplet
(No) | IA | rator
Ref | Int | E P
Low H | 1gh | J | Multiplet
(No) | I A | Ref | Int | E
Low | P
High | J | Multiplet
(No) | |--------|----------------------|-------------------------------------|-------------------|--|---------------------------------|--------------|----------------------|----------------------------|----------------------|--------------------|--|--|-------------|-------------------|------------------------|----------------------|-------------------|--| | iue | 300 | 0.18 3.6 | 3-3 | a ³ D-z ³ D° | <u>Y II</u> con | A
C | 20nl | 3.23 6 | | | z ¹ D°-e ³ D | <u>Y II</u> con
3457.088
3429.42 | С | 4nl | 3.99 | 7.56 | 2-1 | y ³ P°-f ³ S | | L
L | 200
100
150 | 0.13 3.5
0.10 3.5
0.18 3.5 | 1-1 | (9) | 3470.18
3380.114 | c | 5nl
5nl | | .78
.88 | 2-1
2-2 | z ¹ D°-e ¹ D | 3093.76 | C
A | 3n
10n | 3.96
3.99 | 7.56
7.97 | 0-1
2-2 | (77)
y ³ p°_f ³ p | | L | 100
100
100 | 0.13 3.5
0.13 3.6
0.10 3.5 | 2-3 | | 3086.858 | С | 30nl | 3.23 7 | .23 | 2–3 | z ¹ D°-e ¹ F
(42) | *3110.65
*3126.16 | A
A | 2n
4n | 3.97
(3.99
(3.97 | 7.93
7.93
7.91 | 1-1
2-1
1-0 | (78) | | ı
L | 150 | 0.18 3.9 | 3-2 | a ³ D_y ³ P° | 3069.26 | A | 5n | 3.23 7 | | 2-1 | z ¹ D°-r³D
(43) | 3078.64
3103.3 | A
A | 4n
2n | 3.97 | 7.97 | 1-2 | | | L
L | 100
60
50 | 0.13 3.9
0.10 3.9
0.13 3.9 | 3 1-0 | (10) | 3026.47
2978.18 | C
A | 10nl
3n | 3.23 7
3.23 7 | | 2-3
2-1 | z ¹ D°-e ³ G
(44)
z ¹ D°-e ¹ P | 3030.214
3023.50 | C
A | 4n
2n | 3.99
3.97 | 8.06
8.05 | 2-3
1-2 | y ³ P°-g ³ D
(79) | | Ĺ | 50
10 | 0.10 3.9
0.10 3.9 | 7 1-1 | | | | | | | - | (45)
z ³ F°_e ³ D | | | | | | - | z ¹ F°-e ³ D | | L
L | 5
5 | 0.18 4.1
0.13 4.1 | 3 3-3
3 2-3 | a ³ D-z ¹ F° (11) | 3668.489
3635.334
3605.46 | 000 | 50nl
20nl
10nl | 3.40 6
3.36 6 | . 87
. 79
. 78 | 4-3
3-2
2-1 | (46) | 4607.94
4465.4 | A
A | 10nl | 4.12 | 6.79
6.88 | | (80)
z1F°-e1D | | L | 20 | 0.41 3.0 |
1 2-2 | alD_z3pe | 3556.083
3507.964 | C | 5nl
8nl | | .87 | 3-3 | z3F°-e1D | 3967.69 | C | 15nl | 4.12 | 7.23 | 3-3 | (81)
z ¹ F°-e ¹ F
(82) | | 1 | 3 | 0.41 2.9 | 2-1 | (12) | 3193.48 | A | 2nl | | .23 | 2-3 | z3F°-e1F | 3846.516 | c
c | 3n | 4.12 | 7.32 | 3-3 | z1F0_f3D
(83) | | 1 | 300
15 | 0.41 3.2 | | a ¹ D-z ¹ D°
(13)
a ¹ D-z ³ F°
(14) | 3232.00
3182.42 | A
A | 3n
3nl | 3.40 7 | .32 | 4-3
3-2 | z ³ F°_1 ³ D
(49) | 3675.64
3330.880 | . c | 5nl
20nl | 4.13 | 7.47 | 3-2
3-4 | z ¹ F°_f ¹ D
(84)
z ¹ F°_e ¹ G | | 1 | 125 | 0.41 3.3 | | (14)
a ¹ D_z ¹ P° | 3144.37
*3114.45 | A
A | 2n
10n | 3.40 7
3.36 7 | .32
.32 | 3-3
2-3? | | 3896.804 | C | | 5.50 | 8.67 | -
1-2 | (85)
y ¹ P°-h ¹ D | | - | | 0.41 3.6 | 2-3 | (15)
a ¹ D-z ³ D° | *3110.65
3081.600 | A
C | 2n
2n | | .37
.37 | 3-21
2-2 | z ³ F°_e ³ P
(50) | • | | | | | | (86) | | ì | 15
5 | 0.41 3.5
0.41 3.5 | 3 2-1 | (16) | 3173.07
3129.933 | A
C | 100nl
40nl | 3.40 7 | .39
.34 | 4-5
3-4 | z ³ F°-e ³ G
(51) | Strongest
8429.36 | A | 10n | ı Lines | or <u>Y</u> | * | | | L | 10
5 | 0.41 3.9
0.41 3.9 | | a ¹ D_y ³ P° (17) | 3128.789
3077.14 | G
A | 20nl
4n | | -31 | 2-3
2-1 | z3F°_e1P | 4734.52
3407.7 | A | 5n
3n | | | | | | L | 100 | 0.41 4.1 | 3 2 - 3 | a ¹ D_z ¹ F°
(18) | 3001.43 | A | 2 | 3.36 7 | | 2-2 | z ³ F°-f¹D | | | | | | | | | i. | 30.1 | 1.03 3.2
0.99 3.2 | 3-2
3 2-3 | a ³ F-z ¹ D°
(19) | 2980.69
3006.0 | C
A | 20nl
2nl | 3.51 7
3.51 7 | .65
.61 | 4-4
4-3 | z ³ F°-e ³ F†
(54) | | P 6.9 | | | ist C | | 1943 | | 1 | 100 1
80 | 1.08 3.5
1.03 3.4 | 4-4
3-3 | a ³ F_z ³ F° (20) | 3643.4 | A | 3nl | 3.40 6 | .78 | -
1-1 | z1P°-e3D | 6832.93
6762.38 | A | 12
30 | 0.07 | 1.88 | 3-3
2-2 | a ³ F-z ⁵ G°† | | i. | 60
41
51 | 0.99 3.3
1.08 3.4
1.03 3.3 | 3 2-2
3 4-3 | | 3544.001 | C | 3nl | 3.40 6 | .88 | | (55)
z ¹ P°-e ¹ D
(56) | 6127.49
6143.23
6134.58 | A
A
A | 200
150
125 | 0.15
0.07
0.00 | 2.17
3.08
3.01 | 4-4
3-3
2-2 | a ³ F-z ³ F°
(2) | | į | 15 1
20 1 | 1.03 3.5 | 3-4 | | 3109.3
3160.60 | A
A | 1 ·
1n | 3.40 7
3.40 7 | .37
.30 | 1-2
1-1 | z ¹ po _{-e} 3p
(57) | 6407.03
6357.10 | A
P | 4 | 0.15 | 2.08 | 4-3
3-2 | | | ì | 50 1 | 0.99 3.4 | 3-1 | a ³ F_z ¹ P°
_(31) | *3114.45 | A | 10n | 3.40 7 | .36 | | z ¹ P°-e ¹ S
(58) | 5885.61
5935.23 | A | 8
10 | 0.07 | 2.17 | 3-4
2-3 | | | r
r | 200
150
150 | 1.08 3.6
1.03 3.5
0.99 3.5 | 3-2 | (33)
(33) | 3104.82
3027.75 | A
A | 4ri
3 | | .37 | | z ¹ po _{-e} 1p
(59)
z ¹ po _{-f} 1p | 6062.88
5955.37 | A | 12
12 | 0.07 | 2.11 | 3-2
2-1 | a ³ F-z ⁵ F* †
(3) | | i
i | 20
30 | 1.03 3.6
0.99 3.5
0.99 3.6 | 3-3 | | 3782,302 | σ | 50nl | | .87 | - 3-3 | (60)
z ³ p•_e ³ p | 5879.79
5797.76 | A
A
A | 40
25
20 | 0.15 | 2.25 | 4-3
3-3 | a ³ F-z ³ D°†
(4) | | | (1) | 1.03 3.9 | | a ³ F_y ³ P° | 3800.883
3792.56 | C | 15nl
10nl | 3.55 6
3.53 6 | .79 | 2-2
1-1 | (61) | 5735.70
4688.45 | A | 40 | 0.00 | 2.79 | 2-1
4-5 | a ³ F-z ³ G° † | | ì | 2 | 1.08 4.1
1.03 4.1 | | a ³ F_z ¹ F°
(34) | 3872.308
3812.18
3714.3 | C
A | 5nl
5nl
5nl | 3.55 6 | .79
.78
.87 | 3-2
2-1
2-3 | | 4633.99
4575.52 | A | 50
40 | 0.07 | 2.73
2.70 | 3-4
2-3 | (5) | | L | s | 0.99 4.1 | | • | 3703.323 | C | 5n1 | 3.55 6 | .88 | 2-2 | z ³ D°-e ¹ D | 3916.64
3879.04 | A | 10
10 | | 3.30
3.25 | 4-5
3-4 | a ³ F_y ⁵ G°
(6) | | | 5 | 1.74 3.44 | 1-1 | a ³ P_z ¹ P°
(25) | 3684.903
3409.87 | G | 5nl
4nl | | .23 | 1-2
3-3 | (62)
z ³ D°-e ¹ F | 3849.26
3900.51
3989.29 | A
A
A | 30
(10)
7 | 0.00
0.00
0.07 | 3.21
3.16
3.16 | 2-3
2-2
3-2 | | | i. | 30
3 | 1.71 3.4 | 2-3 | a ³ P-z ³ D° | 3319.78
3308.4 | C
A | 15nl
20nl | 3.55 7 | .32 | 3-3
2-2 | z ³ D°-f ³ D
(64) | 3968.25
•3929.536 | A
A | 80
150 | 0.15 | 3.26
3.21 | 4-5
3-4 | a ³ F-y ³ G° † | | | 30
4 | (1.73 3.5
1.71 3.5
1.74 3.5 | 1-2 | (36) | 3318.6
3333.606
3293.9 | A
C
A | 4nl
2n
3n | 3.53 7
3.55 7 | .25
.25
.28 | 1-1
2-1
1-27 | | 3885.41
3890.32 | A
A | 100
125 | 0.00 | 3.18 | 2-3
4-4 | a3F_x3F° | | Ĭ | 10 | 1.73 3.5
1.74 3.5 | 1-1 | | 3282.51 | A | 2 | 3.61 7 | .37 | 3-2 | z ³ D°-e ³ P | 3835.96 | A | 100 | 0.07 | 3.28 | 3-3 | (8) | | | 50
20 | 1.74 3.99
1.73 3.99 | 1-1 | a ³ p_y ³ p°
(27) | 3286.71
3312.39
3231.20 | A
C
A | 3n
4nl
3n |
3.55 7
3.53 7
3.55 7 | | 2-1
1-0
2-2 | (65) | 3966.65
3921.80
3791.39 | A
A
A | 50
100
80 | 0.15
0.07
0.07 | 3.26
3.22
3.33 | 4-3
3-2
3-4 | | | | 10 l
10 l
20 l | 1.74 3.9°
1.73 3.9°
1.73 3.9° | 1-0 | | 3304.01
3336.05 | C | 2n
4n1 | 3.61 7
3.61 7 | .34 | 3-4
3-3 | z ³ p°-e ³ G
(cc) | 3780.53 | Ā | 100 | 0.00 | 3.26 | 2-3 | a3F1F0+ | | Ĺ | 151 | 1.71 3.9 | 0-1 | a3p_z1F° | 3212.40 | A | 5nl | 3.53 7 | | 1-1 | z ³ p°-e ¹ p
(67) | 3864.33 | A | 40 | 0.15 | 3.35 | 4-3 | a ³ F-x ¹ F° † (9) a ³ F-x ³ D° | | | 1 Ag | 1.74 5.5 | | (28)
a ³ P-y ¹ P° | 3055.3
3036.59 | A
C | 50nl
25nl | 3.55 7 | .65
.61 | 3-4
2-3 | z ³ D°-e ³ F
(68) | 3847.01
3822.41
3766.71 | A
A
A | 30
40
60 | 0.00 | 3.28
3.23
3.35 | 3-2
2-1
3-3 | (10) | | | 7 | 1.83 3.2 | 3-2 | (29)
b ¹ D-z ¹ D° | 3053.27
3082.16
3066.02 | C
A
A | 15nl
3n
4n | 3.61 7 | .57
.61
.57 | 1-2
3-3
2-2 | | 3764.38
3891.39 | A
A | 80
100 | 0.00 | 3.28 | 2-2
4-4 | a ³ F-z ¹ G° † | | ı | 1 | 1.83 3.3 | | (30)
b ¹ D-z ³ F°
(31) | 3050.5 | A | in | | .58 | 1-0 | z ³ D°_f1s
(69) | 3663.64
3623.87 | A | 300 | 0.15 | 3.52
3.48 | 4-4
3-3 | (11)
a3F_w3F° | | | 10 | 1.83 3.4 | | b1p_z1pe
(32)
b1p_z3pe | 4279.3 | A | 5nl | 3.99 6 | .87 | -
2-3 | y3p0_e3p | 3586.28
3714.13 | A
A
A | 300
100
30 | 0.00 | 3.44 | 2-2
4-3 | (12) | | | 3
1
10 | 1.83 3.6
1.83 3.5
1.83 3.5 | 2-3
2-2
2-1 | (33) | 4364.17 | A | , 7 | 3.97 6 | . 79
. 78 | 1_2
0_1 | (70) | 3661.20
3575.79
3550.46 | A
A | 30
100
30 | 0.07 | 3.44
3.52
3.48 | 3-2
3-4
2-3 | | | l | 10 1
5 1 | 1.83 3.99
1.83 3.9 | 2-2 | b ¹ D_y ³ P° (34) | 4264.88
3848.194 | A.
C | 1n
8nl | | .88 | 2-2 | y ³ p°-e ¹ D
(71)
y ³ p°-e ³ s | 3601.18 | A | 400 | 0.15 | 3.58 | 4-5 | a3F-x3G0+ | | | 501 | 1.83 4.1 | | b ¹ D_z ¹ F° (35) | 3824.78
3813.8 | C
A | 5n1
2n1 | 3.99 7
3.96 7 | | 2-1
1-1
0-1 | (72) | 3547.69
3519.60 | A | 100
125 | 0.00 | 3.55
3.51 | 3-4
2-3 | (13) | | L | 30nl | 1.83 5.5 | 2-1 | (35)
b1D_y1po
(36) | 3808.7 | A | 1n | 3.99 7 | .23 | | y ³ p°_e ¹ F | 3533.22
3501.33 | A
A | 60
15 | 0.15
0.07 | 3.65
3.60 | 4-5
3-4 | a ³ F_y ⁵ F° †
(14) | | ı | 1 | 1.94 3.6 | 4-3 | a ¹ G-z ³ D° (37) | 3696.6
3727.09
3758.9 | A
C | 25nl
20nl | 3.97 7 | .32
.28 | 2-3 | (73)
y ³ P°_f ³ D
(74) | 3566.10
3509.32 | A
A | 100
100 | | 3.59 | 4-3
3-3 | a ³ F_v ³ D°†
(15) | | | 300 | 1.94 4.1 | 3 4 - 3 | a1d_ziro
(38) | 3650.45 | A | 3n1.
3n | 3.99 7 | .37 | 1-1
3-2 | y3p0_e3p | *3471.19 \$ | A
A | 100 | 0.00 | 3.56
3.58 | 2-1
2-1 | a3F-glpe | | A
C | 5n1
2n | 3.04 6.8
2.94 6.7 | 7 2-3
1-2 | z ^{3pe} -e ³ D
(39) | *3721.398§
3689.2 | C
A | 4
2n | | .30
.30 | 2-1
0-1 | (75) | 3430.29
3465.63 | A
A | 8
10 | 0.15
0.15 | 3.75
3.71 | 4-4
4-3 | (16)
a ³ F-x ⁵ D*†
(17) | | | | | | | 3716.91 | C | 7nl | 3.99 7 | .31 | 2~3 | y ³ P°-e ³ G
(76) | *3414.66 §
3368.63 | A
A | 20 | 0.07 | 3.68
3.66 | 3-3 | \ - ''/ | | BEVISED | MITTPLET | TABLE | |---------|----------|-------| | | | REVISED MULTIPLES | T TABLE | | | |--|---|---|---|---|--| | tory
ef Int | EP J Multiplet Low High (No) | Laboratory E P I A Ref Int Low High Zr I continued | J Multiplet (No) | Laboratory I A Ref Int Zr II continued | E P J Multiplet
Low High (No) | | nued A 20 A 100 A 100 A 100 | 0.15 3.83 4-4 a ³ F-y ¹ Q° (18)
0.15 3.97 4-5 a ³ F-w ² Q° (0.07 3.91 3-4 (19)
0.00 3.87 2-3 (19) | 4866.07 A 5 0.73 3.26
4883.61 A 5 0.68 3.21
4881.25 A 4 0.65 3.18
4784.94 A 12 0.68 3.26
4815.05 A 12 0.65 3.21
4828.05 A 10 0.63 3.18 | 5-5 a ⁵ F-y ³ G°†
4-4 (44)
3-3
4-5
3-4
2-3 | 3340.55 A 15
3356.08 A 18
3393.12 A 10
3214.19 A 40
3231.69 A 30
3272.21 A 8 | 0.16 3.86 43-32 a4F-z4F°
0.09 3.77 3-24 cont
0.04 3.88 25-12
0.04 3.86 25-35
0.00 3.77 12-25 | | A 15
A 35
A 12
A 15 | 0.07 3.87 3-3
0.07 4.07 3-2 a ³ F-v ³ F° (20)
0.00 4.09 2-2 a ³ F-u ³ F°† (21) | 4237.76 A 200 0.73 3.65
4239.31 A 150 0.68 3.60
4241.68 A 80 0.65 3.56
4241.20 A 50 0.62 3.53
4240.35 A 50 0.60 3.51 | | *3288.81 A 10
3319.03 A 8
3241.01 A 25
3284.72 A 20
3208.32 A 4 | 0.09 3.85 $3\frac{1}{2}$ $a^4F^-z^2D^9$
0.04 3.76 $2\frac{1}{2}$ (4)
0.04 3.85 $2\frac{1}{2}$ $2\frac{1}{2}$ (2)
0.00 3.85 $1\frac{1}{2}$ $2\frac{1}{2}$ | | A 20
A 20
A 20
A 10 | 0.07 4.17 3-3 (22)
0.00 4.13 2-1
0.52 3.25 2-3 a ³ P-z ³ D°†
0.64 0.30 1-3 (33) | 4294.78 A 20 0.68 3.56
*4288.20 \$ A 20 0.65 3.53
4268.01 A 20 0.62 3.51
4166.37 A 20 0.68 3.65
4187.56 A 20 0.65 3.60
4201.45 A 20 0.62 3.56 | 4-3
3-2
2-1
4-5
3-4
2-3 | 3165.98 A 10
3138.66 A 25
3129.76 A 12
3125.92 A 12
3110.87 A 8
3095.07 A 12
3099.22 A 10 | 0.16 4.06 41-31 a4F-24D°
0.09 4.03 31-22 (5)
0.04 3.98 21-12
0.00 3.95 11-12
0.09 4.06 32-31
0.09 4.06 32-31
0.04 3.98 12-12 | | A 15
A 15
A (5)
A (3) | 0.52 2.15 0-1
0.52 2.20 2-2
0.52 2.53 2-2 a ³ P-z ³ P°
0.54 2.53 1-1 (24)
0.52 2.53 2-1
0.54 2.50 1-0 | 4213.88 A 15 0.60 3.53
4081.22 A 100 0.73 3.75
4072.71 A 100 0.68 3.71
4064.16 A 100 0.65 3.68
4055.03 A 60 0.65 3.68
4044.57 A 25 0.60 3.65 | 1-2
5-4 a ⁵ F-x ⁵ D°
4-3 (46)
3-2
2-1
1-0 | 3068.02 A 2
3065.20 A 2
3061.33 A 3
3060.11 A 3
3019.84 A 3 | 0.00 3.98 1½-1½
0.04 4.06 2½-3½
0.00 4.03 1½-2½
0.09 4.13 3½-2½ 4 ⁴ F-y ² D°
0.04 4.07 2½-1½ (6)
0.04 4.13 2½-2½
0.00 4.07 1½-1½ | | 1 8
1 5
1 15
1 15 | 0.54 2.53 1-3
0.52 3.53 0-1
0.52 2.71 2-1 a ³ P-z ³ 8°†
0.54 3.71 1-1 (25)
0.52 2.81 2-2 a ³ P-z ³ 10° | 4023.99 A 30 0.68 3.75
4024.92 A 40 0.65 3.71
4027.30 A 40 0.65 3.68
4030.03 A 30 0.60 3.68
3977.32 A 3 0.65 3.75
*9988.98 A 10 0.62 3.71
4002.55 A 8 0.60 3.68 | 4-4
3-3
3-2
1-1
3-4
3-3
1-2 | 3697.49 A 20
3766.83 A 25
3843.03 A 30 | 0.00 4.07 13 12-23
0.00 4.13 12-23
0.46 3.80 42-52 b4F-24G°
0.41 3.68 32-42 (7)
0.36 3.57 22-23
0.32 3.45 12-22 | | 6 6 | 0.52 2.92 2-3 a ⁵ P-y ⁵ p ⁺ † 0.54 2.88 1-3 (27) 0.52 2.84 0-1 0.52 2.88 2-2 0.54 2.84 1-1 | 5664.55 A 25 0.63 3.81
4732.34 A 15 0.63 3.24
4542.23 A 20 0.63 3.35 | 2-2 a ¹ D-y ¹ D° (47)
2-3 a ¹ D-x ¹ F° (48)
2-3 a ¹ D-x ³ D° † | 3832.94 A 1
3903.77 A 1
3984.76 A 4
3729.74 A 5
3814.97 A 2 | 0.46 3.68 44-44
0.41 3.57 31-31
0.36 3.45 22-22
0.46 3.77 42-31 b4F-z ² F ⁰
0.41 3.64 31-24 (8) | | 1 8 1 30 15 1 30 | 0.52 3.01 2-3 a ² P-y ¹ F° (28) 0.52 3.20 2-3 a ² P-z ⁵ P°† (29) 0.52 3.24 2-3 a ² P-x ¹ F° (30) 0.52 3.35 2-3 a ² P-x ³ D°† 0.54 3.28 1-2 (31) | 4135.68 A 10 0.63 3.61
4183.31 A 10 0.63 3.58
3530.22 A 15 0.63 4.13 | 2-1
a ¹ D-z ¹ P° (51)
2-3 a ¹ D-u ³ F° † (52) | 3667.06 A 3 3756.96 A 1 3 3756.96 A 1 3 37511.95 A 1 3556.61 A 30 3576.88 A 20 3614.79 A 18 | 0.41 3.77 33-33
0.36 3.64 22-23
0.36 3.77 23-33
0.32 3.64 12-32
0.46 3.93 4-41 04F-24F°
0.41 3.86 31-34 (9)
0.36 3.77 21-34 | | 1 30
1 15
1 30 | 0.52 3.57 2-3 a ³ P-x ³ P°† 0.54 3.54 1-1 (32) 0.54 3.53 1-0 | 3360.45 A 25 0.63 4.30
3090.44 A 6 0.63 4.62
3136.95 A 30 0.63 4.56
3157.82 A 50 0.63 4.54 | 2-2 a ¹ D-w ¹ D° (53)
2-2 a ¹ D-u ³ P° 3-1 (54)
2-3 a ¹ D-w ¹ F° (55) | 3674.74 A 40
3636.46 A 8
3668.46 A 8
3718.86 A 6
3499.58 A 8
3525.81 A 8 | 0.46 3.86 43-37
0.41 3.77 33-23
0.36 3.68 23-15
0.41 3.93 33-24
0.36 3.86 23-33 | | 40
40
10 | 0.52 3.93 2-1 a ² P-y ³ 9 † (33)
0.52 4.29 3-2 a ² P-y ⁵ P † (35)
0.53 4.30 2-2 a ² P-y ⁵ P † (35)
0.53 4.57 2-2 a ² P-y ⁵ P ° | 3139.79 A 20 0.63 4.56
6445.76 A 10 0.99 2.91
3877.60 A 40 0.99 4.18 | 2-3 a ¹ D-y ³ G° (56) 4-3 a ¹ G-y ³ F° (57) 4-5 a ¹ G-z ¹ H° (58) 4-4 a ¹ G-x ¹ G° | 3583.32 A 6
3630.03 A 10
3536.94 A 5
3587.98 A 7
3497.00 A 2 | 0.32 3.77 1½-2½ 0.41 3.85 3½-3½ b ⁴ F-z ² D° 0.36 3.76 2½-1½ (10) 0.36 3.85 2½-2½ 0.32 3.76 1½-1½ 0.33 3.85 1½-2½ | | 15
50
8
12
125
50
25 | 0.53 4.50 2-1 (36)
0.54 4.57 1-2
0.53 4.50 0-1
0.52 4.47 2-3 a ³ P-t ³ D°
0.54 4.48 1-2 (37)
0.54 4.46 0-1 | 3005.50 A 60 0.99 5.10
4341.13 A 20 1.39 4.23
4366.45 A 15 1.36 4.19
4394.94 A 8 1.34 4.15 | (59)
4-4 a ¹ G-w ¹ G°
(60)
3-4 a ⁵ P-w ⁵ D°†
2-3 (61) | 3430.53 A 30
3410.26 A 20
3404.84 A 12
3399.36 A 10
3377.45 A 6
3363.81 A 5
3367.81 A 5 | 0.46 4.06 44-3; b ⁴ F-z ⁴ D°
0.41 4.03 35-2; (11)
0.36 3.98 25-1;
0.32 3.95 14-3
0.41 4.06 33-3;
0.36 4.03 25-2;
0.32 3.98 13-1; | | 25
25
8
40
10 | 0.52 4.48 2-3
0.54 4.46 1-1
0.52 4.62 2-2 a ³ P-u ³ P°†
0.54 4.51 1-0 (38) | 439.4.94 A 8 1.34 4.15 4413.04 A 12 1.39 4.19 4420.45 A 12 1.36 4.15 4431.48 A 10 1.34 4.13 5046.61 A 10 1.53 3.97 5044.03 A 15 1.40 3.91 | 1-2
3-3
2-2
1-1
-
4-5 b ³ F-w ³ G°†
3-4 (60) | 3331.90 A 2
3337.67 A 2
3275.15 A 2
3287.31 A 3
3240.85 P | 0.36 4.06 2½-3½
0.32 4.03 1½-2½
0.36 4.13 2½-2½ b ⁴ F-y ² D°
0.32 4.13 1½-2½ (12)
0.33 4.13 1½-2½ | | 20
25
25
20
12 | 0.73 2.10 5-6 a ⁵ F-z ⁵ Q°†
0.68 2.01 4-5 (39)
0.65 1.94 3-4
0.62 1.88 2-3
0.60 1.83 1-2 | 5078.38 | 2-3 4-4 b ³ F-v ³ F° † 3-3 (63) 4-4 b ³ F-u ³ F° † 3-3 (64) | 2998.34 A 1
2968.95 A 12
2978.07 A 12
2979.18 A 12 | 0.32 4.43 1½-1½ b ⁴ F-z ² P° 0.46 4.62 4½-3½ b ⁴ F-y ² F° † 0.41 4.55 3½-2½ (14) 0.36 4.50 4½-1½ | | (25)
(20)
(18)
(15)
(8)
(10) | 0.73 2.26 5-5 a ⁵ F-z ⁵ F° 0.68 2.20 4-4 (40) 0.65 2.15 3-3 0.62 2.11 2-2 0.60 2.07 1-1 0.73 2.20 5-4 4-3 | *4644.82 A 8 1.44 4.09
6313.05 A 50 1.58 3.53
6470.25 A 15 1.58 3.48
6489.68 A 25 1.54 3.45 | 3-3
3-3
5-6 e ³ G-z ³ H ² †
4-5 (65) | 4096.63 A 4
4211.68 A 12
4258.05 A 12
3836.76 A 60
3958.24 A 50
3998.98 A 30 | 0.56 3.57 2 3 a ² D-2 ⁴ G°
0.52 3.45 1 a-2 (15)
0.56 3.45 2 a-2 (15)
0.56 3.77 2 a a ² D-2 ² F°
0.52 3.64 1 a a ² D-2 ² F°
0.56 3.64 2 a a ² D-2 | | (10)
(10)
(15)
(15)
(10)
(10) | 0.65 2.11 3-2
0.62 2.07 2-1
0.68 2.26 4-5
0.65 2.20 3-4
0.62 2.15 2-3
0.60 2.11 1-2 | 4753.06 A 3 1.87 4.46
4719.12 A 10 1.85 4.47
4763.78 A 8 1.83 4.42 | 6-7 a ³ H-z ³ I°
5-6 (66)
4-5 | 3998.98 A 30
3738.13 A 5
3800.73 A 5
3838.28 A 5
3915.94 A 25
3955.82 P | 0.56 3.86 2\frac{1}{2} - 3\frac{1}{2} a^2D - 2^4F^0
0.52 3.77 1\frac{1}{2} - 2\frac{1}{2} (17)
0.56 3.78 2\frac{1}{2} - 2\frac{1}{2}
0.56 3.68 2\frac{1}{2} - 1\frac{1}{2} | | (12)
(7)
(7)
150
150
80 | 0.68 2.25 4-3 a ⁵ F-2 ⁵ D°†
0.65 2.30 3-2 (41)
0.62 2.15 2-1
0.73 2.45 5-4 a ⁵ F-2 ⁵ D°†
0.68 2.42 4-3 (43)
0.65 2.39 3-2 | Zr II I P 13.97 Anal A List . 3391.96 // A 100 0.18 3.80 3498.23 A 100 0.09 3.88 3498.18 A 50 0.04 3.57 3572.47 A 30 0.00 3.45 | $\frac{41-51}{31-41}$ $a^4F-z^4G^{\circ}$ $\frac{31-41}{21-31}$ (1) | 3750.65 A 6
3817.59 A 12
3855.43 A 3
3714.77 A 15
3520.87 A 5
m3556.54 P Zr+ | 0.56 3.85 24-24 a ² D-z ² D°
0.53 3.76 13-14 (18)
0.56 3.76 25-14
0.58 3.85 12-25
0.56 4.06 23-34 a ² D-z ⁴ D°
0.56 4.03 25-24 (19) | | 150
100
100
100
80 | 0.62 2.36 2-1
0.60 2.34 1-0
0.73 3.36 5-6 a ⁵ F-y ⁵ G°
0.68 3.30 4-5 (43)
0.65 3.25 3-4 | 3505.87 A 12 0.16 3.88
3551.94 A 18 0.09 3.57
3613.08 A 13 0.04 3.45
3673.65 A 2 0.09 3.45 | 1 1 2 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | m3556.54 P Zr+ 3457.56 A 12 3479.02 A 5 3510.46 A 7 3334.62 A 9 | 0.56 4.13 2\$\frac{1}{2}\$ | | 8
15
12
(2) | 0.62 3.21 2-3
0.00 3.1b 1-2
0.73 3.30 5-5
0.68 3.25 4-4
0.65 3.21 3-3
0.62 3.16 2-2
0.73 3.25 5-4
0.68 3.21 4-3 | 3388.29 A 15 0.00 3.64 | 41 31 a ⁴ F-z ² F° 31 31 4 | 3271.13 A 7
3182.86 A 35
3129.16 A 10
3157.00 A 10 | 0.52 4.30 1½ ½ a2D_x39 (22) 0.56 4.43 2½ 1½ a2D_x29 (22) 0.52 4.47 1½ ½ (23) 0.53 4.43 1½-1½ | | (4) | 0.68 3.21 4-3
0.65 3.16 3-2 | 3357.26 Å 15 0.00 3.68 | 12-12 | | | | | | | | | · | | | | | | | | | | ory | E P
Low High | J Multiplet | Laborator
I A Ref | y
Int | E P
Low High | J Multiplet | Labor
I A | atory
Ref Int | E P
Low High | J Multiplet |
--|------------|---|--|-------------------------|----------|-------------------------------------|--|--------------------|------------------|------------------------|--| | 1 | | | | Zr II continu | .ed. | | | <u>Zr II</u> cor | ntinued | | | | 1 | . 7 | 0.56 4.70 2
0.53 4.59 1 | }_3} a ³ D_y ⁴ D°
}_3} (34) | | | | | | | | 1}-2} b ⁴ P-y ² D°
}-1} (80) | | 1 | . 2 | 0.56 4.52 2 | | 4018.38 A
4040.24 A | 10 | 0.96 4.03
0.93 3.98 | 1 2 (54) | 3819.84 | A 2 | 1.20 4.43 | $2\frac{1}{2}-1\frac{1}{2}$ $b^{4}P-z^{2}P^{0}$ $1\frac{1}{2}-1\frac{1}{2}$ (81) | | 0 | . 3 | 0.56 4.62 2
0.52 4.55 1 | 1-31 a ² D-y ⁴ F°
1-31 (25) | 4077.05 A
4085.68 A | 3
5 | 0.96 3.98
0.93 3.95 | 12-13 | 3717.02 | A 2 | 1.20 4.52 | | | 4 | 1. 15 | | | 4123.38 A | 1 | 0.96 3.95 | 1½-½
2½-2½ a4P-y3D° | 3690.98 | _ | 1.18 4.52 | | | 4 | . 4 | | \$~4 \$ | | | | 1½- ½ a ⁴ P-z ² 5° | 3554.09 | A 7 | 1.20 4.65 | 3 -1 3 | | \$\$ 0.75 \(\text{start} \) star | | | | 3512.67 A | 3 | 0.96 4.47 | 21-11 a ⁴ p-z ² p°
11-1 (57) | 3521.28 | P | 1.20 4.71 | 21-21 b4P-z4P°
11-11 (84) | | 1 0 0.75 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.0 | | 0.75 3.64 1 | 1 21 22 a ² P-z ² F° | 3334.25 A | 10 | 0.99 4.70 | | 3549.51
3529.99 | A 10
A 5 | 1.23 4.71
1.20 4.70 | 13-3 | | 1 0 0.75 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.0 | 15 | 0.75 3.68
0.75 3.68 1 | 1 (29)
1 1 2 (29) | 3432.41 A
3433.90 A | 7
8 | 0.93 4.52
0.99 4.59 | 21-21 | *3497.90 | A 12 | 1.18 4.71 | } -1 } | | S | 15 | 0.75 3.85 1
0.71 3.76 | 3-31 a ² P-z ² D°
3-11 (30) | 3480.40 A
*3497.90 A | 5
12 | 0.93 4.47
0.99 4.52 | \$~ \$ | 3343.81
3369.27 | A 4
A 3 | 1.20 4.89
1.23 4.89 | 2 } -2 } | | 1 0 0.75 3.86 1-1 1 328220 | . 3 | | | 3403.69 A | 8 | 0.99 4.62 | 15- 5
21-31 a4p-y4r° | 3402.52 | A 1 | 1.18 4.81 | 13-13
1-3
13-3
13-3 | | 1 3 0.75 4.75 1.75 4.75 1.75 4.75 1.75 1.75 4.75 4.75 4.75 4.75 4.75 4.75 4.75 4 | ι 1 | 0.75 3.98 1 | 14 (31)
14 14 (31) | 3454.57 A
3469.94 A | 4 | 0.93 4.50
0.99 4.55 | 3-14
23-23 | 3015.67 | A 1 | 1.20 5.30 | $2\frac{1}{2}-2\frac{1}{2}$ $b^{4}P-y^{4}P^{\circ}$ $1\frac{1}{2}-1\frac{1}{2}$ (86) | | 1 10 0.75 4.50 1-1 1-2 2-2 5 | | 0.75 4.13 1
0.71 4.07 | 1-21 a ² P-y ² D° | 3481.44 A
m3520.91 P | | 0.99 4.50 | 3 ⁻ 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | 3025.16 | A 3w | 1.20 5.28 | 21-11
11-1
11-21 | | 7 0.75 4.52 1-14 29-29-29 3335.41 A 10 0.58 4.55 1-14 16(6)) 3 0.77 4.47 1-1 (34) 333.77 A 8 0.53 4.65 1-14 442.95 A 8 1.53 4.34 51-4 89-478 1 0.77 4.47 1-1 (34) 333.77 A 8 0.53 4.75 1-14 442.95 A 1 1.48 4.34 4-1-14 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17 | , | | | 3376.25 A | 7 | 0.96 4.61 | 2 1 -3 1 a ⁴ P-y ² F°
1 1 -2 1 (60)
2 1 -2 1 | 2998.49 | A 2 | | - 1 -1 1 | | 1 0 0.75 4.65 1-14 4.75 1-14 (38) 3388.80 A 4 0.99 4.75 3-2-14 49-459 336.80 A 1 1.48 4.34 49-459 1 1 0.75 4.65 1-14 4.75 1-14 (39) 3374.37 A 1 1.48 4.34 49-459 1 1 0.75 4.67 1-14 (39) 3374.37 A 1 1.48 4.34 49-459 1 1 0.75 4.67 1-14 (39) 3388.80 A 1 0.98 4.70 1-14 (39) 3374.37 A 15 1.55 5.05 81-14 29-259 1 3388.80 A 3 0.98 4.75 1-14 3485.95 A 3 1.48 5.05 44-41 (29) 1 1 0.75 4.67 1-14 3381.48 A 6 0.98 4.75 1-14 3485.95 A 3 1.48 5.05 44-41 (29) 1 1 0.75 4.75 1-14 329.59 A 3 358.80 A 3 1.48 5.05 44-41 (29) 1 1 0.75 4.75 1-14 329.59 A 3 358.80 A 3 1.48 5.05 44-41 (29) 1 1 0.75 4.75 1-14 (39) 3388.80 A 3 1.05 8.8 A 3 1.05 8.8 A 10 0.83 4.8 A 11 0.75 4.75 1-14 (39) 3388.80 A 1 1 0.98 4.8 A 11 0.75 4.75 1-14 (39) 3388.80 A 1 1 0.98 4.8 A 11 0.75 4.75 1-14 (39) 3388.80 A 1 0.88 4.8 A 11 0.75 4.75 1-14 (39) 3388.80 A 1 0.88 4.8 A 11 0.75 4.75 1-14 (39) 3388.80 A 1 0.88 4.8 A 11 1.48 5.25 43-3 42 42 52 42 52 42 52 52 52 52 52 52 52 52 52 52 52 52 52 | 1 10 | 0.71 4.30 | 1 2 2 (33) | 3374.71 A | 15 | 0.99 4.65 | | | | | (87) | | 1 0.75 4.76 1 1 1.48 4.66 4 1 1 1 1.48 4.66 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 3 | 0.71 4.47 1 | \$ (34) | 3313.70 A | 8 | 0.93 4.65 | | 4442.99 | A 25 | 1.48 4.26 | 41-31 (88)
41-41 | | 1 0.75 4.50 11-14 83P-49P 3386.181 A 6 0.53 4.71 1-17 1-17 1-17 1-17 1-17 1-17 1-17 1 | 1 1 | | | *3288.81 A
3272.30 P | | 0.96 4.71
0.93 4.70 | 14-14 (62) | | | | | | 2 Q.75 4.81 1-34 10 1-32 10 1-32 10 1-32 10 1-32 10 1-32 10 1-32 10 1-32 10 1-32 10 1-32 10 1-32 10 1-32 10 1-32 10 1-32 10
1-32 10 1- | 1 1 | 0.75 4.47 1 | 2- 2 (35)
2- 2
1 41 -30 -4=0 | 3296.41 A
3251.46 P | | 0.96 4.70
0.96 4.75 | 15- 5 | 3463.02 | A 35 | 1.48 5.04 | 41-31 (90)
41-41 | | 1 1 0.75 4.70 1 9 3 18 18 18 2 18 318 18 18 3 18 18 18 3 18 18 3 18 18 3 18 18 18 3 18 18 18 18 18 18 18 18 18 18 18 18 18 | - | | | 3106.58 A | 35. | 0.99 4.97 | 3-13
23-33 a4P-x4D° | 3359.96 | A 12 | 1.48 5.15 | 51-51 a ² H-z ² H°
41-41 (91) | | 1 2n 0.75 4.84 1-1 2 (30) 3204.98 A 3 0.89 4.84 2-1 2 (30) 3204.98 A 3 0.89 4.81 2-1 2 (30) 3204.98 A 3 0.89 5.03 2 (30) 3204.98 A 3 0.89 5.03 2 (30) 3204.98 A 3 0.99 5.00 2 (30) 5.03 5.03 2 (30) 5. | 1 | 0.75 4.75 1
0.75 4.70 1 | 13-23 a ² P-z ⁴ P°
13-3 (38) | 3155.68 A
3165.45 A | 10
7 | 0.93 4.84
0.99 4.89 | 13-23 (63)
3-14
24-24 | 3285.77 | A 3 | 1.48 5.24 | 45-55 | | 1 4 0.80 3.88 3-4 a ² F-z ⁶ 0° 3009.85 A 2 0.98 5.03 2 ± 62 (64) 5418.01 A 1 1.75 4.03 2 ± 2 ± 2 ± 2 ± 2 ± 2 ± 2 ± 2 ± 2 ± 2 | i 1 | 0.71 4.70 | 2- 2
1-1-1 a ³ P-x ⁴ D° | 3181.58 A
3210.98 A | 8
3 | 0.93 4.81
0.99 4.84 | 2-1-1 | | | | | | 10 0.76 3.87 \$\frac{4}{2}\$\frac{1}{2}\$\frac{1}{10}\$ | | | | 2975.16 A | 1 | 0.96 5.10 | | 6114.78 | A D | 1.06 3.08 | | | 1 75 0.80 3.77 3.34 approximate 1 1.01 3.87 4.34 approximate 2 200.01 A 3 1.66 4.03 1.34 approximate 3 1.60 0.71 3.77 3.70 | 1 13 | 0.80 3.68 3
0.71 3.57 2
0.80 3.57 3 | 33-43 a31-2-0
33-31 (40)
33-31 | | | | 21-31 a4p-v2G0 | 5191.60 | A 7 | 1.75 4.13 | 21-21 b ² D-v ² D° | | 7 0.80 3.93 3.44 28p.x4pe 4401.35 A 1 1.01 3.93 44 180.24 | | 0.71 3.45 2 | 3 j_ 3 j a ³ F_z ³ F° | 4816.47 A | 1 | 1.01 3.57 | (65) | 5311.78 | A 3 | 1.75 4.07 | $1\frac{1}{2}-1\frac{1}{2}$ (95) $3\frac{1}{2}-1\frac{1}{2}$ | | 7 0.80 3.93 3.44 28p.x4pe 4401.35 A 1 1.01 3.93 44 180.24 | 1 3 | 0.71 3.64 2
0.80 3.64 3
0.71 3.77 2 | 31-21 (41)
31-21
31-31 | 4461.22 A
4613.95 A | 10
5 | 1.01 3.77 | (88) | 4445.88 | A 1 | 1.66 4.43 | 1-1-1 b2p-z2p0 | | \$\begin{array}{c c c c c c c c c c c c c c c c c c c | | 0.80 3.93 3 | 31-41 a ³ F-z ⁴ F° | 4399.44 A | | 0.97 3.77 | | 4310.62 | A 5 | 1.66 4.59 | 21-31 b ² D-y ⁴ D°
11-31 (97) | | 25 0.80 3.85 3.2 2 a^2 p - 2 p 0 433.64 A 8 1.75 4.86 2 3 b^2 p 2 p 0 1.01 4.35 3 2 - 2 a 2 - 2 p 0 1.01 4.35 3 2 - 2 a 2 - 2 p 0 1.01 4.36 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25 | | 0.80 3.86 3
0.71 3.77 2
0.80 3.77 3 | 31_31
21_21
31_21 | 4401.35 A | | 0.97 3.77 | 31 21 28c 28no | 4296.74 | A 8 | 1.75 4.62 | 21-31 b2D-y4F° | | 1 20 0.71 3.85 24-24 3795.60 A 75 0.07 4.28 4-15 (71) 4312.23 A 3 1.75 4.61 24-25 (100) 3795.75 A 3795.80 A 7 0.97 4.36 4-25 (72) 3813.98 A 0 1.66 4.89 14-25 (100) 1.62 4-31 4.03 24-25 (100) 1.62 4-31 4.03 24-25 (100) 1.62 4-31 4.03 24-25 (100) 1.62 4-31 4.03 24-25 (100) 1.62 4-31 4.03 24-25 (100) 1.62 4-31 4.03 24-25 (100) 1.62 4-31 4.03 24-25 (100) 1.62 4-31 4.03 24-35 (100) 1.62 4-31 4.03 24-35 (100) 1.63 4-31 4.03 24-35 (100) 1.63 4-31 4.03 24-35 (100) 1.63 4-31 4.03 24-35 (100) 1.63 4-31 4.03 24-35 (100) 1.63 4-31 4.03 24-35 (100) 1.63 4-31 4.03 24-35 (100) 1.63 4-31 4.03 24-35 (100) 1.63 4-31 4.03 24-35 (100) 1.63 4-31 4.03 24-35 (100) 1.63 4-31 4.03 24-35 (100) 1.63 4-31 4.03 24-35 (100) 1.63 4-31 4.03 24-35 (100) 1.63 4-31 4.03 24-35 (100) 1.63 4-31 4.03 24-35 (100) 1.63 4-31 4.03 24-35 (100) 1.63 4-31 4.03 24-35 (100) 1.63 4-31 4.03 24-35 (100) 1.63 4-31 4.03 24-35 (100) 1.75 5.15 24-35 (100) 1.75 5.15 24-35 (100) 1.75 5.15 24-35 (100) 1.75 5.15 24-35 (100) 1.75 5.15 24-35 (100) 1.75 5.15 24-35 (100) 1.75 5.15 24-35 (100) 1.75 5.15 24-35 (100) 1.75 5.15 24-35 (100) 1.75 5.25 24-35 (100)
1.75 5.25 24-35 (100) 1.75 5.25 24-35 (100) 1.75 5.25 24-35 (100) 1.75 5.25 24-35 (100) 1.75 5.25 24-35 (100) 1.75 5.25 24-35 (100) 1.75 5.25 24-35 (100) 1.75 5.25 24-35 (100) 1.75 5.25 24-35 (100) 1.75 5.25 24-35 (100) 1.75 5.25 24-35 (100) 1.75 5.25 24-35 (100) 1.75 5.25 24-35 (100) 1.75 5.25 24-35 (100) 1.75 5.25 24-35 (100) 1.75 5.25 | 1 20 | 0.71 3.68 2 | 31-11
31-21 -3r-270 | | | 0.97 4.03 | 31-31 a3G-z4D° | 4342.23 | A 1 | 1.66 4.50 | ol 71 h3n "3ro | | 1 3 0.80 4.68 33-3 48.80 A 15 1.01 4.70 4-3 a ² C-y ⁴ pc 3933.92 A 1 1.75 5.83 23-2 (100) 1 2 0.71 3.98 23-13 3408.09 A 10 0.97 4.59 3-2 (72) 1 2 0.71 3.98 23-13 3408.09 A 10 0.97 4.59 3-2 (72) 1 3 0.71 4.06 23-3 2 3309.90 A 4 0.97 4.70 3-3 2 3668.14 A 8 1.66 5.03 14 (101) 1 2 0.71 4.07 23-11 (45) 3408.09 A 10 0.97 4.59 3-2 (73) 1 3 0.71 4.07 23-11 (45) 3443.57 A 7 0.97 4.55 3-2 (73) 1 3 0.71 4.07 23-11 (45) 3443.57 A 7 0.97 4.55 3-2 (73) 1 3 0.71 4.07 23-11 (45) 3443.57 A 7 0.97 4.55 3-2 (73) 2 0.71 4.07 23-11 (45) 3378.30 A 5 0.97 4.63 32-3 (73) 3 0.80 4.34 33-44 a ² F-z ² Ge 3373.42 A 8 1.01 4.66 4.3 a ² G-y ² Fe 3661.33 A 4 1.75 5.15 23-13 b ² D-x ² Fe 3661.33 A 4 1.75 5.25 23-13 b ² D-x ² Fe 3661.33 A 4 1.75 5.25 23-13 b ² D-x ² Fe 3661.33 A 1 1.75 5.85 23-13 b ² D-x ² Fe 3661.33 A 1 1.75 5.85 23-13 b ² D-x ² Fe 3661.34 A 1 1.75 5.85 23-13 b ² D-x ² Fe 3661.34 A 1 1.75 5.85 23-13 b ² D-x ² Fe 3661.34 A 1 1.75 5.85 23-13 b ² D-x ² Fe 3661.34 A 1 1.75 5.85 23-13 b ² D-x ² Fe 3661.34 A 1 1.75 5.63 23-13 b ² D-x ² Fe 3661.34 A 1 1.75 5.63 23-13 b ² D-x ² Fe 3661.34 A 1 1.75 5.63 23-13 b ² D-x ² Fe 3661.34 A 1 1.75 5.63 23-13 b ² D-x ² Fe 3661.34 A 1 1.75 5.63 23-13 b ² D-x ² Fe 3661.34 A 1 1.75 5.63 23-13 b ² D-x ² Fe 3661.34 A 1 1.75 5.63 23-13 | 1 15 | 0.71 3.85 2 | 2 2 _ _2 | 3751.60 A | 75 | 0.97 4.26 | 41-41 a ³ G-z ² G°
31-31 (71)
41-31 | 4179.81 | A 15 | 1.66 4.61 | 3 1 −2 1 | | \$\begin{array}{c c c c c c c c c c c c c c c c c c c | <i>f</i> 3 | 0.80 4.06 3
0.71 4.03 2
0.80 4.03 3 | 3]-3] a ³ F-z ⁴ D°
2]-3] (44)
3]-2] | 3655.56 A | 7 | 0.97 4.34 | | 3813.98 | A 0 | 1.66 4.89 | $2\frac{1}{4} - 3\frac{1}{4} b^{2}D - x^{4}D^{\circ}$
$1\frac{1}{4} - 2\frac{1}{4} (100)$ | | 1 30 0.71 4.13 32-12 (a5) 3443.57 A 7 0.97 4.63 33-32 (73) 3633.49 A 10 1.75 5.15 21-21 b2p-x2p0 3373.42 A 8 1.01 4.66 42 32 32 -y2p0 3565.41 A 5 1.66 5.12 11-11 (102) 3573.00 A 7 0.97 4.63 33-32 (74) 3599.05 A 4 1.66 5.12 11-11 (102) 3599.05 A 4 1.66 5.12 11-12 (103) | i ż | 0.11 4.00 2 | 2-02 | 3408.09 A | 10 | 0.97 4.59 | 31-21 (72)
31-31 | 3678.91 | A 10 | 1.75 5.10 | | | 35 0.80 4.34 3 4 1 3 2 2 2 3 3 373.42 A 8 1.01 4.66 4 3 3 2 0 2 3 5 3 1 3 1.05 5.12 2 1 1 (102) 1 30 0.71 4.36 2 3 3 4 (46) 3387.87 A 12 0.97 4.61 3 3 3 3 3 3 3 3 4 1.05 5.12 2 1 1 (102) 4 0.50 4.36 3 3 3 3 3 3 3 2 0.97 4.65 3 3 3 3 3 3 3 3 3 3 2 0.97 4.65 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 1 20 | 0.80 4.13 3
0.71 4.07 | 3] 2] a ² F-y ² D°
3] 1] (45) | 3443.57 A | 7 | 0.97 4.55 | 41-31 a ² G-y ⁴ F°
31-21 (73) | 3582.08 | A 2 | 1.66 5.10 | | | 1 30 0.71 4.36 33-34 337.93 A 2 0.97 4.66 33-34 3527.42 A 7 1.75 5.25 24-34 b ² D-x ² F° 1.00 0.71 4.43 2½-1½ a ² F-z ² P° 3115.73 A 2 1.01 4.97 4½-3½ a ² G-x ⁴ P° 3396.66 A 6 1.66 5.29 1½-2½ (103) 3483.59 P 2.7* 1.75 5.29 2½-2½ (103) 3483.59 P 2.7* 1.75 5.58 2½-2½ b ² D-x ² P° 1.75 5.29 2½-2½ (103) 3483.59 P 2.7* 1.75 5.58 2½-2½ b ² D-x ² P° 5.63 2½-1½ 5.7 | 1 35 | 0.80 4.34 | 31-41 a ² F-z ² G° | 3373.48 A | 8 | 1.01 4.66 | 2-3}
4 } -3 } a ² 9-y ² F° | 3565.41
3661.33 | A 5
A 4 | 1.66 5.12
1.75 5.12 | 11-11 (102)
21-11 | | \$\begin{array}{c c c c c c c c c c c c c c c c c c c | 1 4 | 0.71 4.26 2 | 25-35 (46)
35-35 | 3337.93 A | 2 | 0.97 4.66 | 34-34 (74)
34-34 | 3527.42 | A 7 | 1.75 5.25 | 15-25 | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | ١ 8 | 0.80 4.70 | 25-15 a2F-Z2P0
(47)
35-35 a2F-y4D0 | 3054.84 A | 30 | 1.01 4.97 | 42-32 a G-x 10
42-42 a G-y 2G° | m3483.59 | P Zr+ | 1.75 5.29 | | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | \ 15 | 0.71 4.59 2
0.80 4.62 3 | 2 5-25 (48)
3 }-3} a ² F-y ⁴ F° | 3028.05 A
3057.22 A | 5 | 0.97 5.04
1.01 5.04
0.97 5.05 | 31-31 (76)
41-31
31-41 | 3161.01 | A 2 | 1.66 5.56 | 21-21 b ² D-w ² D°
11-11 (104)
21-11 | | 13 0.50 4.61 32-32 (50) 1 1 0.80 4.61 32-32 (50) 2 2 2 2 2 2 2 3 3 4.06 32-32 (50) 2 3 0.71 4.63 32-32 (51) 3 0.80 4.61 32-32 (50) 4359.74 A 10 1.33 4.06 32-32 (79) 4403.35 A 8 1.20 4.03 12-32 (79) 4403.35 A 6 1.18 3.98 5-12 (79) 41 1 0.80 4.75 32-32 32-32 (51) 4403.35 A 6 1.18 3.98 5-12 (79) 41 1 0.80 4.75 32-32 (51) 4403.45 A 5 1.33 4.03 32-32 4894.43 A 0 1.74 4.26 32-32 (107) 4403.45 A 10 1.30 3.88 12-12 4894.53 A 0 1.74 4.26 32-32 (107) | 1 1 | 0.71 4.55
0.71 4.50
0.71 4.68 | 33-33 (49)
33-1 3
33-3 3 | | | | AL-AL BEG-ZBHOT | 3183.26
3074.55 | P | 1.75 5.63
1.66 5.67 | | | ? $\frac{7}{2}$ 0.71 4.66 $\frac{3}{2}$ 3 $\frac{1}{2}$ 4370.96 A 8 1.20 4.03 $\frac{1}{2}$ (79) (106) 1 0.80 4.75 $\frac{1}{2}$ 3 $\frac{1}{2}$ 4403.35 A 6 1.18 3.98 $\frac{1}{2}$ 1 4761.67 A 1 1.75 4.34 $\frac{1}{2}$ 4.41 $\frac{1}{2}$ 4.02 $\frac{1}{2}$ 4.33 4.03 $\frac{1}{2}$ 4894.43 A 0 1.74 4.26 $\frac{1}{2}$ 4.34 $\frac{1}{2}$ 4.35 $\frac{1}{2}$ 4.37 $\frac{1}{2}$ 4.38 $\frac{1}{2}$ 4.39 $$ | | | | 4854.65 A | 0 | 1.23 3.77 | | 3110.53 | | 1.66 5.63 | | | 64457 40 L A O 1 10 T OF 1 A | 1 1 | 0.71 4.66 | 3 ∮- 3∮ | 4370.96 A | 8 | 1.23 4.06
1.20 4.03
1.18 3.98 | 21-31 b4P-z4D°
11-21 (79) | | | | 4 1 3 b ² G-z ³ F° (106)
4141 b ² G-z ² G° | | \ 0 \ 0.80 \ 4.89 \ $3\frac{1}{2}$ - $3\frac{1}{2}$ \ 3^{2} - x^{4} D° \ \ 4485.44 \ A \ 3 \ 1.33 \ 3.98 \ 3^{2} - $1\frac{1}{2}$ \ \ 4191.50 \ A \ 6 \ 1.75 \ 4.70 \ 4\\ 3\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ | | | | 4414.54 A
4440.45 A | 5
10 | 1.23 4.03
1.20 3.98 | 31-31
11-11 | 4894.43 | A 0 | 1.74 4.26 | 3-3 (107)
4-3-3 | | | 0 | | 31-21 a2F-x4D° | 4485.44 A | 3 | 1.23 3.98 | 21-11
11-1 | | | 1.75 4.70
1.74 4.59 | 41-31 b ² G-y ⁴ D°
31-21 (108) | | R | E | ٧ | Ι | S | E | D | MI | j | L | T | Ι | P | L | Ε | T | T | A | В | L | E | |---|---|---|---|---|---|---|----|---|---|---|---|---|---|---|---|---|---|---|---|---| |---|---|---|---|---|---|---|----|---|---|---|---|---|---|---|---|---|---|---|---|---| | | | | REVISED MI | JLTIPLET TABLE | | | |-------------|---------------|---|---|--|--|---| | itor
lef | Int | EP J Multiplet
Low High (No) | Laboratory I A Ref Int Zr II continued | E P J Multiplet
Low High (No) | Laboratory I A Ref Int Ch II continued | EP J Multiplet Low High (No) | | A
A | 5
1 | 1.75 4.62 4½-3½ b ³ G-y ⁴ F ^b
1.74 4.55 3½-3½ (109) | 4908.67 A 1
3612.34 A 3 | 3.11 5.63 ½-1½ a ² S-x ³ P° (145)
3.11 6.53 ½-1½ a ² S-w ³ P° | 3781.379 A 200
3898.292 A 200
3863.056 A 150 | 1.69 4.95 4.5 b ³ F-z ³ G ⁹ † 1.69 4.86 3-4 (9) 1.58 4.78 2-3 | | A | 5
7 | 1.75 4.66 41-31 b ² G-y ² F° 1.74 4.61 32-32 (110) | 3650.73 A 7 | 3.11 6.49 5- 5 (146) | 3763.13 A 8n
3831.840 A 200 | 1.69 4.97 4-4 b ³ F-z ³ F•† 1.69 4.91 3-3 (10) | | A
A | 1
40
35 | 1.74 4.97 3½-3½ b ² G-x ⁴ D°
1.75 5.05 4½-4½ b ² G-y ² G°
1.74 5.04 3½-3½ (112)
1.75 5.04 4½-3½
1.74 5.05 3½-4½ | 3026.18 A 3wl
3018.53 A 3w
3000.59 A 3w
3024.72 A 3w | 3.93 8.01 41-41 24Fe-e4Ft 3.86 7.95 31-31 (147) 3.77 7.88 21-21 3.77 7.85 21-11 | 3818.862 A 200
3952.367 A 100n | 1.58 4.81 3-2
1.69 4.81 3-2 | | P | 10 | 1.75 5.04 4\frac{1}{2}
1.74 5.05 3\frac{1}{2}-4\frac{1}{2} | 2988.74 A 4w | 4.13 8.25 2½-2½ y²D°-e²D | Strongest Unclassified | 1 Lines of <u>Cb II</u> | | A
A
A | 25
15
1 | 1.75 5.34 45-55 b°G-z°H°
1.74 5.15 35-45 (113)
1.75 5.15 45-45 | 3966.27 A 3w
 | | 3659.602 A 300
3510.262 A 400
3432.708 A 400
3283.463 A 400 | | | A
A
A | 6
8
4 | 1.75 5.25 $4\frac{1}{2}$ 5^{2} 4^{2} 1 1 1 1 1 1 1 1 1 1 | 3278.89 A 2 | 4.47 8.23 1-11 (149) | 3263.365 A 300
3260.564 A 350w | | | Ą | 5
5 | 1.82 4.13 2 2 2 0 y2p°
1.77 4.07 1 1 1 1 (115)
1.82 4.07 3 1 1 | Strongest Unclassified
3827.27 A 1
3423.82 A 31 | i Lines of <u>Zr 11</u> | 3127.526 A 500
3064.530 A 250r
3034.95 A 200wR
3032.767 A 400rs | | | A
A
A | 2 | 1.82 4.07 3\frac{1}{2} -1\frac{1}{2} c^3D-z^2P^2 | 3068.32 A 2 w
*3063.63 § A 3 wl
3038.59 A 2 | | 2994.725 A 300w | | | A
A | 3
1 | 1.77 4.47 $1\frac{1}{2}$ (116)
1.77 4.43 $1\frac{1}{2}$ -1
$\frac{1}{2}$ | 3018.08 A 2 w
2994.05 A 4 w | • | <u>Mo I</u> I P 7.06 Ana | l C List D July 1942 | | A
A | 3 | 1.83 4.70 2½-3½ c ² D-y ⁴ D° (117)
1.83 4.62 3½-3½ c ² D-y ⁴ F° 1.77 4.55 1½-3½ (118) | | | 3798.259 // A 50R
3864.115 A 50R | 0.00 3.25 3-4 a ⁷ S-z ⁷ P° 0.00 3.19 3-3 (1) | | A
A
A | 2
2
5 | 1.77 4.55 1}-3} (118)
1.82 4.66 2}-3} c ³ D-y ² F°
1.77 4.61 1}-3} (119) | Cb I I P 7 Anal C | | 3902.968 A 50R
3112.125 A 5n
3158.156 A 5R | 0.00 3:16 3-2
0.00 3.97 3-4 a ⁷ S-z ⁷ D°
0.00 3.91 3-3 (3) | | A
A | 8 | 1.82 5.10 31-11 c ² D-y ² P°
1.77 5.03 12-12 (130) | 4079.726 A 1000w
4100.918 A 600w
4123.812 A 400 | 0.13 3.17 41-51 a ⁶ D-y ⁶ F°†
0.09 3.11 31-41 (1)
0.05 3.06 21-31
0.02 3.01 12-21 | 3208.838 A 10n
3132.591 A 10R | 0.00 3.85 3-2
0.00 3.94 3-4 a ⁷ S-y ⁷ P ⁹ | | A | 1 | | 4137.090 A 200
4139.703 A 400w
4152.575 A 500 | 0.00 2.98 1-11
0.13 3.11 4 1-41
0.09 3.06 3 1-31 | 3170.333 A 10R
3193.969 A 10R | 0.00 3.89 3-3 (3)
0.00 3.86 3-2 | | A
A
A | 1
1
2 | 1.82 5.04 32-32 c ³ D-y ³ G ³ 1.83 5.15 32-22 c ³ D-x ⁵ D ⁶ 1.77 5.13 12-12 (132) 1.77 5.15 12-22 | 4164.661 A 300
4163.658 A 250
4168.122 A 250w | 0.03 2.98 14-14 | 5506.51 B 40R
5533.01 B 30R
5570.46 B 25R | 1.33 3.57 2-3 a ⁵ S-z ⁵ P°
1.33 3.56 2-2 (4)
1.33 3.54 2-1 | | A | 7
4 | 1.82 5.25 25-35 c°D-x°F°
1.77 5.29 15-25 (123) | 3791.309 A 300r
3834.883 A 100 | 0.13 3.38 41-42 a ⁶ D-y ⁶ D° † 0.09 3.31 32-32 (8) | 6030.66 B 9 | 1.52 3.57 4-3 a ⁵ p-z ⁵ pe+ | | A
P | 3 | 1.82 5.33 21-21 c ² D-y ⁴ P°
1.82 5.30 22-12 (124) | 3713.018 A 300r
3739.80 A 300r
3759.556 A 200r | 0.13 3.45 41 41 a ⁶ D-x ⁶ D°†
0.09 3.39 31-31 (3)
0.05 3.33 31-31 (3) | 5888.32 B 6
5791.86 B 6
5858.38 B 7 | 1.46 3.56 3-2 (5)
1.41 3.54 2-1
1.46 3.57 3-3 | | A
A
A | 12
20
4 | 1.82 5.58 21-21 c ³ D-m ³ D°
1.77 5.56 11-12 (125)
1.77 5.58 11-22 | 3790.138 A 300r
3803.938 A 400r
3798.137 A 300r | 0.09 3.33 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 5751.41 B 6
5689.22 B 7 | 1.41 3.56 3-3
1.38 3.54 1-1
1.52 4.19 4-3 a ⁵ D-y ⁵ P°† | | A
A
A | 3
5
3 | 1.82 5.63 $3\frac{1}{2}-1\frac{1}{2}$ $c^{2}D-x^{2}P^{0}$
1.77 5.67 $1\frac{1}{2}-\frac{1}{2}$ (126)
1.77 5.63 $1\frac{1}{2}-1\frac{1}{2}$ | 3787.064 A 150
3697.850 A 200
3726.235 A 250
3742.393 A 200r | 0.03 3.28 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 4626.467 A 10
4662.767 A 5
4661.933 A 5
4524.344 A 10 | 1.52 4.19 4-3 a ^D D-y ^D P ^o †
1.46 4.11 3-2 (6)
1.41 4.06 2-1
1.46 4.19 3-3 | | A | 3 | 1.82 5.91 2½-2½ c ² D-# ² F° (127) | 3580.277 A 400r
3575.850 A 200 | 0.13 3.58 41-31 a ⁶ D-y ⁶ Pe+
0.09 3.54 31-21 (4) | 4576.500 A 10
4595.160 A 10 | 1.41 4.11 2-2
1.38 4.06 1-1 | | A
A | 1 3 | 3.40 4.34 $3\frac{1}{2}$ $4\frac{1}{2}$ 6^{2} F- z^{2} G° 3.41 4.36 $3\frac{1}{2}$ $3\frac{1}{2}$ (138) | *3535.304 A 400w | 0.09 3.58 31-31 | 4277.346 A 13
4388.65 A 5n
4293.238 A 10 | 1.52 4.41 4-5 a ⁵ D-z ⁵ F°†
1.46 4.34 3-4 (7)
1.41 4.29 2-3 | | A
A | 5
4 | 3.40 5.05 3½-4½ b ³ F-y ³ G°
3.41 5.04 3½-3½ (139) | Cb II I P ? Anal | C List C July 1942 | 3833.757 A 10n
3828.883 A 10
3826.701 A 10 | 1.52 4.74 4-4 a ⁵ D-z ⁵ D ⁹ † 1.46 4.69 3-3 (8) 1.41 4.64 2-2 | | A
A | 8
12 | 3.40 5.15 3½-2½ b ² F-x ² D°
3.41 5.13 2½-1½ (130) | 3094.172 // A 2000 wR
3130.780 A 1500 wR
3163.403 A 1000 R | 0.51 4.50 5-6 a ⁵ F-z ⁵ G*† 0.44 4.38 4-5 (1) 0.37 4.38 3-4 | 3832.987 A 5
3901.775 A 10
3886.825 A (3) | 1.38 4.60 1-1
1.52 4.69 4-3
1.46 4.64 3-2 | | A.
A. | 3
15 | 2.40 5.15 3½-4½ b³F-z²H°
(131)
2.40 5.25 3½-3½ b³F-x³F°
2.41 5.29 3½-2½ (132) | 3194.983 A 700R
3225.478 A 500wR
3191.096 A 200w | 0.33 4.19 2-3
0.39 4.12 1-2
0.51 4.38 5-5 | 3869.085 A 10
3847.252 A 10
3763.356 A 5 | 1.41 4.60 2-1
1.38 4.58 1-0
1.46 4.74 3-4 | | A.
P | 6 | 2.41 5.29 25 (132)
2.40 5.29 35-25
2.41 5.25 25-35 | 3215.595 A 300wr
3236.403 A 300r
3254.070 A 200r | 0.44 4.88 4-4
0.37 4.19 3-3
0.32 4.12 2-2 | 3770.517 A 8
3781.597 A 10 | 1.41 4.69 2-3
1.38 4.64 1-3 | | A. | 2
7 | 2.40 5.33 3½-8½ b ² F-y ⁴ P° (133)
2.40 5.58 3½-2½ b ² F-w ² D° 2.41 5.56 3½-1½ (134) | 3028.436 A 300w
3076.864 A 200 | 0.44 4.51 4-3 a ⁵ F-z ³ D°†
0.37 4.39 3-2 (2)
0.32 4.31 2-1 | 3405.934 A 10r
3384.617 A 10n
3358.130 A 10
3344.750 A 10 | 1.52 5.15 4-5 e ⁵ p-y ⁵ F° †
1.46 5.11 3-4 (9)
1.41 5.09 2-3
1.38 5.07 1-3 | | ì | , | | 3099.180 A 100
2982.100 A 100 | 0.37 4.51 3_3 | 3344.750 A 10
3327.308 A 10r
3361.371 A 10r | 1.35 5.06 0-1
1.52 5.30 4-4 a ⁵ D-8°† | | | 2 | 2.48 4.30 1½ ½ b ³ P-z ³ S° (135)
2.48 4.43 1½-1½ b ³ P-z ³ P°
2.42 4.47 ½-½ (136) | 3413.934 A 150
3408.678 A 100
3409.191 A 100 | 0.90 4.51 2-3 a ³ p-z ³ p°†
0.76 4.39 1-2 (3)
0.69 4.31 0-1 | 3289.016 A 10r | 1.41 5.17 2-3 a ⁵ D-7°† | | 7 | 2 | 3.43 4.47 ½- ½ (136)
3.48 4.50 1½-1½ b ³ P-y ⁴ F° | 3540.961 A 300 | 1.03 4.51 4-3 a ³ F-z ³ D°† 0.98 4.39 3-2 (4) | 4012.51 C (1)
4062.09 A 5Nr
4084.391 A 10n | 2.07 5.15 6-5 a ⁵ G-y ⁵ F ⁹ †
2.07 5.11 5-4 (12)
2.07 5.09 4-3 | | i
i | 5
1
0 | 2.48 4.50 1½-1½ b ² P-y ⁴ F° 2.48 5.10 1½-1½ b ² P-y ² P° 2.42 5.03 1½-1½ b ² P-y ² P° 2.48 5.03 1½-1½ 2.48 5.10 ½-1½ | 3619.514 A 200
3651.182 A 300
3145.405 A 500rs | 0.98 4.39 3-2 (4)
0.93 4.31 2-1
1.03 4.95 4-5 a ³ F-z ³ G°† | 4084.391 A 10n
4107.477 A 8r
4102.158 A 10
4056.027 A 10 | 2.06 5.07 3-3
2.05 5.06 2-1
2.07 5.11 4-4 | | i | 2
5 | 3.48 5.10 ½-1½
3.48 5.15 1½-3½ b ⁸ P-x ⁸ D° | 3180.290 A 400
3206.350 A 300rs
3223.332 A 100 | 0.98 4.86 3-4 (5)
0.93 4.78 2-3
1.03 4.86 4-4 | | | | | 6 | 2.48 5.13 1-15 (139)
2.48 5.13 12-15 | 3347.478 A 150# | 0.98 4.78 3-3 | | D List D Aug 1942
2.94 6.52 4 1 4 _{F-} 4 _F 0 | | 1 | а
2 | 3.48 5.39 1½-3½ bdP-xdF° (140)
2.48 5.33 1½-3½ bdP-y4P° (141) | 3440.589 A 200
3479.567 A 150
3515.421 A 200# | 1.36 4.95 5-5 a ³ G-z ³ G ^o †
1.31 4.86 4-4 (6)
1.37 4.78 3-3 | 3446.085 A 6
3524.646 A 8
3596.351 A 4
3670.668 A 3 | 2.94 6.45 35-35 (1)
2.95 6.39 25-35
2.98 6.34 15-15 | | i
i | 3
8
2 | 2.48 5.58 12-32 beryer
2.48 5.58 12-32 beryer
2.42 5.56 12-12 (142)
2.43 5.56 12-12 | 3425.432 A 300w
3426.562 A 250w
3478.79 A 100 | 1.36 4.97 5-4 a ³ G-z ³ F°† 1.31 4.91 4-3 (7) 1.27 4.81 3-3 | 3533.063 A 2
3585.91 B 2n
3643.47 A 2 | 2.94 6.45 41-31
2.94 6.39 31-21
2.95 6.34 21-11 | | L. | 1 | 2.48 5.63 1½-1½ b ³ p_x ³ p° (143) | 4367.966 A 100n | 1.69 4.51 4-3 b ³ F-z ³ D° † | 3448.542 A 2
3534.688 A 3
3622.850 A 2 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | ,
, | 5
3
1 | 2.48 5.63 1½-1½ b ⁶ P-x ⁶ P° (143) 2.48 6.53 1½-1½ b ⁶ P-x ⁸ P° 2.42 6.49 ½-½ (144) 3.48 6.49 1½-½ | 4579.446 A 150n
4527.648 A 50n | 1.69 4.39 3-2 (8)
1.58 4.31 3-1 | 3136.465 A 4
3187.592 A 4 | 2.94 6.88 4½-3½ 4F- 4D°†
2.94 6.82 3½-3½ (2)
2.95 6.75 3½-1½ | | | | * | | | 3350.747 A 3 | 7-20 0-10 02-72 | | ٠ | | REVISED MULTIPLET TABLE | | | 83 | |--|---|---|--|--|--| | ry | EP J Multiplet
Low High (No) | Laboratory E P J Multiplet I A Ref Int Low High (No) | Laboratory
I A Ref Int | E P
Low High | J Multiplet (No) | | ued | tow uten
(no) | Ru II I P? Anal D List C Sept 1948 | Rh II continued | 111811 | (110) | | 10
10
8
5
10 | 3.13 6.03 3\frac{1}{2}-2\frac{1}{4}D-\frac{4}{2}P^\circ\tau^\tau^\tau^\tau^\tau^\tau^\tau^\tau^ | 3690.032 A 80 3.39 5.74 31.41 4p. 6p° t
3657.574 A 50 2.39 5.77 32.32 (1)
3734.454 A 25 2.53 5.84 22.23
3777.919 A 10 2.63 5.89 12.12
3177.060 A 100 2.39 6.28 31.41 4p. 6p° t | 3477.828 A 200
3093.481 A 200
3096.740 A 150
3062.201 A 100
3008.996 A 200
3047.160 A 200 | 3.43 6.98
3.47 7.46
3.59 7.57
3.43 7.46
3.47 7.57
3.59 7.64 | 3-4 5p. 5pe (4) 1-2 3-3 2-2 1-1 | | 10
15
6 | 3.13 6.26 31-41 4D 6D° †
3.13 6.24 31-31 (4)
3.10 6.20 21-12 | 3394.220 A 50 2.53 6.28 23.34 (2)
3339.810 A 50 2.62 6.32 13.24
3369.295 A 25 2.67 6.34 3.17
3175.317 A 10 2.39 6.38 33.23
3143.557 A 15 2.39 6.38 33.23 | 2979.382 A 2
2962.167 A 75
3035.013 A 200
3187.889 A 200 | 3.43 7.57
3.47 7.64
3.59 7.66
3.43 7.30 | 3-3
2-1
1-0
3-4 5p_ 5pe | | 20
15
10
8
3
5 | 3.13 6.52 3 4 4 4 D 4 F † 3.10 6.45 2 3 3 5 4 5 (5) 3.04 6.39 1 3 5 3 5 3 5 3 5 3 5 3 5 5 5 5 5 5 5 5 | 3107.586 A 10 2.39 6.36 31-31 4D 6Pe † 3094.555 A 8 2.53 6.52 21-22 (3) 3231.378 A 15 2.53 6.36 21-22 2976.593 A 100 2.39 6.54 31-41 4D 4Fe † | 3307.362 A 200
3264.291 A 75
3166.948 A 200
3173.678 A 100
3081.585 A 100 | 3.47 7.30
3.59 7.37
3.47 7.37
3.59 7.48
3.47 7.48 | 2-3 (5)
1-2
2-3
1-1
3-1 | | 6
12
5
5 | 3.04 6.34 1½-1½ 3.13 6.88 3½-3½ 4D- 4D° 3.10 6.83 3½-3½ (6) 3.04 6.75 1½-1½ | 2965.564 A 100 2.53 6.69 32-31 (4)
2979.957 A 60 2.62 6.76 13-23 (4)
2977.226 A 30 2.67 6.82 3-13
2979.736 A 40 2.53 6.67 23-23 4p 4p 4p 7 | 3267.480 A 250
3340.516 A 150
3211.947 A 150 | 3.92 7.69
4.03 7.83
4.18 8.03 | 5-4 3g. 3re.
4-3 (6)
3-8 | | 3
4
3
3 | 3.01 6.70 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 3991.636 A 40 2.62 6.75 13-14 (5) 3998.896 A 20 3.67 6.79 3-4 3359.0077 A 20 3.75 6.54 33-44 3F-4F*† | 3815.012 A 100
3754.13 P
3730.69 P | 4.23 7.46
4.29 7.57
4.33 7.64 | 2-3 3p_ 5p°
1-2 (7)
0-1 | | 3 | 3.04 6.82 12-85
3.01 6.75 5-15 | 3060.252 A 8 2.66 6.69 2 3 - 3 2 (6) 3221.978 A 20 3.76 6.58 3 2 3 2 3 4 D° + 3075.336 A 6 2.66 6.67 2 2 - 2 2 (7) | 3269.60 P
3188.603 A 150
3147.931 A 8
3140.372 A 50
3119.837 A 5 | 4.23 8.00
4.29 8.16
4.32 8.24
4.23 8.16
4.29 8.24 | 2-3 | | 5 Anal | | | | | | | (8) | 0.00 3.35 5-4 a ⁵ F-z ⁵ D° †
0.15 3.40 4-37 (1) | <u>Rh I</u> I P 7.7 Anal C List D Aug 1943
3692.357 A 50 0.00 3.34 4\frac{1}{2} a^4F-z^4D^0 † | <u>Pd I</u> I P 8.30 Ans | l A List D | Aug 1942 | | (10R)
(10R)
(4)
(10)
(4) | 0.00 3.31 5-5 a ⁵ F-z ⁵ F°†
0.15 3.46 4-4 (2)
0.26 3.57 3-3
0.33 3.63 2-2
0.38 3.67 1-1 | 3693.357 A 50 0.00 3.34 42-32 44F-z ⁴ D° † 3657:987 A 50 0.19 3.56 32-22 (1) 3596.194 A 20 0.32 3.75 22-12 (1) 3613.470 A 15 0.43 3.85 12-2 (2) 3434.893 // A 200R 0.00 3.59 42-52 44F-z ⁴ Q° † | 3634.71 B 700R
3516.95 A 500r
3571.16 A 200
3799.17 B 75
3832.31 B 75 | 0.81 4.21
0.96 4.47
1.25 4.70
0.96 4.21
1.25 4.47 | 3-2 5s ³ p-5p ³ p° 2-1 (1) 1-0 2-2 1-1 | | (6)
(30)
(7) | 0.15 3.52 4-5 a ⁵ F-z ³ G°†
0.26 3.87 3-4 (3)
0.33 3.93 2-3 | 3700.909 A 30 0.19 3.52 31-41 (3) 3507.316 A 20 0.32 3.84 21-31 3474.780 A 20 0.43 3.98 11-21 3508.524 A 50 0.00 3.52 41-41 | 3404.60 // A 1000R
3609.56 A 600R
3481.17 A 400r
3460.76 A 300r | 0.81 4.44
0.96 4.38
1.25 4.79
0.81 4.38 | 3-4 5e ³ D-5p ³ F° 2-3 (2) 1-2 3-3 | | (50R)
(30R)
(30)
(20)
(5)
(8) | 0.00 3.53 5-6 a ⁵ F-z ⁵ G ^o †
0.15 3.74 4-5 (4)
0.36 3.69 3-4
0.33 3.77 2-3
0.38 3.83 1-2
0.00 3.74 5-5 | 3396.85 A 100R 0.00 3.63 42-42 a ⁴ F-2 ⁴ F° † 3528.024 A 30 0.19 3.69 32-32 (3) 3462.040 A 30 0.32 3.89 32-32 (3) 3470.657 A 20 0.43 3.98 12-12 3583.098 A 10 0.19 3.63 32-42 3566.315 A 15 0.32 3.69 32-32 | 3218.98 A 30
3242.72 A 1000R
3421.24 A 500
3302.15 A 400
3287.26 A 50
3065.30 A 100 | 0.96 4.79
0.81 4.62
0.96 4.56
1.25 4.98
0.81 4.56
0.96 4.98 | 3-3 5e ³ p-5p ³ p° 2-2 (3) 1-1 3-2 2-1 | | (10R)
(10)
(8) | 0.81 3.52 4-5 a ³ F-z ³ G° †
1.00 3.87 3-4 (5)
1.13 3.93 2-3 | 3323.092 A 50R 0.19 3.90 31-41 a4F-z3G*† 3283.573 A 20R 0.38 4.08 32-32 (4) | 3372.02 A 300
3718.92 B 100
3002.66 A 50 | 0.96 4.62
1.25 4.56
0.81 4.92 | 2-3
1-2
3-3 5s ³ D-5p ¹ F° | | (10)
30 | 0.81 3.74 4-5 a ³ F-z ⁵ G°†
1.00 3.69 3-4 (6) | 3597.147 A 20 0.41 3.84 $3\frac{1}{2}$ $3\frac{1}{2}$ 3^{2} 2^{3} 2^{4} 0° † 3478.906 A 15 0.41 3.96 $3\frac{1}{2}$ $3\frac{1}{2}$ 3^{2} 2^{2} | 3114.05 A 200
3027.92 A 100 | 0.96 4.92
0.96 5.03 | 2-3 (4)
2-2 5s ³ D-5p ¹ D°† | | (20)
(10) | 1.13 3.77 2-3
0.81 3.83 4-3 a ³ F-y ⁵ F°†
1.00 3.98 3-2 (7) | 3788.474 A 15 0.70 3.96 1½-3½ | 3258.80 A 300
3021.74 A 10
3251.66 A 200 | 1.25 -5.03
0.96 5.04
1.25 5.04 | 1-3 (5)
2-1 5e ³ D-5p ¹ P°
1-1 (6) | | (10)
(8) | 0.81 3.75 4-4 a ³ F-z ³ F° †
(8)
0.81 4.00 4-3 a ³ F-z ³ D° † | 3856.515 A 10 0.70 3.90 $3\frac{1}{2} - 4\frac{1}{2} a^2 \mathbf{F} - \mathbf{z}^2 \mathbf{G}^0 \uparrow$ 3958.865 A 30 0.96 4.08 $2\frac{1}{2} - 3\frac{1}{2}$ (7) | 4212.95 B 300
3690.35 B 200 | 1.45 4.38
1.45 4.79 | -
2-3 5s ¹ D-5p ³ F°
2-2 (7) | | (10) | 1.00 4.10 3-3 (9)
1.13 4.15 3-1 | 3799.311 A 20 0.70 3.95 $3\frac{1}{2}$ $3\frac{1}{2}$ a^{2} p_{-} z^{2} p^{0} 3822.363 A 15 0.96 4.19 $3\frac{1}{2}$ $3\frac{1}{2}$ $3\frac{1}{2}$ (8) 4128.870 A 20 0.96 3.95 $3\frac{1}{2}$ $3\frac{1}{2}$ $3\frac{1}{2}$ $3\frac{1}{2}$ | 3894.19 B 200
3958.66 B 200
3489.79 A 200r | 1.45 4.62
1.45 4.56
1.45 4.98 | 2-3 5e ¹ D-5p ³ D°
2-2 (8)
2-1 | | 20
35
13 | 0.93 3.35 $4-4$ $a^5pz^5p^\circ$ † 1.06 3.35 $3-4$ (10) 1.13 3.51 1-3 | 3793.217 A 15 0.70 3.96 $3\frac{1}{2}$ $a^{2}F_{-2}^{2}D^{0}$ 3833.889 A 10 0.96 4.18 $2\frac{1}{2}$ (9) | 3553.10 A 500r | 1.45 4.92 | 2-3 5s ¹ D-5p ¹ F° (9) | | 40
8
6
3 | 0.92 3.31 4-5 a ⁵ D-z ⁵ F° † 1.06 3.46 3-4 (11) 1.12 3.57 2-3 1.12 3.63 1-2 | 4121.682 A 15 0.96 3.96 3½-2½ | 3441.40 A 300
3433.44 A 950 | 1.45 5.03
1.45 5.04 | 3-3 5s ¹ D-5p ¹ D°
(10)
8-1 5s ¹ D-5p ¹ P°
(11) | | 25
12
8 | 0.92 3.46 4-4
1.06 3.57 3-3
1.12 3.63 2-2 | <u>Rh II</u> I P ? Anal C List D Nov 1942
3307.397 A 350 3.13 6.98 4-4 ³ F- ⁵ D°† | Pd II See introduction | on | | | 8 30 | 0.93 3.57 4-3
0.93 3.53 4-5 a ⁵ p-z ³ g-f | 3028.608 A 75 3.39 7.46 3.3 (1)
3074.081 A 50 3.56 7.57 2.2
3434.57 P 3.39 6.98 3.4
3163.384 A 100 3.56 7.46 2.3 | Ag I I P 7.54 Ana | l A List C | May 1942 | | 35 | 0.93 3.75 4-4 a ⁵ D ₋₂ ³ F° 1 (13) 1.13 3.75 4-4 b ³ F ₋₂ ³ F° 1 (14) | 3159.254 A 300 3.13 7.04 4-5 ³ F ₋ ⁵ F°† 3151.500 A 75 3.39 7.30 3-4 (3) 3386.189 A 2 3.56 7.20 2-3 3233.384 A 250 3.39 7.20 3.3 | 3380.682// A 1000R
3382.890 A 1000R | 0.00 3.76
0.00 3.65 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | 3019.819 A 150 3.56 7.65 2-3 3F-5Go+ | 8273.519 A 1000
7687.779 A 500 | 3.65 5.25 | 11- 1 53po-62s
2- 2 (3) | | | | 2988.367 A 50 3.56 7.69 2-2 (3) | Ag II See introducti | on | | | | | | REVI | | | | , P.L.E. | | M D L E | • | | | _ | | | ******* | |-------------------------|--|---|--|-------------|------------------------------------|------------------------------|------------------------------|--|--|--|----------------|-----------------------|------------------------------|------------------------------|---|---| | ory | E P
Low High | J Multiple (No) | | | Int | Low | High | J |
Multiplet
(No) | IA | orato:
Ref | Int | Low E | High | J | Multiplet
(No) | | 3.96 Anal | . A List D | Aug 1943 | | 3.8 | | | ist D | Nov | 2 2 | | ontin | led | | | | | | 1 10R | 0.00 3.78 | 0-1 5 ¹ S-5 ³ P | 8521.10 //
8943.50 | A
A | 4000R
2000R | | 1.45
1.38 | \$-1\$
\$- \$ | (1) | 5013.00
4957.15 | D
D | (10)
(10) | | 8.45
8.45 | 3 } - | 4 ² F°-6 ² G
(10) | | 100R
100R
50 | 3.93 6.36
3.78 6.36
3.72 6.36 | 3-1 5 ³ P°-6 ³
1-1 (3) | 4555.421
4593.195 | B (| 2000R)
1000R) | 0.00 | 2.71
2.69 | 1-11
1-12 | 6 ² S_7 ² P°
(2) | 4309.32
4267.95 | D
D | (8)
 | 5.99
5.96 | 8.85
8.85 | 3}-
2}- | 4 ² F°-7 ² G
(11) | | 3 100 | 5.39 7.31 | 1-2 5 ¹ P°-5 ¹ | Cs II See | int | roductio | n
——— | | | | 6378.91
6135.83
5981.25 | D
D | (5)
(4) | 6.17
6.10 | 8.11 | | 7 ² p°_9 ² s
(12) | | ntroductio | on . | | | 5.1 | .9 Anal | A L | ist C | Nov : | 1943 | 5784.18
5999.85 | D | (8)
(8)
(3) | 6.17
6.10
6.17 | 8.24
8.23
8.23 | 13-13
13-13 | 7 ² P°_8 ² D
(13) | | | | | 7911.338 | A | (200) | 0.00 | 1.56 | 0~1 | 61s-63pe | 4997.81
4847.14 | D
D | (3)
(3) | 6.17 | 8.64
8.64 | 1 - 구 | 7 ² P°-10 ² S
(14) | | 5.76 Anal | LA List D | Aug 1942 | 5535.484// | A | 1000R | 0.00 | 2.23 | 0-1 | 6 ¹ S-6 ¹ P° | 4843.46 | ם | (8) | 6.10 | 8.72 | | 7 ² P°_9 ² D | | 1 10 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 3501.107 | A | 200R | 0.00 | 3.53 | 0-1 | 61s-5d6p1p°
(3)
61s-71p° | 4708.94
4850.84 | D | (8) | 6.10
6.17 | 8.72
8.72 | -1호
1호-1호 | (15) | | 10 | 0.00 3.01 | \$- \$ (1) | 3071.583 | A | 100R | 0.00 | 4.02 | 0-1 | 61S_71P0
(4) | 4405.23
4287.80 | D
D | (4)
(3) | 6.17
6.10 | 8.98
8.98 | 1 - 1 | 7 ² P°-11 ² S
(16) | | .ntroductio | on | | 7059.941
7280.298
7672.092
7488.083 | | (2000)
(1000)
(600)
(200) | | 2.93
2.83
2.72
2.83 | 3-4
2-3
1-2
3-3 | 5 ³ D-5d6p ³ F° (5) | 4325.73
4316.04
4329.62 | D
D | (6)
(5)
(3) | 6.17 | 9.03 | | 7 ² p°-10 ² p
(17) | | .30 Anal | LA List D | Aug 1942 | 7780.479 | A . | (400) | 1.14 | 2.72 | 2-2 | r3n r.c-3ne | | | | · | | | | | . 700R | 0.21 4.31
0.42 4.31 | 1-1 5p ³ P-6s
2-1 (1) | 6498.759
6527.312
6595.326 | A
A
A | 300r
250
200 | 1.18
1.14
1.12 | 3.08
3.03
2.99 | 3-3
2-2
1-1 | 5 ³ D-5d6p ³ D°
(6) | <u>La I</u> I | P 5. | 59 Ana | la L | ist C | Nov | 1942 | | , 900R | 0.21 4.28 | 1-0
- | 6693.842
6675.271 | A | 70
80 | 1.18 | 3.03 | 3-3
2-1 | | 6455.99 | A | 300 | 0.13 | 2.04 | | a ² D-z ² F° | | , 500r
, 2000R | 1.06 4.77
1.06 4.31 | 2-2 5p ¹ D-6s
2-1 (2) | 3p° 6341.682
6450.854 | A | 150
125 | 1.14 | 3.08
3.03 | 2-3 | | 6578.51
7068.37 | A
A | 400
100 | 0.00 | 1.88
1.88 | | | | 2500R | 1.06 4.85 | 2-1 5p ¹ D-6s | 1pe 6110.784
6063.117
6019.470
5971.699 | A
A
A | 300r
200
100
100 | 1.18
1.14
1.13
1.14 | 3.20
3.17
3.17
3.20 | 3-2
2-1
1-0
2-2 | 5 ³ D-5d6p ³ P° (7) | 7 5930.61
5930.68
6325.90 | A
A
A | (200)
(100)
150 | 0.13
0.00
0.13 | 2.21
2.08
2.08 | 21-31
11-21
21-21 | a ² D-y ² F° | | , 500 | 2.13 4.31 | 0-1 5p ¹ S-6s
(4) | 5997.088 | Ā | 100 | 1.12 | 3.17 | 1-1 | | 5455.14
5501.34 | A
A | 400
300 | 0.13 | 2.39 | 21-21
11-11 | a ² D-y ² D°†
(3) | | . 1000 | 2.12 4.85 | 0-1 5p ¹ S-6s
(5) | 3935.717 | A
A | 80
50 | 1.18 | 4.28 | 3-4 | 5 ³ D_4 ³ F•
(8) | 5271.18 | A | 150 | 0.13 | 2.47 | | a ² D-y ² P°† | | | | | 3909.910
3905.656
3937.870 | A
A | 40
30
20 | 1.12
1.18
1.14 | 4.27
4.27
4.27 | 1-2
3-3
2-2 | · | 4949.76
4280.27 | A
A | 200
100 | 0.00 | 3.49 | 23-33 | a ² D_w ² F° † | | 14.57 Ar | nal A List | - | 5777.622 | А | 400r | 1.67 | 3.80 |
2-3 | 6 ³ P°-6 ³ D† | 4187.31 | A | 125 | 0.00 | 2.95 | 1] -2]
 | (5) | | . 70
. 25 | 7.02 8.93
7.02 8.83 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 5519.047
5424.551
5800.229 | A
A
A | 200
100
100 | 1.56
1.51
1.67 | 3.80
3.79
3.80 | 1-3
0-1
2-2 | (9) | 6709.49
7045.96 | A
A | 200
300d? | 0.37 | 2.21 | | a ⁴ F-y ² F° † (6) | | . 60
. 50 | 7.34 11.02
7.26 11.02 | $3\frac{1}{1} - 3\frac{1}{2} p^2 ^{2}D - 4$ $1\frac{1}{7} - 2\frac{1}{7} (2)$ | ² F° 7905.751
7392.411
7195.235 | A
A
A | 500
400
200 | 1.67
1.56
1.51 | 3.23
3.23
3.23 | 2-1
1-1
0-1 | 6 ³ P°-7 ³ S
(10) | 6249.92
6394.23
6410.98
6543.17 | // A
A
A | 600
300
500d | 0.51
0.43
0.37
0.33 | 2.48
2.36
2.30
2.22 | 31-41
21-31
13-21 | a ⁴ F-z ⁴ G°† (7) | | | | | | | | | | | | 5791.32
5789.33 | A
A | 400d?
250d? | 0.51
0.43 | 2.64
2.56 | 41-41
31-31 | a ⁴ F-y ⁴ F°† (8) | | .64 Anal | | Sept 1942 | A- Ba II I | P 9 | .96 Ans | al A | List B | Nov | 1942 | 5769.32
5740.65 | A | 80
100 | 0.37
0.33 | 2.51
2.48 | 2 1 - 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | 5
100
250
200r | 2.28 5.97
2.02 5.67
2.28 5.67
2.02 5.34 | 1 2 - 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 4554.033//
4934.086 | A
B | 1000R
700R | 0.00 | 2.71
2.50 | }_1} | 6 ² S_6 ² P° | 5211.85
5177.30
5145.42 | A
A
A | 300d
300d
200 | 0.51
0.43
0.37 | 2.88
2.82
2.77 | 41-31
31-21
21-11 | a ⁴ F_y ⁴ D°†
(9) | | . 200
. 600r | 2.28 5.34 | 1= = = = 1 5p2p0-6 | 6141.718
s ² P 6496.896 | A
A | 600r
600r | 0.70 | 3.71
2.50 | 21-11 | 5 ² D-6 ² P° | 5106.23
5234.27 | A | 150d
300d | 0.33 | 2.75 | | a4F-1° † | | 700r | 2.02 5.80
2.28 5.80 | 1 (2)
1 1 1 1 (2)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 5853.675 | Ā | 300 | 0.60 | 2.71 | 1}-1} | . (2) | 4570.02 | A | 250 | 0.51 | 3.21 | | (10) | | 500r | 2.02 6.10 | } -1 } | 4899.934
4524.928 | A | 35
35 | 2.71
3.50 | 5.23 | 1 <u>구</u> 및 | 6 ² P°-7 ² S | 4567.90
4549.50
4494.71 | A | 200
50
30 | 0.43
0.37
0.33 | 3.13
3.08
3.08 | 41-41
31-31
21-21 | (11) | | ntroduction | on | | 4130.648 | A
A | 80 | | | | 6 ² P°-6 ² D (4) | 4434.11 | A | | 0.00 | | 1-1-1- | | | | | | 3891.781
4166.003 | A
A | 50
20 | 2.50
2.71 | 5.67
5.67 | 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | (4) | | | | | | n w. | 4040 | | .96 Ana | | June 1943 | 8710.83 | С | (3n) | 5.70 | 7.11 | -
2] -3] | 6 ² D-5 ² F° | 7282.36 | IP1 | 150 | nal A
0.34 | List | 4-4 | v 1943
a ³ F-2 ³ F°† | | 100
50 | 5.46 6.73
5.46 6.69 | 2-3 6 ⁵ S°-6 ⁵
2-3 (1) | | c
C | (3n) | 5.67 | 7:11 | 21-31
12-22 | | 7483.48
7066.24 | A
A | 30
300 | 0.00 | 1.94
1.77
1.75 | 3-3
2-2 | (1) | | 25 | 5.46 6.69 | 3-1 | 5391.60
5361.35
5421.05 | D
D | (10)
(8)
(2) | 5.70
5.67
5.70 | 7.99
7.97
7.97 | 13-23 | 6 ² D-6 ² F° (6) | 6808.88
6954.54 | A | 30
20 | 0.13 | 1.77 | 3-4
2-3 | | | roduction | | | 4326.74
4297.60 | D | (S) | 5.70 | 8.55 | | 6 ² D-7 ² F° | 6774.28 | A | 100 | | 1.95 | | a ³ F-z ¹ F° †
(2)
a ³ F-z ¹ G° † | | troduction | n | | 4297.60 | D | (2) | 5.67 | 8.54 | 1출-2출
 | (7) | 6834.07
5797.57 | A | 20
150 | 0.24 | 2.05 | 4-4
4-4 | (3)
a ³ F-y ³ F°
(4) | | troduction | n | | 6874.09
6769.62 | D
D | (10)
(10) | 5.99
5.96 | 7.78
7.78 | 3 1 -
2 1 - | 4 ² F°-5 ² G
(8) | 5805.77
5808.31 | A
A | 120
60 | 0.13 | 3.25
3.12 | 3-3
2-2 | (4) | | ntroducti | .on | | 5480.30
5428.79 | D
D | (3)
(3) | 5.99
5.96 | 8.24
8.23 | 31-21
21-11 | 4 ² F°-8 ² D | 6146.53
6172.72
5493.45
5482.27 | A
A
A | 15
10
20
40 | 0.24
0.13
0.13
0.00 | 2.25
2.12
2.37
2.25 | 4-3
3-2
3-4
3-3 | | | | | | | REV: | I S E | ED WI | JLTI | PLE | T T | ABLE | | | | | | | 85 | |--------------|------------------------|-------------------|--|---------------------|--------------|----------------|--------------|--------------|-------------|--|---------------------|--------------|------------|--------------|--------------|------------|---| | ory
f Int | Low High | J | Multiplet
(No) | Labor
I`A | rator
Ref | Int | Low E | P
High | J | Multiplet
(No) | Labo
I A | rator
Ref | y
Int | Low | P
High | J | Multiplet
(No) | | nued | | | | La II co | ntim | 1eg | | | | | La II co | ntin | req | | | | | | 10 | 0.24 2.20 | 4-4 | a ³ F-z ³ H° | 5880.63 | A | 50 | 0.23 | 2.33 | 1-3 | a ³ D-z ¹ D° † | 3705.81
3780.67 | Ą | 80 | 0.77 | 4.10
3.97 | 3-3 | a ³ p-x ³ po | | 50 | 0.00 2.33 | 2-2 | a ³ F-z ¹ D° † | 5183.42 | Ą | 400 | 0.40 | 2.78 | 3-3 | (35)
a ³ D-z ³ D° | 3854.91 | A
A | 50?
30 | 0.77 | 3.97 | 1-1
2-1 | (55) | | 300 | 0.34 3.75 | 4-5 | (6)
a ³ F-z ³ G° | 5122.99
5114.55 | A
A | 300
200 | 0.33 | 2.73
2.65 | 3-3
1-1 | (36) | 3835.09
3637.15 | A
A | 50
40 | 0.71
0.71 | 3.92
4.10 | 1-0
1-3 | | | 300
200 | 0.13 2.63
0.00 2.52 | 3-4
2-3 | (7) | 5301.97
5303.54 | A
A | 200
100 | 0.40 | 2.73
2.65 | 3-2
2-1 | | 3714.87 | A | 40 | 0.65 | 3.97 | 0-1 | | | 40
40 | 0.24 2.63
0.13 2.52 | 4-4
3-3 | | 4946.47 | A | 50 | 0.23 | 2.73 | 1-3 | | 5380.97 | A | 100 | 0.91 | 3.21 | 0-1 | a15-y30° | | 4 | 0.24 3.52 | 43 | | 4999.46
4970.39 | A
A | 200
100 | 0.40 | 2.87 | 3-2
3-1 | a ³ D-z ³ P°
(37) | 4991.27 | A | 80 | 0.91 | 3.39 | 0-1 | (56)
a1g_z1pe | | 80
120 | 0.24 2.78
0.13 2.73 | 4-3
3-2 | a ³ F-z ³ D°
(8) | 4809.00
4840.03 | A
A | 100
30 | 0.23 | 2.80 | 1-0
2-3 | • | 4354.40 | A | 200 | 0.91 | 3.75 | 0-1 |
(57)
a15-y1po | | 200 | 0.00 2.65
0.13 2.78 | 3-1
3-3 | | 4804.04
4683.13 | A
A | 80
5 | 0.23 | 2.80 | 1-1 | | 4036.59 | A | 15d | 0.91 | 3.97 | 0-1 | (58)
a1S-x3pe | | 400
10 | 0.00 2.73
0.00 2.78 | 2-2
2-3 | | 4713.93 | A | 40 | 0.40 | 3.02 | 3-2 | a ³ D-y ¹ D° | 4030.33 | • | 130 | | 3.31 | - 0-1 | (59) | | 60 | 0.00 3.87 | 2-2 | a3F-z3po+ | 4570.97
4429.90 | A | 10
400 | 0.38 | 3.02 | 2-3
1-3 | (38) | 9657.00 | A | 80 | 0.92 | 2.20 | 4-4 | a ¹ G-z ³ H° (60) | | | | | (9)
a ³ F-y ¹ D° | | Α. | | | | - | .3n -1no | 6636.53 | A | 5 | 0.92 | 2.78 | 4-3 | a1G-z3D° | | 300 | 0.00 3.03 | 3-3 | (10) | 4699.62
4558.46 | A
A | 50
200 | 0.40 | 3.03
3.03 | 3–3
2–3 | a ³ D-y ¹ F°
(39) | 5863.70 | A | 80 | 0.92 | 3.03 | 4-3 | (61)
a1G-y1r | | 207
40 | 0.24 3.03
0.00 3.03 | 4-3
3-3 | a ³ F-y ¹ F° † (11) | 3988.51 | A | 500 | 0.40 | 3.50 | 3-3 | a ³ D-y ³ D° | 4796.67 | A | 25 | 0.92 | 3.50 | 4-3 | a ¹ G-y ³ D° | | 400 | 0.24 3.50 | 4-3 | a3F_y3De | 4031.68
4151.98 | A | 300
250 | 0.32 | 3.38
3.31 | 2-3
1-1 | (40) | 4739.80 | A | 15 | 0.92 | 3.53 | 4-4 | (63)
a1G-x3F°† | | 300
100 | 0.13 3.38
0.00 3.21 | 3-2
2-1 | (13) | 4141.73
4275.64 | A
A | 200
100 | 0.40 | 3.38
3.21 | 3-2
2-1 | | 4748.73 | A | 150 | 0.92 | 3.52 | 4-5 | (64)
a ¹ G-z ¹ H° | | 30
80 | 0.13 3.50 | 3-3
2-3 | | 3886.37
3921.54 | A | 150
200 | 0.32 | 3.50
3.38 | 2-3
1-3 | | 4043.91 | A | 300 | 0.92 | 3.98 | 4-3 | (65). | | 8 . | 0.00 3.38
0.00 3.50 | 2-3 | | 3949.10 // | | 600 | 0.40 | 3.53 | 3-4 | a3D-x3F° | 1010102 | •• | | | | - | a ¹ G-x ¹ F° (66) | | 300
300 | 0.24 3.53
0.13 3.31 | 4-4
3-3 | a ³ F-x ³ F° (13) | 4123.23
4077.35 | A | 400
300 | 0.32 | 3.31
3.26 | 2-3
1-3 | (41) | 6958.11 | A | 100 | 1.25 | 3.02 | 2-2 | b ¹ D-y ¹ D° . | | 15 | 0.00 3.26 | 2-3
3-2 | (10) | 4238.38
4196.55 | A | 400
250 | 0.40 | 3.31 | 3-3 | | 5486.86
*6296.08 | Ą | 5
300 | 1.25 | 3.50 | 2-3
2-1 | (67)
b ¹ D-y ³ D°†
(68) | | 50
60 | 0.13 3.26
0.13 3.53 | 3-2
3-4
2-3 | | 4315.90 | A
A | 30 | 0.40 | 3.26
3.26 | 3-2 | | | A | 8 | | 3.21 | 2-3 | b ¹ D-x ³ F° | | 20 | 0.00 3.31 | | 3m -1ma | 4025.87 | A | 50 | 0.32 | 3.39 | 2-1 | a3D_z1p0 | 5971.09
6126.09 | A
A | 50 | 1.25
1.25 | 3.31
3.26 | 2-2 | (69) | | 200 | 0.00 3.39 | 3-1 | a ³ F-z ¹ po
- (14) | 3916.05 | A | 300 | 0.23 | 3.39 | 1-1 | (42) | 5769.06 | A | 60 | 1.25 | 3.39 | 2-1 | b1D-z1pe | | 15
6 | 0.13 3.64
0.00 3.48 | 3-3
2-1 | a3F_y3pe
(15) | 3808.79
3910.81 | A | 15
10 1 | 0.40 | 3.64
3.48 | 3-2
3-1 | a ³ D_y ³ P° †
(43) | 5535.66 | A | 80 | 1.25 | 3.48 | 2-1 | (70)
b1p_y3p•↑ | | 8 | 0.00 3.97 | 2-1 | a3F-x3P. | 3715.53 | A | 50 | 0.32 | 3.64 | 2-2 | 3. 1 | 4934.83 | A | 100 | 1.35 | 3.75 | 2-1 | (71)
b ¹ D-y ¹ P° | | 8 | 0.24 3.98 | 4-3 | (16)
a ³ F-x ¹ F°† | 3601.07
3512.93 | A | 30nl
10 | 0.32 | 3.75
3.75 | 2-1
1-1 | a ³ D-y ¹ p° (44) | 4530.54 | A | 15 | 1.25 | 3.97 | 2-1 | 61D-x3pe | | 50 | 0.00 3.98 | 2-3
 | (17) | 3337.49 | A | 300 | 0.40 | 4.10 | 3-2 | a3D-x3P° | *4582.37 | A | 400 | 1.25 | 3, 98 | 2-3 | (73)
bip_xire | | 10 | 0.17 1.95 | 2-3 | a ¹ D-z ¹ F° | 3380.91
3344.56 | A | 300
200 | 0.32 | 3.97
3.92 | 2-1
1-0 | (45) | | | | | | | (74) | | 20 | 0.17 2.25 | 2~3 | (18)
a ¹ D-y ³ F° | 3265.67
3303.11 | A
A | 600
150 | 0.32 | 4.10
3.97 | 2-3
1-1 | | 4286.97
4385.20 | A | 300
40 | 1.94 | 4.82 | 4-5
3-4 | z ³ F°-e ³ G†
(75) | | 200 | 0.17 2.13 | 2-2 | (19) | 3193.03 | A | 25 | 0.23 | 4.10 | 1-2 | | 4692.50
4655.49 | A
A | 200
400 | 1.75 | 4.38 | 2-3
4-4 | • • | | 20 | 0.17 2.33 | 2-3 | a ¹ D-z ¹ D°
(30) | 3453.17
3376.33 | A
A | 50
50 | 0.40 | 3.98
3.98 | 3-3
2-3 | a ³ D-x ¹ F°
(46) | 4743.08 | A | 250 | 1.77 | 4.38 | 3-3 | | | 50 | 0.17 2.52 | 2-3 | a1D-z3G° | 0070.00 | A | | | | - | (=0) | 4525.31
4437.53 | A
A | 100 | 1.94 | 4.67
4.50 | 4-4
3-3 | z ³ F°-e ³ F
(?6) | | 100 | 0.17 2.78
0.17 2.73 | 2-3
2-2 | (31)
a ¹ D-z ³ D°
(33) | 6129.57
6100.37 | A | 50
30 | 0.77 | 2.78
2.73 | 2-3
1-2 | a ^{3p} -z ³ D° (47) | 4619.87
4703.27 | A | 300 | 1.75 | 4.42 | 2-2 | (10) | | 100 | 0.17 2.65 | 3-1 | (55) | 6174.15 | A | 6 | 0.71 | 2.65 | 0-1 | (41) | 4668.91 | A | 150
250 | 1.77 | 4.56 | 4-3
3-2 | | | 300 | 0.17 2.87 | 2-2 | a1p-g3po | *6296.08
6358.12 | A | 300
30 | 0.77 | 2.73
2.65 | 2-2 | | 4269.50
4383.44 | A
A | 300
100 | 1.77
1.75 | 4.67
4.56 | 3-4
2-3 | | | 50 | 0.17 2.80 | 3-1 | (23) | 6570.96 | A | 7 | 0.77 | 2.65 | 2-1 | 7- 7 | 4647.50 | A | 100 | 1.94 | 4.59 | 4-3 | z3F°-e1F | | 500 | 0.17 3.03 | 2-3 | a ¹ D-y ¹ D°
(24) | 5874.00
6067.13 | A
A | 6
6 | 0.77
0.77 | 2.87
2.80 | 3-2
2-1 | a ³ P-z ³ P°†
(48) | 4378.10
4334.96 | A
A | 50
100 | 1.77
1.75 | 4.59
4.59 | 3-3
2-3 | (77) | | 100 | 0.17 3.03 | 2-3 | aip_yir° (25) | 5892.66
5703.32 | A
A | 4
20 | 0.71
0.71 | 2.80
2.87 | 1-0
1-2 | | 4217.56 | A | 200 | 1.94 | 4.86 | 4-3 | z ³ F°-e ³ D† | | 100 | 0.17 3.50
0.17 3.38 | 2-3
2-2 | a ¹ D-y ³ D°
(26) | 5727.29 | A | 30 | 0.65 | 2.80 | 0-1 | | 4192.35
4099.54 | A
A | 100
150 | 1.77
1.75 | 4.72
4.76 | 3-2
2-1 | (78) | | 100 | 0.17 3.21 | 2-1 | | 5464.37 | A | 25 | 0.77 | 3.03 | 2_3 | 23p_y1re
_(49) | 3994.50
4152.78 | Â | 100 | 1.77 | 4.86 | 3-3
2-2 | | | 300
400 | 0.17 3.31
0.17 3.26 | 2-3
2-3 | e ¹ D-x ³ F°
(27) | 4526.12
4613.38 | A
A | 200
200 | 0.77 | 3.50
3.38 | 2-3
1-2 | a ³ p_y ³ p•
(50) | 4249.99 | A | 100 | 1.94 | 4.84 | 4-4 | z3F°-e1G | | 60 | 0.17 3.39 | 2-1 | a ¹ D-z ¹ P° | 4824.05
4724.42 | A | 100
40 | 0.65 | 3.21 | 0-1
2-2 | | 4023.58 | A | 40 | 1.77 | 4.84 | 3-4 | (79) | | 8 | 0.17 3.64 | | (28)
a ¹ D-y ³ p° | 4935.61
5062.91 | A | 10
20 | 0.71 | 3.21
3.21 | 1-1 | | 4671.82 | A | 300 | 1 95 | 4.59 | 3-4 | z1F°-e3G | | 10 | 0.17 3.48 | 2-1 | | °4850.58 | | 30 | 0.77 | | 2-2 | a ³ p-x ³ F° | 5080.21 | Ā | 40 | | 4.38 | 3-3 | (80) | | 40 | 0.17 3.75 | 2-1 | a ¹ D-y ¹ P° (30) | 4830.51 | A | 10 | 0.71 | 3.26 | 1-3 | | 4540.71 | A | 10 | 1.95 | 4.67
4.56 | | z ¹ F°-e ³ F† | | 40
80 | 0.17 4.10
0.17 3.97 | 2-3 | alD-xopo | 4716.44 | A | 80 | 0.77 | 3.39 | 2-1 | a ³ p_z ¹ po | 4719.93 | A
A | 150 | | | 3-3 | (81) | | | | 2-1 | (31) | 4605.78
4508.48 | A
A | 100
10 | 0.71 | 3.39 | 1-1
0-1 | (52) | 4663.76 | Α . | 300 | 1.95 | | | z ¹ F°-e ¹ F
(82) | | 150 | 0.17 3.98 | ⊿-3
— | a ¹ D-x ¹ F°
(32) | 4296.05 | A | 300 | | 3.64 | 2 -2 | a3p_y3pe | 4230.95 | A | 150 | 1.95 | | | z ¹ F°-e ³ D
(83) | | 300 | 0.40 2.37 | 3-4 | a3p_y3Fo | 4455.79
4559.28 | A
A | 50
100 | 0.77 | 3.48
3.48 | 1-1
3-1 | (53) | 4263.59 | A | 200 | | 4.84 | | z ¹ F°-e ¹ G
(84) | | 300
300 | 0.32 2.25
0.23 2.12 | 2-3
1-3 | (33) | 4580.05
4204.03 | A
A | 150
100 | 0.71 | 3.64 | 1-0
1-2 | | 4050.08 | A | 200 | 1.95 | 4.99 | 3-2 | z1F°-e1D
(85) | | 40
15 | 0.40 2.25
0.32 2.12 | 3-3
2-2 | | 4364.66 | A | 100 | 0.65 | 3.48 | 0-1 | 7 | 4859.18 | A | 5n | 3.05 | 4.59 | 4-4 | z ¹ ̰-e ³ G† | | 5 | 0.40 2.20 | 3-4 | a ³ p_z ³ H° | 4143.77
4058.08 | A
A | 15
5 | 0.77 | 3.75
3.75 | 3-1
1-1 | a ³ P_y ¹ P°
(54) | 5302.62 | A | 150 | 2.05 | 4.38 | 4-3 | (86) | | | | | (34) | ator
Ref | y
Int | E
Low | P
High | J | Multiplet
(No) | IA | rator
Ref | Int | FOA E | P
High | J | Multiplet (No) | IA | rator
Ref | Int | Low | P
High | J | Multiplet
(No) | |-------------|---------------|----------------------|----------------------|-------------------|---|-------------------------------|--------------|-----------------------|----------------------|----------------------|--------------------------|---|-------------------------------|--------------|-----------------|----------------------|--------------|----------------|---| | tinu | ed | | | | | La II co | ntinu | ed | | | | | <u>La II</u> co | ntinu | eđ | | | | | | A
A | 50
10 | 2.05
2.05 | 4.67
4.56 | 4-4
4-3 | z ¹ G°-e ³ F
(87) | 3049.39
3054.02
3081.42 | A
A
A | 5
6
6n | 2.78
2.73
2.65 | 6.83
6.77
6.65 | 3-4
2-3
1-2 | z ³ p°-f ³ F† | *4600.59 | A | 5n | $\binom{3.64}{3.48}$ | 6.32
6.16 | 2-3
1-2 | y ³ P°-f ³ D†
(148) | | A | 30 | 2.05 | 4.59 | 4-3 | z ¹ G°-e ¹ F
(88) | 3022.26 | Α. | 5n1 | 2.73 | 6.81 | 3-2 | z ³ p°-g ¹ p | 4538.87 | A | 8nl | 3.64 | 6.36 | 2-3 | y ³ P°_f¹D
(149) | | A | 30 | 2.05 | 4.84 | 4-4 | z ¹ G°-e ¹ G
(89) | | | | | | - | z ³ D°-g ¹ D
(116) | 4132.50 | A | 10nl | 3.64 | 6.63 | 3-3 | (149)
y3pe_g3p
(150) | | A
A | 30 1
40 | 2.37 | 4.82 | 4-5
3-4 | y ³ F°_e ³ G
(90) | 6188.09
6443.05
6307.25 | A
A | 100 l
50 n
20 n | 2.87
2.80
2.80 | 4.86
4.73
4.76 | 2-3
1-3
0-1
1-1 | z ³ p°_e ³ D†
(117) | 3767.05
3885.09 | A
A | 5n
4 | 3.64
3.64 | 6.93 | 2-2
3-1 | y3P°-e3P†
(151) | | A
A
A | 25
40
8 | 2.13
2.37
2.25 | 4.38
4.59
4.38 | 2-3
4-4
3-3 | | 6315.79
5808.63 | A
A | 50
8 | 2.80 | 4.76
4.99 | 3-3 | z ³ p•_e ¹ D | 9346.69 | A | 15 | 3.58 | 4.84 | 5-4 | z ¹ H°-s ¹ G
(152) | | A | 50 | 2.37 | 4.67 | 3-3
4-4 | y ³ F°-e ³ F† | 3460.31 | A | 51 | 2.87 | 6.44 | 2-3 | (118)
z ^{3po} -f ¹ F | 4880.20 | A | 10n | 4.10 | 6.63 | 23 | x3p0-g3p+ | | A
A | 100
100 | 2.25 | 4.56 | 3-3
2-2 | (91) | 3283.95 | A | 8 n | 2.87 |
6.63 | 2-3 | (119)
z ^{3po} _g ³ D† | 4502.16 | A | 10n3 | 3.97 | 6.71 | 1-1 | (153)
_x 3pe _{-e} 3g | | A | 40 | 2.37 | 4.86 | 4-3 | y3F°-e3D+ | 3329.07 | A. | 8 | 2.80 | 6.51 | 1-3 | (130) | 3411.76 | Ą | 20nl | 4.10 | 7.73 | 2-2 | (154)
x3P9_f3P+ | | A | 40
40 | 2.25
2.12 | 4.78
4.76 | 3-2
2-1 | (92) | 3326.21 | A . | 5 | 2.87 | 6.58 | 3-1 | z ³ p°-e ¹ p†
(131)
z ³ p°-e ³ s† | 3580.10
3578.89 | A
A | 8n
5n | 4.10
3.97 | 7.55 | 2-1
1-0 | (155) | | A | 50 | 2.37 | 4.84 | 4-4 | y ³ F°-e ¹ G | 3212.56 | A | 5 | 2.87 | 6.71 | 2-1
- | (122) | 3294.44
3407.00 | A
A | 10
8nl | 3.97
3.92 | 7.72
7.55 | 1-2
0-1 | | | A | 10 | 2.25 | 4.99 | 3-2 | (93)
y ³ F°-e ¹ D
(94) | 3932.53 | A | 101 | 3.02 | 6.16 | 2-2 | y ¹ D°-f ³ D†
(123) | 3217.12
3112.63 | A
A | 8n
8n | 4.10
3.97 | 7.94
7.94 | 2-2
1-3 | x ³ P°-g ³ P†
(156) | | A | 500 | 2.44 | 4.82 | -
65 | z3H°-e3G | 3694.27 | A | 7 n | 3.02 | 6.36 | 3-3 | y ¹ D°-f¹D
(124) | 3174.88 | A | 10nl | 4.10 | 7.99 | 2-3 | x ³ P°-h ³ D† | | Ā
A | 200
100 | 3.29 | 4.59 | 5-4 | (95) | 3612.34 | A | 50 | 3.02 | 6.44 | 2~3 | ylpo_f1F
(125)_ | 3191.39 | A | 10n | 4.10 | 7.97 | 2-2 | (157) | | Ā | 10
10 | 3.29
2.20 | 4.82 | 4-3
5-5
4-4 | | 3420.54 | A | 5 n | 3.02 | 6.63 | 2-3 | ylpo-g3p+
(136)_ | 5173.83 | A | 25 1 | 3.98 | 6.36 | -
3–8 | x1F°-f1D | | A | 300 | 2.29 | 4.67 | 5-4 | z ³ H°-e ³ F | 3520.72 | Λ | 10 nl | 3.02 | 6.53 | 23 | y ¹ D°_£ ³ G
(127) | 5014.45 |
A | 30nl | 3.98 | 6.44 | 3-3 | (158)
x1F0_f1F | | Ā | 40 1 | 2.20 | 4.56 | 4-3 | z ³ H°-e ³ F
(96) | 3397.77 | A | 40 nl | 3.02 | 6.65 | 2-2 | ylpo <u>r</u> 3r
(138) | 4194.36 | A | 30n | 3.98 | 6.93 | 3-4 | (159)
x1F0_f1G | | A | 150 | 3.20 | 4.59 | 4-3 | z ³ H°-e ¹ F
_(97) | 6718.68 | A | 60 | 3.03 | 4.86 | 3-3 | y1F0_e3D† | | | | | | - | (160) | | A | 5 | 2.29 | 4.84 | 5-4 | z3H°_e1G
(98) | 6801.38 | A | 5 | 3.03 | 4.84 | 3_4 | (129)
v1F0_e1d | 4562.5 | A | 5n | 4.38 | 7.08 | 3-3 | e ³ G-1°
(161)
e ³ G-2° | | A | 50 | 2.33 | 4.59 | 2-3 | z ¹ D°-e ¹ F | 6273.76 | A | 100 | 3.03 | 4.99 | 3-2 | (130)
y1F0-e1D | 5066.99 | , A | 20n | 4.83 | 7.25 | 5-4 | (162) | | A | 201 | 2.33 | 4.72 | 3-3 | (99)
z ¹ D°-e ³ D† | 3427.57 | A | 8 | 3.03 | 6.63 | 33 | (131)
y1Ferg3p | 4341.30 | A | 15nl | 4.59 | 7.50 | 4-4
- | e ³ G_4°†
(163) | | A . | 30 1 | 2.33 | 4.76 | 2-1 | (100) | | | · | | | | (132)
y ³ n°f ³ n | 5107.54 | A | 6n | 4.67 | 7.08 | 4-3 | e ³ F-1° | | A | 80
5 | 2.33 | 4.99
6.44 | 2-3
2-3 | z1D0_e1D
(101)
z1D0_f1F | 4363.05
4443.94
4807.61 | A.
A | 50 1
20 nl
10 l | 3.50
3.38
3.31 | 6.32
6.16
6.14 | 3-3
3-3
1-1 | (133) | 4304.11 | A | 10nl | 4.67 | 7.53 | 4- | (164)
e ³ F-5°†
(165) | | ^ | | | | - | (103) | 4634.95
4474.03 | Ā | 25 I
10 | 3.50
3.38 | 6.16 | 3-2 | | 4113.38 | A | 40 1 | 4.59 | 7.59 | 3 | e1F_6° | | A
A | 130 1
200 | 2.75 | 4.82 | 5-5
4-4 | z ³ G°-e ³ G†
(103) | m4193.37
4180.97 | P | La+
131 | 3.38 | 6.32 | 2-3
1-3 | | | | | | | - | (166) | | Ā | 100 | 2.52 | 4.38 | 4-4
3-3
5-4 | (200) | 3939.85 | Α. | 201 | 3.50 | 6.63 | 3-3 | y ³ D°-g ³ D↑ | 4131.74 | A | 5n | 4.86 | 7.85 | 3- | e ³ D-7°
(167)
e ³ D-8° | | Ã | 10 n | 2.63 | 4.83 | 4-5 | | 3816.25 | Ā | 10 n | 3.21 | 6.44 | 1-1 | y ³ D°-g ³ D↑
(134) | 3817.24 | A | €n | 4.73 | 7.95 | 2-3 | e ³ D_8°
(168) | | A
A | 200
400 | 2.75
2.63 | 4.67
4.56 | 5-4
4-3
3-3 | z ³ Ge-e ³ F†
(104) | 3925.09 | A | 5 | 3.38 | 6.53 | 2-3 | y ³ D°-f ³ G
(135)
y ³ D°-f ³ F† | Strongest | t Uncl | assifie. | đ Lines | of <u>La</u> | II | | | A | 250 | 2.52 | 4.43 | 3-2 | | 3701.81
3641.66 | A
A | 40 1
50 1 | 3.50
3.38 | 6.83
6.77 | 3-4
2-3 | y ³ D°_f ³ F†
(136) | | may be | La III | () | | | | | A. | 20 | 2.52 | 4.59 | 3-3 | z ³ @°-e ¹ F
(105)
z ³ @°-e ³ D | 3581.68 | A . | 30 nl | 3.21 | 6.65 | 1-2 | y ³ D°-e ³ H | 5217.83
4516.38 | A | 10n
5nl | | | | | | A
A | 10
20 | 2.63
2.52 | 4.86
4.72 | 4-3
3-2 | (106) | 3731.43 | A | 8 n | 3.50 | 6.80 | 3-4
- | (137) | 4310.23
4301.50
4193.34 | A
A
A | 50nl
6n
5 | | | | | | A | 401 | 2.75 | 4.84 | 5-4 | z ³ G°-e ¹ G
(107) | 4411.21
4337.78 | A
A | 25 nl
10 l | 3.53
3.31 | 6.32
6.16 | 4-3
3-2 | x ³ F°_f ³ D†
(138) | 4161.94 | A | 8n | | | | | | A | 6 | 3.78 | 4.59 |
3-4 | ,3no_e3g+ | 4098.73 | Ã | 5 | 3.31 | 6.32 | 3-3 | | 4133.33
4007.64 | Ā | 6nl
7n | | | | | | A | ? | 2.78 | 4.67 | 3-4 | (108)
z3D°_e3F | 3981.36 | A | 101 | 3.26 | 6.36 | 2-2 | x ³ F°-f ¹ D
(139) | 3963.04
3962.03 | A
A | 51
101 | | | | | | Ā | 40
25 | 2.73
2.65 | 4.56 | 2-3
1-2 | (109) | 3979.08 | A | 81 | 3.53 | | 43 | (140)_ | 3747.96 | A | 51 | | | | | | A | 50 | 2.78 | 4.59 | 3-3 | z3D0-e1F+ | 3864.49
3773.12 | A
A | 100 l
150 l | 3.53
3.31 | 6.58 | 4-5
3-4 | x ³ F°-f ³ G†
(141) | 3665.22
3610.25 | A | 10 l
30 l | | | | | | A | 30 | 2.78 | 4.86 | 3-3 | (110)
z ³ D°-e ³ D† | 3780.53 | Α. | 50 ? | 3.26 | | 2-3 | x3F°_f3F+ | 3298.72
3208.13 | A
A | 5 n
6 | | | | | | A
A | 50 1
20 | 2.73
2.65 | 4.78 | 2-2
1-1 | (111) | 3736.41
3570.10 | A
A | 15 l
30 nl | 3.53
3.31 | 6.83
6.77 | 4-4
3-3 | (142) | 3018.95
3004.68 | A
A | 6nl
5n | | | | | | A | 30
10 | 2.78
2.73 | 4.73
4.76 | 3-2
2-1 | | 3474.84 | A | 81 | 3.26 | 6.81 | 2-2 | x3F0-g1D† | 3004.08 | | | | | | | | A | 10 | 2.73 | 4.99 | 2-3 | z ³ p°-e ¹ p† | 3423.9 | A | 5 | 3.31 | 6.93 | 3-4 | (143)
x ³ F°-f¹G†
(144) | La III | IP: | L9.1 A | nal C | List . | A N | ov 1943 | | A
A | 10 l
5 | 3.78
2.73 | 6.32
6.32 | 3-3
2-3 | (112)
z ³ D°-f ³ D†
(113) | 2985.43 | A | 5 | 3.26 | 7.39 | 2 – 2 | (144)
x ³ F°-h ¹ D
(145) | 3171.68 | A | 300 | 1.68 | 5.57 | | 6 ² S-6 ² P° | | A | 6 | 2.78 | 6.63 | 3-3 | z3Do-g3D+ | 4481.31 | A | 25 nl | 3.39 | 6.14 |
1-1 | z1po_f3p | 3517.14 | A | 200 | 1.68 | 5.19 | 2 - | <u>†</u> (1) | | A
A | 5
10n | 2.73
2.65 | | 2-3
1-1 | (114) | 3059.91 | A | 8 | 3.39 | 7.43 | 1-0 | z1po_f3p+ | Ce I No | anal | ysis Ma | y 1942 | (Tempe | ratur | e Class) | | | | | | | | | | | | | - | (147) | | | | | | | | | | | 5518.491 | A | 10 | | 2.91 | 31-41 a40-z4H ⁰
21-31 (26) | 3942.746
4075.714 | C C | 150
150 | (0.85 | 3.98)
3.73) | 61-71 | b ⁴ H°-z ⁴ I
(57) | |-------------------|--|----------------------------------|-------------|-------------------|-------------------------|----------------------|---|------------------------------|--------|--------------------|----------------|-------------------------|-------------------|--| | 600 | 0.38 3.33 63-73 a ⁴ H-z ⁴ I°
0.20 3.11 53-63 (1) | 5610.257 | C - | 20 | 0.57 | 2.77 | - | 4700 075 | B
A | 500 | (0.29 | 3.38) | 41-51
31-41 | (0.7 | | 200
100 | 0.04 2.90 4 3-5 | 4624.899 | A | 60 | 0.64 | 3.31 | 31-41 a2F-z2G | 4296.786 | A
A | (15)
(5)
150 | (0.85 | 3.73) | 61-61
41-41 | | | 400
150 | 0.00 2.71 3\(\frac{1}{2}\)-6\(\frac{1}{2}\) | 4148.901 | A | (25) | 0.61 | 3.58 | 23-23 a F-z4D | • | A | (15) | (0.29 | | 41-31 | b4H°-z2d | | 250
500 | 0.20 2.90 5\\\\-5\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 4167.804
4110.381 | A
A | (12)
80 | 0.64 | 3.60
3.61 | (28)
31-41 a ² F-z ⁴ F'
21-31 (29)
31-32 | 4349.789 | A | | (0.70 | 3.53) | 51-51 | (58)
b ⁴ H°-z ² H | | 300 | 0.38 3.18 $6\frac{1}{2}$ $-6\frac{1}{2}$ a^4H $-z^4H^0$ 0.20 3.02 $5\frac{1}{2}$ $-5\frac{1}{2}$ (2) | 4155.532 | Ã | (6) | 0.64 | 3.61 | 31-31 | 4087.297
3808.134 | B
B | 100
(4)
300 | (0.29 | 3.31)
3.53) | 41-41
41-51 | (59) | | 200
200 | 0.04 2.91 44-44
0.00 2.77 34-34 | 6035.487 | c . | (4) | 1.13 | 3.18 |
6] -6] b ⁴ H-z ⁴ H' | | Á | 150 | (0.85 | 3.85) | | ъ ⁴ н°−z ⁴ н | | 400
(2) | 0.38 3.02 64-54
0.20 3.91 54-44 | 6034.204
5975.830 | Č
A | (4)
(4)
20 | 0.98 | 3.02 | 5}-5} (30)
45-45 | 4083.233
3912.424 | A
B | 200
300 | (0.70
(0.29 | 3.72)
3.45) | 5}-5}
4}-4} | (60) | | 60
125
200 | 0.04 2.77 43-33
0.20 3.18 53-63 | 6043.386 | Ā | 60 | 0.72 | 2.77 | 3½-3½ | 4077.470
3919.813 | B
A | 75
100 | (0.29 | 3.32)
3.85) | 44-34
54-64 | | | 400
200 | 0.04 3.02 4½-5½
0.00 2.91 3½-4½ | 4893.968 | C | 15 | 0.85 | 3.37 | 4½-3½ b ⁴ H-y ² G'
(31) | 3836.112 | A | (15) | (0.23 | 3.45) | 35-45 | . 4 4 | | 100 | | 5613.698 | A | (5) | 0.94 | 3.14 | $6\frac{1}{2}-5\frac{1}{2}$ a ² I-z ² H
$5\frac{1}{2}-4\frac{1}{2}$ (33) | 3931.369
3854.322 | В | 100
100 | (0.29
(0.23 | 3.43)
3.43) | 31-35 | ъ ⁴ н°-у ⁴ н
(61) | | 75
(25) | 0.38 3.14 $6\frac{1}{2}$ $-5\frac{1}{2}$ $a^{4}H^{-}z^{2}H^{0}$
0.20 2.98 $5\frac{1}{2}$ $-4\frac{1}{2}$ (3)
0.20 3.14 $5\frac{1}{2}$ $-5\frac{1}{2}$
0.04 2.98 $4\frac{1}{2}$ $-\frac{1}{2}$ | 5768.895 | C | 20 | 0.84 | 2.98 | 5½-4½ (33)
 | 3854.187 | В | 100 | (0.23 | 3.43) | 31-21 | b ⁴ H°-112
(62) | | 60 | 0.04 3.14 45-55 | 4410.641 | C | 30 | 0.87 | 3.66 | 41-31 a2G-y2F | 9 3694.911 | A | 60 | (0.29 | 3.63) | 4-5-5- | b ⁴ H°-y ² H
(63) | | (10) | 0.00 2.98 3½-4 5 | 4339.317 | A | 30 | 0.87 | 3.71 | $4\frac{1}{3}$ | • 4407.278 | A | (40) | (0.70 | 3.50) | 54-43 | b4H°-x2H† | | 500
150 | 0.38 3.37 6½-5½ a ⁴ H-z ⁴ G°
0.20 3.20 5½-4½
(4)
0.04 3.03 4½-3½ | 4062.223
4117.013 | A.
C | 60
75 | 0.88 | 3.92 | 3½-3½ (34) | 3908.408 | A | 105 | (0.85 | | | 65) | | 500
200 | 0.00 3.03 35-25 | 4163.516 | Ā | (20) | 0.88 | 3.85 | $41-5\frac{1}{3}$ $a^{2}G-y^{2}H$ $3\frac{1}{3}-4\frac{1}{2}$ (35) | 3646.965 | C | 300 | (0.29 | | | b4H°-131†
(66) | | 150 | 0.00 0.00 0, 0, | | | | | | | 3501.453 | В | 60 | (0.23 | 3.76) | | b ⁴ H°-141
(67) | | 125
(8) | 0.38 3.39 $6\frac{1}{2}$ $-6\frac{1}{2}$ $a^4H-z^2I^\circ$ 0.38 3.30 $6\frac{1}{2}$ $-5\frac{1}{2}$ (5) | | | | | | | 3279.842 | В | 125 | (0.29 | 4.06) | | b4H°-171†
(68) | | 50 | 0.43 3.11 5½-6½ a ² H-z ⁴ I° | | | | ٥ | | | 3164.154 | A | 200 | (0.29 | | | b4H°-186 f
(69) | | 200 | 0.22 2.90 4½-5½ (6) | | | | | | | 3146.407 | В . | 200 | (0.29 | 4.22) | 44-35 | b4H°-188†
(70)
b4H°-y2I | | 75
(10) | 0.43 3.02 $5\frac{1}{2}$ $5\frac{1}{2}$ $a^{2}H-z^{4}H^{\circ}$ 0.22 2.91 $4\frac{1}{2}$ (7) | Ce II Gro | | | | | 61_71 a4H0_24 | 3622.145 | Α. | 100 | (0.85 | | | / 74 \ | | 125 | 0.43 3.14 51-51 a3H-z3H° | 3562.091
4053.506 | A
C | (6)
100
150 | 0.00 | 3.98
3.04
3.73 | 61-71 a4H0-24
31-45 (36)
61-61 | T + 2990.873
3272.253 | A | 80
250 | (0.29 | 4.42) | 51_41 | b ⁴ H°-209
(72)
b ⁴ H°-213 | | 200 | 0.43 3.14 $5\frac{1}{2}$ $-5\frac{1}{2}$ a^{3} H- z^{3} H° 0.22 3.98 $4\frac{1}{2}$ $-4\frac{1}{2}$ (8) 0.43 2.98 $5\frac{1}{2}$ $-4\frac{1}{2}$ 0.22 3.14 $4\frac{1}{2}$ $-5\frac{1}{2}$ | 3848.597
4080.435
4222.599 | B | (5)
300 | (0.52
(0.36
(0.12 | 3.38 | 51-51
41-41 | 3169.183 | G | 150 | (0.70 | 4.59) | | (73)
b ⁴ H°-321 | | 100
60 | 0.22 3.14 $4\frac{1}{2}$ $5\frac{1}{2}$
0.22 3.30 $4\frac{1}{2}$ $4\frac{1}{2}$ a^2 H- z^4 G° | 3718.380 | C | 200 | (0.52 | 3.84) | 64-54 a4H°-z4 | | c | 200 | (0.85 | 4.69) | | (74)
b ⁴ H°-229 | | 200 | ° (9) | 3803.097
3815.831 | Ā | 200
250 | (0.36 | 3.60 | 61-51 a4H°-z4
51-41 (37)
41-31
31-25 | 3201.714 | C | 300 | (0.85 | 4.71) | 6] -5 | (75)
b ⁴ H°-232 | | 150
50 | 0.43 3.39 51 61 e ² H-z ² I°
0.22 3.20 41 51 (10)
0.43 3.20 51 52 | 3942.151 | В | 125 | (0.00 | 3.13 | | | | | | | | (76) | | 30 | 0.43 3.31 $5\frac{1}{2}$ $4\frac{1}{2}$ $4\frac{2}{3}$ $4\frac{2}{3}$ $4\frac{1}{2}$ $4\frac{1}{3}$ $4\frac{1}{3}$ $4\frac{1}{3}$ $4\frac{1}{3}$ | 3653.108
3668.719 | A | 125
(12) | (0.36 | 3.73
3.36 | | 4253.356 | A
A | (20) | (0.74 | 3.73)
3.36) | 34-44
14-24 | e ⁴ D°-z ⁴ F
(77) | | 200 | | 3853.164 | A | 125 | (0.00 | 3.20 | 3-3-3 a4H°-z2 | 4346.711
G | A . | (30) | (0.46 | | | a4D°-126 | | 200
200 | 0.43 3.52 $5\frac{1}{2}$ $4\frac{1}{2}$ a^{2} H-y ² G° 0.22 3.37 $4\frac{1}{2}$ $3\frac{1}{2}$ (12) | 3709.286 | A | 400 | (0.52 | 3.85 | (39)
61-61 a4H°-z4 | 3914.949
H† | A
C | (18)
50 | (0.46 | | | (78)
a ⁴ D°-132 | | | 0.39 2.71 4½-4½ b³H-z⁴I° | 3667.981
3709.933
3716.365 | A
A
A | 400
500
600 | (0.36
(0.12
(0.00 | 3.72
3.45
3.32 | 1 4 }-4} | 4193.094
3234.274 | c | 300 | (0.26 | 4.08) | | (79)
a ⁴ D°-173 | | 25
20 | 0.39 2.71 4½-4½ b°H-z°I°
(13)
0.55 3.98 5½-4½ b°H-z°H° | 3764.117 | A | 150 | (0.36 | 3.63 | | | ٠ | | | | | (80) | | | (14) | 3660.641 | c | 250 | (0.13 | 3.49 | (41) | 3933.731
6† 4046.341 | C
B | (60)
100 | (0.70
(0.55 | 3.84)
3.60) | 44-54
34-44 | a ⁴ F°-z ⁴ G
(81) | | 75
60 | 0.90 3.33 $8\frac{1}{2}$ $-7\frac{1}{2}$ a^4 K $-z^4$ Γ° 0.73 3.11 $7\frac{1}{2}$ $-6\frac{1}{2}$ (15) | 3927.383 | В | (4) | (0.36 | 3.50 | (42)
54_43 a4H°-x ² | 4071.814
H 4391.661 | C
A | 150
250 | (0.33 | 3.36)
3.13) | 15-25 | | | 75
50 | 0.90 3.33 8^{1}_{-7} a^{4} $K-z^{4}$ I° 0.73 3.11 7^{1}_{2} -6^{1}_{2} (15) 0.56 2.90 6^{1}_{2} -5^{1}_{2} 0.40 2.71 5^{1}_{2} -4^{1}_{2} | 3534.051 | ç | 300
(3) | (0.52 | 4.01
3.84 | (43)
61-51 a ⁴ H°-y ⁴
51-41 (44)
41-31 | 4255.784
G 4398.787 | A | (20) | (0.70 | 3.60) | 3-3-3- | | | 25 | 0.73 3.18 73-63 a4K-z4H° | 3545.603
3426.208 | B C C | 250 | (0.36
(0.12
(0.00 | 3.84
3.72
3.54 | 1 41-31
1 31-21 | 4399.203
4068.836 | A. | 60
75 | (0.33 | 3.13) | | a ⁴ F°-z ⁴ F† | | 20 | | 3485.054
3441.210 | C | 400
150 | (0.36 | | 5 3-43 a ⁴ H°-15 | 4330.445 | A
A | 30
125 | 0.32 | 3.73)
3.17)
3.17) | 1-1-1- | (82) | | (5) | 0.61 3.37 41-51 a ⁴ F-z ⁴ G ⁶
0.58 3.20 31-41 (17)
0.48 3.02 21-31 | 3393.920 | c | 50 | (0.52 | 4.16 | (45) | 3076 Q7A | Ā | (15)
50 | (0.55 | 3.73)
3.36) | 34-44 | | | (8)
50 | 0.48 3.02 25-35
0.44 3.03 15-25 | 3142.312 | Ā | (25) | (0.12 | 4.05 | | 4119.877 | A | (20) | (0.33 | | | u4F°-z4H† | | 25 | 0.58 3.21 33-33 a4F-z2G° | 3728.423 | A | 250
75 | (0.67 | 3.98 | 71-71 a4I°-z4
61-61 (47) | I† 3967.048 | A | 100 | (0.33 | 3.44) | 21-11 | a ⁴ F°-z ² D | | 100 | 0.61 3.39 4½-5½ a ⁴ F-y ⁴ G° 0.58 3.36 3½-4½ (19) | 3788.753
4028.411 | A | 150 | (0.47 | 3.73
3.38 |) 5 § –5 § | | Α . | 135 | (0.32 | 3.44) | 15-15 | (84)
a ⁴ F°-116 | | 60
eo | 0.58 3.36 31-41 (19)
0.48 3.50 21-31
0.44 3.50 11-51 | 4299.362 | B | 60
(15) | (0.17 | 3.60 | 63-43 a4I0-84 | 4193.874 | A | (35) | • | | | (85)
a4F°-x2H | | 30 | 0.61 3.36 44-44
0.58 3.50 34-34 | 3878.372 | Ā | 150 | (0.17 | 3.36 | 1 45-35 (48) | 3882.446 | A | 75 | (0.32 | | | (86)
a ⁴ F°-z ⁴ D | | 25
(18) | 0.48 3.22 23-25
0.61 3.50 45-35 | 4024.491
3834.556 | C
B | 60
100 | (0.47 | 3.53 |) 61-51 a ⁴ 1°-z ²
) 51-51 (49) | H
3631.194 | В | 125 | (0.33 | | | a4F°-y4G | | 60 | and the second second | 3931.088
*3672.1668 | Ā
B | 125
(5d) | (0.17 | 3.31
3.53 | 61-51 a ⁴ I°-z ²
51-51 (49)
41-41
41-51 | 4336.255 | A | 50 | (0.70 | | | (88)
a ⁴ F°-123
(99) | | ,50 | 0.61 3.52 43-43 a4F-y2G° | 3889.990 | C | 300 | (0.67 | 3.85 | 74-61 a4I°-z4 | 4119.015
H | Α. | (25) | (0.55 | | | | | (25)
50 | 0.58 3.37 3 3 3 (21)
0.48 3.37 3 3 3 | 3795.256
3940.338 | B | 100 | (0.47 | 3.72 |) 5 4-44 | 3722.759 | A | (13) | (0.33 | | | a ⁴ F°-129
(90) | | (20)
50 | 0.61 3.60 41-41 a4F-z4Fo | 3922.005
3653.670 | 000 | (2s)
250 | (0.17 | 3.85 | 61-61 | 4098.981
3 904.340 | A
B | (15)
(5) | (0.70
(0.55 | 3.71) | 31-31 | a ⁴ F°-136†
(91) | | (20)
150 | 0.61 3.60 $4\frac{1}{2}$ $4\frac{1}{4}$ $4\frac{4}{7}$ $2\frac{4}{7}$ 0.58 3.61 $3\frac{1}{2}$ 3.62 (23) 0.48 3.47 $2\frac{1}{7}$ -2.4 0.48 3.44 $2\frac{1}{7}$ -1.5 0.48 3.44 $2\frac{1}{7}$ -1.5 | 3769.046
3560.798 | B | (5)
500 | (0.17 | 3.45
4.14 | 1 71 61 04 TO U4 | 3760.694
H 3519.077 | A
A | (6)
(25) | (0.55 | 3.83) | 31-21
31-21 | a ⁴ F°-148 | | (18) | 0.48 3.44 33-13 | 3577.458
3698.650 | C
B | 500
(5) | (0.47 | 3.92 | 61-51 (51)
51-41 | 3276,251 | A | (18) | (0.33 | 4 09) | 21 21 | 400 175 | | . 15 | 0.92 3.33 7½-7½ a ⁴ I-z ⁴ I° | 3786.632
3426.583 | B
B | 150
(4) | (0.17 | 3.43 |) 4½-3½
) 5½-5½ | 3436.304 | A | (15)
(25) | (0.55 | 4.14) | 3}-2 } | (93)
a ⁴ F°-180†
(94) | | 15
80 | 0.77 3.11 6½ 6½ (23)
0.62 2.90 5½-5½ | 3507.945
3655.851 | Ā | 135
500 | (0.17
(0.32 | 3.69
3.69 | 31-41
51-41 | | A | | | | | | | 40 | | 3898.273 | ¢ | 100 | (0.47 | |) 6½-5½ a ⁴ I°-y ² | *3327.114
H† | A | 300
100 | (0.32 | 4.14) | 19-16 | a ⁴ F°-181
(95)
a ⁴ F°-184 | | Ce I
30
100 | 0.92 3.18 $7\frac{1}{2}$ $6\frac{1}{2}$ 8^4 $1 - 2^4$ 1^9 0.77 3.02 $6\frac{1}{2}$ $- 5\frac{1}{2}$ (34) 0.62 3.91 $5\frac{1}{2}$ $- 4\frac{1}{2}$ | 3719.797 | A. | (15) | (0.32 | |) 53-5 2 (53)
) 43-34 a ⁴ I°-11 | | A | (30) | | | | (96)
a ⁴ F°-186 | | 150 | 0.53 2.77 4&-3½ | 3718.190
3659.227 | B
A | 150
135 | (0.17 | | (53)
10–12 a ⁴ I | | | 100 | (0.55 | | | (97)
a ⁴ F°-187 | | 75
60 | 0.92 4.59 7_{2}^{4} 7_{3}^{4} 1^{4} 1^{5} 1^{5} 1^{5} 1^{5} 1^{5} 1^{5} 1^{5} 1^{5} 1^{5} 1^{5} 1^{5} | 3520.522 | A | 150 | (0.17 | | (54) | | | 150 | - | | | (99) | | 50
50 | 0.62 4.35 54-54
0.53 4.24 44-44 | 3448.721 | A | (15) | | | (55)
) 5}-4} a ⁴ I°-15 | 3171.615 | | 200 | (0.33 | 4.22) |) 34-33 | a ⁴ F°-188
(99) | | 50 | | 0.303101 | 44 | (20) | (- 1 O D | | (56) | - | | | | | | | | tory
ef Int | EP J Multiple (No) | Laboratory
I A Ref Int | E P
Low High | J | Multiplet
(No) | Laboratory
I A Ref | Int 1 | EP
Low High | J Multiplet
(No) | |-------------------------
--|---|---------------------------------------|--|--|----------------------------|------------------------|--|---| | inued | ION NEWS | Ce II continued | | | | Ce II continue | 1 | | | | A 125 | (0.70 4.31) $4\frac{1}{2}-4\frac{1}{2}$ a^4F^0-199 | 3782.524 B 75 | (0.49 3.76 | 6) 3] -2] | b ³ G°-141 | 4202.944 A | 150 (| 0.56 3.49) | 31-31 b460-116
(186) | | A 150 | (0.55 4.36) 3½-3½ a⁴F°-205 | 3687.802 A 30 | (0.44 3.79 | 9) 4출-4출 | (143)
b ² G°-y ² G | 3488.553 A | 75 (| 0.87 4.41) | 4½-5½ b ⁴ G°-x ³ H† | | A 30 | (0.70 4.42) $4\frac{1}{2}-4\frac{1}{2}$ $a^{4}F^{c}-309$ | 3423.708 C 300 | (0.44 4.08 | 5) 4½-5½ | (143)
b ² G°-z ² I | | (30) (d | 0.93 4.01)
0.56 3.54) | 51-51 b4G°-y4G
31-21 (188)
21-32 | | A 60 | $\begin{array}{cccc} (0.70 & 4.44) & 4\frac{1}{2} & 3\frac{1}{2} & a^4F^\circ - 210 \\ (0.55 & 4.44) & 3\frac{1}{2} & -3\frac{1}{2} & (103) \end{array}$ | 3390.515 A (20) | (0.44 4.08 | 8) 4월-3월 | (144)
b ² G°-174
(145) | 4135.443 A
3896.804 A | 100 | 0.56 3.72) | 32-32 | | A (20) | (0.55 4.44) 3½-3½ (103)
(0.70 4.47) 4½-4½ 8 ⁴ F°-313 | 3271.151 A (18)
3314.721 A 100 | (0.44 4.32
(0.49 4.22 | 2) 独强 | b ² G°-188
(146) | *4149.936 B | 60 (| 0.71 3.68) | 3½-3½ b4G°-132
(189) | | C 150 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 3295.289 A 80 | | | b ² G°-192 | 3924.644 B | 60 (| 0.56 3.70) | 2½-1½ b ⁴ G°-134
(190) | | A (20)
A (25) | (105) | 3285.224 A 125 | (0.49 4.28 | 5) 3k-2k | (147)
b ² G°-193
(148) | 3923.109 C | 125 (| 0.56 3.70) | 2½-2½ b¼0°-135
(191) | | A 80 | (0.70 4.56) $4\frac{1}{2}-4\frac{1}{2}$ $8\frac{4}{106}$ (0.70 4.79) $4\frac{1}{2}-3\frac{1}{2}$ $8\frac{4}{106}$ (2.70 4.79) | 3231.236 A 200 | (0.49 4.39 | 1) 34.24 | ₽ 8₫•~200 | 3912.191 B | | | 2½-3½ b40°-136
(192) | | | (107) | 3127.530 A 80 | 10.44.4.30 | م
ما ما عا | 1149) | 4001.049 B | | | 3½-4½ b4G°-y2G
(193) | | B 150
B 200 | $(0.32 \ 3.38) \ 4\frac{1}{2}-5\frac{1}{2} \ a^{2}G^{\circ}-z^{4}I$
$(0.33 \ 3.04) \ 3\frac{1}{2}-4\frac{1}{2} \ (108)$
$(0.32 \ 3.04) \ 4\frac{1}{2}-4\frac{1}{2}$ | 3103.377 A 125 | (0.44 4.4) | a) 4k-4k | PSGo-208 | | | | 3½-3½ b ⁴ G°-145
(194) | | A 200 | | 3110.278 A 100 | (0.49 4.46 | 6) 3 } -2 } | (151)
b ² G°-212
(152) | | _ | | $3\frac{1}{2}-3\frac{1}{2}$ $b^{4}G^{0}-153$ (195) $2\frac{1}{2}-3\frac{1}{2}$ $b^{4}G^{0}-180$ | | B (2)
A (20) | $\begin{array}{cccc} (0.33 & 3.60) & 4\frac{1}{2} - 4\frac{1}{2} & a^2G^{\circ} - z^4G^{\dagger} \\ (0.33 & 3.36) & 3\frac{1}{2} - 3\frac{1}{2} & (109) \end{array}$ | 4678.94 P | (1.20 3.8 | | | 3442.380 A
3439.831 C | | | (196)
82-12 b40°-181 | | A 150 | $(0.32 \ 3.73) \ 4\frac{1}{2} - 4\frac{1}{2} \ a^{2}G^{\circ} - z^{4}F$ (110) | 4696.12 P | (0.97 3.60 | 0) 31-41
6) 31-31 | b ⁴ F°-z ⁴ G
(153) | | | | (197)
2½-2½ b⁴G°-193 | | A (20)
A 300 | | 4508.083 A (8)
4725.090 C 20 | (0.55 5.1 | 2) 15-05 | | ⇒3286.029§ A | | | (198)
3½-3½ b4G°-200† | | B (3) | | 4495.389 A (4)
4654.286 A 30 | (0.62 3.3 | 6) 21-21
7) 13-13 | b ⁴ F°-z ⁴ F
(154) | | | | (199)
3½-3½ b4G°-207 | | B 100
A 150 |) (0.32 3.53) $4\frac{1}{2}-5\frac{1}{2}$ $a^2G^0-z^2H$ (0.33 3.31) $3\frac{1}{2}-4\frac{1}{2}$ (112) (0.32 3.31) $4\frac{1}{2}-4\frac{1}{2}$ | 4380.060 A (30) | | | b4F°-zSD | 3055.243 C | 150 (| | (200)
23-13 b=0-323 | | A (10) |) (0.32 3.72) $4\frac{1}{2} - 5\frac{1}{2} a^2G^0 - z^4H^{\dagger}$
(0.33 3.45) $3\frac{1}{2} - 4\frac{1}{2}$ (113) | 4104.996 C 50 | (0.62 3.6 | 3) 2] -3] | (155)
b4F°-137 | - | | | (301) | | 8 125
B (5) |) (0.32 3.72) $4\frac{1}{2} - 5\frac{1}{2} a^2G^{\circ} - z^4H^{\dagger}$
(0.33 3.45) $3\frac{1}{2} - 4\frac{1}{2}$ (113)
) (0.32 3.45) $4\frac{1}{2} - 4\frac{1}{2}$ | 4704 004 4 (40 | |
(c) 71 71 | (156) | 4373.818 A | 150 (
50 (
200 (| 0.61 3.73)
0.56 3.38)
0.61 3.38) | 51-61 a ³ H°-z ⁴ I
41-51 (303)
51-51 | | B (4)
A (10) |) (0.32 3.84) 41-41 a ² G°-y ⁴ G
) (0.33 3.72) 35-35 (114)
(0.33 3.54) 35-25 | 4361.661 A (18
4739.49 B 25
4014.899 A 125 | (0.53 3.3
(0.53 3.1
(0.53 3.6 | 3 3 3 2 2 | c ² G°-z ⁴ G†
(157) | 4449.336 A
4214.041 B | | | | | A 150 | | 3857.032 B (5 | = | | | 4479.359 A
4146.234 A | 50 {
75 { | 0.61 3.53)
0.56 3.31)
0.56 3.53) | 51-51 a ³ H°-z ³ H
41-41 (203)
41-51 | | A 50
B (4) | (0.32 3.55) $4\frac{1}{2}-4\frac{1}{2}$ $a^2G^{\circ}-122$
(0.33 3.55) $3\frac{1}{2}-4\frac{1}{2}$ (115) | *4149.936 B 50
4245.976 B (6 | (0.72 3.6 | 9) 44-4 5
3) 33-35 | c ² G°-y ⁴ H†
(158) | 3809.224 A | | | 51-61 a ² H°-z ⁴ H†
42-42 (204) | | 8 50 | (0.33 3.76) 31-21 a20-141 | 3343.861 C 200 | (0.72 4.4 | | c ² G°-x ² H† | 4270.189 A | | | | | A 150 | (0.32 3.79) $4\frac{1}{2}$ $4\frac{1}{2}$ $4\frac{1}{2}$ $4\frac{2}{3}$ $4\frac{2}{3}$ $4\frac{2}{3}$ $4\frac{2}{3}$ $4\frac{2}{3}$ | 4153.67 P | | | | 3938.086
B
4292.767 B | { ⁷ } { | 0.56 3.69)
0.56 3.43) | 4½-4½ a ² H°-y ⁴ H†
4½-3½ (205) | | A 300 | (0.32 3.81) 4½-3½ a ² G°-145† | 3748.056 C 150
3958.266 B (6
4106.134 A (30 | (0.72 4.0
(0.72 3.8
(0.72 3.7 | 4 4 4 4 | c ² G°-y ⁴ G
(160) | 4075.853 B
4275.561 C | 125
(25) | 0.61 3.63)
0.56 3.44)
0.56 3.63) | 51-51 a ³ H°-y ³ H
41-41 (206)
41-51 | | В 300 | (0.33 4.14) 3½-3½ a ³ G°-180
(119) | 4093.955 A 30 | (0.53 3.5 | 4 32-22 | | 4012.389 B | | | | | A 150 | (0.33 4.25) $3\frac{1}{2}-3\frac{1}{2}$ $a^{2}g^{\circ}-193$ (120) | 4169.773 A (12 | | 8) 4½-3½ | . c ² G°-131
(161) | 4198.431 B | (4) (| 0.56 3.50) | $4\frac{1}{2}$ | | В 200 | (0.33 4.36) $3\frac{1}{2} - 3\frac{1}{2} a^2G^{\circ} - 205 \uparrow$ (121) | 4123.230 B (5
3875.036 B (6 |) (0.72 3.7
1) (0.53 3.7 | 11) 43-33
11) 32-33 | (161)
(260-136
(162) | 3830.871 B
3765.044 A | (5) (
(12) (| 0.61 3.84)
0.56 3.84) | 53-43 a2H°-y4G
43-43 (208) | | A 125 | (0.32 4.42) 4½-4½ a ² G°-209
(133) | 4017.596 A (10
3781.620 A 150 | s) (0.73 3.7 | 9) 4}-4} | c ² G°-y ² G
(163) | *4197.998% B
4130.706 A | (5) (| 0.61 3.55)
0.56 3.55) | 51-41 a ² H°-122
41-41 (209) | | B 75 | (0.42 3.36) 2\frac{1}{2} \frac{1}{2} \frac{2}{3} \frac{1}{3} \frac{2}{3} \frac{1}{3} \frac | 3781.620 A 150
3357.215 A 125 | | | c ² G°-187 | | 125 (| 0 61 3 77) | 51 41 a2H0_142 | | B (5) | | 3344.761 A 300 | (0.53 4.2 | 32 3 1 34 | (164)
c ² G°-188† | 3521.880 C | 200 (| 0.61 4.11) | 5½-4½ a ² H°-177
(211) | | B (41
B (5) | n) (0.46 3.73) $3\frac{1}{2}$ $4\frac{1}{2}$ $a^2F^0 - z^4F$
) (0.42 3.36) $3\frac{1}{2}$ $-2\frac{1}{2}$ (134)
(0.42 3.17) $2\frac{1}{2}$ $-1\frac{1}{2}$ | 3300.152 C 60 | | | (165)
c ² G°-211 | 3373.729 B | 125 (| 0.56 4.22) | (211)
42-32 a2H°-188 | | A 30 | | 3186.126 C 125 | (0.72 4.5 | | (166)
. c2G°-221 | 3377.127 C | 300 (| 0.61 4.26) | 53-63 a2H°-y2I | | A 60 | (125) | 2976.905 A 100 | | | (167)
c20°-228 | 3243.370 A | 200 (| (0.56 4.36) | | | B (2) |) (0.46 3.45) $3\frac{1}{2}-4\frac{1}{2}$ $a^{2}F^{\circ}-z^{4}H$ (0.46 3.32) $3\frac{1}{2}-3\frac{1}{2}$ (136) | | | | (168) | 3221.171 A | 250 (| (0.56 4.39) | | | 3 (4)
3 100 |) (0.42 3.61) 2½-2½ a ² F°-126 | 4190.626 C (30
4437.613 B (4
4213.036 A (15 |) (0.89 3.8
(0.82 3.6
(0.67 3.6 | 34) 03-03
30) 43-43
30) 33-43 | a ⁴ G°-z ⁴ G†
(169) | 3183.523 A | 250 (| (0.56 4.44) | (216) | | 1 75 | | 4213.036 A (15
4372.401 A (35 |) (0.53 3.3 | 36) 2 ₂ -3 ₂ | | 3194.825 C
3155.704 A | | (0.61 4.47)
(0.56 4.47) | 51-41 a2H°-213
41-42 (217) | | 4 50 | (128)
(0.46 3.71) 3 1 -31 s2r9-136† | 4234.727 A (12 | | | a ⁴ G°-z ⁴ F† | - | | | | | i 60 | (0.42 4.33) 3-3-3 a ² F ⁶ -188 | 4443.743 A (18
4427.917 B (6 |) (0.67 3.4
(0.53 3.3 | 15) 31-41
32) 21-31 | a ⁴ G°-z ⁴ H†
(171) | 4037.665 A | | (0.73 3.79) | 32-42 b2F°-y2G
(318)
22-12 b2F°-167 | | 450 | | 3801.529 C 500 | (0.89 4.1 | L4) 5♣~6≩ | a400-y4H | 3599.974 A | (10) | (0.58 4.01) | (219) | | 1 150 | | 3982.901 B 60
4085.232 B 100 | (0.82 3.9 | 32) 45-53
39) 31-43 | a ⁴ G°-y ⁴ H
(172) | 4352.733 B | 75 (| (0.60 3.43) | 1½-2½ a ² p°-112
(220) | | 1 150 | (1.31 4.86) $3\frac{1}{2}$ $3\frac{1}{2}$ a^4 P°-344 (132) | 4085.232 B 100
4256.156 B (5
4296.069 B (6 |) (0.53 3.4
) (0.82 3.6 | 39) 4g-4g | | 4007.589 A | (15) | (0.60 3.68) | | | 1 (35 | | 4169.878 B 30 | (0.53 3.4 | 19) 2] 3 <u>]</u> | a ⁴ G ³ -1i6 † | 3817.455 A | (25) | (0.60 3.83) | 1½- ½ s2n°-147
(223) | | 1 (35
1 (30
1 100 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 4090.947 A (6 | | | (173)
a4G°-y4G
(174) | 3699.920 B | 50 | (0.63 3.97) | 2 1 -21 a ² D°-161
(223) | | ¥ 125 | | 3978.650 C 125 | • | | a4G°-129 | 4326.826 A | (15) | (0.73 3.58) | 12-12 a2P0-134 | | ¥ 60 | | 4259.748 A (15
*3956.901 B (4 | (0.89 3.7
(0.67 3.7 | 79) 5-4-4
79) 3-4-4 | a460_y2G
(176) | 4280.141 A | (15) | (0.73 3.61) | (224)
11-21 a2P0-126 | | A (25
A (12 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | *3952.573 B 125 | (0.82 3.9 | | a ⁴ G°-159
(177) | 3992.913 A | (15) | (0.73 3.82) | (225)
1½-1½ a ² P°-146
(226) | | A 125 | (0.49 3.32) 32-32 | 3607.635 A 200
*3468.1138 A | 0.67 4.0 | 09) 3 1 -2
09) 2 1 -2 | a4G°-175 | 4368,234 A | (8) | (0.90 3.73) | · | | A (4
B (4
B (4 | 1) (0.44 3.69) 4½-4½ b ² G°-y ⁴ H†
1) (0.44 3.43) 4½-3½ (136)
1) (0.49 3.43) 3½-3½ | 3609.687 C 250 | | | a4G°-199 | 4129.176 A
*5347.8060 A | (5) | (0.74 3.73)
(0.74 3.04) |) 6}-6} a ² I°-z ⁴ I
) 5}-6} (227)
) 53-4} | | | | 3051.975 C 60 | | | (179)
a4G°-320 | 4684.605 A | 30 | |) $6\frac{1}{2}$ $6\frac{1}{2}$ $6\frac{1}{2}$ $6\frac{1}{2}$ $6\frac{1}{2}$ (228) | | A (30 | 0) $(0.49 \ 3.49) \ 3\frac{1}{2} - 3\frac{1}{2} \ b^2 G^2 - 116$ (137) | 3037.731 C 80 | (0.53 4. | | (180)
a4G°-333 | | | | _ | | C (15
B 200
A 300 | 0 (0.49 3.50) 3½-4½ (138) | 3252.483 C 3 | | | (181)
a40°-229 | 4551.297 A | (20) | (0.74 3.45) |) 5½-4½ a ² 1°-2 ⁴ H
(229)
) 6½-5½ a ² 1°-x ² H
) 5½-4½ (230)
) 5½-5½ a ² 1°-2 ² 1 | | | 5d) (0.49 3.50) 3½-3½ b ² G°-118 | 2995.644 A 8 | (0.67 4. | 79) 3 } -3 | (182)
2 a40°-237
(183) | 3517.380 C
4469.850 C | 300
(4) | (0.74 3.50) |) 5½-4½ (230) | | A 200 | 0 (0.49 3.55) 34.44 bar-122 | 3051.934 C 6 | 0.82 4. | 86) 4] -3 | 183)
2 a ⁴ G°-244
(184) | 3725.675 A | (40) | | (231) | | A (12 | (140) | 3063.010 C 40 | (0.89 4. | 92) 5 } -4 | 1 a4 G = 248
(185) | 3590.598 A | 125 | (0.74 4.17) |) 5½~4½ a ² I°-184
(232) | | | (141) | | | | ,200) | 3672.789 A | 60 | (0.90 4.26) |) 6½-6½ a½I°-y3I | ry
Int | E I | P
High | J | Multiplet | Labor
I A | ator
Ref | y
Int | FOA E | P
High | ú | Multiplet (No) | Labor
I A | | ry
Int | E . | P
High | J | Multiplet
(No) | |-------------------|-------------------------|-------------------------|-------------------------------------|--|------------------------------------|-------------|--------------------|----------------------|----------------------|-------------------|---|------------------------------------|---------------|-------------------|----------------------|----------------------|---|---| | req | | - | | | <u>Pr II</u> I | P 7 | Anal (| D Lis | t B | Dec 19 | 41 | Pr II con | ntin | 1eq | | | | | | 100 | (0.79 | 3.92) | 4] -5] | d ² G°-y ⁴ H
(234) | 4628.751
4535.921 | A
A | 100 | 0.05 | 2.72
2.73 | 5-5
4-5 | a ⁵ I°-3 | 4254.420
4664.647 | A
A | 20
20 | 0.63
0.43 | 3.53 | 7-7
6-6 | a ³ I°-z ³ I† (27) | | 200 | (0.79 | | | d ² d°-186
(235) | 4517.595 | A | 40 | 0.05 | 2.79 | 5-5 | a ⁵ 1°-3† | 3971.164
4329.415 | Ā | 40
25 | 0.43 | 3.53 | 6-7
5-6 | (2.7 | | 60
100 | (0.79 | | | d ² G°-188
(236)
d ² G°-237 | *4429.238
4744.935 | A
A | 60
40 | 0.00 | 2.79 | 4-5
6-6 | (2)
a ⁵ 1°-4 | 4008.714
3982.063 | A
A | 75
150 | 0.63
0.42 | 3.71
3.52 | 7-7
6-6 | a ³ I°-z ⁵ H† | | | <u> </u> | | - | (837) | 4487.831 | A | 20 | 0.05 | 2.80 | 5-6 | (3)
5-0 5 | 3962.445 | A | 40 | 0.22 | 3.33 | 5-5 | | | (20)
(10) | (0.80 | | 3 2-12 | c ² F°-124
(238)
c ² F°-y ² G | 4100.746//
4143.136
4179.422 | A
A
A | 150
150
150 | 0.55
0.37
0.20 | 3.56
3.35
3.16 | 8–9
7–8
6–7 | a ⁵ I°-z ⁵ K
(4) | 4395.788
4096.822 | A
A | 30
25 | 0.43 | 3.23
3.23 | 6-5
5-5 | a ³ I°-19
(29) | | 30 | - | 3.99). | - 1 | (239)
c ² F°-164 | 4222.98
4408.844 | A
A | 150
200 | 0.05 | 2.98
2.80 | 5-6
4-5 | | 4347.490
4054.845 | A | 30
80 | 0.42 | 3.26
3.26 | 6-6
5-6 | a ³ I°-22†
(30) | | (10) | (0.90 | 4.19) | 3 1 -31 | (240)
c ² F°-186 | 4405.849
*4429.238
4449.867 | A
A | 80
100
150 | 0.55 | 3.35 | 8-8
7-7 | | 4338.694 | A | 25 | 0.43 | 3.26 | 6-7 | a ³ I°-23† | | (10) | (0.90 | 4.22) | 3 } _3 } | (241)
c ² F°-188
(242) | *4496.429
4734.177 | A
A
A | 250
25 | 0.20
0.05
0.37 | 2.98
2.80
2.98 | 6-6
5-5
7-6 | | 4302.100
4015.389 | A
A | (60)
40 | 0.42 | 3.29
3.29 | 6~5
5 - 5 | (31)
a ³ I°-25
(32) | | (6) | (0.90 | 4.36) | 3½-3½ | (342)
c ² F°-205
(343)
c ² F°-217 | 4754.635 | A | (15) | 0.20 | 2.80 | 6-5 | E | 4568.545 | A | (30) | 0.63 | 3.33 | 7-6 | a3I°-z3H | | 100 | (0.90 | | _ | (844) | 4707.541
4454.382
4368.327 | A
A
A | 20
30
150 | 0.20
0.05
0.00 | 2.83
2.83
3.83 | 6-5
5-5
4-5 | a ⁵ I°-5
(5) | 4243.528
3964.261 | A | 20
40 | 0.42 | 3.33 | 6-6
5-6 | (33) | | (25)
50 | (0.81 | | | b ² D°-129
(245)
b ² D°-164 | 4651.517 | A | 75 | 0.20 | 2.86 | 6–6 | a ⁵ I°-6
_ (6) | 4403.605 | A | 25 | 0.63 | 3.43 | 78
- | a ³ I°-30
(34) | | 40 | (1.02 | | | (246)
b ² D°-216 | 4297.764 | A | 80 | 0.00 | 2.87 | 4-5 | a ⁵ I°-7 | 5110.768
5173.898 | A
A | 60
60 | 1.14 | 3.56
3.35 | 10-9
9-8 | a ⁵ L°-z ⁵ K†
(35) | | | | | - ` | (247) | 4206.739
4189.518 | A | 100 | 0.55 | 3.48 | 8-8 | a ⁵ I°-z ⁵ I
(8) | 5220.113
5259.743 | A | 50
80 | 0.79
0.63 | 3.16
2.98 | 8-7
7-6 | | | 200
50 | (0.89 | | | c ⁴ F°-169
(248)
c ⁴ F°-244 | 4164.192
4118.481
4225.327 | A
A
A | 100
200
150 | 0.20
0.05
0.00 | 3.17
3.05
2.92 | 6-6
5-5
4-4 | |
5322.778
4801.150 | A
A | 60
15 | 0.48 | 3.05 | 6–5
6–5 | a5L0_z51 † | | | | | _ | (249) | 4458.336
4412.155 | A
A | 25
20 | 0.55 | 3.32 | 8-7
7-6 | | - | | | | | - | (36) | | 30
(6) | (1.10 | | | b ² H°-z ⁴ H
(s50)
b ² H°-159 | 4333.913
4305.763 | A
A | 100
100
80 | 0.20 | 3.05
2.92 | 6-5
5-4 | | 5034.415
5135.185 | A | 20
20 | 0.95 | 3.56 | 9-9
8-8 | a ⁵ K°-z ⁵ K† | | (8) | (1.10 | | | (251)
b2H°-z2I | 3966.573
3965.263
3964.825 | A
A
A | 150
250 | 0.37 | 3.48
3.32
3.17 | 7-8
6-7
5-6 | | 5219.053
5292.630
5381.262 | A
A
A | 20
30
60 | 0.79
0.65
0.51 | 3.16
2.98
2.80 | 7-7
6-6
5-5 | | | 100 | (0.95 | 4.05) | 45-55 | (252) | 4044.818 | A | 60 | 0.00 | 3.05 | 4-5 | E - 7 | 5195.110 | ·A | 20 | 1.11 | 3.48 | 9-8 | a ⁵ Ͱ-z ⁵ I | | 125 | (1.10 | | - | (3e3)
pgHe-AgI | 3953.516
3997.054
4241.019 | A
A
A | 125
40
60 | 0.55
0.37
0.55 | 3.67
3.46
3.46 | 8-8
7-7
8-7 | a ⁵ I°-z ³ K† | 5206.562
5105.307
5129.520 | A
A
A | 20
30
40 | 0.95
0.79
0.65 | 3.32
3.17
3.05 | 8-7
7-6
6-5 | (38) | | (40)
(20) | (1.04 | | | b ⁴ D°-158
(254) | 4141.257 | A | 80 | 0.55 | 3.53 | 8-7 | a ⁵ I°-z ³ I | 5110.382 | A | 60 | 0.51 | 2.92 | 5-4
- | | | (20) | (0.97 | | | b ⁴ D°-175
(255)
b ⁴ D°-177 | 4578.139
3908.033 | A
A | 25
150 | 0.37 | 3.71 | 7–6
8–7 | (10)
a ⁵ I°-z ⁵ H | 6025.723
6305.262 | A
A | 20
4 | 1.43
1.36 | 3.48
3.32 | 8-8
7-7 | b ⁵ I°-z ⁵ I†
(39) | | 50 | (1.01 | | | b4D°-205 | 3918.856
3947.633 | A
A | 150
100 | 0.37
0.20 | 3.52
3.33 | 7–6
6–5 | (11) | 6244.344
6161.194 | A | 5
50 | 1.19
1.05 | 3.17
3.05 | 6-6
5-5 | • • | | 60 | (1.01 | 4.79) | 2 } -2 } | (257)
b4D°-238
(258) | 3994.834
3908.431
3699.952 | A
B
A | 200
200
(12) | 0.05
0.00
0.37 | 3.14
3.16
3.71 | 5-4
4-3
7-7 | | 6165.945 | A | 60 | 0.92 | 2.98 | 4-4 | | | (30) | (1.25 | 4.06) | -
2] -3] | e ² F°-171 | 3925.456 | A | 75 | 0.00 | 3.14 | 4-4 | 570 40 | Strongest | | | | of Pr | 11 | | | | | | | (259) | 4191.615
3989.718
3920.524 | A
A | 20
100
15 | 0.20
0.05
0.00 | 3.15
3.15
3.15 | 6-5
5-5
4-5 | a ⁵ I°-16
(12) | 3880.466
3877.225
3865.458 | B
B | 200
100 | V
V | | | | | assifi.
20 | ed Lines
V | of <u>Ce</u> | II | | 4421.231
4172.273 | A | 40 | 0.37 | 3.16 | 7-6 | a ⁵ I°-17 | 3854.905
3852.805 | B
B | 100
150 | A
A | | | | | 20
40 | Å | | | | 3972.164 | A
A | 50
100 | 0.20 | 3.16
3.16 | 6-6
5-6 | (13) | 3851.617
3850.825 | ВВ | 200
150 | V | | | | | 15
20
60 | V
V | | | | 4081.018
3889.330 | A
A | 50
75 | 0.20 | 3.23 | 6-5
5-5 | a ⁵ I°-19
(14) | 3846.605
3830.719 | B | 125
125 | V
V | | | | | 20 | v | | | | 3823.571
4272.271 | A
A | (10)
80 | 0.00 | 3.23 | 45
76 | a ⁵ I°-22 | 3826.292 | В | 100
125 | v
v | | | | | 75
30
60 | v
v | | | | 4039.357
4171.824 | A
A | 30
40 | 0.20 | 3.26
3.33 | - 6-6
7-6 | (15)
a ⁵ 1°-z ³ H | 3816.166
3800.303
3792.524 | В
В
. В | 125
200
100 | A
A | | | | | 15
60 | v
v | | | | 3949.438
3769.695 | Ā | 125
30 | 0.20 | 3.33 | 6-6
5-6 | (16) | 3772.854 | В | 100 | ٧ | | | | | | | | | | 3912.898 | A | 135 | 0.20 | 3.36 | 6-5 | a ⁵ I°-26 | 3764.811
3761.867
3739.193 | В | 125
250 | IA
A
IA | | | | | 9.5 | Anal A | List | В Ја | n 1942 | 3885.190
-3711.099 | A
A | (25) | 0.20 | 3.38
3.38 | 66
56 | a51°-27 ?
(18) | 3687.039
3668.830 | B
B
B | 100
125
150 | IA | | | | | 600
500 | (2.25 | 6.29)
6.07) | 4-5
3-4 | fs ³ F°-fp ³ G | 4282.440
4033.857 | A
A | 60
75 | 0.55
0.37 | 3.43
3.43 | 8-8
7-8 | a ⁵ I°-30
(19) | Nd I No | ana | lysis | May 194 | 2 (Ter | perat | ure Class) | | 150
400 | (1.97
(2.25 | 5.55)
6.07) | 2-3
4-4 | 1-7 | | | | | | - | | | P ? | Anal | | | Apr 19 | | | 300
150 | (2.00 | 5.55)
5.93) | 3-3
4-4 | fs ³ F°-fp ³ F | 4534.154
4510.160
4468.712 | A
A
A | 60
100
150 | 0.63
0.43
0.22 | 3.35
3.15
2.98 | 7-8
6-7
5-6 | a ³ I°-z ⁵ K
(20) | *4959.1309
4835.982 | A
A | 60
15 | 0.06 | 2.55
2.55 | 43-43
33-43 | a ⁶ 1-1° (1) | | 200
125
Ce+ | (2.00
(1.97
(2.25 | 5.92)
5.57)
5.92) | 3-3
2-2
4-3 | (3) | 4879.121
4826.649
5251.738 | A
A
A | (30)
(40)
12 | 0.63
0.42
0.63 | 3.16
2.98
2.98 | 7-7
6-6
7-6 | | 4920.692
4799.423 | A
A | 60
10 | 0.06 | 2.57 | 41-31 | a ⁶ I-20830
(2) | | 150
250 | (2.00 | 5.57 | 3-2
3-4 | | 4672.081 | A | 40 | 0.33 | 2.86 | | a31°-6† | 4859.030 | A | 100 | 0.32 | 2.86 | | | | 400
200 | (1.97 | 5.98) | 8-3
4-3 | fs ³ F°-fp ¹ F t | 4646.059 | A | 30 | 0.22 | 2.87 | 55 | a ³ I°-7
(23) | 4825.482
4811.343
*4706.543§ | A
A
A | 100
100 | 0.18
0.06
0.00 | 2.74
2.63
2.62 | 61-51-43-43-33-33-33-33-33-33-33-33-33-33-33- | (3) | | 200 | (2.25 | 6.21) | 4-3 | fs ³ F°-fp ³ D† | 4323.551
4261.796 | A
A | 25
15 | 0.42 | 3.48
3.32 | 7-8
6-7 | a ³ I ⁶ -z ⁵ I
(23) | 4609.148
4612.473 | A
A | (1)
4 | 0.18
0.06 | 2.85
2.74 | 45-45 | | | 200
100
200 | (2.00
(1.97
(1.97 | 5.97)
6.01)
5.97) | 2-1 | (4) | 4180.68
4589.76
4492.427 | A
A
A | (8)
(5d)
15 | 0.22
0.63
0.42 | 3.17
3.32
3.17 | 5-6
7-7
6-6 | | 4414.432
4505.75 | A | 8
(8) | 0.06 | 2.86
2.74 | 41-51
31-42 | | | 200 | (2.25 | 6.33) | | fs3F°-fp1G | 4351.849
4561.461 | A
A | 50
(6) | 0.32 | 3.05 | 5-5
5-4 | | 4680.734 | A | 30 | 0.06 | 2.70 | | a ⁶ I-21871 | | 100 | (2.29 | 5.81) | -
3-3 | (5)
fs ¹ F°-fp ¹ F | 5292.10 | A | 60* | 0.63 | 2.96 | 7-8 | a ³ I°-10 | 4569.849
4465.075 | A
A | 10 | 0.06 | 2.76
2.76 | 41-31
32-32 | | | 300 | (2.29 | 6.21) | | (6)
fs ¹ F°-fp ³ D | 4859.038
*4496.429 | A
A | 12
250 | 0.42 | 2.96
2.96 | 6-6
5-6 | a ³ I°-11†
(25) | 4763.865
4556.136 | A
A | 20
13 | 0.18
0.06 | 2.77
2.77 | 5-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4 | a ⁶ I_4°
(6) | | 200 | (2.29 | 6.33) | 3-4 | fs ¹ F°-fp ¹ G
(8) | 4056.543
4062.817 | A
A | 80
125 | 0.63
0.42 | 3.67
3.46 | 7-8
6-7 | a ³ I°-z ³ K | 4451.978
4709.714 | A | 50
20 | 0.00 | 2.77 | | a ⁶ I-5°† | | 125 | (2.29 | 6.33) | 3-2 | fs ¹ F°-fp ¹ D | 4413.765
4359.795 | A | 50
30 | 0.22 | 3.01
3.46 | 56
77 | (20) | 4506.582 | A | 30 | 0.18 | 2.80 | 53-53
43-53 | (?) | | ysis | May 194 | 2 (Te | mperat | cure Class) | 4762.727 | A | 20 | 0.42 | 3.01 | 6–6 | REVI | SE | D M | ULTI | PLE | тт | ABLE | | | | | | | | |---------------------------------------|-----------------|--------------|--------------|--|---|--------------------------------|--------|-----------------|--------------|--------------|---|--|----------------------------------|-------------|-------------|------------------------|--------------|--------------------------------|---| | or, | | E | P
High | J | Multiplet (No) | Labor
I A | | y
Int | Low | P
High | J | Multiplet (No) | Labor
I A | | y
Int | Low | P
High | J | Multiplet (No) | | | Int | Low | urgu | | (110) | Nd II cor | | | TOW | urgu | | (110) | Nd II con | | | LOW. | urgn | | (110) | | .nu | led. | 0.18 | 2.98 | el el | a6I-z6I°† | 3328.270 | , v | 80 | 0.00 | 3.71 | 71.01 | 6T 30037 | 5708.280 | A | 40 | 0.86 | 3.02 | 51_51 | 64-4640+ | | i | 150
20
30 | 0.06 | 2.91 | 51-51
41-41
31-31 | (8) | 3339.063 | A | 60 | 0.06 | 3.76 | 41-31 | a ⁶ I-30037
(40)
a ⁶ I-30453
(41) | 5804.020
5421.559 | Ā | 60
20 | 0.74 | 2.87
3.02 | 41-41
42-52 | a6K-z6K* † | | ì | 150
200 | 0.06 | 2.98 | 44-54 | | 3282.777 | Ã | 8 | 0.00 | 3.76 | 3 2-32 | (41) | 5302.279 | A | 6 | 1.41 | 3.73 | | | | | 20 | 0.06 | 2.86 | 41-41 | 8 ⁶ T-23171 | 3334.471
•3231.349§ | A
A | 50
(8) | 0.18
0.06 | 3.88
3.88 | 5 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - | a ⁶ I-25°
(42) | *5356.976\$
5431.526 | Ā | 15
40 | 1.26 | 3.56
3.39 | 81-71
71-61 | a ⁶ K-y ⁶ I°†
(80) | | i | 50 | 0.00 | 2.86 | 32-42 | a ⁶ I-23171
(9) | | • | | | | | | 5311.461
541631 | Ā | 12
15 | 0.98 | 3.31 | 05-05 | | | į. | 300 | 0.63 | 3.70 | 81-91 | a ⁶ I-z ⁶ K° | 5255.510 | A | 50 | 0.20 | 2.55 | | a ⁴ I-1°
(43) | 5250.816 | A | 8 | 0.74 | 3.09 | 51-41
42-32 | | | i. | 200
250 | 0.32 | 3.32
3.15 | 63-73
52-62 | | 5212.365 | A | 30 | 0.20 | 2.57 | | a41-20830
(44) | 5276.879 | A | 8 | 0.86 | 3.19 | | a ⁶ K-17°
(81) | | <i>f</i> | 200
400 | 0.06 | 3.02 | 45-55
35-45 | • | 5603.651
*5191.448§ | A
A | 5
100 | 0.38
0.20 | 2.58
2.58 | 53-53
42-53 | a ⁴ I-2°
(45) | 5474.734 | A | 10 | | 3.24 | | a ⁶ K-18•
(82) | | , , , , , , , , , , , , , , , , , , , | 100
150 | 0.63
0.47 | 3.51
3.32 | 83-83
73-73 | • | 5361.174 | A | 3 | 0.56 | a.86 | | | 5455.815 | A. | 20 | 0.98 | | | a ⁶ K-21°
(83) | | 1 | 200
40 | 0.32 | 3.15 | 5-5-5 | • | 5228.427
5089.837 | Ā | 8 | 0.38 | 2.74
3.63 | 54-44
43-35 | a ⁴ I-z ⁶ H° (46) | 5668.868 | | 15 | 1-41 | | | 26k-29027+
(84) | | | 100 | 0.06 | 2.87 | 42-42 | -6+ an | *4867.839 §
4647.759 | A | 3
3 | 0.20 | 3.74
3.86 | 42-42 | | *6385.196 | A | 150 | 1.16 | 3.09 | 5
§ -5 § | 761-25014
(85) | | Ä | 60
30 | 0.06 | 2.89
2.89 | 32-32 | a ⁶ I-6° (11) | 4820.336 | A | 30 | 0.20 | 2.76 | 4 } -3 | a41-30 | *5620.62 \$
5718.120 | P
A | 500
12 | 1.54 | 3.73 | 73-75 | (85)
b ⁶ I-y ⁶ I°†
(86) | | A. | 12 | 0.18
0.06 | 2.89 | 5 - 4 - 4 - 4 | a ⁶ I-7°
(12) | 5092.797 | A | 30 | 0.38 | 2.80 | | a41-50 + | 5842.391
5740.862 | A
A | 8
15 | 1.28 | 3.31 | 25-52 | | | A. | 25 | 0.00 | 2.89
2.89 | | | 4446.387
4567.606 | A
A | 200
12 | 0.20 | 2.98
2.91 | 41-51 | (48)
a ⁴ I-z ⁶ I°
(49) | 5891.528
5706.206 | A | 15
15 | 0.93 | 3.13
3.09 | 41-41
32-32 | | | A. | 10
15 | 0.18 | 2.95
2.95 | 51-51 | a ⁶ I-8°†
(13) | 4715.589 | Ā | 25 | 0.20 | 2.82 | | | 5614.303 | A | (10) | 1.04 | 3.24 | 4 2 - 4 2 | b ⁶ I-19°
(87) | | A | (10) | 0.06 | 2.97 | | | 4456.394
4462.985 | A | 40
250 | 0.74 | 3.51
3.32 | 71-81 | a ⁴ I-z ⁶ K° † | | | | | | | (01) | | Ā | 30 | 0.00 | 2.97 | 3 2-45 | a ⁶ I-9°†
(14) | 4451.566
4385.663 | Ā | 400
150 | 0.38 | 3.15 | 54-64
44-54 | a ⁴ I-z ⁶ K° †
(50) | Strongest | Unc. | Lassifie | d Lines | of <u>Nd</u> | II | | | A
A | 20
10 | 0.18 | 3.00 | 54-44 | a ⁶ I-10°
(15) | 4597.013 | A | 20 | 0.20 | 2.89 | | | 5451.115
4632.276 | B | 100
20 | III | | | | | A. | 40 | 0.00 | 3.00 | 32-42 | e | 4914.385 | A | 15 | 0.38 | 2.89 | 5출-4출 | a ⁴ I-6°
(51)
a ⁴ I-7°
(52) | 4542.603
4282.443 | B | 60
50 | IA | | | | | A
A | 8
30 · | 0.06 | 3.02
3.02 | 44-34
32-35 | a ⁶ I-11° | 4594.447 | A . | . 6 | 0.20 | 2.89 | 4 - 4 - 1 | (52) | *4135.325 | В | 50 | IA | | | | | A | 6
100 | 0.18 | 3.07
3.07 | 51-51 | a ⁶ I-13°† | 4501.808 | A | 50 | 0.20 | 3.95 | | a ⁴ I-8°†
(53)
a ⁴ I-9° | 4031.807
4023.002 | В | 100
80 | IV | | | | | A. | (5) | 0.32 | 3.09 | | | 4763.624
4462.407 | A | 5
30 | 0.38 | 2.97
2.97 | 5}-4}
4}-4} | (54) | 4012.704
4007.435 | B | 50
50 | III
IV | | | | | A. | 50 | 0.06 | 3.09 | 42-52 | a ⁶ I-25014
(18) | 4703.576 | A | 15 | 0.38 | 3.00 | | a ⁴ I-10°
(55) | 4004.010 | B | 60
80 | III | | | | | A
A | 80
60 | 0.63
0.47 | 3.73
3.56 | 81-81
74-74 | a ⁶ I-y ⁶ I° (19) | 4381.290 | A | (10) | 0.20 | 3.02 | | 84I-11° | 3953.525
3934.823 | B | 60
50 | ĬŸ | | | | | Ā | 60
150 | 0.32 | 3.39 | 63-63
53-53 | | 4120.654
4106.582 | A
A | 6 | 0.74 | 3.73
3.56 | 71-81
64-71
53-61
43-51 | a ⁴ I-y ⁶ I°
(57) | 3920.965
3911.169 | B
B | 100
60 | III | | | | | A
A | 30
80 | 0.06 | 3.13 | 43-43
33-33 | • | 4100.240
3979.479 | A | 15
60 | 0.38 | 3.39 | 53-6 3 | | 3905.886 | В | 100 | III | | | | | A
A | 40
30 | 0.63
0.47 | 3.56
3.39 | 83-73
73-63 | • | 4371.069
4358.699 | A | (10)
15 | 0.74 | 3.56
3.39 | 73-73
63-63 | | 3901.850
3900.226 | B
B | 50.
60 | III | | | | | A
A | 50
30 | 0.32
0.18 | 3.31
3.13 | 63-53
53-43 | | 4217.282
4211.286 | A
A | 5
40 | 0.38 | 3.31 | 5-5-5-5-4-5-4-5-4-5-4-5-4-5-4-5-4-5-4-5 | | 3890.940
3890.580 | B
B | 60
50 | III | | | | | A
A | 50
20 | 0.06 | 3.09
3.73 | 44-34
74-84
64-74 | • | 4541.269 | A | 50 | 0.38 | 3.10 | 53-5 1 | a4I-13° | 3889.929 | В | 50 | IV | | | | | A
A | 50 | 0.33 | 3.56 | 53-6 3 | • | 4366.716 | A. | 30 . | 0.20 | 3.10 | 4½-5½ | | 3878.582
3848.524 | B | 50
80 | IA | | | | | A
A | (15)
5 | 0.06 | 3.31
3.13 | 32-42 | | 4256.239 | A | 8 | 0.20 | 3.10 | | a ⁴ I-25138
(59)
a ⁴ I-15°† | 3836.541
3814.725 | B | 60
60 | III | | | | | A
A | 6
80 | 0.18
0.06 | 3.10
3.10 | 51-51 | a ⁶ I-13°†
(20) | 4797.157
4144.553 | A
A | 30
30 | 0.56 | 3.13 | | (60)
a ⁴ I-16° | 3808.772
3803.474 | ВВ | 30
40 | III | | | | | Ā | 60 | 0.00 | 3.10 | | | 4075.116 | A | 60 | 0.20 | 3.23 | | (61)
a ⁴ I-26182† | 3784.250
3763.475 | B | 80 | III | | | | |
A | 10 | 0.63 | 3.12 | 83-73 | a ⁶ I-25138
(31)
a ⁶ I-25235
(32) | 4307.778 | A | 15 | 0.38 | 3.24 | | (62) | 3758.944 | B | 40 | ΪΪΪ | | | | | A | (5) | 0.32 | 3.12 | | | 4059.961 | A | 50 | 0.20 | 3.24 | | a41-21°
(63) | 3741.427
3728.130 | B
B | 50
50 | III | | | | | A
A | (4)
100 | 0.06 | 3.12
3.12 | 43-33
35-32 | a ⁶ I~14°
(23) | 4000.493 | A | 30 | 0.20 | 3.29 | | a ⁴ I-20°
(64) | 3723.506
3685.804 | B | 50
60 | III | | | | | A | 10 | 0.32 | 3.13 | 61-51 | a ^C I-15° (34) | 4123:881 | Α. | 40 | 0.38 | 3.37 | | a ⁴ I-22°
(65)
a ⁴ I-27744† | 3673.542 | C | 50
50 | V | | | | | A
A | 8
30 | 0.18
0.06 | 3.13
3.13 | $4\frac{1}{2} - 5\frac{1}{2}$ | (54) | 4051.145
3982.355 | A | 60
20 | 0.38 | 3.43 | | (66) | 3672.363
3665.180
3609.788 | C
B
B | 50
40 | III
VI | | | | | A
A | 20
40 | 0.18 | 3.18
3.18 | 51-41
43-41 | a ⁶ I~16°
(35) | 3769.644 | A
A | 40 | 0.20 | 3.48 | | a ⁴ I-28170
(67) | 3592.595
3587.504 | ВВ | 60
50 | IĀ | | | | | A | 60 | 0.00 | | | | 4338.697 | A | 80 | 0.74 | 3.58 | | a ⁴ I-29027
(68) | 3543.352 | В | 50 | IV | | | | | A | 150 | 0.06 | 3.19 | 43-43 | (26)
a6I-17°† | 3811.073
3615.817 | A
A | 20
30 | 0.38 | 3.62
3.62 | 54-43
43-43 | a ⁴ I-29298
(69) | 3393.641
3364.950 | B | 60
50 | IV | | | | | Ā | 20 | 0.00 | 3.19 | 3 2-42 | a ⁶ I-y ⁶ H°
(36)
a ⁶ I-17°†
(27) | 3470.866 | A | 20 | | 3.76 | | a4I-30453 | 3300.148
3285.093 | B | 70
50 | IV | | | | | A | 80 | 0.00 | 3.21 | 35-25 | a01-26041 | 3522.044 | A | 25 | 0.38 | 3.88 | | (70)
a ⁴ I-25°
(71) | 3275.218 | В | 60 | IA | | | | | A . | 40 | 0.06 | 3.23 | | a ⁵ I-26182 | 3354.621 | A | 10 | 0.20 | 3.88 | | | 3134.897
3133.603 | В | 50
100 | Å
A | | | | | A . | 100 | 0.18 | 3.24 | 5g-6g | a ⁶ I-18°
(30)
a ⁶ I-19°
(31) | 6257.834 | A | (25) | 0.55 | 2.55 | 5출-4출 | a ⁶ L-1° | 3116.141
3115.172 | B | 60
100 | A
A | | | | | A
A | 30
30 | 0.06 | 3.24 | 52-45
43-45 | (31) | 5548.474 | A | 8 | 0.55 | 3.77 | | 2/101 | 3098.476 | В | 50
60 | y | | | | | A
A | 20 .
20 | 0.32 | 3.24 | 3 5-45 | . "6т.эт» | 5361.474
5374 105 | A | €0
50 | 0.68 | 3.08 | 61-51
51-41 | (73)
6L_s610
(74) | 3092.915
3075.380
3014.165 | B
B
B | 50a
60 | v
V | | | | | Ā | 25
40 | 0.18 | 3.24 | 51-51 | a ⁶ I-31°
(32) | 5234.195
5130.596 | A
A | 40 | | 3.70 | 101-91 | a6L~z6K° + | 3007.975 | В | 50 | Ÿ | | | | | A | 60 | 0.06 | | | | 5192.621
5249.585 | A
A | 80
100 | 1.13 | 3.51 | 91-81
81-71 | a ⁶ L-z ⁶ K° †
(75) | | | | | | | | | A | 30 | 0.00 | 3.29 | 3 2-3 2 | a ⁶ I-30°
(33) | 5293.168
5273.431 | A | 100
50 | 0.82 | 3.15 | 74-64
64-54 | | Sm T T I | 5.6 | SÝ Anal | C L1 | st. D | Apr 1 | 942 | | A
A | 15
30 | 0.32
0.18 | 3.37
3.37 | 6 } -6 }
5 } -6 } | a ⁶ I-32°
(34) | 5319.818 | A | 125 | | | 5 1 -41 | 6 | 6671.51 | A | 800 | 0.50 | 2.35 | 6-7 | a7F-z9G0 + | | Ą | 60 | 0.18 | 3.39 | | a ⁶ I-23° (35) | 5442.274 | A | 40 | 0.68 | 2.95 | 6 ۇ -5 ۇ | a ⁶ L-8°
(76)
a ⁶ L-13° | 6588.91 | A - | 500 | 0.39 | 2.26 | 5-6 | (1) | | A | 20 | 0.06 | 3.39 | 42-42 | (35) | 5165.140 | A | 10 | 0.68 | 3.07 | _ | (77) | 5659.86
*5516.09 | B
B | 400
500a | 0.10
(0.04
(0.28 | 2.28 | 2-1
1-2 | a ⁷ F-38°
(3) 37°
59°) | | A
A | 8
80 | 0.47
0.32 | 3.39 | 73-72
62-72 | a ⁶ I-24°†
(36) | 5934.747 | Ą | (10) | 0.74 | 2.82 | 41-31 | a ⁶ K-z ⁶ I°
(78) | 4841.701 | В | 400 | 0.50 | 3.05 | 6-5 | 103°
118° | | A | 60 | 0.32 | 3.43 | 6 } -6} | a61-27744 | 5811.572
5702.344 | A | 12
20 | 0.86
0.74 | 2.98
2.91 | | | 3925.216
•3756.411§ | B
B | 400
600 | 0.10
0.10 | 3.24
3.39 | 2-1
2-3 | 1270 | | A | (8) | 0.06 | 3.48 | 41-41 | a ⁶ I-28170
(38) | 5371.935
5485.699 | A
A | 20
80 | 1.41 | 3.70
3.51 | 9}-9} | a ⁶ K-z ⁶ K°†
(79) | 4296.743// | В | 300 | 0.50 | 3.37 | 6-7 | $a^{7}F-z^{7}G^{\circ} \uparrow$ (3) | | A
A | 50
60 | 0.63 | 3.58
3.58 | 81-81
71-81 | (38)
(38)
(38)
(39) | 5594.425
5688.525 | Ā | 150
150 | 1.12 | 3.32 | 71-71
61-6 | , | | | | | | | | | | | | | 2 | ** * | | • | | | | -6 -5 | | | | | | | | | | ry
Int | E I | P
High | J | Multiplet
(No) | Labor
I A | rator
Ref | y
Int | F P | iigh | J | Multiplet (No) | Labor | rator;
Ref | | E I | High | J | Multiplet
(No) | |---
--|---|--|---|---|---------------------------------------|---|--
--|--|---|---|--|---|--|--|--|--| | req | | | | | <u>Pr II</u> I | P? | Anal C | List | B D | ec 19 | 41 | Pr II con | ıtinu | eđ | | | | | | 100 | (0.79 | 3.92) | 4 } -5 | d ² G°-y ⁴ H
(234) | 4628.751
4535.921 | A
A | 100 | | 8.72
8.72 | 5-5
4-5 | a ⁵ 1°-3 | 4254.420
4664.647 | A
A | 20
20 | 0.63 | 3.53
3.07 | 7-7
6-6 | a ³ I°-z ³ I† (27) | | 200 | (0.79 | | | d ² G°-186
(235) | 4517.595 | A | 40 | 0.05 2 | 2.79 | 55 | a510-3 t | 3971.164
4329.415 | Ā | 40
25 | 0.43 | 3.53 | 6-7
5-6 | (2.7 | | 60
100 | (0.79 | | | d ² G°-188
(236)
d ² G°-237 | *4429.238
4744.925 | A
A | 60
40 | | 2.79
2.80 | 4-5
6-6 | (2)
a ⁵ I°-4 | 4008.714
3982.063 | A
A | 75
150 | 0.63
0.43 | 3.71
3.52 | 7-7
6-6 | a ³ 1°-z ⁵ H† | | | <u> </u> | | - | (23/) | 4487.831 | A | 20 | 0.05 | 8.80 | 56 | (3) | 3962.445 | A | 40 | 0.22 | 3.33 | 5-5 | | | (20)
(10) | (0.80 | | | c ² F°-134
(238)
c ² F°-y ² G | 4100.746//
4143.136
4179.422 | A
A
A | 150
150
150 | 0.37 | 3.56
3.35
3.16 | 8-9
7-8
6-7 | a ⁵ I°-z ⁵ K
(4) | 4395.788
4096.822 | A
A | 30
25 | 0.42 | 3.23 | 6-5
5-5 | a ³ I°-19
(29) | | 30 | (0.90 | | | (239)
c ² F°-164 | 4222.98
4408.844 | A
A | 150
200 | 0.05 2 | 2.98
2.80 | 5–6
4–5 | | 4347.490
4054.845 | A | 30
80 | 0.42 | 3.26
3.26 | 6–6
5–6 | a ³ I°-22†
(30) | | (10) | (0.90 | 4.19) | 3 1 -31 | (240)
c ² F°-186
(241) | 4405.849
*4429.238 | A
A | 80
100 | 0.37 | 3.35
3.16 | 8-8
7-7 | | 4338.694 | A | 25 | 0.42 | 3.26 | 6-7 | a ³ I°-23† | | (10) | (0.90 | | | c ² F°-188
(242) | 4449.867
*4496.429
4734.177 | A
A
A | 150
250
25 | 0.05 | 2.98
2.80
2.98 | 6-6
5-5
7-6 | | 4302.100
4015.389 | A
A | (60)
40 | 0.42 | 3.29
3.29 | 6-5
5-5 | (31)
a ³ I°-25
(32) | | (6) | (0.90 | | | c ² F°-205
(243) | 4754.635 | A | (15) | 0.20 | 2.80 | 6-5 | 5 | 4568.545 | A | (30) | 0.63 | 3.33 | 7-6 | a310-z3H | | 100 | (0.90 | | | c2F°-217
(344) | 4707.541
4454.382
4368.327 | A
A
A | 20
30
150 | 0.05 | 2.83
2.83
8.83 | 6-5
5-5
4-5 | a ⁵ I°-5
(5) | 4243.528
3964.261 | A
A | 20
40 | 0.43 | 3.33
3.33 | 6-6
5-6 | (33) | | (25) | (0.81 | | | b ² D°-129
(245) | 4651.517 | A | 75 | | 2.86 | 6-6 | a ⁵ I°-6 | 4403.605 | A | 25 | 0.63 | 3.43 | 7–8 | a ³ I°-30
(34) | | 50
40 | (1.02 | | | b ² D°-164
(246)
b ² D°-216 | 4297.764 | A | 80 | 0.00 | 2.87 | 4-5 | (6)
a ⁵ I°-7
- (7) | 5110.768
5173.898 | A
A | 60
60 | 1.14 | 3.56
3.35 | 10-9
9-8 | a ⁵ L°-z ⁵ X†
(35) | | | | | - | (247) | 4206.739
4189.518 | A
A | 100 | 0.37 | 3.48 | 8-8
7-7 | a ⁵ I ⁶ -z ⁵ I
(8) | 5220.113
5259.743 | A
A | 50
80 | 0.79
0.63 | 3.16
2.98 | 8-7
7-6 | (00) | | 200
50 | (0.89 | | | c ⁴ F°-169
(248)
c ⁴ F°-244 | 4164.192
4118.481
4225.327 | A
A
A | 100
200
150 | 0.05 | 3.17
3.05
2.92 | 6-6
5-5
4-4 | | 5322.778
4801.150 | A
A | 60
15 | 0.48 | 3.05 | 6-5
6-5 | a5L°_z5I † | | | | | - | (249) | 4458.336
4412.155 | A
A | 25
20 | 0.55 | 3.32
3.17 | 8-7
7-6 | | -5001.150 | ^ | | | | - | (36) | | 30
(6) | (1.10 | | | b ² H°-z ⁴ H
(250)
b ² H°-159 | 4333.913
4305.763
3966.573 | A
A
A | 100
100
80 | 0.05 | 3.05
2.92
3.48 | 6-5
5-4
7-8 | | 5034.415
5135.185
5219.053 | A
A
A | 20
20
20 | 1.11
0.95
0.79 | 3.56
3.35
3.16 | 9⊶9
8~8
7⊸7 | a ⁵ K°-z ⁵ K† | | (8) | (1.10 | | | (251) | 3965.263
3964.825 | Ā | 150
250 | 0.20 | 3.32 | 6-7
5-6 | | 5292.630
5381.262 | A
A | 30
60 | 0.65 | 2.98 | 6-6
5-5 | | | 100 | (0.95 | | | (252) | 4044.818 | Α . | 60 | 0.00 | 3.05 | 4-5 | 5-0 -3 | 5195.110 | A | 20 | 1.11 | 3.48 | 9-8 | a ⁵ K°-z ⁵ I | | 125 | (1.10 | | - | b ² H°-y ² I
(ssa) | 3953.516
3997.054
4241.019 | A
A
A | 125
40
60 | 0.37 | 3.67
3.46
3.46 | 8-8
7-7
8-7 | a ⁵ I°-z ³ K† | 5206.562
5195.307
5129.520 | A
A
A | 20
30
40 | 0.95
0.79
0.65 | 3.32
3.17
3.05 | 8-7
7-6
6-5 | (38) | | (40)
(20) | (1.04 | | | b ⁴ D°-158
(254)
b ⁴ D°-175 | 4141.257
4578.139 | Ą | 80 | 0.55 | 3.53
3.07 | 8-7 | a ⁵ I°-z ³ I | 5110.382 | A | 60 | 0.51 | 2.92 | 5-4 | | | (20) | (1.04 | | | (255)
b4D°-177 | 3908.033 | A
A | 25
150 | | 3.71 | 7-6
8-7 | (10)
a ⁵ I°-z ⁵ H | 6025.723
6305.262 | A
A | 20
4 | 1.43 | 3.48
3.32 | 8-8
7-7 | b ⁵ I°-z ⁵ I†
(39) | | 50 | (1.01 | | | (256)
b4D°-205
(257) | 3918.856
3947.633 | A | 150
100 | 0.37 | 3.52
3.33 | 7-6
6-5 | (11) | 6244.344
6161.194 | A | 5
50 | 1.19
1.05 | 3.17
3.05 | 6-6
5-5 | ,,, | | 60 | (1.01 | 4.79) | 2 } -2 } | b ⁴ D°-238
(258) | 3994.834
3908.431
3699.952 | A
B
A | 200
200
(12) | 0.00 | 3.14
3.16
3.71 | 5-4
4-3
7-7 | | 6165.945 | A | 60 | 0.92 | 2.92 | 4-4 | | | (30) | (1.25 | 4.06) |
2 킬 -3킬 | e ² F°-171
(259) | 3925.456 | A | 75 | 0.00 | 3.14 | 4-4 | 5=0 | Strongest | | | | of Pr | II | | | | | | | (235) | 4191.615
3989.718
3920.524 | A
A
A | 20
100
15 | 0.05 | 3.15
3.15
3.15 | 6-5
5-5
4-5 | a ⁵ I°-16
(13) | 3880.466
3877.225
3865.458 | B
B
B |
100
200
100 | V
V | | | | | .assifie | ed Lines
V | of <u>Ce</u> | 11 | | 4421.231 | Ą | 40 | 0.37 | 3.16 | 7-6 | a ⁵ I°-17 | 3854.905
3852.805 | B
B | 100
150 | A
A | | | | | 20
40 | v
v | | | | 4172.273
3972.164 | A
A | 50
100 | | 3.16
3.16 | 6-6
5-6 | (13) | 3851.617
3850.825 | ВВ | 200
150 | V | | | | | 15
20 | V
V | | | | 4081.018
3889.330 | A
A | 50
75 | 0.05 | 3.23 | 6-5
5-5 | a ⁵ I°-19
(14) | 3846.605
3830.719 | В | 125
125 | A
A | | | | | 60
20 | v | | | | 3823.571
4272.271 | A
A | (10)
80 | | 3.23
3.26 | 4-5
7-6 | a ⁵ I°~22 | 3826.292
3818.281 | B
B | 100 | v
v | | | | | 75
30 | A
A | | | | 4039.357 | A | 30 | | 3.26 | 6-6 | (15) | 3816.166 | | | Ÿ | | | | | 60
15
60 | V
V | | | | | | | | | | | 3800.303 | B
B | 125
200 | v | | | | | | | | | | 4171.824
3949.438
3789.695 | A
A | 40
125
30 | 0.37 | 3.33 | 7-6
6-6 | a ⁵ I°-z ³ H
(16) | | | | | | | | | 9.5 | | | | | | | | 0.37 | 3.33
3.33 | 7-6
6-6
5-6 | a ⁵ I°-z ³ H
(16)
a ⁵ I°-36 | 3800.303
3792.524 | . B | 200
100
100 | V V | | | | | | Anal A | List | В "Та | n 1943 | 3949.438
3769.695
3912.898 | A
A
A | 125
30
125 | 0.37
0.20
0.05 | 3.33
3.33
3.36 | 7-6
6-6
5-6
6-5
6-6 | a ⁵ I°-z ³ H
(16)
a ⁵ I°-26
(17) | 3800.303
3792.524
3773.854
3764.811
3761.867
3739.193
3687.039 | . B B B B B B B | 200
100
100
135
250
100
125 | IA
A
IA
A
A | | | | | 600 | Anal A (2.25 | List 1 | 4-5 | n 1942
fs ³ F°-fp ³ G | 3949.438
3769.695
3912.898
3885.190
*3711.099
4282.440 | A
A
A
A | 125
30
125
(25)
60 | 0.37
0.30
0.05
0.20
0.20
0.05 | 3.33
3.33
3.36
3.38
3.38
3.43 | 7-6
6-6
5-6
6-5
6-5
8-8 | a ⁵ I°-z ³ H
(16)
a ⁵ I°-36
(17)
a ⁵ I°-37†
(18)
a ⁵ I°-30 | 3800.303
3792.524
3773.854
3764.811
3761.867
3739.193
3687.039
3668.830 | | 200
100
100
135
250
100
125
150 | V V V V V V V V V V V V V V V V V V V | | | | | 500
150 | (2.25
(2.00
(1.97 | 6.29)
6.C7)
5.55) | 4-5
3-4
2-3 | | 3949.438
3769.695
3912.898
3885.190
*3711.099 | A
A
A
A | 125
30
125
(25) | 0.37
0.30
0.05
0.20
0.20
0.05 | 3.33
3.33
3.36
3.38
3.38 | 7-6
6-6
5-6
6-5
6-5
6-6 | a ⁵ I°-z ³ H
(16)
a ⁵ I°-26
(17) | 3800.303
3792.524
3773.854
3764.811
3761.867
3739.193
3687.039
3668.830 | B
B
B
B
B
B
B | 200
100
100
135
250
100
125
150 | V
V
V
IV
IV
IV
IV | | | ure Class) | | 500
150
400
300 | (2.25
(2.00
(1.97
(3.25
(2.00 | 6.29)
6.C7)
5.55)
6.07)
5.55) | 4-5
3-4
2-3
4-4
3-3 | fs ³ F°-fp ³ G | 3949.438
3769.695
3912.898
3885.190
•3711.099
4282.440
4033.857
4534.154
4510.160 | A
A
A
A
A
A | 125
30
125
75
(25)
60
75 | 0.37
0.30
0.05
0.20
0.20
0.05
0.55
0.37 | 3.33
3.36
3.36
3.38
3.43
3.43
3.43 | 7-6
6-6
5-6
6-5
6-5
6-5
8-8
7-8
7-8 | a ⁵ I°-z ³ H
(16)
a ⁵ I°-36
(17)
a ⁵ I°-37†
(18)
a ⁵ I°-30 | 3800.303
3792.524
3772.854
3764.811
3761.867
3739.193
3667.039
3668.830
Nd II I | | 200
100
100
135
250
100
125
150 | V V V V V V V V V V V V V V V V V V V | 2.55 | Apr 19 | 43
a ⁶ I-1° | | 500
150
400
300
150
300 | (2.25
(2.00
(1.97
(2.25
(2.00
(2.35
(2.00 | 6.29)
6.07)
5.55)
6.07)
5.55)
5.93) | 4-5
3-4
2-3
4-4
3-3
4-4
3-3 | fs3F°-fp3G | 3949.438
3769.695
3912.898
3885.190
*3711.099
4282.440
4033.857
4534.154
4510.160
4468.712
4879.181 | A A A A A A A A A A | 125
30
125
(25)
60
75
 | 0.37
0.30
0.05
0.20
0.05
0.55
0.37 | 3.33
3.33
3.36
3.38
3.38
3.43
3.43
3.16
3.31
3.31
3.31
3.31
3.31
3.31 | 7-6
6-6
5-6
6-5
6-5
6-7
8-8
7-8
7-8
7-8
7-6
7-7 | a ⁵ I°-z ³ H
(16)
a ⁵ I°-26
a ⁵ I°-27†
(18)
a ⁵ I°-30
(19)
a ³ I°-z ⁵ K | 3800.303
3792.524
3773.854
3764.811
3761.867
3739.193
3687.039
3668.830
Nd I No
Nd II I
4959.1309
4835.982 | B B B B B B B Anal | 300
100
100
135
350
100
125
150
ysis
Anal | V V V V V V V V V V V V V V V V V V V | 2.55
2.55 | Apr 19 4-4-4-5 3-4-2 | 42
a ⁶ I-1°
(1) | | 500
150
400
300
150
200
125
Ce+
150 | (2.25
(2.00
(1.97
(2.25
(2.00
(2.35
(2.00
(1.97
(2.35)
(3.00 | 6.29)
6.07)
5.55)
6.07)
5.55)
5.93)
5.92) | 4-5
3-4
2-3
4-4
3-3 | fs ³ F°-fp ³ G (1) | 3949,438
3769.695
3912.898
3885.190
•3711.099
4282.440
4033.857
4534.154
4510.160
4468.712 | A
A
A
A
A
A | 125
30
125
(25)
60
75
60
75 | 0.37
0.30
0.05
0.20
0.05
0.37
0.55
0.37
0.42
0.42
0.42
0.42
0.63
0.42 | 3.33
3.33
3.36
3.38
3.38
3.43
3.43
3.16
3.31
3.31
3.31
3.31
3.31
3.31 | 7-6
6-6
5-6
6-5
6-5
8-8
7-8
7-7
6-7
6-6
7-6
7-6 | a ⁵ I°-z ³ H
(16)
a ⁵ I°-36
a ⁵ I°-37
(18)
a ⁵ I°-30
(19)
a ³ I°-z ⁵ K | 3800.303
3792.524
3772.854
3764.811
3761.867
3739.193
3667.039
3668.830
Nd II I | B B B B B B B B B B B B B B B B B B B | 300
100
100
135
350
100
125
150
yeis
Anal | V
V
V
IV
IV
IV
IV
C L1s
0.06
0.00 | 2.55
2.55
2.57
2.57 | Apr 19 41-41 31-42 41-31 32-32 | a ^G I-1° (1)
a ^G I-30830 (2) | | 500
150
400
300
150
200
125
Ce+ | (2.25
(2.00
(1.97
(2.25
(2.00
(2.35
(2.00
(1.97
(2.25 | 6.29)
6.07)
5.55)
6.07)
5.55)
5.93)
5.93)
5.93) | 4-5
3-4
3-3
4-3
4-3
4-3
4-3
4-3
3-4
3-2
4-3
3-3 | fs ³ F°-fp ³ G (1) fs ³ F°-fp ³ F (2) | 3949.438
3769.695
3912.898
3885.190
*3711.099
4282.440
4033.857
4534.154
4510.150
4468.712
4879.121
4826.649
5251.738 | A A A A A A A A A A A A A A A A A A A | 125
30
125
(25)
60
75
60
100
(30)
(40)
13
40 | 0.37
0.20
0.05
0.20
0.05
0.55
0.37
0.63
0.42
0.63
0.42
0.63
0.63 | 3.33
3.33
3.36
3.38
3.38
3.43
3.16
2.98
3.16
2.98
3.198
3.98 | 7-6
6-6
5-6
6-5
6-5
6-6
8-8
7-8
7-7
6-7
6-7
6-6
5-6 | a ⁵ I°-z ³ H
(16)
a ⁵ I°-36
(17)
a ⁵ I°-27†
(18)
a ⁵ I°-30
(19)
a ³ I°-z ⁵ K | 3800.303 3792.524 3772.854 3764.811 3761.867 3739.193 3687.039 Nd I No Nd II I 4959.1306 4855.982 4920.692 4799.423 | B B B B B B B B B B B B B B B B B B B | 300
100
100
135
350
100
125
150
ysis
Anal
60
15
60
10 | V V V IV V IV | 2.55
2.55
2.57
2.57 | Apr 19 41-41 31-42 41-31 32-32 | a ^G I-1° (1)
a ^G I-30830 (2) | | 500
150
400
300
150
200
125
Ce+
150
250
400 | (2.25
(2.00
(1.97
(2.25
(2.00
(2.35
(2.00
(1.97
(2.25
(2.00
(1.97
(2.25 | 6.29)
6.27)
5.55)
6.07)
5.55)
5.93)
5.93)
5.93)
5.93)
5.93)
5.93) | 4-5
3-4
2-3
4-4
3-3
4-3
2-3
4-3
3-4
4-3
4-3 | fs ³ F°-fp ³ G (1) fs ³ F°-fp ³ F (2) fs ³ F°-fp ¹ F | 3949.438
3769.695
3912.898
3885.190
*3711.099
4282.440
4033.857
4534.154
4510.160
4468.712
4879.121
4826.649
5251.738
4672.081
4646.059 | A A A A A A A A A A A A A A A A A A A | 125
30
125
(25)
60
75
 | 0.37
0.30
0.05
0.20
0.05
0.55
0.37
0.42
0.22
0.63
0.42
0.63 | 3.33
3.33
3.36
3.38
3.38
3.43
3.43
3.16
2.98
2.98
2.98
2.98
2.98
2.86 | 7-6
6-6
5-6
6-5
6-6
8-8
7-8
7-8
7-6
7-7
6-7
6-7
6-7
7-8 | a ⁵ I°-z ³ H
(16)
a ⁵ I°-36
(17)
a ⁵ I°-30
(18)
a ⁵ I°-30
(19)
a ³ I°-z ⁵ K
(20)
a ³ I°-z ⁵ K | 3800.303
3792.524
3773.854
3764.811
3761.867
3739.193
3687.039
3688.830
Nd I No
Nd II I
*4959.1304
4835.982
4920.692
4799.423
4859.030
4820.482
4970.5428
4609.148 | B B B B B B B B B B B B B B B B B B B | 300
1000
135
350
100
125
150
yels
Anal
60
15
60
10
100
150
100 | V V V IV I | 2.55
2.55
2.57
2.57 | Apr 19 41-41 31-42 41-31 32-32 | a ^G I-1° (1)
a ^G I-30830 (2) | | 500
150
400
300
150
200
125
250
400
200
200 | (2.25
(2.00
(1.97
(2.25
(2.00
(2.25
(2.00
(1.97
(2.25
(2.00
(1.97
(2.25
(2.00
(2.25
(2.00
(2.25
(2.00 | 6.29)
6.27)
5.55)
6.07)
5.55)
5.93)
5.57)
5.57)
5.57)
5.57)
5.57)
5.93)
5.93)
5.93)
5.93) | 4-3
3-4-3
4-3
4-3
4-3
4-3
4-3
4-3
4-3
4- | fs ³ F°-fp ³ G (1) | 3949.438
3769.695
3912.898
3885.190
*3711.099
4282.440
4033.857
4534.154
4510.160
468.712
4879.121
4879.121
4826.649
5251.738
4672.081
4646.059
4323.551
4321.796
4321.796 | A A A A A A A A A A A A A A A A A A A | 125
30
125
(25)
60
75
60
100
150
(30)
(40)
12
40
30
25
15 | 0.37
0.20
0.20
0.20
0.20
0.20
0.55
0.37
0.63
0.42
0.63
0.42
0.63
0.43
0.43
0.43
0.43 |
3.33
3.33
3.36
3.38
3.38
3.38
3.38
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3.316
3 | 7-665-6 | a ⁵ I°-z ³ H
(16)
a ⁵ I°-z ³ H
a ⁵ I°-z ³ 6
(17)
a ⁵ I°-z ³ 7†
(18)
a ⁵ I°-z ⁵ K
(20)
a ³ I°-z ⁵ K | 3800.303
3792.524
3772.854
3764.811
3761.867
3739.193
3687.039
3688.830
Nd I No
Nd II I
*4959.1304
4835.982
4920.692
4799.423
4859.030
4845.4842
4706.5428
4609.148
4611.343
4706.5428
4609.148
4612.473 | B B B B B B B B B B B B B B B B B B B | 300
100
125
350
125
150
ysis
Anal
60
15
60
10
100
100
100
100
100
100
100
100
1 | V V V V V V V V V V V V V V V V V V V | 2.55
2.55
2.55
2.57
2.57
2.86
2.74
2.63
2.62
2.63
2.62
2.74
2.63 | Apr 19 45-45-35-45-45-35-55-55-55-55-55-55-55-55-55-55-55-55 | a ^O I-1°
(1)
a ^O I-30830
(2)
a ^O I-z ^O H°
(3) | | 500
150
400
300
150
200
125
Ce+
150
250
400
200
200
200
200 | (2.25
(2.00
(1.97
(3.25
(2.00
(2.25
(2.00
(2.00
(1.97
(2.25
(2.00
(1.97
(1.97 | 6.29)
6.27)
5.55)
6.07)
5.55)
5.93)
5.93)
5.93)
5.93)
5.93)
5.93)
5.93)
5.93)
5.93)
5.93)
5.93)
5.93)
5.93)
5.93) | 4-54
3-44
3-34
4-32
4-32
4-33
4-33
4-33
4-3 | fs3po-fp3G (1) fs3po-fp3F (2) fs3po-fp1F (3) fs3po-fp3D (4) | 3949.438
3769.695
3912.898
3885.190
•3711.099
4282.440
4033.857
4534.154
4510.150
4468.712
4879.121
4879.121
4876.649
5251.738
4672.081
4646.059
4323.551
4261.796
4180.68
4589.76
4492.427 | A A A A A A A A A A A A A A A A A A A | 125
30
135
(25)
60
75
 | 0.37
0.20
0.20
0.20
0.20
0.20
0.55
0.37
0.63
0.42
0.63
0.42
0.63
0.42
0.63
0.42
0.63 | 3.33
3.33
3.36
3.38
3.38
3.43
3.43
3.16
3.16
3.16
3.16
3.16
3.16
3.16
3.1 | 7-6
6-6
5-6
5-6
6-5
8-8
8-8
7-8
6-7
6-7
6-7
6-6
7-6
5-6
5-6 | a ⁵ I°-z ³ H
(16)
a ⁵ I°-36
(17)
a ⁵ I°-30
(18)
a ⁵ I°-30
(19)
a ³ I°-z ⁵ K
(20)
a ³ I°-z ⁵ K | 3800.303 3792.524 3772.854 3764.811 3761.867 3739.193 3687.039 3668.830 Nd I No Nd II I 4959.1306 4835.892 4920.692 4799.423 4859.030 4825.882 4811.343 4609.148 4612.473 | B B B B B B B B B B B B B B B B B B B | 300
100
125
250
100
125
150
yeis
Anal
60
15
60
10
100
100
100
100
14 | V V V V V V V V V V V V V V V V V V V | 2.55
2.55
2.55
2.57
2.57
2.86
2.74
2.63
2.62
2.86
2.74
2.86
2.74 | 42-44-33-44-33-44-33-45-44-33-45 | 42 a°I-1° (1) a°I-20830 (2) a°I-26H° (3) | | 500
150
400
300
150
200
125
Ce+
150
250
400
200
200
100 | (2.25
(2.00
(1.97
(2.25
(2.00
(1.97
(2.25
(2.00
(1.97
(2.25
(2.25
(2.25
(2.00
(1.97 | 6.29
6.27
5.55
6.07
5.55
5.92
5.92
5.92
5.93
5.93
5.93
5.93
5.93
5.93
5.93
5.93 | 4-54
3-44
3-34
4-32
4-32
4-33
4-33
4-33
4-3 | fs ³ F°-fp ³ G (1) fs ³ F°-fp ³ F (2) fs ³ F°-rp ¹ F fs ³ F°-rp ² F-fp ³ F | 3949.438 3769.695 3912.898 3885.190 *3711.099 4282.440 4033.857 4534.154 4510.150 4468.712 4879.121 4826.649 5251.738 4672.081 4646.059 4323.551 4261.796 4180.68 4589.76 4492.427 4351.849 4561.461 | | 125
30
125
(25)
60
75
60
100
100
100
130
(40)
12
40
30
25
(5d)
(5d)
(5d)
(5d)
(5d) | 0.37
0.30
0.05
0.20
0.05
0.55
0.37
0.43
0.42
0.63
0.42
0.63
0.42
0.63
0.42
0.63
0.42
0.63
0.42
0.63 | 3.33
3.33
3.33
3.33
3.33
3.34
3.31
3.31 | 7-6-6
5-6-6-5-6-6-7-8-8-7-8-5-6-5-5-4 | a ⁵ I°-z ³ H
(16)
a ⁵ I°-26
a ⁵ I°-27 †
(18)
a ⁵ I°-30
(19)
a ³ I°-25K
a ³ I°-6†
a ³ I°-7
(22)
a ³ I°-25I
(23) | 3800.303 3792.524 3773.854 3764.811 3761.867 3739.193 3687.039 3688.830 Nd I No Nd II I 4959.1306 4835.982 4920.692 4799.423 4859.423 4811.343 4414.433 4414.433 4459.849 | B B B B B B B B B B B B B B B B B B B | 200
100
100
125
250
100
125
150
255
150
255
150
100
100
100
100
100
100
100
100
1 | V V V IV I | 2.55
2.55
2.55
2.57
2.57
2.63
2.63
2.63
2.63
2.63
2.63
2.74
2.86
2.74
2.86 | 42-34-35-45-56-55-45-45-55-45-45-45-45-45-45-45-45-45- | a°I-1° (1) a°I-30830 (2) a°I-2°H° (3) | | 500
150
400
300
150
200
125
Ce+
150
250
400
200
200
200
200 | (2.25
(2.00
(1.97)
(3.25)
(2.00)
(2.25)
(3.00)
(1.97)
(3.25)
(3.25)
(3.25)
(3.25)
(3.25)
(3.25)
(3.25)
(3.25)
(3.25) | 6.29)
6.67)
5.55)
6.07)
5.55)
5.93)
5.93)
5.93)
5.93)
5.93)
5.93)
5.93)
5.93)
5.93)
5.93)
5.93)
5.93)
5.93)
5.93) | 4-4-3 4-3-23-4-3 4-3-3-12 4-4-4 4-4 | fs3Fo-fp3G (1) fs3Fo-fp3F (2) fs3Fo-fp1F (3) fs3Fo-fp3D (4) fs3Fo-fp1G (5) | 3949.438 3769.695 3912.898 3885.190 *3711.099 4282.440 4033.857 4534.154 4510.150 4468.712 4879.121 4826.649 5251.738 4672.081 4646.059 4323.551 4261.796 4180.68 4589.76 4492.427 4351.849 4561.461 | | 125
30
125
(25)
60
75
60
100
150
(30)
(40)
12
40
30
25
(5d)
15
(6)
(6)
60° | 0.37
0.30
0.05
0.20
0.30
0.55
0.37
0.43
0.42
0.63
0.22
0.63
0.42
0.63
0.42
0.63
0.42
0.63
0.42
0.63 | 3.33
3.33
3.38
3.38
3.38
3.343
3.43
3.16
2.98
2.98
2.98
2.86
2.87
3.31
3.31
3.31
3.31
3.31
3.31
3.31
3.3 | 7-6-6
5-6-6-5-6-6-7-8-8-7-8-5-6-5-5-4 | a ⁵ I°-z ³ H
(16) a ⁵ I°-36
(17)
a ⁵ I°-37
(18) a ⁵ I°-30
(19) a ³ I°-z ⁵ K
(20) a ³ I°-z ⁵ K a ³ I°-c ⁵ I°-30
(20) a ³ I°-2 ⁵ I°-30
(20) a ³ I°-2 ⁵ I°-30 | 3800.303 3792.524 3773.854 3764.811 3761.867 3739.193 3687.039 3668.830 Nd I No Nd II I 4959.1306 4835.982 4920.692 4799.423 4859.423 4811.343 4859.1484 4812.473 4414.432 4505.75 4680.734 | BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB | 200
100
100
125
250
100
125
150
150
150
100
150
100
100
100
100
10 | V V V IV I | 2.55
2.55
2.55
2.57
2.57
2.86
2.74
2.63
2.86
2.74
2.86
2.74
2.86
2.74
2.86
2.74 | 40 19 44 44 34 44 44 44 44 44 44 44 44 44 44 | a ⁰ I-1° (1)
a ⁶ I-20830 (2)
a ⁶ I-Z ⁶ H° (3)
a ⁶ I-21871
a ⁶ I-3° (5) | | 500
400
300
150
200
125
250
400
200
200
200
200
200
200
200
300
300 |
(2.25
(2.00)
(1.97)
(2.25)
(2.00)
(2.25)
(2.00)
(2.00)
(2.00)
(2.00)
(2.00)
(3.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2. | 6.29) 6.27 5.55 6.07 5.55) 5.93 5.93 5.93 5.93 5.93 5.93 6.21) 6.21) 6.31) 6.31) | 4-4-3
2-3-4-3
4-3
4-3
2-3-2-4-3
3-3
4-3
3-3
4-3
3-3
4-3
3-3
3-3
3-3 | fs3pe_fp3G (1) fs3pe_fp3F (2) fs3pe_fp1F (3) fs3pe_fp3D (4) fs3pe_fp1G (5) fs1pe_fp1F fs1pe_fp1F fs1pe_fp3F | 3949.438 3769.695 37912.898 3885.190 *3711.099 4282.440 4033.857 4534.154 4510.150 4488.712 4879.121 4879.121 4879.121 4872.081 4646.059 4233.551 4261.796 4180.68 4589.76 4492.427 4351.849 4561.461 5392.10 4859.038 *4496.429 | | 125
30
125
(25)
60
75
60
100
150
(40)
13
40
30
25
15
(51)
(54)
15
(6)
60° | 0.37
0.30
0.30
0.30
0.30
0.30
0.55
0.37
0.63
0.42
0.63
0.42
0.63
0.42
0.63
0.42
0.63
0.42
0.63
0.42
0.63 | 3.33
3.33
3.33
3.33
3.33
3.33
3.43
3.35
3.31
3.31
3.31
3.31
3.31
3.31
3.3 | 7-6
6-6
6-5
6-5
6-6
8-8
7-8
7-8
7-8
7-8
5-7
6-6
7-6
5-7
8-7
8-7
8-7
8-7
8-7
8-7
8-7
8-7
8-7
8 | a ⁵ I°-z ³ H
(16) a ⁵ I°-36
(17)
a ⁵ I°-30
(18) a ⁵ I°-30
(19) a ³ I°-z ⁵ K
(20) a ³ I°-z ⁵ K a ³ I°-6 † a ³ I°-7
(22) a ³ I°-7 (23) a ³ I°-10 (24) a ³ I°-110 (25) | 3800.303 3792.524 3773.854 3764.811 3761.867 3739.193 3687.039 3688.830 Nd I No Nd II I 4959.1306 4835.982 4920.692 4799.423 4859.423 4811.343 4414.433 4414.433 4459.849 | B B B B B B B B B B B B B B B B B B B | 200
100
100
125
250
100
125
150
255
150
255
150
100
100
100
100
100
100
100
100
1 | V V V IV I | 2.55
2.55
2.55
2.57
2.57
2.63
2.74
2.63
2.86
2.74
2.86
2.74
2.86
2.74
2.86
2.74 | 40 19 44 44 34 44 44 44 44 44 44 44 44 44 44 | a ⁰ I-1° (1)
a ⁶ I-20830 (2)
a ⁶ I-Z ⁶ H° (3)
a ⁶ I-21871
a ⁶ I-3° (5) | | 500
400
300
150
200
125
250
400
200
200
200
200
200
200
200
200
20 | (2.25
(2.00)
(1.97)
(2.25)
(2.00)
(1.97)
(2.25)
(2.00)
(1.97)
(2.25)
(2.25)
(2.25)
(2.25)
(3.20)
(1.97)
(3.25)
(3.29)
(3.29) | 6.29) 6.C7 5.55 6.07 5.55) 5.93 5.93 5.93 5.93 5.93 5.93 5.93 5.93 | 4-5
3-4
4-3
3-3
4-4
3-3
3-2
4-3
3-2
4-3
3-2
4-3
3-2
4-3
3-2
4-3
3-2
4-3
3-2
4-3
3-3
4-4
3-3
3-2
4-3
3-3
4-4
3-3
3-2
4-3
3-3
4-4
3-3
3-3
4-4
4-3
3-3
3-3
4-4
4-3
3-3
3 | fs3po-fp3G (1) fs3po-fp3F (2) fs3po-fp1F fs3po-fp3D (5) fs1po-fp1F fs1po-fp3D (7) fs1po-fp1G (8) | 3949.438
3769.695
3912.898
3885.190
*3711.099
4282.440
4033.857
4534.154
4510.150
4488.712
4879.131
4826.649
5251.738
4672.081
4646.059
4323.551
4261.796
4180.68
4281.796
4180.68
4281.796
4180.68
4589.76
4492.427
4351.849
4561.849 | A A A A A A A A A A A A A A A A A A A | 125
30
125
30
125
30
60
75
60
100
150
(40)
12
40
30
25
15
(85)
15
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95)
(95) | 0.37
0.30
0.30
0.30
0.30
0.30
0.55
0.37
0.63
0.42
0.63
0.42
0.63
0.42
0.63
0.42
0.63
0.42
0.63
0.42
0.63
0.42
0.63
0.42
0.63 | 3.33
3.38
3.38
3.38
3.38
3.38
3.34
3.35
3.35
3.35
3.35
3.31
3.35
3.31
3.31 | 7-6
6-6
6-5
6-5
6-6
8-8
8-8
7-8
7-2
7-2
7-2
7-3
7-3
7-3
7-3
7-3
7-3
7-3
7-3
7-3
7-3 | a ⁵ I°-z ³ H
(16) a ⁵ I°-a ³ 6 (17) a ⁵ I°-a ³ 7† (18) a ⁵ I°-a ³ 0 (19) a ³ I°-z ⁵ K a ³ I°-e ⁴ † a ³ I°-z ⁵ I° (23) a ³ I°-z ⁵ I° (23) a ³ I°-10 a ³ I°-11↑ | 3800.303 3792.524 3772.854 3764.811 3761.867 3739.193 3687.039 3687.039 3687.039 481 No Na II I 4959.1309 4855.982 4920.692 4799.423 4859.030 4859.030 4859.030 4859.030 4859.030 4859.030 48612.473 4414.432 4505.75 4680.734 4569.849 44650.734 | BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB | 200
100
100
125
250
250
125
150
150
150
100
100
100
100
100
100
10 | V V V IV I | 2.55
2.55
2.57
2.57
2.86
2.74
2.62
2.86
2.74
2.86
2.74
2.70
2.76
2.76
2.77
2.77 | 19. 440 1040 1040 1040 1040 1040 1040 1040 | a ⁰ I-1° (1) a ⁶ I-20830 (2) a ⁶ I-2 ⁶ H° (3) a ⁶ I-21871 a ⁶ I-3° (5) a ⁶ I-4° (6) | |
500
400
300
150
200
125
250
400
200
200
200
200
200
200
200
300
300 | (2.25
(2.00)
(1.97)
(2.25)
(2.00)
(2.25)
(2.00)
(2.00)
(2.00)
(2.00)
(2.00)
(3.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2.25)
(2. | 6.29) 6.27 5.55 6.07 5.55) 5.93 5.93 5.93 5.93 5.93 5.93 6.21) 6.21) 6.31) 6.31) | 4-5
3-4
4-3
3-3
4-4
3-3
3-2
4-3
3-2
4-3
3-2
4-3
3-2
4-3
3-2
4-3
3-2
4-3
3-2
4-3
3-3
4-4
3-3
3-2
4-3
3-3
4-4
3-3
3-2
4-3
3-3
4-4
3-3
3-3
4-4
4-3
3-3
3-3
4-4
4-3
3-3
3 | fs3po-fp3G (1) fs3po-fp3F (2) fs3po-fp1F (3) fs3po-fp3D (4) fs3po-fp1G (5) fs1po-fp1G (6) fs1po-fp3D fs1po-fp3D fs1po-fp3D fs1po-fp3D fs1po-fp3D fs1po-fp3D fs1po-fp3D | 3949.438 3769.695 3912.898 3885.190 *3711.099 4282.440 4033.857 4534.154 4510.150 4468.712 4826.649 5251.738 4672.081 4646.059 4323.551 4261.796 4180.68 4582.49 4561.451 5392.10 4859.038 *4496.429 4056.543 | A A A A A A A A A A A A A A A A A A A | 125
30
125
(25)
60
75
60
100
150
(30)
(40)
12
30
30
30
(5d)
(5d)
(5d)
(5d)
(5d)
(5d)
(5d)
(5d)
(6e)
60
60
60
60
60
60
60
60
60
60 | 0.37
0.30
0.05
0.20
0.05
0.55
0.37
0.63
0.42
0.22
0.63
0.43
0.63
0.43
0.23
0.43
0.43
0.43
0.43
0.43
0.42
0.23
0.42
0.23
0.42
0.23
0.42
0.23
0.42
0.23
0.42
0.23
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43 | 3.33
3.38
3.38
3.38
3.38
3.38
3.34
3.35
3.32
2.98
3.16
2.98
2.98
2.98
2.98
2.98
2.98
2.98
2.98 | 7-6-6
5-6
6-5-6
5-6-6
5-6-6
5-6-7-8
7-8-7-7-6-6
7-8-6-7-8
6-6-7-8 | a ⁵ I°-z ⁵ H
(16)
a ⁵ I°-36
(17)
a ⁵ I°-37†
a ⁵ I°-30
(19)
a ³ I°-z ⁵ K
(20)
a ³ I°-z ⁵ K
a ³ I°-z ⁵ T
(23)
a ³ I°-z ⁵ I
a ³ I°-z ⁵ I
a ³ I°-z ⁵ I
a ³ I°-z ⁵ I | 3800.303 3792.524 3773.854 3764.811 3761.867 3739.193 3687.039 3668.830 Nd I No Nd II I 4959.1306 4835.982 4920.692 4799.423 4804.842 4804.842 4804.842 4804.444 4505.75 4680.734 4569.849 4465.075 4763.865 4763.865 4763.865 4763.865 4763.865 4763.865 4763.865 4763.865 4763.865 4763.865 4763.878 | BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB | 200
100
100
100
100
125
250
1250
1250
12 | V V V IV I | 2.55
2.55
2.55
2.57
2.57
2.86
2.74
2.63
2.86
2.74
2.86
2.74
2.70
2.76
2.76
2.77 | 19. 440 1040 1040 1040 1040 1040 1040 1040 | a ⁰ I-1° (1)
a ⁶ I-20830 (2)
a ⁶ I-Z ⁶ H° (3)
a ⁶ I-21871
a ⁶ I-3° (5) | | 500
400
300
150
200
125
125
250
400
200
200
200
200
200
200
200
200
20 | (2.25
(2.00)
(1.97)
(2.25)
(2.00)
(1.97)
(2.25)
(2.00)
(1.97)
(3.25)
(3.25)
(3.25)
(3.25)
(3.25)
(3.25)
(3.25)
(3.25)
(3.25)
(3.25)
(3.25)
(3.25)
(3.25) | 6.28) 6.27) 5.55) 6.07) 5.55) 5.92) 5.57) 5.92) 5.93) 5.93) 5.97) 6.31) 6.33) 6.33) 6.33) | 4-5
3-4
3-3
4-4
3-3
3-4
4-3
3-2
4-3
3-4
4-3
2-1
3-2
4-4
3-3
3-3
3-3
3-4
4-3
3-3 | fs3po-fp3G (1) fs3po-fp3F (2) fs3po-fp1F (3) fs3po-fp3D (4) fs3po-fp1G (5) fs1po-fp1G fs1po-fp1G fs1po-fp1G fs1po-fp1G fs1po-fp1G fs1po-fp1G fs1po-fp1G fs1po-fp1G | 3949.438
3769.695
3912.898
3885.190
*3711.099
4282.440
4033.857
4534.154
4510.150
4488.712
4879.121
4879.121
4879.121
4872.081
4646.059
4323.551
4361.796
4180.68
4289.76
4492.427
4351.849
459.78
4496.429
4056.543
4062.817
4413.765 | A A A A A A A A A A A A A A A A A A A | 125
30
125
(25)
60
75
60
100
150
(30)
(40)
13
40
30
25
15
(5a)
15
(6)
60
12
35
80
60
75 | 0.37
0.30
0.30
0.30
0.30
0.30
0.55
0.37
0.63
0.42
0.63
0.42
0.63
0.42
0.63
0.42
0.63
0.42
0.63
0.42
0.63
0.42
0.63
0.42
0.63 | 3.33
3.38
3.38
3.38
3.38
3.38
3.34
3.35
3.32
2.98
3.16
2.98
2.98
2.98
2.98
2.98
2.98
2.98
2.98 | 7-6-6
6-6-6
6-5-6
8-6-6
8-8-8
7-8-7
6-7-7-6
6-6-7
5-7-7-6
6-5-5-4
7-8-6-6
7-8-6-7
7-8-6-7
7-8-6-7
7-8-7-7
7-8-7-7-7 | a ⁵ I°-z ⁵ H
(16)
a ⁵ I°-36
(17)
a ⁵ I°-37†
a ⁵ I°-30
(19)
a ³ I°-z ⁵ K
(20)
a ³ I°-z ⁵ K
a ³ I°-z ⁵ T
(23)
a ³ I°-z ⁵ I
a ³ I°-z ⁵ I
a ³ I°-z ⁵ I
a ³ I°-z ⁵ I | 3800.303 3792.524 3772.854 3764.811 3761.867 3739.193 3687.039 3687.039 3687.039 481 No Na II I 4959.1309
4855.982 4920.692 4799.423 4859.030 4859.030 4859.030 4859.030 4859.030 4859.030 48612.473 4414.432 4505.75 4680.734 4569.849 44650.734 | BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB | 200
100
100
125
250
250
125
150
150
150
100
100
100
100
100
100
10 | V V V IV I | 2.55
2.55
2.57
2.57
2.86
2.74
2.62
2.86
2.74
2.86
2.74
2.70
2.76
2.76
2.77
2.77 | 19. 440 1040 1040 1040 1040 1040 1040 1040 | a ⁰ I-1° (1) a ⁶ I-20830 (2) a ⁶ I-2 ⁶ H° (3) a ⁶ I-21871 a ⁶ I-3° (5) a ⁶ I-4° (6) | | .c | ry
Int | E P
Low High | J Multiplet | Labor
I A | | y
Int | E : | P
High | J | Multiplet
(No) | Labor
I A | ator
Ref | ry
Int | E
Low | P
High | J | Multiplet (No) | |-------------|-------------------|-------------------------------------|--|------------------------------------|-------------|------------------|----------------------|----------------------|---|---|----------------------------------|-------------|-----------------|-----------------------|----------------------|-------------------------|---| | | ued | | ,, | Nd II cor | | | | | | ***** | Na II con | | | | | | | | i
i | 150
20
30 | 0.18 2.98
0.06 2.91
0.00 2.82 | 41-41 (8)
31-31 | 3328.270
3339.063 | A
A | 80
60 | 0.00 | 3.71
3.76 | 3 1 - 3 1 3 1 3 1 3 1 3 1 3 1 3 1 1 1 1 | a ⁶ I-30037
(40)
a ⁶ I-30453 | 5708.280
5804.020
5421.559 | A
A
A | 40
60
20 | 0.86
0.74
0.74 | 3.02
2.87
3.02 | 51-51
41-41
41-51 | a ⁶ K-z ⁶ K• †
cont | | ,
, | 150
200 | 0.06 2.98
0.00 2.91 | 42-52
32-42 | 3282.777
3334.471 | A
A | 8
50 | 0.00 | 3.76
3.88 | | (41)
a ⁶ I-25°
(42) | 5302.279
•5356.976§ | A
A | 6
15 | 1.41 | 3.73
3.56 | 91-81
81-71 | a ⁶ K-y ⁶ I°† | | | 20
50 | 0.06 2.86 | 3] _4] (9) | *3231.3499 | Α . | (8) | 0.06 | 3.88 | _ | | 5431.526
5311.461
541631 | A
A | 40
12
15 | 0.98
0.86 | 3.39
3.31
3.13 | 73-63
63-53
53-43 | | | ,
, | 300
200
200 | 0.63 3.70
0.47 3.51
0.32 3.32 | 7출-8출 (10) | 5255.510
5212.365 | A
A | 50
30 | 0.20 | 2.55 | 44-34 | a ⁴ I-1°
(43)
a ⁴ I-20830 | 5250.816
5276.879 | A | 8 | 0.74 | 3.09 | 5-4-4-1 | a6K-17° | | į | 250
200 | 0.18 3.15
0.06 3.02 | 45-05 | 5603.651 | A | 5 | 0.38 | 2.58 | | a ⁴ I-2°
(45) | 5474.734 | A | 10 | 0.98 | 3.24 | | a6K-18* | | i. | 400
100
150 | 0.00 2.87
0.63 3.51
0.47 3.32 | | *5191.448§ | A
A | 100
3 | 0.20 | 2.58
2.86 | | | 5455.815 | A | 20 | 0.98 | 3.24 | 6] -5 | a6K-210 | | | 300
40
100 | 0.32 3.15
0.18 3.02
0.06 2.87 | 6 } 6 } | 5228.427
5089.837
*4867.839§ | A
A | 8
3 | 0.38
0.30
0.20 | 2.74
2.63
2.74 | 54-44
44-34
44-44 | a ⁴ I-z ⁶ H° (46) | 5668.868
•6385.196§ | A
A | 150 | 1.41 | 3.59 | | a6k-29027+ | | A. | 60
30 | 0.06 2.89
0.00 2.89 | | 4647.759
4820.336 | A
A | 3
30 | 0.20 | 2.86 | 45-05 | a ⁴ T-3° | *5620.62 \$
5718.120 | P
A | 500
12 | 1.54 | 3.73
3.56 | 81-81 | b ⁶ I-y ⁶ I• † | | A | 12 | 0.18 3.89 | 5½-4½ a ⁶ I-7° | 5092.797 | A | 30 | 0.38 | | | .(47) | 5842.391
5740.862 | A | 8
15 | 1.28 | 3.39 | 63-63
53-53 | 7b ⁶ 1-25014
(85)
b ⁶ 1-y ⁶ 1° †
(86) | | A. | 12
25 | 0.06 2.89
0.00 2.89 | 3 2-42 | 4446.387
4567.606 | A
A | 200
12 | 0.20 | 2.98
2.91 | 41-51 | 441-50 †
(48)
441-2610
(49) | 5891.528
5706.206 | A
A | 15
15 | 0.93 | 3.13
3.09 | 41-41
31-31 | | | A.
A. | 10
15 | 0.18 2.95
0.06 2.95 | | 4715.589 | A. | 25 | 0.20 | 2.82 | 41-32 | 46 | 5614.303 | A | (10) | 1.04 | 3.24 | 41-41 | b ⁶ I-19°
(87) | | A
A | (10)
30 | 0.06 2.97
0.00 2.97 | 3 }-4} (14) | 4456.394
4462.985
4451.566 | A
A | 40
250
400 | 0.74
0.56
0.38 | 3.51
3.32
3.15 | 74-84
64-74
54-64 | a ⁴ I-z ⁶ K° †
(50) | Strongest | Une | lassifie | d Lines | of <u>Nd</u> | | | | A.
A | 20
10 | 0.18 3.00
0.06 3.00 | 5 4 4 8 1-10°
4 - 4 (15)
3 - 4 (15) | 4385.663
4597.013 | A
A | 150
20 | 0.20 | 3.02 | | A . | 5451.115
4832.276 | B
B | 100 | IV
III | | | | | A | 40
8 | 0.00 3.00 | | 4914.385
4594.447 | A
A | 15 | 0.38 | 2.89 | 5-4-4- | 41-6°
(51)
41-7°
(52) | 4542.603
4282.443 | B | 60
50 | IA | | | 4 | | Ã. | 30 | 0.00 3.02 | $3\frac{1}{2}-3\frac{1}{2}$ (16) | 4501.808 | A | 50 | 0.20 | 2.89 | 45-45
45-55 | a*I-8*† | *4135.325
4031.807 | В | 50
100 | IV | | | | | A.
A. | 100 | 0.18 3.07
0.06 3.07 | 4월-5월 (17) | 4763.624
4462.407 | A
A | 5
30 | 0.38 | 2.97 | | (53)
a ⁴ I-9°
(54) | 4023.002
4012.704
4007.435 | B
B
B | 80
50
50 | III
IV | | | | | A
A | (5)
50 | 0.32 3.09
0.06 3.09 | 43-53 (18) | 4703.576 | A | 15 | 0.38 | 3.00 | 5출-4출 | a41-10° | 4004.010 | B | 60
80 | III | | | | | A
A | 80
60 | 0.63 3.73
0.47 3.56 | 7 } _7 } (19) | 4381.290 | A | (10) | 0.20 | 3.03 | 4½-3½ | a4I-11° | 3953.525
3953.823 | В | 60
50 | IV | | | | | A
A
A | 60
150
30 | 0.32 3.39
0.18 3.31
0.06 3.13 | 64-64
54-54
44-44 | 4120.654
4106.582
4100.240 | A
A
A | 6
8
15 | 0.74
0.56
0.38 | 3.73
3.56
3.39 | 73-83
63-73 | (56)
a ⁴ I-y ⁶ I°
(57) | 3920.965
3911.169 | B
B | 100
60 | III | | | | | A
A | 80
40 | 0.00 3.09
0.63 3.56 | 3 3 - 3 3
8 3 - 7 3 | 3979.479
4371.069 | A | 60
(10) | 0.20 | 3.31
3.56 | 73-75 | | 3905.886
3901.850 | B
B | 100
50 | III | | | | | A
A
A | 30
50
30 | 0.47 3.39
0.32 3.31
0.18 3.13 | | 4358.699
4217.282
4311.286 | A
A
A | 15
5
40 | 0.56
0.38
0.20 | 3.39
3.31
3.13 | 63-63
53-53 | | 3900.226
3890.940
3890.580 | B
B
B | 60
60
50 | III
III | | | | | A
A | 50
20
100 | 0.06 3.09
0.47 3.73
0.32 3.56 | 7] -8] | 4541.269
4266.716 | A | 50
30 | 0.38 | 3.10
3.10 | 51-51 | a ⁴ I-13°
(58) | 3889.929
3878.582 | B | 50
50 | IV | | | | | Ā | 50
(15) | 0.18 3.39
0.06 3.31 | 5-1-6-1
4-1-5-1 | 4256.239 | A | 8 | 0.20 | 3.10 | | a4I-25138 | 3848.524
3836.541 | B
B | 80
60 | IA | | | | | A
A | 5
6 | 0.00 3.13 | | 4797.157 | A | 30 | 0.56 | 3.13 | | (59)
a ⁴ I-15°†
(60) | 3814.725
3808.772 | В | 60
30 | III | | | | | Ã | 80 | 0.06 3.10 | 4 1 - 51 (20) | 4144.553 | A | 30 | 0.20 | 3.18 | | a4I-16°
(61) | 3803.474
3784.250 | В | 40
80 | III | | | | | A | 60
10 | 0.63 3.12 | (21)
8½-7½ a ⁶ I-25235 | 4075.116 | A
A | 60
15 | 0.20 | 3.23 | | 41_26182 +
(62)
41_21° | 3763.475
3758.944 | В | 60
40 | III | | | | | A
A | (5)
(4) | 0.32 3.12 | 6 }- 7 } (22) | 4059.961
4000.493 | A
A | 50
30 | 0.20 | 3.24 | | a ⁴ I-21°
(63)
a ⁴ I-20° | 3741.427
3728.130
3723.506 | B
B | 50
50
50 | III | | | | | Ā | 100 | 0.00 3.12 | 3 } _3 } (23) | 4123:881 | A | 40 | 0.20 | 3.29 | | (64)
a4I-22°
(65) | 3685.804
3673.542 | 000 | 60
50 | ĬŸ | | | | | A
A
A | 10
8
30 | 0.32 3.13
0.18 3.13
0.06 3.13 | 63-53 a ⁶ I-15°
53-53 (24)
42-53 | 4051.145 | A | 60 | 0.38 | 3.43 | 5 }-6 } | a4I-37744 † | 3672.363
3665.180 | C
B | 50
50 | IA
A | | | | | A | 20 | 0.18 3.18 | 52-42 a6I-16° | 3982.355
3769.644 | A
A | 20
40 | 0.38
0.20 | 3.48
3.48 | 51-41
41-41 | a ⁴ I-28170
(67) | 3609.788
3592.595 | B
B | 40
60
50 | III | | | | | A | 40
60 | 0.06 3.18 | 31_21 a6v6u0 | 4338.697 | A | 80 | 0.74 | 3.58 | 7] _8 | a ⁴ I-29027
(68) | 3587.504
3543.352 | В | 50 | IV
IV | | | | | A
A | 150
20 | 0.06 3.19
0.00 3.19 | 4½-4½ a6I-17°† | 3811.073
3615.817 | A
A | 30
30 | 0.38 | 3.62
3.62 | 5-4-4-4
4-2-4-5 | a ⁴ I-29027
(68)
a ⁴ I-29298
(69) | 3393.641
3364.950
3300.148 | B
B
B | 60
50
70 | IA
IA | | | | | A | 80 | 0.00 3.21 | 31-21 a6T-26041 | 3470.866 | A | 30 | 0.20 | 3.76 | 4-3-3- | a ⁴ I-30453 | 3285.093 | В | 50 | IV | | | | | A | 40 | 0.08 3.23 | 4½-5½ a ⁶ I-26182 | 3522.044
3354.621 | A
A | 25
10 | 0.38 | 3.88 | 53-43
45-45 | a ⁴ I-25°
(71) | 3275.218
3134.897
3133.603 | B
B | 60
50
100 | 1V
V
V | | | | | A . | 100 | 0.18 3.24 | | 6257.834 | A | (25) | 0.55 | 2.55 |
5 <u>-</u> -4- | a ⁶ L-1° | 3116.141
3115.172 | В | 60
100 | A
A | | | | | A
A
A | 30
30
20 | 0.18 3.34
0.06 3.24
0.00 3.24 | 4 1 -41 (31) | 5548.474 | A | 8 | 0.55 | 2.77 | | | 3098.476
3092.915 | B
B | 50
60 | V
V | | | | | A | 20
25 | 0.32 3.24
0.18 3.24 | 65-25 8-1-31 | 5361.474
5234.195 | A
A | 60
50 | | 8.98
2.91 | 0}-5}
5}-4} | a ⁶ I_4 ⁶
(73)
a ⁶ I_z ⁶ I ⁶
(74) | 3075.380
3014.165
3007.975 | B
B | 50a
60
50 | A
A | | | | | A
A | 40 | 0.06 3.24 | 42-52 | 5130.596
5192.621 | A | 40
80 | 1.30 | 3.70
3.51 | 10}-9}
9}-8} | . a ⁶ L-z ⁶ K°†
(75) | | | | • | | | | | A | 60
30 | 0.06 3.29
0.00 3.29 | 3 } -3 } (33) | 5249.585
5293.168
5273.431 | A
A
A | 100
100
50 | 0.97
0.82
0.69 | 3.32
3.15
3.02 | 84-74
74-64
64-54 | | Sm I I I | 9 5.1 | SÝ Anal | C Li | et D | Apr 1 | 942 | | A
A | 15
30 | 0.32 3.37
0.18 3.37 | 5 }~6}
(34) | 5319.818
5442.274 | A | 125 | 0.55 | 2.87 | 61_51 | a61_8 9 | 6671.51
6588.91 | A
A | 800
500 | | 2.35
2.26 | 6-7
5-6 | a ⁷ F-z ⁹ G° † | | A
A | 60
20 | 0.18 3.39
0.06 3.39 | | 5165.140 | A | 10 | 0.68 | 3.07 | 6 }- 5 } | a6L-13° | 5659.86 | В | 400 | 0.10 | 2.28 | 2-1 | a ⁷ F-38° | | A
A | 8
80 | 0.47 3.39
0.32 3.39 | 7-1-7-3 a ⁶ I-24° † | 5934.747 | A | (10) | | 2.82 | | (77) | *5516.09
4841.701 | B
B | 500d
400 | (0.04
0.28
0.50 | 2.27
2.52
3.05 | 1-2
4-
6-5 | (2) 37°
59°)
103° | | A | 60 | 0.33 3.43 | 6½-6½ a6I-27744 | 5811.572
5702.244 | Ā | 13
20 | | 2.98
2.91 | | a ⁶ K-z ⁶ I° (78) | 3925.216
•3756.411§ | B | 400
600 | | 3.24
3.39 | 2-1
2-3 | 118°
127° | | A. | (8) | 0.06 3.48 | $4\frac{1}{2}-4\frac{1}{2}$ a ⁶ I-28170 (38) | 5371.935
5485.699 | A | 20
80 | 1.41 | 3.70
3.51 | 9}-9}
8}-8} | a ⁶ K-z ⁶ K°†
(79) | 4296.743// | В | 300 | 0.50 | 3.37 | 67 | a?F-z?G° † | | A
A | 50
60 | 0.63 3.58
0.47 3.58 | | 5594.425
5688.525 | A | 150
150 | 0.98 | 3.32
3.15 | 81-81
71-71
81-61 | | | | | | | | | | ory
f Int | E P J Multiplet
Low High (No) | Laboratory
I A Ref Int | EP J Multiplet
Low High (No) | Laboratory
I A Ref Int | E P J Multiplet
Low High (No) | |---|---|---|--|--|--| | 11.4 Ans | al B List C Mar 1942 | Sm II continued | | Sm II continued | | | . 500
. 100
. 100
. 400
. 200 | 0.00 2.62 1 1 8 F - 1°
0.00 2.66 1 1 10 2°
0.00 2.68 1 5°
0.00 3.02 1 23°
0.00 3.11 2 1 33°
0.00 3.13 2 1 37° | 3601.692 A 200
3583.394 A 150
3530.600 A 150
3382.399 A 600
3320.155 A 600d | 0.18 3.61 3 4 3 8 F-107°
0.18 3.63 3 4 4 (20) 110°
0.18 3.68 3 4 4 (20) 110°
0.18 3.83 3 4 2 133°
0.18 3.93 3 2 2 133° | 3662.905 A 200
3592.603 A 1500
3402.464 A 500
*3384.658 A 300
3354.185 A 150
3344.353 A 200 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | 200d
1300
200
200d
400 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 3312.415 A 400
*3301.678 A 100
3285.664 A 200
3230.559 A 400
3187.006 A 200
3178.125 A 200 | 0.18 3.91 3 42 88F-137°
0.18 3.92 3 42 21 138°
0.18 3.94 3 42 1 141°
0.18 4.00 3 44 1 141°
0.18 4.06 3 44 149°
0.18 4.07 3 42 151° | 3321.179 A 800
3272.807 A 200
3253.943 A 200
3315.362 A 200
3196.182 A 150
*3187.216 A 300 | 0.38 4.09 5 5 5 8 8 1.15 ° 0.38 4.15 5 5 5 16 (40) 155° 0.38 4.17 5 5 5 16 162° 0.38 4.22 5 6 162° 0.38 4.24 5 5 5 5 166° 0.38 4.25 5 5 5 166° | | 200
200
400
500
150 | 0.04 2.62 1 2 2 8F-1°
0.04 2.65 1 1 2 (3) 2°
0.04 2.67 1 2 4°
0.04 2.68 1 5 1 5°
0.04 2.68 2 5°
0.04 2.77 1 2 2 5° | 4615.690 A 300
4403.360 A 100
4225.338 A 400
4041.675 A 200
3891.210 A 100
3799.542 A 300 | 0.19 2.86 1-11 a ⁶ F-13°
0.19 2.99 1-2(22) 20°
0.19 3.11 1-11 35°
0.19 3.24 1 53°
0.19 3.36 1 74°
0.19 3.44 1 85° | 4961.936 A 250
4816.012 A 100
4717.718 A 150
4523.912 A 250
4433.885 A 300 | 0.43 2.92 3 4 4 6 F-15°
0.43 2.99 3 4 4 (41) 21°
0.43 3.05 3 3 27°
0.43 3.16 3 4 4 43°
0.43 3.23 3 4 4 9° | | 300
150
300
300
300 | 0.04 3.96 11 12 8 5 18°
0.04 3.99 11 12 (4) 20°
0.04 3.09 15 12 33°
0.04 3.11 12 2 34°
0.04 3.13 12 12 37° | 4938.100 A 100
4577.690 A 250
4552.659 A 150 | 0.19 3.99 ½-1½ 145° 0.25 2.75 12-2½ a ⁶ F-8° 0.25 2.94 12-2½ (23) 17° 0.25 2.96 12-1½ 18° 0.25 2.99 12-1½ 20° 0.25 3.08 12-2½ 32° | 4373.462 A 100
4286.640 A 100
4234.573 A 200
4203.051 A 125
4068.334 A 100 | 0.43 3.25 31-21 a ⁶ F-54°
0.43 3.31 31-45(42) 63°
0.43 3.35 31-31 71°
0.43 3.37 31-21 76°
0.43 3.47 32-32 280° | | 600
150
100
200
200
200 | 0.04 3.21 12 3 a ⁸ F-47°
0.04 3.29 12 5 (5) 280°
0.04 3.30 12 14 2 (6) 280°
0.04 3.30 12 14 2 80°
0.04 3.35 12 2 78°
0.04 3.37 12 2 76° | 4499.475 A 125
4360.720 A 150
4169.478 A 200
4129.231 A 100
4083.584 A 100 | 0.25 3.21 11-21 a ⁶ F-47°
0.25 3.24 11-21 (24) 52°
0.25 3.27 11-11 55° | 3971.397 A 300
3843.500 A 200
3831.501 A 400
3800.370 A 100
•3774.294 A 150 | 0.43 3.54 31-21 a ⁶ F-100°
0.43 3.64 35 32(43) 113°
0.43 3.65 35 44 114°
0.43 3.68 35 44 118°
0.43 3.70 35 22 128° | | 1000
200
100
800
500 | 0.04 3.41 13-32 a8F-z8G°
0.04 3.44 13-13 (6) 85°
0.04 3.45 13-33 (86°
0.04 3.73 13-34 133°
0.04 3.85 13-34
133°
0.04 3.85 13-12 133° | *4064.576 A 300
3966.045 A 150
3788.125 A 400
3762.588 A 200
3712.764 A 200 | 0.25 3.36 1½-½ 74° 0.25 3.51 1½-2½ a ⁶ F-95° 0.25 3.53 1½-2½ (25) 99° 0.25 3.57 1½-2½ 104° | *3756.411\$ A 600
3535.653 A 150
3396.187 A 250 | 0.43 3.72 31-31 a ⁶ F-123°
0.43 3.92 31-32(44) 139°
0.43 4.07 31-21 150° | | 200
500
500 | 0.10 2.68 21-11 a8F-5°
0.10 2.70 21-12 (7) 6°
0.10 2.75 22-22 8° | 3711.543 A 300
3650.188 A 200
3214.125 A 150
 | 0.25 3.63 15.25 111°
0.25 4.09 15.25 152°
0.28 8.82 43.33 a8p-12° | 4834.618 A 100
4595.291 A 250
4537.952 A 200
4424.339 A 600
4362.040 A 300 | 0.48 3.04 6 5 5 48F-25°
0.48 3.17 6 6 6 (45) 44°
0.48 3.20 6 6 5 5 66°
0.48 3.27 6 5 5 66°
0.48 3.31 6 5 5 64° | | 400
150
200
200
150 | 0.10 3.94 3½-3½ 17° 0.10 3.96 3½-1½ 8F-18° 0.10 3.03 3½-1½ (8) 23° 0.10 3.03 3½-3½ 34° | 4669.650 A 500
4646.684 A 200
4473.015 A 150
4452.727 A 250
4334.153 A 400 | 0.28 2.82 43-31 a ⁸ F-12°
0.28 2.92 43-44 (26) 15°
0.28 2.93 43-44 16°
0.28 3.04 43-52 25°
0.28 3.05 43-32 27°
0.28 3.12 42-32 a ⁶ F-36° | 4350.465 A 300d
4280.789 A 400
4123.956 A 150
3885.286 A 1000
3767.358 A 200 | 0.48 3.32 61-71 a8F-65°
0.48 3.37 62-71(46) 75°
0.48 3.48 61-51 91°
0.48 3.66 62-62 115°
0.48 3.76 62-62 126° | | 100
200
250
200
300 | 0.10 3.16 2\frac{1}{2} \frac{1}{2} 1 | 4318.936 A 500
4285.496 A 200
4279.678 A 200
4244.702 A 200
4109.405 A 150 | 0.28 3.12 41-31 a8F-36°
0.28 3.13 41-51 (27) 38°
0.28 3.10 41-31 42°
0.28 3.16 41-41 43°
0.38 3.18 41-31 45°
0.28 3.28 41-41 a8F-58°
0.28 3.31 41-41 (28) 63° | 3706.752 A 300
3649.537 A 500
3604.285 A 800
3568.271 A 1500
3418.514 A 500 | 0.48 3.81 61-61 a8F-z8G°
0.48 3.75 62-62 (47) 136°
0.48 3.91 62-72 138°
0.48 3.94 62-72 28G°
0.48 4.09 62-52 153° | | 200
200
150
150
200 | 0.10 3.28 23-13 8F-59°
0.10 3.28 23-13 8F-59°
0.10 3.30 23-13(10) 61°
0.10 3.33 23-33 66° | 4066.737 A 300
3987.428 A 80
3935.704 A 150
3857.912 A 100
3851.880 A 150 | 0.28 3.37 45-45 77°
0.28 3.41 45-55 63°
0.28 3.48 45-55 91° | 3347.298 A 150
*3306.388 A 500
*3301.078 A 100
3286.229 A 300
3276.747 A 200
3239.557 A 300 | 0.48 4.17 6 5 5 a8 5 - 157°
0.48 4.22 6 6 6 (48) 163°
0.48 4.24 6 5 103°
0.48 4.24 6 5 164°
0.48 4.25 6 5 166°
0.48 4.29 6 6 6 168° | | 150
200
150
500
600 | 0.10 3.34 23-12 28G°
0.10 3.35 23-32 71°
0.10 3.35 23-32 (11) 73°
0.10 3.36 23-32 (11) 73°
0.10 3.41 23-23 8G°
0.10 3.45 23-12 8G°
0.10 3.45 23-12 8G° | 3833.828 A 300
3800.887 A 400
3735.980 A 500
3692.221 A 150 | 0.28 3.48 41-41 a ⁸ F-92°
0.28 3.50 41-42 (29) 94°
0.28 3.52 41-42 20°
0.28 3.58 41-42 20°
0.28 3.68 41-52 109°
0.28 3.64 41-51 a ⁸ F-112° | 4948.627 A 150
4713.057 A 150
4615.441 A 150
4519.633 A 200 | 0.54 3.04 43-51 a ⁶ F-25°
0.54 3.16 43-44(49) 43°
0.54 3.22 43-43 49°
0.54 3.27 43-55 56° | | 100
1000
100
200
600 | 0.10 3.51 23-23 a ⁸ F-95°
0.10 3.51 23-23 (12) 96°
0.10 3.51 23-24 97° | 3627.014 A 400
3609.491 A 1200
*3384.658 A 300
3368.568 A 200 | 0.28 3.68 4\(\frac{1}{2}\)-5\(\frac{1}{2}\)(30) 117°
0.28 3.70 4\(\frac{1}{2}\)-5\(\frac{1}{2}\) 28G°
0.28 3.93 4\(\frac{1}{2}\)-3\(\frac{1}{2}\) 139°
0.28 3.94 4\(\frac{1}{2}\)-3\(\frac{1}{2}\) 141° | 4454.639 A 200
*4220.659 A 200
4188.128 A 200
*4178.019 A 1004
*4155.217 A 100 | 0.54 3.31 4\frac{1}{2}-\frac{1}{2} 64° 0.54 3.47 4\frac{1}{2}-\frac{1}{2} a^6F_{-2}^8Q° 0.54 3.49 4\frac{1}{2}-\frac{1}{2}(50) 93° 0.54 3.51 4\frac{1}{2}-\frac{1}{2} 97° 0.54 3.51 4\frac{1}{2}-\ | | 100
150
300
200
300 | 0.10 3.55 23-32 108°
0.10 3.62 32- 108°
0.10 3.85 23-12 48F-134°
0.10 3.92 33-32 (13) 139°
0.10 3.94 33-34 141° | 3310.861 A 500
3187.787 A 200
3169.875 A 250
 | 0.28 3.98 41 31 a ⁸ F-144°
0.28 4.00 42 42 (31) 146°
0.28 4.15 42 52 155°
0.28 4.17 42 52 157° | 4107.387 A 200
4075.845 A 250
3979.200 A 150
3826.202 A 400
*3780.694 A 500 | 0.54 3.55 42 42 101°
0.54 3.57 42 42 a ⁶ F-103°
0.54 3.64 42 32(51) 113°
0.54 3.77 42 42 127°
0.54 3.82 42 42 173° | | 400
150
600 | 0.10 3.98 3 3 144° 0.18 2.75 3 2 8 5 8° 0.18 2.81 3 3 3 14 11° 0.18 3.83 3 3 3 12° 0.18 3.87 3 3 3 12° | 4566.306 A 300
4543.948 A 350
4430.526 A 300
4292.183 A 150
•4064.576 A 300 | 0.33 3.05 35-35 27°
0.33 3.13 25-35 36°
0.33 3.21 25-35 47° | 3650.998 A 150
3389.335 A 200
3371.209 A 150
3333.635 A 150
3228.784 A 200 | 0.54 3.92 42-42 138°
0.54 4.18 42-32 a ⁶ F-159°
0.54 4.20 42-32 (52) 161°
0.54 4.24 42-42 165°
0.54 4.36 42-171° | | 100
200
600
400
200 | 0.18 2.87 31.31 14°
0.18 2.92 32.42 15°
0.18 2.92 32.42 15°
0.18 2.93 32.42 15° 24°
0.18 3.03 32.42 15° 24°
0.18 3.05 31.31 32°
0.18 3.05 32.23 32°
0.18 3.03 32.23 32°
0.18 3.11 32.23 34° | 4035.110 A 250
3976.430 A 200
3947.838 A 100
3881.383 A 100
3847.511 A 150 | 0.33 3.39 3 (33) 79°
0.33 3.44 2 12 85°
0.33 3.46 3 14 88°
0.33 3.51 32 32 97° | 4913.348 A 150
4847.760 A 200
4718.329 A 150 | 0.66 3.17 5 - 6 - 44°
0.66 3.20 5 - 6 - (53) 46°
0.66 3.27 5 - 5 - 5 - 5 | | 100d
200
100d
200 | | 3838.941 A 200
3764.370 A 300
3755.276 A 200
*3743.868 A 500 | 0.33 3.55 3 3 3 3 108°
0.33 3.61 2 3 3 107°
0.33 3.63 2 108°
0.33 3.63 2 111° | 4378.236 A 150
4236.745 A 250
4153.332 A 100
4118.551 A 400 | 0.66 3.42 51.61 84°
0.66 3.48 52.52 91°
0.66 3.57 51.43 103°
0.66 3.63 51.43 a ^G F-110°
0.66 3.65 51.44 (54) 114° | | 100
80
30
150
200 | 0.18 3.14 31 21 a8p-39°
0.18 3.16 33-35(16) 42°
0.18 3.18 33-35 45°
0.18 3.23 31-25 51°
0.18 3.25 32-25 54°
0.18 3.23 31-45 (17) 63°
0.18 3.33 33-45(17) 63°
0.18 3.33 33-45(17) 63°
0.18 3.33 33-35 66°
0.18 3.36 33-37 31 31 73° | *3707.167\$ A 100d
3645.387 A 300
3369.455 A 200
3305.185 A 200 | 0.33 3.66 2 1 1 a 6 F 116 0 0.33 3.72 2 3 3 (35) 133 0 0.33 3.99 2 1 145 0 0.33 4.07 2 2 3 150 0 | 4082.600 A 100d
3728.469 A 400
3467.874 A 100
3440.502 A 100 | 0.66 3.63 51.41 a ⁶ F-110°
0.66 3.65 51.44 (54) 114°
0.66 3.68 51.44 118°
0.66 3.97 51.61 143°
0.66 4.22 51.61 162°
0.66 4.24 51.41 165° | | 400
200
200
300
100d | 0.18 3.37 3-41 a8E-770 | 4854.365 A 150
4829.568 A 250
4642.235 A 500
4593.544 A 150
4454.323 A 400 | 0.38 2.92 51-41 48 F-15°
0.38 2.93 51-41 (36) 16°
0.38 3.04 51-51 28°
0.38 3.06 51-51 28°
0.38 3.16 51-42 43° | 7082.37 A 400d
8862.83 A 1001
 | 0.88 2.62 1½ ½ 28H-1°
0.88 2.68 1½-1½(55) 5°
0.93 2.75 2½-2½ 8 ⁸ H-8°
0.93 3.34 2½-1½(56) z ⁸ G° | | 200
500
£00
100
100 | 0.18 3.40 3 $\frac{1}{3}$ 2 $\frac{1}{18}$ 3 $\frac{1}{8}$ 2 $\frac{1}{8}$ 2 $\frac{1}{8}$ 2 $\frac{1}{8}$ 2 $\frac{1}{8}$ 2 $\frac{1}{8}$ 2 $\frac{1}{8}$ 3.41 3 $\frac{1}{2}$ 3 $\frac{1}{2}$ 3 $\frac{1}{2}$ 3 $\frac{1}{2}$ 3 $\frac{1}{8}$ 3 $\frac{1}{8}$ 3 $\frac{1}{2}$ 4 $\frac{1}{2}$ 3 $\frac{1}{8}$ 1 | 4421.138 A 200
4368.031 A 150d
4347.801 A 400
4262.677 A 300
4256.393 A 400 | 0.38 3.17 51-61 88F-44°
0.38 3.20 51-61 (37) 46°
0.38 3.22 51-41 49°
0.38 3.27 52-52 56°
0.38 3.28 52-62 57° | *7039.22 A 600d | 0.99 2.75 3½-2½ a ⁸ H-8°
(57) | | 300
300
1500d? | 0.18 3.50 3-4-4 aBF-94°
0.18 3.51 3-2-2(19) 96°
0.10 3.51 3-2-2 97°
0.18 3.57 3-4-2 103°
0.18 3.58 3-4-2 2°0° | 4306.138 A 100
3983.138 A 200
3983.397 A 800
3780.927 A 150
3718.877 A 500 | 0.38 3.31 24-4 a ⁰ x-53*
0.38 3.48 5½-5½(38) 91°
0.38 3.53 5½-5½ 98°
0.38 3.64 5½-5½ 113°
0.38 3.70 5½-5½ 26°G° | 6856.03 A 400d | 1.07 2.83 43-33 a ⁵ H-12°
1.07 2.87 43-32 (56) 14° | | Let Time 100
100 1 | | | | | | | |--|----------------|--|--|--|------------------------------------|--| | 1.4 1.5 | | | | | | | | A 5006 1.16 2.00 \$1.41 0.00 \$1 | tory
ef Int | EP J Multiplet
Low High (No) | | | | EP J Multiplet Low High (No) | | A | | | | | | 7 07 6 77 5 5 -9p -9pe + | | A | | 1.16 2.92 5½-4½ 2°H-15°
1.16 2.99 5½-4½(59) 21° | 4594.03// A 10000R
4627.22 A 8000R
4661.88 A 7000R | 0.00 2.69 35-45 a S-y-P
0.00 2.67 35-35 (1)
0.00 2.65 35-25 | 3313.33 A 400 | 2.99 6.71 4-4 (24) | | A | A 300d | 1.37 3.28 72-62 a8H-57° | | | 3319.89 A 80 | 2.99 6.71 4-3 | | A 10004 1.40 1.37 69-72 68-75 2 130-75 A 2000- 0.00 2.00 2.00 2.00 2.00 2.00 2.0 | A 250d | (60) | <u>Eu II</u> I P 11.21 A | Anal B List C May 1943 | 3308.02 A 200 | | | 1.51 3.05 3.15 \$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1} | | 1.41 3.16 3 2-4 2 (61) 43° | 3819.67// A 6000R | 0.00 3.23 4-5 a ⁹ 5°-z ⁹ p | 4485.15 A 100 | 3.31 6.06 4-4 z ⁷ P-e ⁹ S° † | | A 200 1.51 3.05 3.9-2 ptp. 2-72 3888.42 A 1800 0.00 3.05 4-3 0 3885.13 A 100 3.35 6.72 3-1 172-172-172-172-172-172-172-172-172-172- | A 1000d | 1.49 3.37 8½-7½ a ⁸ H-75°
(62) | 4305.05 A 6000r | 0.00 2.93 4-3 | | 3.31 6.13 4-3 z ⁷ P-e ⁷ S°†
3.36 6.13 2-3 (27) | | A 1500 1.99 3.04 4.5-51 P.38° 3077.335 A 200 0.00 3.88 - 3 27.59° A 100 0.00 3.88 - 72 2.1 27.79° A 100 1.98 3.15 4.55 A 200 0.00 3.88 - 3 27.59° A 100 0.00 3.88 - 3 27.59° A 100 0.00 3.88 A 200 3.31 6.95 4.5 27.59° A 100 0.00 3.88 A 200 3.31 6.95 4.5 27.59° A 100 0.00 3.88 A 200 3.31 6.95 4.5 27.59° A 100 0.00 3.88 A 200 3.31 6.95 4.5 27.59° A 100 0.00 3.88 A 200 3.31 6.95 4.5 27.59° A 100 0.00 3.88 A 200 3.31 6.95 4.5 27.59° A 100 0.00 3.88 A 200 3.31 6.95 4.5 27.59° A 100 0.00 3.88 A 200 3.31 6.95 4.5 27.59° A 100 0.00 3.88 A 200 3.31 6.95 4.5 27.59° A 100 0.00 3.88 A 200 3.31 6.95 4.5 27.50° A 4000 0.00 3.88 A 200 3.31 6.95 4.5 27.50° A 4000 0.00 3.88 A 200 3.20° 3.20 | A 400 | 1.51 3.05 3½-3½ b ⁸ F-27° (63) | 3688.43 A 1500 | 0.00 3.35 4-3 (2) | 3616.152 A 100
3673.19 A 80 | | | A 800 1.00 3.10 3.0 3.0 3.0 3.0 3.0 3.10 3.0 3.0 3.0 4.35.58 A 3000 0.12 3.00 3.5 3.0 4.0 3.0 3.0 4.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3 | | | 3077.358 A 200 | 0.00 4.01 4-4 (3) | 3678.259 A 100 | 3.36 6.72 2-1 z ⁷ P-e ⁷ D°† | | A 800 1.60 3.1.5 31.4 \$2-3.5 \$4.50 \$4.50.5 \$4.50.5 \$4.50.5 \$5.5 \$4.50.5 \$5.5 \$4.50.5 \$5.5 \$4.50.5 \$5.5 \$4.50.5 \$5.5 \$4.50.5 \$4.50.5 \$4.50.5 \$4.50.5
\$4.50.5 | | 1.59 3.16 42-42 43° | | | 3396.58 A 200 | 3.31 6.95 4-5 z ⁷ P-f ⁷ D°†
(30) | | A 6000 1.74 3.27 64-57 69-58 3907.48 A 4000 0.21 3.31 5-4 67-67 9 3801.88 A 80 V A 5000 1.74 3.27 64-57 69-58 3007.48 A 600 0.21 3.38 3-3 5-6 7 67-67 9 3801.88 A 80 V A 5000 1.74 3.28 69-67 67 3801.88 A 800 V A 6000 1.74 3.28 69-67 69-58 3007.48 A 600 0.21 4.19 3-2 47-59 7 3007.49 A 80 V A 6000 1.74 3.28 69-67 69-58 3007.48 A 600 1.77 3.28 71-67 69 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | A 800 | 1.60 3.16 3½-4½ a ⁸ P-43° | | 0.21 2.93 3-3 (4) | Strongest Unclassifie | d Lines of Eu II | | A 4000 1.74 3.27 6-6.7 97-58" 3097.45 A 100 0.21 4.19 5.3 a 28-5.00 5897.8 A 80 V A 500 1.74 3.28 6-6.2 107 57" 3094.94 A 500 0.28 4.28 5.3 a 28-5.9 1 879.500 A 80 V A 500 1.28 4.28 5.3 a 28-5.9 1 879.500 A 80 V A 500 1.28 4.28 5.3 a 28-5.9 1 879.500 A 80 V A 500 1.28 4.28 5.3 a 28-5.9 1 879.500 A 80 V A 500 | A 400d | 1.68 3.13 6½-5½ a ⁸ G-38° | 3930.50 A 4000r | 0.21 3.35 3-3 (5) | 3815.495 A 80 | | | A | A 400d | | | 0.21 4.19 3_2 =789_103 | 3717.69 A 80 | v . | | ### Section | A 500d | | | 0.31 4.35 3-3 a ⁷ 5°-y ⁹ P† | 3687.78 A 80
3679.500 A 80 | Ÿ | | A 500d 1.79 3.38 74-64 80-50 7 7436.59 A 1500 1.23 5.55 5.4 4004 1.79 3.38 74-74(69) 75° 7436.59 A 1500 1.27 5.59 5.4 4000 1.27 5.59 5.4 4000 1.27 5.28 5.59 5.4 5.59 | A 800 | 1.74 3.27 4½-5½ a ⁸ p-56° (68) | | 1.37 3.23 6-5 a ⁹ D°-x ⁹ P | 3130.73 A 80 | | | Transfired Lines of Sell | | 1.79 3.28 7½-6½ a ⁸ 0-57° | 7426.57 A 1500 | 1.27 2.93 4-3 | | | | 7077.10 Å 3000 1.24 3.968 3.4 155 IV 7077.10 Å 1500 1.24 3.968 3.4 150 IV 6173.05 Å 1500 1.24 3.968 3.4 150 IV 6173.05 Å 2000 1.31 3.31 5.4 100 IV 6045.51 Å 2000 1.31 3.31 5.4 100 IVI 5080.07 Å 2001 1.27 3.51 4.4 100 IVI 5080.07 Å 2001 1.27 3.51 4.4 100 IVI 5080.07 Å 2001 1.24 3.98 3.4 | | | 7194.81 A 1500
7301.17 A 2500 | 1.27 2.99 4-4
1.24 2.93 3-3 | | | | A 185 IV A 150 IV B 643.51 A 2000 1.51 3.35 5.4 a 30 pr. 7p 7 A 150 IV B 643.51 A 2000 1.52 573.98 A 500 1.24 3.35 3.3 A 2004 III B 581.74 A 1000 1.23 3.35 6.4 a 30 pr. 7p 7 A 100 III B 581.74 A 1000 1.23 3.35 6.3 A 2004 III B 581.74 A 1000 1.23 3.35 6.3 A 2004 III B 581.74 A 1000 1.23 3.35 6.3 A 2004 III B 581.74 A 1000 1.32 3.35 6.3 A 2004 III B 581.74 A 1000 1.32 3.35 6.3 A 2004 III B 581.74 A 1000 1.32 3.35 6.3 A 2004 III B 581.74 A 1000 1.32 3.35 6.3 A 2004 III B 581.74 A 1000 1.32 4.35 6.3 A 2004 III B 581.74 A 2000 1.32 4.35 6.3 A 2004 III B 581.74 A 2000 1.32 4.35 6.3 A 2004 III B 581.74 A 2000 1.32 4.35 6.3 A 2004 III B 581.74 A 2000 1.32 4.35 6.3 A 2004 III B 581.74 A 2000 1.32 4.35 6.3 A 2004 III B 581.74 A 2000 1.32 4.35 6.3 A 2004 III B 581.74 A 2000 1.32 4.35 6.3 A 2004 III B 581.74 A 2000 1.32 4.35 6.3 A 2004 III B 581.74 A 2000 1.32 4.35 6.3 A 2004 III B 581.74 A 2000 1.32 4.35 6.3 A 2004 III B 581.74 A 2000 1.32 4.35 6.3 A 2004 III B 581.74 A 2000 1.32 4.35 6.3 A 2006 III B 581.74 A 2000 1.32 4.35 6.35 6.35 6.35 6.35 6.35 6.35 6.35 6 | | | 7077.10 A 3000 | 1.24 2.99 3-4 | | 0.12 1.73 5-4 (1) | | A 2004 III | A 125
A 150 | IA
IA | 6173.05 A 2000 | 1.31 3.31 5-4 a ⁹ p°-z ⁷ P† | 6828.25 A 1500 | 0.07 1.87 4-5 (3) | | A 200d III | A 100 | III | 5872.98 A 500
5966.07 A 1200 | 1.34 3.35 3-3
1.34 3.31 3-4 | 6991.92 A 1500 | 0.00 1.77 2-3 | | A 3000 III | A 100 | III | | 1.22 3.35 2-3 | 5696 22 4 8000 | 0.07 2.23 4-5 (3) | | A 2000 IV 4112.04 A 30 1.34 4.35 3.5 5633.35 A 2500 0.00 2.19 2.2 A 200 III 3938.87 A 15 1.24 4.35 3.5 5633.35 A 2500 0.07 2.20 4.3 A 200 III 4055.36 A 40 1.32 4.25 2.3 5701.55 A 2500 0.07 2.20 4.3 A 200 III 3741.31 A 400 1.37 4.67 6.5 8 9 9 x 9 7 1 4355.56 A 300 0.12 2.96 5.5 A 200 1II 3761.13 A 300 1.31 4.60 5.4 (11) 4565.56 A 300 0.12 2.96 5.5 A 200 2.17 5.6 A 200 0.11 2.24 4.25 2.2 A 200 0.12 2.17 5.6 A 200 0.11 2.24 4.25 2.2 A 200 0.12 2.17 5.6 A 200 0.11 2.24 4.25 2.2 A 200 0.12 2.17 5.6 A 200 0.11 2.24 4.25 2.2 A 200 0.12 2.17 5.6 A 200 0.11 2.24 4.25 2.2 A 200 0.12 2.17 5.6 A 200 0.11 2.24 4.25 2.2 A 200 0.12 2.17 5.6 A 200 0.11 2.24 4.25 2.2 A 200 0.12 2.17 5.6 A 200 0.11 2.24 4.25 2.2 A 200 0.12 2.17 5.0 A 200 0.02 2.17 2.0 A 200 0.11 2.24 4.25 2.2 A 200 0.12 2.17 5.0 A 200 0.25 2.20 4.25 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2 | A 100 | III | 4017.58 A 100
4151.52 A 30 | 1.27 4.25 4-3 | 6114.07 A 2000 | 0.00 2.20 2-3
0.21 2.23 6-6 | | A 200 III | | | 4112.04 A 30 | 1.34 4.35 3-3 | 5632.25 A 2500 | 0.00 3.19 2-2 | | A 300 III | A 200
A 400 | III | 4085.38 A 40 | 1.32 4.35 2-3 | 5701.35 A 2500 | 0.03 2.19 3-2 | | A 300 III | A 200 | III | 3761.12 A 300 | 1.27 4.52 4-3 | 4313.845 A 2000 | 0.03 2.89 3-3 | | A 400 III A 100 III A 200 IV A 150 | A 300 | III | 3714.904 A 100 | 1.27 4.60 4-4 | | | | A 100 III | A 300 | III | 3683.267 A 40 | 1.34 4.60 3-4 | 4053.642 A 2500
4078.700 A 3000 | 0.07 3.09 4-5 | | 3508.731 A 10 1.27 4.79 4.3 (13) 5103.49 A 300 0.98 3.40 7.8 (6) A 150 III | A 100 | III | 3713.45 A 125 | 1.34 4.57 3-3 a ⁹ D°-115 | 4058.219 A 2500 | | | A 150 III 3440.999 A 80 1.24 4.83 3.4 5197.788 A 1800 0.88 3.25 5.6 A 200 IV 3461.38 A 80 1.22 4.79 2.3 5219.40 A 2000 0.84 3.20 4.5 A 200 IV 320.070 A 80 1.27 4.69 4.4 200.014 5283.076 A 3000 0.98 3.32 7.7 A 200 III 3603.20 A 200 1.27 4.70 4.4 200.121 5203.177 A 4000
0.88 3.20 5.5 A 200 III 3603.20 A 200 1.27 4.70 4.4 200.121 5203.777 A 4000 0.88 3.20 5.5 A 200 IV 3542.152 A 80 1.23 4.71 3.2 200.17 524.24 5203.18 A 2000 0.99 3.25 5.8 A 200 IV 3552.516 A 100 1.31 4.98 5.8 200.17 5.8 2000 1.34 3.66 4.5 A 200 IV 3233.857 A 100 1.31 4.98 5.8 200 IV 3233.857 A 100 1.37 4.98 6.8 4.4 220 300 IV 3233.857 A 100 1.37 4.98 6.8 4.4 220 300 IV 3233.857 A 100 1.37 4.98 6.8 4.4 220 300 IV 3233.857 A 100 1.37 4.98 6.8 4.4 220 300 IV 3233.857 A 100 1.37 4.98 6.8 4.4 220 300 IV 3233.857 A 100 1.37 4.98 6.8 4.4 220 300 IV 3233.857 A 100 1.37 4.98 6.8 4.4 220 300 IV 3233.857 A 100 1.37 4.98 6.8 4.4 220 300 IV 3233.857 A 100 1.37 4.98 6.8 4.4 220 300 IV 3233.857 A 100 1.37 4.98 6.8 4.4 220 300 IV 3233.857 A 100 1.37 4.98 6.8 4.4 220 300 IV 3233.857 A 100 1.37 4.98 6.8 4.4 220 300 IV 3233.857 A 100 1.37 4.98 6.8 4.4 220 300 IV 3233.857 A 100 1.37 4.98 6.8 4.4 4.8 300 IV 3233.857 A 100 1.37 4.98 6.8 4.4 4.8 300 IV 3233.8 | A 150 | IV | 3508.731 A 10 | 1.27 4.79 4-3 (13) | 5103.45 A 2000 | 0.98 3.40 7-8 (6) | | A 200 IV A 400 III 3611.57 A 100 1.27 4.69 4-4 a 290-121 5361.107 A 3000 1.05 3.40 0-8 A 300 III A 500 IV A 300 IV A 300 IV A 300 IV A 500 50 | A 150
A 200 | III | 3440.999 A 80 | 1.24 4.83 3-4 | 5197.768 A 1300 | 0.88 3.25 5-6 | | A 300 III | A 400 | IV | 3710.870 A 80 | 1.51 4.04 5-0 a ⁹ p°-116 | 5051.180 A 8000 | 1.05 3.40 8-8 | | A 400 IV 3622.54 A 150 1.37 4.78 6-7 a 9pc-125 A 200 IV A 200 IV 3552.516 A 100 1.31 4.79 5-5 a 2pc-125 5353.38 A 4000 1.54 3.85 7-8 a 9pc-29t 7 A 200 IV 3552.516 A 100 1.31 4.79 5-5 a 2pc-126 5353.38 A 4000 1.34 3.85 7-8 a 9pc-29t 7 A 300 IV 3389.055 A 200 1.31 4.98 5-8 a 2pc-131 5333.30 A 3000 1.39 3.70 5-8 A 300 IV 3331.857 A 100 1.37 5.09 6-5 a 2pc-134 A 500 IV A 500 IVI A 300 IV 3331.857 A 100 1.37 5.09 6-5 a 2pc-134 A 500 IVI A 300 IV 3331.857 A 100 2.99 6.06 4-4 2pc-95 A 500 IV 3943.08 A 40 2.93 6.06 3.4 3952.00 A 500 0.14 3.27 5-44 (1) A 500 IV 33435.08 A 40 2.93 6.06 3.4 3952.00 A 500 0.14 3.27 5-44 (1) A 500 IV 33435.08 A 40 2.93 6.06 3.4 3952.00 A 500 0.14 3.27 5-44 (1) A 500 IV 3380.25 A 100 2.99 6.64 4-4 2p-10 3656.152 A 1500 0.14 3.52 5-54 (1) A 400 IV 3380.25 A 100 2.99 6.64 4-4 2p-10 3656.152 A 1500 0.14 3.52 5-54 (1) | A 300 | III | | (45) | E207 20 & 4000 | 0.92 3.25 6-6
0.88 3.20 5-5 | | A 400 IV 3622.54 A 150 1.37 4.78 6-7 a 9pc-125 A 200 IV A 200 IV 3552.516 A 100 1.31 4.79 5-5 a 2pc-125 5353.38 A 4000 1.54 3.85 7-8 a 9pc-29t 7 A 200 IV 3552.516 A 100 1.31 4.79 5-5 a 2pc-126 5353.38 A 4000 1.34 3.85 7-8 a 9pc-29t 7 A 300 IV 3389.055 A 200 1.31 4.98 5-8 a 2pc-131 5333.30 A 3000 1.39 3.70 5-8 A 300 IV 3331.857 A 100 1.37 5.09 6-5 a 2pc-134 A 500 IV A 500 IVI A 300 IV 3331.857 A 100 1.37 5.09 6-5 a 2pc-134 A 500 IVI A 300 IV 3331.857 A 100 2.99 6.06 4-4 2pc-95 A 500 IV 3943.08 A 40 2.93 6.06 3.4 3952.00 A 500 0.14 3.27 5-44 (1) A 500 IV 33435.08 A 40 2.93 6.06 3.4 3952.00 A 500 0.14 3.27 5-44 (1) A 500 IV 33435.08 A 40 2.93 6.06 3.4 3952.00 A 500 0.14 3.27 5-44 (1) A 500 IV 3380.25 A 100 2.99 6.64 4-4 2p-10 3656.152 A 1500 0.14 3.52 5-54 (1) A 400 IV 3380.25 A 100 2.99 6.64 4-4 2p-10 3656.152 A 1500 0.14 3.52 5-54 (1) | A 300d | III | | 1.27 4.70 4-4 a ⁹ D°-1221
(16) | 5321.777 A 4000
5302.76 A 3000 | 0.81 3.14 3-3 | | A 200 IV A 200 IV A 200 IV A 200 IV A 3552.516 A 100 1.31 4.79 5.5 e ² De-136 t 5353.36 A 3000 1.46 3.77 6-7 (7) A 200 IV A 300 500 III A 500 III A 500 III A 500 III A 500 IV A 300 3 | A 400 | īv | 3542.152 A 80 | 1.23 4.71 3-3 (17) | 5349.67 A 2000 | | | A 300 IV 3369.055 A 200 1.31 4.98 5.6 app-131 5333.30 A 3000 1.39 3.70 5.6 A 300 IV 3369.055 A 200 1.31 4.98 5.6 app-131 5333.30 A 3000 1.34 3.66 4.5 A 300 IV 3321.857 A 100 1.37 5.09 6.5 app-134 (21) A 500 III (21) A 500 III (21) A 500 III (21) A 300 IV 3321.857 A 100 2.99 6.06 5.4 29p-e9s 4011.69 A 100 2.99 6.06 4.4 (22) A 500 IV 3943.08 A 40 2.93 6.06 3.4 392.00 A 300 0.14 3.27 55.44 (1) A 300 IV 3380.25 A 100 3.99 6.64 4.4 29p-10 3656.152 A 1500 0.6 3.27 4.44 | A 200 | IA | | 1.37 4.78 6-7 a ³ D ² -125
(18)
1.31 4.79 5-5 a ⁹ D ² -126 | 5350.38 A 4000
5353.26 A 3000 | 1.46 3.77 6-7 (7) | | A 500 IV A 500 III A 500 III A 500 III A 500 III A 500 IV | A 200 | IV | 3369.055 A 200 | (19)
1.31 4.98 5-6 a ⁹ D°-131 | 5343.00 A 3000 | 1.39 3.70 5-6 | | A 500 III A 300 IV 4355.09 A 300 3.23 6.06 5-4 z ⁹ P-e ⁹ S° 4011.69 A 100 2.99 6.06 4.4 (22) 3783.00 A 50 0.14 3.52 6 ¹ / ₂ -5 ¹ / ₂ a ¹ / ₂ 0P-z ¹ 0P A 300 IV 3943.08 A 40 2.93 6.06 3.4 3995.13 A 200 0.08 3.17 4.32 A 400 IV 3380.25 A 100 3.99 6.64 4.4 z ⁹ P-1° 3656.152 A 1500 0.14 3.52 5 ¹ / ₂ -5 ¹ / ₂ (1) 380.25 A 100 3.99 6.64 4.4 z ⁹ P-1° 3656.153 A 1500 0.14 3.52 5 ¹ / ₂ -5 ¹ / ₂ (1) 3783.00 IV 3380.25 A 100 3.99 6.64 4.4 z ⁹ P-1° 3656.153 A 1500 0.14 3.52 5 ¹ / ₂ -5 ¹ / ₂ (1) 3783.00 IV 3380.25 A 100 3.99 6.64 4.4 z ⁹ P-1° 3656.153 A 1500 0.14 3.52 5 ¹ / ₂ -5 ¹ / ₂ (1) 3783.00 IV 3380.25 A 100 3.99 6.64 4.4 z ⁹ P-1° 3656.153 A 1500 0.14 3.52 5 ¹ / ₂ -5 ¹ / ₂ (1) 3783.00 IV | A 500 | IV | | 1.37 5.09 6-5 a ⁹ D°-134 | | | | 4011.69 A 100 2.99 6.06 4-4 (22) 3783.00 A 50 0.24 3.52 6\$\frac{1}{2}\$\frac{1} | A 500 | III | 4355.09 A 300 | | Gd II I P † Anal | | | | A 500 | | 4011.69 A 100 | 2.99 6.06 4-4 (22) | 3952.00 A 300 | 0.34 3.52 6 -5 a ¹⁰ p°-z ¹⁰ p
0.14 3.27 5 -4 (1) | | A 400 IV 3531.09 A 100 3.23 6.74 5-6 $z^{9}P^{-9}D^{9}$? 3934.824 A 300? 0.03 3.17 33-34 A 300 IV 3301.95 A 150 2.99 6.73 4-5 (24) 3587.186 A 40 0.08 3.52 42-52 3866.39 A 300 2.93 6.71 3-4 3616.64 A 350 0.03 3.27 33-42 3894.898 A 3000 0.00 3.17 $z^{3}z^{3}z^{4}z^{4}z^{4}z^{4}z^{4}z^{4}z^{4}z^{4$ | A 400 | IV | 3380.35 A 100 | 3.99 6.64 4-4 z ⁹ P-1° (23) | 3656.152 A 1500 | | | 3894.898 A 2000 0.00 3.17 29-39 | A 400 | IA | 3301.95 A 150 | 2.99 6.73 4-5 (24) | 3587.186 A 40 | 0.03 3.17 3\frac{1}{2}-3\frac{1}{2}
0.08 3.52 4\frac{1}{2}-5\frac{1}{2}
0.03 3.27 34 | | | | | 3900-39 % 300 | p.20 G.17 9-# | | 0.00 3.17 29-39 | | | | REVISED MI | JLTIPLET TABLE | | 93 | |--|---|--|---|---
--| | Laboratory
I A Ref Int | EP J Multiplet
Low High (No) | Laboratory
I A Ref Int | EP J Multiplet
Low High (No) | Laboratory
I A Ref Int | E P J Multiplet
Low High (No) | | Gd II continued | | Gd II continued | | Gd II continued | | | 3422.466 A 10000
3545.797 A 3000 | 0.24 3.84 $6\frac{1}{2}$ $-7\frac{1}{2}$ a^{10} D^{0} $-z^{10}$ F 0.14 3.62 $5\frac{1}{2}$ $-6\frac{1}{2}$ (2) | 4078.444 A 1300
4184.352 A 2000 | 0.60 3.63 $5\frac{1}{2}$ - $6\frac{1}{2}$ $a^{8}D^{0}$ - $z^{10}F$
0.49 3.44 $4\frac{1}{2}$ - $5\frac{1}{2}$ (15) | 3009.650 A 150 | 0.60 4.70 5½-4½ a ⁸ D°-8† | | 3671.20 A 1500
3716.36 A 1000 | 0.08 3.44 45-55
0.03 3.35 35-45
0.00 3.28 25-35 | 4212.001 A 800
4251.733 A 2000
4280.490 A 1500 | 0.42 3.35 3½-4½
0.38 3.28 2½-3½
0.35 3.24 1½-2½ | 2969.267 A 50
2965.428 A 400 | 0.60 4.75 5½-5½ 2805-3
(32)
0.60 4.76 5½-5½ 2805-26F†
0.60 4.69 5½-4½ (39) | | 3646.19 A 3000
3743.47 A 2000 | 0.24 3.62 $6\frac{1}{2}$ $-6\frac{1}{2}$ 0.14 3.44 $5\frac{1}{2}$ $-5\frac{1}{2}$ | 4342.179 A 1500
4310.981 A 200 | 0.60 3.44 5½-5½
0.49 3.35 4½-4½ | 3012.190 A 600 | 0.60 4.69 5½-4½ (29) | | 3768.39 A 2000
3796.37 A 2500
3813.97 A 2000 | 0.08 3.35 4½-4½
0.03 3.28 3½-3½
0.00 3.24 2½-2½ | 4323.195 A 125
*4327.125\$ A 1500
4478.795 A 250 | 0.38 3.24 2½-3½
0.35 3.20 1½-1½
0.60 3.35 5½-4½ | 4510.380 A 30d? | 0.43 3.16 $3\frac{1}{2}-4\frac{1}{2}$ a ⁸ s°-1 (30) | | 3855.56 A 200
3844.579 A 500 | 0.24 3.44 6½-5½
0.14 3.35 5½-4½ | 4419.032 A 800
4387.674 A 300
4369.771 A 500 | 0.49 3.28 4½-3½
0.42 3.24 3½-2½
0.38 3.20 2½-1½ | 4344.487 A 40
4498.276 A 300 | 0.43 3.27 $3\frac{1}{2}$ $4\frac{1}{2}$ $8\frac{8}{5}$ $-z^{10}$ 0.43 3.17 $3\frac{1}{2}$ $3\frac{1}{2}$ (31) | | 3850.69 A 800
3852.45 A 1000
3850.97 A 1200 | 0.08 3.28 4½-3½
0.03 3.24 3½-2½
0.00 3.20 2½-1½ | 4360.917 A 250 | 0.42 3.25 33-42 a8D-2 | 4215.023 A 600
4390.953 A 300 | 0.43 3.35 3½-4½ a ⁸ 5°-z ¹⁰ F
0.43 3.24 3½-2½ (32) | | 3968.261 A 60 | 0.14 3.25 5½-4½ 2 ¹⁰ D°-2
0.08 3.25 4½-4½ (3)
0.03 3.25 3½-4½ | 3843.80 A 25
4162.732 A 500 | (16)
0.60 3.81 5½-4½ 880°-z8p↑
0.49 3.46 4½-3½ (17) | 4364.140 A 25 | 0.43 3.25 $3\frac{1}{2}-4\frac{1}{2}$ $a^8 S^9 - 3$ (33) | | 3887.157 A 40
3831.80 A 100 | | 4188.099 A 60
3719.53 A 300 | 0.42 3.37 3½-2½
0.49 3.81 4½-4½ | 4073.195 A 400
4191.067 A 800 | 0.43 3.46 3½-3½ e ⁸ 5°-2 ⁸ P†
0.43 3.37 3½-2½ (34) | | 3367.093 A 100
3654.62 A 2000d
3697.73 A 1000 | 0.14 3.81 5½-4½ a ¹⁰ D°-z ⁸ P
0.08 3.46 4½-3½ (4)
0.03 3.37 3½-8½
0.08 3.81 4½-4½ | 4070.390 A 200
3645.62 A 300
4013.953 A 60 | 0.42 3.46 3-3-3-
0.42 3.81 3-4-
0.38 3.46 2-3-3- | *4170.108§ A 150 | 0.43 3.38 3½-3½ a ⁸ 5°-3
(35).0 | | 3697.73 A 1000
3308.517 A 80
3605.665 A 100 | 0.08 3.81 42-42
0.03 3.46 32-32 | 4167.159 A 40 | 0.42 3.38 3½-3½ a ⁸ p°-3† | 3881.84 A 50 | 0.43 3.60 3½-2½ a°S°-z ¹⁰ D† | | 3662.26 A 800
3268.335 A 400
3571.933 A 300 | 0.03 3.46 34-34
0.00 3.37 35-35
0.03 3.81 34-45
0.00 3.46 32-35 | 3822.17 A 80
3826.05 A 200 | 0.60 3.83 $5\frac{1}{2}$ - $6\frac{1}{2}$ a^{8} D^{6} - z^{10} D \uparrow 0.49 3.73 $4\frac{1}{2}$ - $5\frac{1}{2}$ (19) | 3760.71 A 200
3763.33 A 60
3769.45 A 100 | 0.43 3.71 3½-4½ a ^{85°} -z ⁸ D
0.43 3.70 3½-3½ (37)
0.43 3.70 3½-3½ | | 3732.45 A 100 | 0.08 3.38 4½-3½ a ¹⁰ D°-3 | 3902.398 A 1000
3957.672 A 1000 | 0.42 3.59 3\$-4\$
0.60 3.72 5\$-5\$ | 3512.219 A 800 | 0.43 3.94 3½-3½ e85°-±6P† | | 3524.196 A 1000
3491.954 A 2000 | 0.03 3.53 3½-3½ a ¹⁰ p°-4
0.00 3.53 a½-3½ (c) | 3987.214 A 600
3872.62 A 60
+4130.378 A 3000 | 0.49 3.59 $4\frac{1}{2}$ $4\frac{1}{2}$
0.42 3.61 $3\frac{1}{2}$ $3\frac{1}{2}$
0.60 3.59 $5\frac{1}{2}$ $4\frac{1}{2}$ | 3441.790 A 400
3460.307 A 100 | (38)
0.43 4.01 3½-3½ a ⁸ 5°-z ⁸ F†
0.43 3.98 3½-2½ (39) | | 3439.990 A 6000
3454.145 A 1500
3518.632 A 30 | 0.24 3.83 6½-6½ a ¹⁰ p°-z ¹⁰ p
0.14 3.72 5½-5½ (7)
0.08 3.59 4½-4½ | 3916.508 A 3000
3836.91 A 300
3760.92 A 100 | 0.60 3.75 5\frac{1}{2}-5\frac{1}{2} a^8 D^9 - z^8 D † 0.49 3.71 4\frac{1}{2}-4\frac{1}{2} (30) 0.42 3.70 3\frac{1}{2}-3\frac{1}{2} | 3463.984 A 5000
3468.989 A 3000
3482.602 A 800 | 0.43 3.99 3½-4½ 8 ⁸ 5°-y ⁸ P
0.43 3.98 3½-3½ (40)
0.43 3.97 3½-3½ | | 3449.616 A 800
*3423.92 A 1500
3549.365 A 3000 | 0.03 3.61 3½-3½
0.00 3.60 2½-2½
0.24 3.72 6½-5½ | 3699.73 A 800
3969.293 A 300
3639.64 A 300 | 0.35 3.69 13-12
0.60 3.71 52-42
0.49 3.70 45-33 | 3315.590 A 400
3358.434 A 300 | 0.43 4.15 $3\frac{1}{2}$ $4\frac{1}{2}$ 2^{8} 5^{6} $-y^{10}$ p 0.43 4.10 $3\frac{1}{2}$ $3\frac{1}{2}$ (41) | | 3584.962 A 3000
3494.404 A 3000 | 0.14 3.59 5 4 4 5 0.08 3.61 4 2 3 2 | 3767.04 A 500
3730.84 A 1000 | 0.42 3.70 3\frac{1}{2}-2\frac{1}{2}
0.38 3.69 2\frac{1}{2}-1\frac{1}{2}
0.49 3.75 4\frac{1}{2}-5\frac{1}{2} | 3010.899 A 250
2993.038 A 500 | 0.43 4.52 3½-4½ a ⁸ S°-y ⁸ D
0.43 4.55 3½-2½ (42) | | 3454.904 A 2000
3350.474 A 10000
3392.530 A 2000 | 0.03 3.60 3½-2½
0.14 3.83 5½-6½
0.08 3.72 4½-5½ | 3787.56 A 400
3758.31 A 200
3712.70 A 2000 | 0.42 3.71 32-42
0.38 3.70 22-32 | | | | 3392.530 A 2000
3473.219 A 2000
3418.733 A 2000 | 0.03 3.59 31-41
0.00 3.61 21-32 | 3687.74 A 800 | 0.35 3.70 1½-2½ | 4734.427 A 100
4902.575 A 80
4316.052 A 600 | 0.66 3.27 5\frac{1}{2} e^{10} \text{F}^{\circ} - z^{10} \text{P}^{\circ} \\ 0.60 3.17 4\frac{1}{2} - 3\frac{1}{2} \\ 0.66 3.52 5\frac{1}{2} - 5\frac{1}{2} \\ 0.66 3.52 5\frac{1}{2} - 5\frac{1}{2} \\ 0.66 3.52 5\frac{1}{2} - 5\frac{1}{2} - 5\frac{1}{2} \\ 0.66 3.52 5\frac{1}{2} - 5\frac{1}{2 | | 3462.997 A 200
3365.591 A 400 | 0.14 3.71 $5\frac{1}{2}$ $4\frac{1}{2}$ a^{10} D° $-z^{8}$ D^{\uparrow} 0.03 3.70 $3\frac{1}{2}$ $-3\frac{1}{2}$ (8) | 3409.297 A 500
3321.348 A 30 | $0.42 4.04 3\frac{1}{2} = 2\frac{1}{2} (21)$
$0.38 4.10 2\frac{1}{2} = 1\frac{1}{2}$ | 4627.66 A 40
4719.040 A 60 | 0.60 3.27 4\frac{1}{2}-4\frac{1}{2}-
0.55 3.17 3\frac{1}{2}-3\frac{1}{2} | | 3345.985 A 2000
3422.751 A 500
3401.067 A 300 | 0.00 3.69 2½-1½
0.14 3.75 5½-5½
0.08 3.71 4½-4½ | 3510.133 A 30
*3369.618 A 400
3296.668 A 30 | 0.43 3.94 $3\frac{1}{2}$ $3\frac{1}{2}$
0.38 4.04 $3\frac{1}{2}$ $3\frac{1}{2}$
0.35 4.10 $1\frac{1}{2}$ $1\frac{1}{2}$ | 4227.140 A 200
4073.759 A 1500 | 0.60 3.52 4½-5½
0.82 3.84 7½-7½ a ¹⁰ F°-z ¹⁰ F† | | 3360.711 A 1000
3336.180 A 2500 | 0.03 3.70 3½-3½
0.00 3.70 2½-2½ | 3468.083 A 200 | 0.38 3.94 2½-3½ | *4262.092§ A 2500
4438.266 A 150 | 0.82 3.84 7½-7½ a ¹⁰ Fe-z ¹⁰ F†
0.73 3.62 6½-6½ (44)
0.66 3.44 5½-5½ | | 3362.233 A 10000
3358.620 A 8000
3331.383 A 4000 | 0.08 3.75 4½-5½
0.03 3.71 3½-4½
0.00 3.70 2½-3½ | 3481.275 A 5000
3450.376 A 4000
3416.948 A 2500 | 0.49 4.07 4½-5½ (22)
0.42 4.03 3½-4½ | 4481.056 A 300
4521.296 A 100
4558.080 A 250 | 0.60 3.35 4½-4½
0.55 3.88 3½-3½
0.50 3.20 1½-1½ | | 3196.532 A 150 | 0.08 3.94 4½-3½ a ¹⁰ p°-z ⁶ p†
0.00 4.04 2½-3½ (9)
0.00 3.94 3½-3½ | 3399.406 A 500
3399.991 A 1200
3557.053 A 1000 | 0.38 4.01 2½-3½
0.35 3.98 1½-3½
0.60 4.07 5½-5½ | 4394.719 A 25
4550.954 A 150
4581.086 A 200 | 0.82 3.62 7 - 6 - | | 3133.094 A 150 | | 3439.784 A 1500 | 0.49 4.03 4½-4½
0.42 4.01 3½-3½ | *4597.91 \$ A 500
4601.05 A 500 | 0.60 3.28 4½-3½
0.55 3.24 3½-2½ | | 3161.369 A 2500
3145.00 A 2500
3119.08 A 60 | 0.24 4.14 6½-6½ a ¹⁰ Pe-z ⁸ F
0.14 4.07 5½-5½ (10)
0.08 4.03 4½-4½
0.03 4.01 3½-3½ | 3424.592 A 1200
3590.468 A 100
3505.512 A 2000 | 0.35 3.96 1½-1½
0.60 4.03 5½-4½
0.49 4.01 4½-3½ | 4596.978 A 400
3959.523 A 5007
•4163.092§ A 250 | 0.52 3.20 25-15
0.73 3.84 65-75
0.66 3.62 55-65 | | 3101.911 A
250d
3098.899 A 300 | 0.00 3.98 25-25 | 3467.267 A 3500
3451.233 A 2000 | 0.42 3.98 3 2-23
0.38 3.96 22-12 | 4344.300 A 100
4408.248 A 400 | 0.60 3.44 $4\frac{1}{2}-5\frac{1}{2}$ 0.55 3.35 $3\frac{1}{2}-4\frac{1}{2}$ | | 3223.740 A 1000?
3171.09 A 125
3138.094 A 80 | 0.24 4.07 6½-5½
0.14 4.03 5½-4½
0.08 4.01 4½-3½ | 3432.994 A 1500
*3640.18 § A 50 | 0.35 3.95 1½-½
0.60 3.99 5½-4½ a ⁸ p°-y ⁸ P† | *4466.547§ A 500
4506.333 A 200 | 0.52 3.28 2½-3½
0.50 3.24 1½-3½ | | 3124.250 A 150
3119.336 A 25
3085.621 A 60 | 0.03 3.98 3½-3½
0.00 3.96 3½-1½
0.14 4.14 5½-6½ | 3480.547 A 60
3528.545 A 300
3466.952 A 600 | 0.42 3.97 3\frac{1}{2} (23)
0.49 3.99 4\frac{1}{2} -4\frac{1}{2}
0.42 3.98 3\frac{1}{2} -3\frac{1}{2} | 4757.791 A 80
4321.110 A 200 | 0.66 3.25 5\(\frac{1}{2}\) a ¹⁰ r°-2† (45) 0.60 3.46 4\(\frac{1}{2}\)-3\(\frac{1}{2}\) a ¹⁰ r°-2 ⁸ p† | | 3093.846 A 25
3083.350 A 200 | 0.08 4.07 4½-5½
0.03 4.03 3½-4½ | 3439.208 A 3000
*3461.952§ A 300 | 0.38 3.97 21-21
0.42 3.99 31-41 | 4382.061 A 60
4253.366 A 800 | 0.55 3.37 3½-2½ (46)
0.55 3.46 3½-3½ | | 3076.925 A 2000
*3160.69 \$ A 200 | 0.00 4.01 $2\frac{1}{2}-3\frac{1}{2}$
0.08 3.98 $4\frac{1}{2}-3\frac{1}{2}$ a^{10} D°-y P† | 3425.930 A 600
3412.753 A 80 | $\begin{array}{ccccc} 0.38 & 3.98 & 2\frac{1}{2} - 3\frac{1}{2} \\ 0.35 & 3.97 & 1\frac{1}{2} - 2\frac{1}{2} \end{array}$ | 4330.606 A 600
3791.72 A 30
4204.857 A 300 | 0.52 3.37 2½-3½
0.55 3.81 3½-4½
0.52 3.46 2½-3½ | | 3135.034 A 200
3156.532 A 2000 | 0.03 3.97 3 1 -21 (11)
0.08 3.99 44-41 | 3407.61 A 15007
3374.688 A 300 | 0.60 4.23 5½-5½ 8°P°-y¹°P
0.49 4.15 4½-4½ (24)
0.42 4.10 3½-3½
0.49 4.10 4½-3½ | 4296.076 A 1000 | 0.50 3.3? 1출-2출 | | 3123.989 A 1000
3119.941 A 800
3098.644 A 800 | 0.03 3.99 33-33
0.03 3.99 33-43
0.00 3.98 23-33 | 3419.069 A 50
3309.582 A 60 | 0.40 4.85 42-02 | *4359.152 A 40
4308.233 A 40 | 0.52 3.38 2½~3½ (47) | | 3100.504 A 10000
3081.993 A 8000 | 0.24 4.22 62-52 a ¹⁰ p°-y ¹⁰ p
0.14 4.15 52-42 (12)
0.08 4.10 41-32 | 3313.731 A 600
3318.055 A 100 | 0.38 4.10 2½-3½ | 4140.450 A 100
4094.478 A 300
4063.59 A 200 | 0.55 3.53 3½-2½ a ¹⁰ re-4
0.52 3.53 2½-2½ (48)
0.50 3.53 1½-2½ | | 3068.643 A 4000
3027.602 A 8000
3032.845 A 10000 | | 3161.638 A 40
3003.583 A 150
2960.926 A 500 | 0.60 4.50 5½-5½ a8pc-y8p† 0.42 4.53 33-3½ (25) 0.38 4.5b a3-33 0.60 4.52 55-42 0.49 4.53 42-3½ 0.49 4.50 43-35 | 4098.606 A 3000
*4130.372 A 3000 | 0.82 3.83 7½-6½ a ¹⁰ F°-z ¹⁰ D†
0.73 3.72 6%-5½ (49) | | 3034.051 A 8000
2980.154 A 6000 | 0.03 4.10 3 - 3 - 3 - 3 - 5 - 5 - 5 - 5 - 5 - 5 - | 3143.131 A 400
3053.570 A 600 | 0.60 4.52 54-42
0.49 4.53 42-32 | 4217.195 A 500
4098.900 A 400 | 0.66 3.59 5½-4½
0.60 3.61 4½-3½ | | 2999.045 A 8000
3010.129 A 8000 | $\begin{array}{ccccc} 0.03 & 4.15 & 3\frac{1}{2} - 4\frac{1}{2} \\ 0.00 & 4.10 & 3\frac{1}{2} - 3\frac{1}{2} \end{array}$ | 2991.520 A 150
3077.077 A 800 | 0.43 4.55 31-31
0.49 4.50 41-51
0.42 4.53 32-42 | 4045.148 A 100
3983.008 A 80 | 0.55 3.60 3½-2½
0.73 3.83 6½-6½
0.66 3.72 5½-5½ | | 4506.931 A 60 | 0.48 3.16 3½-4½ a ⁸ D°-1† | 2972.742 A 150 | 0.38 4.53 2 1 -3½ | 4132.275 A 2000
4037.897 A 1200 | 0.60 3.59 42-42 | | 4225.148 A 100
4446.487 A 250 | (13)
0.60 3.52 5½-5½ a ⁸ D°-z ¹⁰ P†
0.49 3.27 4½-4½ (14) | 3028.981 A 200 | 0.60 4.67 5½-4½ e ⁸ p°-7†
(26) | 4001.257 A 600
3959.436 A 300?
4070.288 A 600 | 0.52 3.60 3-24
0.60 3.72 4-5
0.55 3.59 3-45
0.52 3.61 2-31 | | 4494.853 A 25
4341.282 A 600 | 0.42 3.17 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 | | | 3994.165 A 800
3971.754 A 300 | 0.52 3.61 2½-3½
0.50 3.60 1½-2½ | | 4426.151 A 80 | 0.38 3.17 2½-3½ | | | | | | 34 | | | | | | | | | | |--|---|--|--|--|--|--|---|--|--| | Laboratory
I A Ref Int | E P
Low High | # Multiplet (No) | Laboratory
I A Ref In | nt Low H | J
ligh | Multiplet
(No) | Laboratory
I A Ref Int | E P J Multiplet
Low High (No) | | | Gå II continued | | | Gd II continued | | | | Gd II continued | | | | 4085.564 A 2000
4049.429 A 1200
3973.981 A 500
3923.246 A 300
3895.320 A 200
38971.082 A 100
m3916.81 P G
3861.94 A 33
3867.26 A 6
3918.236 A 150 | 0.73 3.75
0.66 3.71
0.60 3.70
0.55 3.70
0.52 3.69
0.60 3.74
0.55 3.70
0.50 3.69
0.60 3.75 | 51-42 (50) 42-3-2-4 52-4-1-1-1 53-4-1-1-1 53-3-3-1 53-3-3-1 53-1-1-1 53-1-1-1 | 3997.764 A 30
4154.862 A 35
4246.568 A 15
*4316.366 A 15
4383.119 A 15
4359.636 A 3
4424.102 A 4 | 00 1.06 4
50 1.10 4
50 1.13 4
50 1.15 4
50 1.17 3
30 1.15 3 | .94 21-31
.14 51-51-51-51-51-51-51-51-51-51-51-51-51-5 | b ⁸ D°-z ⁶ P †
(66)
b ⁸ D°-z ⁸ F †
(67) | 4582.38 A 300
4471.29 A 200
4433.635 A 60
4646.326 A 40
4520.070 A 150
4467.227 A 50
4467.227 A 80
4374.243 A 30 | 1.25 3.94 43.32 a ⁶ n°-z ⁶ p + 1.28 4.04 32.22 (82) 1.31 4.10 22-12 1.28 3.94 32-32 1.31 4.04 22-22 1.33 4.04 12-22 1.33 4.10 12-12 1.35 4.10 2-12 1.35 4.10 2-12 1.35 4.07 42-52 a ⁶ p°-z ⁸ F + 1.25 4.07 42-52 a ⁶ p°-z ⁸ F + 1.25 4.07 42-52 a ⁶ p°-z ⁸ F + 1.25 4.07 42-52 a ⁶ p°-z ⁸ F + 1.25 4.07 42-52 a ⁶ p°-z ⁸ F + 1.25 4.07 42-52 a ⁶ p°-z ⁸ F + 1.25 4.07 42-52 a ⁶ p°-z ⁸ F + 1.25 4.07 42-52 a ⁶ p°-z ⁸ F + 1.25 4.07 42-52 a ⁶ p°-z ⁸ F +
1.25 4.07 42-52 a ⁶ p°-z ⁸ F + 1.25 4.07 42-52 a ⁶ p°-z ⁸ F + 1.25 4.07 42-52 a ⁶ p°-z ⁸ F + 1.25 4.07 42-52 a ⁶ p°-z ⁸ F + 1.25 4.07 42-52 a ⁶ p°-z ⁸ F + 1.25 4.07 42-52 a ⁶ p°-z ⁸ F + 1.25 4.07 42-52 a ⁶ p°-z ⁸ F + 1.25 4.07 42-52 a ⁶ p°-z ⁸ F + 1.25 4.07 42-52 a ⁶ p°-z ⁸ F + 1.25 4.07 42-52 a ⁶ p°-z ⁸ F + 1.25 4.07 42-52 a ⁶ p°-z ⁸ F + 1.25 4.07 42-52 a ⁶ p°-z ⁸ F + 1.25 4.07 42-52 a ⁶ p°-z ⁸ F + 1.25 4.07 42-52 a ⁶ p°-z ⁸ F + 1.25 4.07 42-52 a ⁶ p°-z ⁸ F + 1.25 4.07 42-52 a ⁶ p°-z ⁸ F + 1.25 4.07 42-52 a ⁶ p°-z ⁸ F + 1.25 4.07 42-52 a ⁶ p°-z ⁸ F + 1.25 4.07 42-52 a ⁶ p°-z ⁸ F + 1.25 4.07 1 | | | 3875.46 A 100
3854.177 A 50 | 0.52 3.70
0.50 3.70 |) .2 3 -3 3 | 4438.13 A 3 | 30 1.17 3 | .95 1 2 - 2 | | 4463.247 A 80
4781.273 A 50 | 1.25 4.01 45-35 (83)
1.33 3.95 15-5 | | | 3709.13 A 50
3576.772 A 2:
*3614.21 § A 100
3591.912 A 30 | 0.82 4.14
0.50 3.95
0.73 4.14
0.60 4.03 | 5 1g- g (51)
4 6g-6g | 4368.731 A 15
4324.064 A 15
4380.642 A 10
*4316.366 A 15
*4359.152 A | 50 1.13 3
30 1.15 3
50 1.13 3 | .99 41-41
.98 32-31
.97 21-21
.99 32-41
.98 23-35 | • | 4570.977 A 40
4509.082 A 50
3791.17 A 300 | 1.28 3.98 $3\frac{1}{2}$ $-3\frac{1}{2}$ $a^{6}D^{6}$ $-y^{6}P^{+}$
1.25 3.98 $4\frac{1}{2}$ $-3\frac{1}{2}$ (84)
1.25 4.50 $4\frac{1}{2}$ $-5\frac{1}{2}$ $a^{6}D^{6}$ $-y^{6}D^{+}$ | | | 3569.566 A 46
3567.654 A 46
3542.768 A 50
3558.468 A 256 | 0.55 4.01
0.50 3.96
0.66 4.14
0.60 4.07 | 3 | 3581.91 A 20
3600.963 A 20
3626.32 A 4 | 00 1.06 4
00 1.10 4
40 1.13 4 | .50 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 | | 3807.65 A 25
3764.60 A 50
3755.56 A 40 | 1.28 4.52 3 4 (85)
1.25 4.52 4 4 4 1
1.25 4.53 4 2 3 2 | | | 3544.985 A 60
3593.445 A 60 | 0.55 4.03
0.55 3.99 | | | 00 1.06 4 | .57 13-13
.52 53-43
.53 43-33 | | 3641.39 A 125
3613.490 A 80 | 1.28 4.67 3½-4½ a ⁶ p°-7†
(86)
1.28 4.70 3½-4½ a ⁶ p°-8 | | | 3564.046 A 66
3554.802 A 36 | 0.52 3.98
0.50 3.97 | 3 23-35 (52)
7 15-25 | 3608.753 A 20
3613.392 A 15 | 00 1.13 4
50 1.15 4 | .55 33-25
.57 25-15
.50 45-55 | , | 3517.890 A 60 | 1.25 4.75 42-52 a6D0-9 | | | 3466.498 A 15 | 0.66 4.22 | (53) | 3634.757 A 10
3650.95 A 10 | 00 1.13 4
00 1.15 4 | .52 3 -4 - 4 - 53 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 | | 3512.496 A 600
3617.164 A 200 | 1.25 4.76 4 5 a 6 p 2 F t
1.28 4.69 3 4 4 (89) | | | 3193.174 A 200
3137.940 A 80
3089.204 A 30
3212.274 A 50 | 0.66 4.52
0.60 4.53
0.55 4.55
0.66 4.50 | 3 41-31 (54)
5 31-21
5 51-51 | 3412.583 A 6 | 60 1.06 4 | .55 1½-3½
.67 5½-4½
.67 4½-4½ | b ⁸ D°-7†
(70) | 3610.76 A 200
*3592.709 A 1500d
3580.618 A 40
3579.549 A 25 | 1.33 4.77 15-25
1.35 4.79 5-15
1.28 4.73 35-35 | | | 3162.764 A 2
3108.230 A 3 | 0.60 4.50
0.55 4.52 | 35-45 | 3388.065 A 4 | | | b ⁸ D°-8†
(71) | *3567.116 A 30
3553.716 A 40 | (1.33 4.79 13-13
1.35 4.81 2-3
1.33 4.81 13-3 | | | 3040.34 A 150 | 0.60 4.66 | (55) | | | .75 5}-5}
.75 42-52 | | 3428.467 A 500
3464.132 A 100? | 1.35 4.85 4½-4½ a ⁶ D°-x ⁸ P†
1.28 4.85 3½-4½ (90)
1.31 4.84 3½-3½ | | | 3058.119 A 80
2987.074 A 80 | 0.66 4.69
0.60 4.73 | (56)
5-4-4-10F°-z6F+ | 3332.133 A 100
3436.342 A 5
3412.080 A 20 | 50 1.13 4 | .76 53-53
.73 33-35
.77 23-25 | b ⁸ D ⁰ -z ⁶ F †
(73) | 3503.206 A 60
3395.120 A 1000 | 1.31 4.84 3½-3½ 1.35 4.88 4½-4½ a6p°-z6p | | | 5860.73 A 100 | 1.06 3.16 | | 3403.081 A 15
3391.294 A 15 | 50 1.17 4
50 1.06 4 | .79 13-13
.69 53-43
.77 33-23 | | *3402.072 A 1000
3407.56 A 6007
3413.273 A 400 | 1.28 4.91 35-35 (91)
1.31 4.93 25-25
1.33 4.95 15-15 | | | 5010.821 A 40 | 1.06 3.52 | (58)
51-51 b8D°-z1Op+ | 3388.912 A 10
3390.878 A 20 | 00 1.15 4
00 1.17 4 | 1.79 3 1-13
1.81 13-2 | | 3417.330 A 150
3367.661 A 150 | 1.35 4.96 }- }
1.25 4.91 45-35 | | | 6049.50 A 86
5583.68 A 80
5956.48 A 20
5096.063 A 20 | 1.13 3.17
1.06 3.27
1.10 3.17
1.10 3.52 | 7 5-4 | 3300.976 A 6 | 30 1.13 4
60 1.10 4 | 1.76 43-53
1.69 33-42
1.84 43-32 | b ⁸ D°-x ⁸ F† | 3379.756 A 400
3393.630 A 400
3405.038 A 150
3430.238 A 40 | 1.28 4.93 32-22
1.31 4.95 22-12
1.33 4.96 12-2
1.31 4.91 32-32 | | | 4805.817 A 100
5267.322 A 40
5176.285 A 800
5469.72 § A 800 | 1.06 3.62
1.10 3.44
1.06 3.44
1.10 3.35 | 1 4½-5½ (60)
1 5½-5½ | 3329.345 A 40
3366.532 A 5
3320.438 A 30 | 00 1.13 4
50 1.15 4
00 1.13 4 | 1.85 41-4
1.84 31-3
1.82 21-21
1.85 31-4
1.84 21-3 | , , | 3427.362 A 80
3425.624 A 50
3257.072 A 100
3274.183 A 300 | 1.33 4.93 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | 5728.32 A 6
5371.621 A 4
5644.84 A 30 | 1.13 3.28
1.06 3.35
1.10 3.28 | 5 5 § ~4∮ | | 00 1.17 4 | .82 1] _2 | | 3281.607 A 200
3282.305 A 4007
3279.529 A 200 | 1.31 5.07 35-35
1.33 5.09 15-35
1.35 5.11 5-15 | | | 5856.96 A 156
6011.12 A 36 | 1.13 3.24
1.15 3.20 | £ 3 } −2} | 3236.106 A 15
3242.834 A 5 | 50 1.10 4
50 1.13 4 | .91 44-34
.93 34-24
.95 24-14 | b ⁸ D°-z ⁶ D†
(75) | 3242.304 A 150
3255.819 A 150
3264.137 A 60 | 1.25 5.05 45-45
1.28 5.07 35-35
1.31 5.09 25-25 | | | 5616.21 A 30 | 1.06 3.25 | _(61)_ | *3262.515 A 8 | 80 1.10 4
25 1.13 4 | .88 41-41
.91 31-31 | | 3270.515 A 100
3224.297 A 60 | 1.35 5.12 \(\frac{1}{2} - \frac{1}{2} \) 1.25 5.07 4\(\frac{1}{2} - 3\frac{1}{2} \) | | | 4483.328 A 30
4551.455 A 36
5304.923 A 26
5357.790 A 56 | 1.06 3.81
1.10 3.81
1.13 3.46
1.15 5.46 | 1 45-45 (62)
3 35-35 | | 00 1.13 4 | 1.93 23-23
1.88 33-42
5.03 53-63 | • | 3238.621 A 300
3250.187 A 300
3259.250 A 250 | 1.28 5.09 3½-2½
1.31 5.11 2½-1½
1.33 5.12 1½- 2 | | | 5394.321 A 12
5470.53 A 5 | | 3 4½-3½ b ⁸ D°-3† | 3145.516 A 80
3146.878 A 25 | 00 1.10 5
00 1.13 5
50 1.15 5 | .05 35-45
.07 25-35 | | 3073.585 A 1000
3089.954 A 400
3092.058 A 150 | 1.25 5.26 4½-3½ x ⁶ D*-y ⁶ P*1
1.28 5.28 3½-2½ (93)
1.31 5.30 2½-1½ | | | 4453.931 A 60
4711.975 A 8
5023.133 A 20
5020.3686 A 8
5062.862 A 15 | 1.15 3.61 | 3 5½-6½ b ⁸ D°-z ¹⁰ D
3 4½-5½ (64)
3 3½-4½
1 2½-3½
1 1½-2½ | 3101.407 A 5
3120.181 A 12
3128.560 A 20
3130.813 A 30
3129.955 A 10 | 50 1.06 5
25 1.10 5
00 1.13 5
00 1.15 5
00 1.17 5 | 0.09 1 - 2 - 3 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 | | 3101.185 A 125
3113.172 A 250
3108.360 A 150
3129.696 A 80
3119.600 A 150 | 1.38 5.26 3 3 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | *4639.001 A 20
*4958.788\$ A 80
4973.896 A 3 | 1.10 3.55
1.13 3.61 | ₹ 42-42
L 35-32 | | | 5.11 2 3 -1 3
5.13 1 2 - 2 | • | 5877.26 A 1000
6634.36 A 1500 | 1.42 3.52 5½-5½ a ¹⁰ pe_z ¹⁰ p
1.31 3.17 3½-3½ (94) | | | 5031.552 A 86
4878.049 A 36
4910.838 A 5
4984.905 A 66 | 1.15 3.60
1.06 3.59
1.10 3.61
1.13 3.60 |) 2½-2½
3 5½-4½
1 4½-3½
) 3½-2½ | 2972.17 A 10
2985.521 A 10
2983.060 A | 00 1.15 5
00 1.13 5
60 1.17 5 | | ь ⁸ р•_у ⁶ Р
(77) | 6681.23 A 1000
6846.60 A 1200
5733.86 A 4000
6305.15 A 1500 | 1.42 3.27 52-42
1.37 3.17 42-32
1.37 3.53 42-53
1.31 3.27 32-42 | | | 4582.53 A 40
4728.468 A 30
4791.150 A 4
4894.30 A 60 | 1.06 3.75
1.10 3.71
1.13 3.70 | 5 5½-5½ b ⁸ D°-z ⁸ D†
L 4½-4½ (65)
3 3 2 3 2
1 1 2 1 2 | 3002.710 A 6 | 60 1.17 5 | | | 5597.21 A 200
5951.60 A 80
6106.19 A 100 | 1.42 3.62 5½-6½ a ¹⁰ Pe-z ¹⁰ F
1.37 3.44 4½-5½ (95)
1.42 3.44 5½-5½ | | | 4654.986 A 10
4732.60 A 60
4801.05 A 50 | 1.06 3.71
1.10 3.70 | 1 55-45
1 42-35
21 21 | | | 3.46 4½-3½
3.38 3½-3½ | 41/9/ | 6727.83 A 125
6346.65 A 400 | 1.42 3.25 5 4 10pe_2
1.31 3.25 3 2 4 (96) | | | 4865.02 A 40
4786.908 A 15 | 1.15 3.68
1.13 3.71 | 3 24-14
1 34-44 | | 30 1.28 3
00 1.31 3 | 3.61 31-31
3.61 32-31 | a ⁵ D°-3†
(79)
a ⁶ D°-z ¹⁰ D†
(80) | 5164.543 A 150
5987.11 A 150 | 1.42 3.81 5½-4½ 8 ¹⁰ P°-2 ⁸ P† 1.31 3.37 3½-2½ (97) 1.31 3.46 3½-3½ | | | 4834.232 A 30
4873.339 A 15 | | J 45~05 | | 00 1.25 3
60 1.28 3 | 3.70 43-33
3.70 33-23 | a ⁶ D°-z ⁸ D† | 5749.41 A 500
5545.01 A 250 | 1.31 3.46 3½-3½
1.31 3.53 3½-3½ a ¹⁰ po_4 | | | | | | | | | • | | (98) | | | Laboratory
I A Ref Int | E P
Low High | J Multiplet (No) | Laboratory
I A Ref | | E P
High | J Multiplet | Laborato
I A Ref | ry
Int | E P | | ltiplet
(No) | |--|-------------------------------------|---|--|------------------------------|------------------|---|--|-------------|-----------|---------------------------------------|-----------------------------| | IA Ref Int
Gå II continued | TON HIER | (1107 | Gd II continue | | ******* | (110) | Gd II contin | | DOE, II. | 2811 | (110) | | 5125.56 A 400 | 1.42 3.83 | $5\frac{1}{2}-6\frac{1}{2}$ a^{10} $p_{0}-z^{10}$ $p_{1}+\frac{1}{2}-5\frac{1}{2}$ (99) | 4341.376 A | 80 1.6 | 1 4.52 | 41-41 a8ro-y8D†
32-32 (117) | 7385.97 A | 80 | 2.34 4 | | -z ⁸ F | | *5252.14 \$ A 500
5419.876 A 150 | 1.37 3.72
1.31 3.59 | 3 3-42 | 4153.510 A | 150 1.5
125 1.5 | 8 4.55 | 24-24 cont | 5162.47 A | 50a | 2.34 4 | .73 2] -3] 2° | 139)
-z6F + | | 5372.216 A 300
5560.69 A 600 | 1.42 3.72
1.37 3.59 | 53-53
42-42 | 4115.376 A
4141.017 A | 80 1.5
25 1.5 | 7 4.55 | 12-12
12-22 | 4223.020 A | 60 | 2.34 5 | .26 2}-3} 2¢ | -265
1401 | | 5500.43 A 600
5375.393 A 100 | 1.37 3.61
1.31 3.60 | 45-35
35-25 | 4108.401 A | 50 1.5 | |
2-12
cl =1 -8ma -6m + | 7740 77 | | | | 141) | | 5393.659 A 100 | 1.42 3.71 | 51-42 a ¹⁰ pe_z ⁸ D†
42-52 (100) | 4059.370 A
3722.068 A | 80 1.7
100 1.7 | | 6½-5½ a8F°-z6F†
(118)
6½-5½ a8F°-y8F† | 7748.37 A | 40 | | | 142) | | 5179.919 A 125
*4666.448§ A 40 | 1.37 3.75 | 4½-3½ a ¹⁰ po-z8F † | 3722.068 A | | | (119) | 4965.047 A
4608.030 A | 60
40 | | .88 4½-4½ 3°.
(07 4½-3½ 3°. | 143) | | *4666.448\$ A 40
4803.536 A 80 | 1.42 3.99 | (101)
5½-4½ a10Pe_y8P† | 7908.06 A | 40d? 2.1 | 9 3.75 | 5½-5½ c ⁸ D°-z ⁸ D†
(120) | 4000.000 A | | | .07 45-35 3 | 144) | | 4716.576 A 30
*4639.001 A 200 | 1.37 3.98
1.31 3.97 | $\frac{4\frac{1}{2}-3\frac{1}{2}}{3\frac{1}{2}-3\frac{1}{2}}$ (102) | 6314.22 A
7197.08 A | 50 2.1
80 2.2 | | (130)
5½-6½ c ⁸ D°-z ⁸ F†
1½-3½ (131) | 8089.96 A | 60 | 2.46 3 | .99 3½-4½ 4° | _y ⁸ P †
145) | | 4406.67 A 400 | 1.42 4.33 | 53-53 a10po_y10p+ | 6568.00 A | 100 2.1
500 2.2 | 9 4.07 | 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - | 5441.17 A | 40 | 2.46 4 | .73 3½-3½ 4° | _26p
146) | | 4421.24 A 200
*4522.82 § A 250 | 1.31 4.10
1.42 4.15 | 5 \$-3\$ (103) | 6857.13 A | 600 2.1 | | 53-43 c8p°-y8p | *5178.843\$ A
5200.549 A | 100
30 | | .85 3½-4½ 4°
.84 3½-3½ (| _x8p
147) | | 4514.505 A 200
4325.566 A 200 | 1.37 4.10
1.37 4.22 | 45-35
45-55 | 7000.75 A | 250 2.2
200 2.2 | 1 3.97 | 4 1 - 3 (122)
3 2 - 2 2 | 4726.725 A | 40 | 2.46 5 | .07 3글-3글 40 | _y ⁸ F† | | 4347.310 A 400 | 1.31 4.15 | 32-42
52-52 a ¹⁰ po-y ⁸ D† | 6945.98 A | 200 2.2
150 2.2 | 1 3.98 | 43-43
33-33 | *3402.072 A | 1000 | 2.46 6 | .09 3½-3½ 4° | 148)
-w ⁸ P† | | 4003.850 A 30 | 1.42 4.50 | 104)
4½-3½ a ¹⁰ P°-6 | | 200 2.2 | | 2½-2½ | | | | (| 149) | | 3748.88 A 50 | 1.37 4.66 | (105)
3½-4½ a10pe_x8p | 6299.07 A
6494.11 A | 40 2.1
80 2.2 | 9 4.15 | 51-41 c8pe-y10p
42-32 (123) | Strongest Und | lassifie | đ Lines o | f <u>Gā II</u> | | | 3489.281 A 40
3414.207 A 60 | 1.42 5.03 | | 4968.575 A | 50 2.1 | 9 4.67 | 5½-4½ c8pe-7
(124) | 8442.58 A
8316.38 A | 300
500 | A
A | | | | 3363.974 A 30 | 1.37 5.03 | 52-62 a10po-y8F +
42-52 (107) | 4916.78 A | 25 2.1 | 9 4.70 | 5½-4½ c ⁸ D°-8
(125) | 7963.25 A
7930.25 A | 500
2000 | V
V | | | | 6610.04 A 80 | 1.65 3.52 | 52-52 a8F0-z10P+ | 4799.859 A
4888.542 A | 60 2.1
40 2.2 | | 5-2-5-2 c ² D*-z ⁶ F t
3-3-2 (126) | 7846.35 A | 3000 | Ÿ | | | | 6480.11 A 200 | 1.72 3.62 | 63-63 a8F°-z10F† | 4839.616 A
4923.578 A | 40 2.2
60 2.5 | 2 4.77 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 97844.87 A
7324.89 A | 300
400 | ٧ | | | | 7172.26 A 600
7252.70 A 400 | 1.72 3.44
1.65 3.35 | 63-53 (109)
53-43 | 4875.966 A | 50 2.2 | 0 4.73 | 4½-3½ | 7147.31 A
7135.73 A | 500
250 | v
v | | | | 7394.90 A 150
7505.35 A 80 | 1.61 3.28
1.59 3.24 | 4출-3률
3출-8출 | 4664.272 A | 30 2.2 | | 4½-4½ c8D°-x8P† | 7037.26 A | 600 | ٧ | | | | 5721.99 A 200 | 1.65 3.81 | 51-41 a8F0-z8P†
42-31 (110)
32-32 | *4337.510§ A
4335.290 A | 80 2.1
25 2.1 | 9 5.03 | 51-61 c8D°-y8F t
51-52 (128) | 6985.89 A | 1500
250 | v
v | | | | 6704.18 A 60
6622.28 A 50 | 1.61 3.46
1.59 3.46 | 49-35 (110)
32-35 | 4304.087 A
4292.747 A | 25 2.2
25 2.2 | | 3 § - 3 §
2 § - 2 § | 6887.63 A
5913.55 A | 300
800 | v
v | | | | 6260.31 A 40
*6180.43 § A 300 | 1.61 3.59
1.73 3.73 | 4]-4] a ⁸ ro-z ¹⁰ D
6]-5] (111) | 3191.044 A
3173.160 A | 125 2.1
30 p.2 | | 5-4-4 c ⁸ De_w ⁸ P†
4-3-3 (129) | *5911.45 § A | 500
aso | V
V | | | | 6380.95 A 600 | 1.65 3.59 | 25-45 | 3200.454 A
3177.490 A | 60 2.2
30 2.2 | 6.06 | 41-41
31-31 | 5538.32 A
4397.51 A | 300
300 | Ÿ
IV | | | | 6080.65 A 300
6004.57 A 500 | 1.72 3.75
1.65 3.71 | $6\frac{1}{2}-5\frac{1}{2}$ $a^{8}F^{\circ}-z^{8}D$ $5\frac{1}{2}-4\frac{1}{2}$ (112) | | 400 2.2 | | 1 2 2 2 | 4304.895 A
4297.173 A | 400
400 | v
v | | | | 5904.07 A 800
5855.24 A 300 | 1.61 3.70
1.59 3.70 | 45-35
35-25 | | 000 2.3 | | 72-62 a8G°-z8F†
62-52 (130) | 4253.612 A | 800 | ٧ | | | | 5845.71 A 80
5884.59 A 30 | 1.58 3.69
1.65 3.75 | 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | 7118.86 A | .000 2.3
800 2.3 | 0 4.03 | 6 2 -5 2 (130)
5 2-42 | 4238.782 A
4197.681 A | 500
800 | V
V | | * | | 5897.62 A 200
5840.4? A 200 | 1.61 3.71
1.59 3.70 | 32-32
32-32 | 7085.52 A | 200 2.2
50 2.2 | 4 3.98 | 42-32
32-22 | 4137.104 A
4111.438 A | 500
500 | ¥ | | | | 5815.85 A 250
5820.99 A 200
5801.30 A 40 | 1.58 3.70
1.57 3.69
1.58 3.70 | 2½-2½
1½-1½
2½-3½ | | 25 2.2
150 2.3
100 2.3 | 1 4.14 | 2\$-1\$
6\$-6\$
=1 =1 | 4063.390 A
4062.590 A | 1500
500 | IV
V | | | | 5807.05 A 100 | 1.56 3,69 | 1 -1 1 | 6959.24 A | 150 2.2
100 2.2 | 6 4.03 | 42-42
34-34 | 4062.590 A
4053.294 A
4049.858 A | | v
IV | | | | *4881.925 A 200 | 1.57 4.10 | 12-127a8F0-z6P+ | 7058.02 A | 80 2.2
150 2.2 | 3.98 | 2 } -2 } | 4022.333 A | 300 | ¥ | | | | 5092.251 A 600
5108.91 A 500 | 1.72 4.14
1.65 4.07 | (113)
62-62 a8F°-z8F†
53-53 (114) | 7146.13 A
6703.12 A | 40 2.3 | 2 3.95 | 5 5 -6 5 | 4013.798 A
4008.913 A | 250
400 | V
V | | | | 5098.38 A 400
5100.937 A 100 | 1.61 4.03
1.59 4.01 | 41-41
31-31 | 7141.17 A | 25 2.2 | | 31-21 a8G0-y8p+ | 3996.320 A
3895.791 A | 800
400 | IÝ
V | | | | 5175.839 A 50
5256.030 A 50 | 1.56 3.95
1.72 4.07 | 62-52 | | 100 2.3 | | (131)
61-51 a ⁸ G°-y ⁸ D†
41-52 (132) | 3842.20 A | 400 | IA | | | | 5178.104 A 100
5187.237 A 250 | 1.65 4.03
1.58 3.96 | 5 2 -4 2
2 2 -1 2 | 5510.58 A | 80 2.2 | | 4g-5g (132) | 3801.29 A
3782.34 A | 400
300 | v
V | | | | 5186.915 A 200
4954.025 A 50 | 1.57 3.95 | 15- 5
53-65
41-51 | *4881.925 A | 200 2.2 | 4 4.77 | 4½-3½ aếg°-z ⁶ F†
3½-2½ (133)
2½-1½ | 3770.69 A
3733.08 A | 300
300 | Å
A | | | | 5031.290 A 250
5050.278 A 300
5071.023 A 200 | 1.61 4.07
1.59 4.03
1.58 4.01 | 49-59
32-49
29-39 | 4831.955 A
4800.100 A
4772.728 A | 60 2.2
60 3.2
30 2.2 | 2 4.79 | 12-12
12-12
2-2 | 3719.45 A
3664.60 A | 800 | IV | | | | 5111.930 A 30
5156.76 A 200 | 1.57 3.98
1.56 3.96 | 12-32
2-12 | 4755.347 A | 30 2.2 | | | *3457.0478 A
3364.241 A | 300
500 | A
A | | | | 5210.488 A 200 | 1.61 3.98 | | 4540.016 A | 200 2.3 | 2 5.03 | 1½-8½ a8G°-x8P† (134) 7½-6½ a8G°-y8F† 6½-5½ (135) 5½-6½ | 3330.340 A
3225.460 A | 800
600 | Ý
V | | | | 5191.081 A 250
5199.211 A 60 | 1.59 3.97
1.61 3.99 | 41-31 a8F0-y8P† 31-21 (115) 42-42 32-31 | 4521.94 A
4486.352 A | 150 2.3
100 2.3 | 1 5.03
0 5.05 | 65-55 (135)
52-45 | 3084.007 A | 250 | ٧ | | | | 5160.896 A 100
5160.105 A 40 | 1.59 3.98
1.58 3.97 | N2-N2 | 4517.10 A | 30 2.3 | | | 3005.092 A
3002.860 A | 300
1000 | A
A | | | | 5149.841 A 50
5130.28 A 200
5140.839 A 400 | 1.59 3.99
1.58 3.98 | 31-41
31-31 | 3287.192 A
3252.743 A | 40 2.3
30 2.2 | 0 6.06
6 6.06 | 5}-4} a ⁸ G°-w ⁸ P†
4 2 -4½ (136) | 2963.605 A | 400 | V | | | | 5140.839 A 400
4936.155 A 50 | 1.57 3.97 | 17-47
61-51 88x0-v10p+ | 7017.73 A | 60 a.a | 5 4.01 | | To I No ana | lysis l | May 1942 | (Temperature | Class) | | 4806.165 A 40
4893.11 A 30 | 1.65 4.33
1.58 4.10 | 62-52 a ² F -y ¹⁰ P† 52-52 (116) 22-32 | 7133.16 A
7342.24 A | 100 2.2
60 2.2 | 5 3.98 | 8 - 3 1 - 2 F
8 - 2 (137)
3 - 1 2 | To II No ans | lvois | May 1942 | (Temperature | Class | | 4436.225 A 200 | 1.72 4.50 | 63-53 a8po-v8n+ | | | | 32-32 19-y8P | NO 8118 | -10-18 | | (Tembat.stortie | | | 4296.30 A 400
4229.803 A 200 | 1.65 4.52
1.61 4.53 | 62-52 a ⁸ F°-y ⁸ D† 52-42 (117) 42-32 32-22 | | | | (138) | | | | | | | 4173.556 A 100
4127.721 A 25 | 1.59 4.55
1.58 4.57 | 3 5 -2 5
25-15 | REVISED MULTIPLET TABLE | | |---|---
--| | .96 Leboratory E P J Multiplet T t Ref Int. Low High (No) | Laboratory EP J Multiplet I A Ref Int Low High (No) | Laboratory E P J Multiplet I A Ref Int Low High (No) | | I A Ref Int Low High (No) Dy I No analysis May 1942 (Temperature Class) | Tm.II continued | Hf I continued | | Dy II No analysis May 1942 (Temperature Class) | 3678.862 A 80 1.11 4.46 3-3 a ¹ F°-45
3431.195 A 100 1.11 4.70 3-4 (12) 52
3399.951 A 70 1.11 4.74 3-47 53 | 3332.73 A 300 0.00 3.70 2-3 a ³ F-29° 3162.57 A 80 0.00 3.90 2-2 (2) 32° 3072.88 A 300 0.00 4.02 2-2 34° | | Ho I No analysis May 1942 (Temperature Class) | 3374.512 A 100 1.11 4.76 3-2 54
3337.578 A 40 1.11 4.81 3- 55 | 3018.32 A 80 0.00 4.09 2-2 35°
2980.82 A 100 0.00 4.14 2-2 37° | | Ho II No analysis May 1942 (Temperature Class) | 3267.401 A 80 1.11 4.88 3-3 a ¹ F°-57
3236.806 A 150 1.11 4.92 3-4 (13) 58
3231.509 A 60 1.11 4.92 3-3 59 | 4174.33 A 50 0.29 3.25 3-3 a ³ F-16° 3523.02 A 60 0.29 3.79 3-4 (3) 30° | | Er Not separated May 1942 | Strongost Unclassified Lines of Tm II | 3313.87 A 100 0.29 4.02 3-2 34° 3131.81 A 150 0.29 4.23 3-2 41° 3080.84 A 80 0.29 4.30 3-4 a ³ F-43° | | | 5782.356 B 100 V
5709.976 B 100 IV
4626.565 B 80 IV | 3067.41 A 80 0.29 4.31 3-2 (4) 45°
3020.54 A 100 0.29 4.31 3-3 46°
2964.88 A 150 0.29 4.45 3-4 47° | | Tm I I P ? Anal D List D Jan 1943
4386.434 A 200 0.00 2.81 3 - a ² F°-2
4359.939 A 300 0.00 2.83 3 - (1) 3
3887.347 A 200 0.00 3.17 3 - 5 | 3996.518 B 200 III
3817.395 B 100 III | 3820.74 A 50 0.56 3.79 4-4 e ³ F-30° | | - | 3725.061 B 200 III
3535.522 B 100 III
3462.198 B 300 III | 3172.94 A 100 0.56 4.45 4-4 (5) 47° 3156.68 A 50 0.56 4.47 4-3 48° | | 3949.275 A 100 1.08 4.21 $2\frac{1}{2}$ $a^2F^{\circ}-15$ 3916.476 A 200 1.08 4.23 $2\frac{1}{2}$ (2) 16 | 3441.505 B 200 III
3362.619 B 300 III | 5719.18 A 40 1.11 3.27 2-1 a ³ P-17° (6) | | Strongest Unclassified Lines of <u>Tm I</u> 5971.28 A 200 I | 3309.804 B 100 IV
3240.230 B 125 IV
3151.038 B 200 IV | 5552.12 A 40 0.70 2.92 2-3 a1D-11° (7) | | 5895.646 A 300 I
5764.300 A 200 I
5875.853 A 400 I | 3131.257 B 400 IV | Hf II I P 14.8 Anal B List B Nov 1943 | | 5631.404 A 150 I
5307.181 A 800 I
4203.730 A 300 I | Yb I I P 6.23 Anal B List D May 1943 | Hr II I P 14.8 Anal B List B Nov 1942 3253.70 A 80 0.38 4.17 23 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | 4187.616 A 500 I
4105.843 A 600 I
4094.188 A 700 I | 5556.48 A 1500 0.00 2.22 0-1 6 ¹ s-6 ³ Pe (1) 3987.98 A 2000 0.00 3.09 0-1 6 ¹ s-6 ¹ Pe | 3793.37 A 60 0.38 3.63 34-24
3561.65 A 80 0.00 3.47 12-12 | | 3803.133 A 400 I
3751.812 A 100 I | 7699.49 A 1500 2.43 4.04 2-1 6 ³ P°-7 ³ S
6799.61 A 1000 2.22 4.04 1-1 (3) | 3193.53 A 40 0.38 4.24 3 3 2 a 2 D 2 4 D 0 1 3 4 4 5 2 A 2 5 0.00 3.92 1 1 1 (2) 3 4 7 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 | | 3744.066 A 300 I
3717.915 A 500 I | 6799.61 A 1000 2.22 4.04 1-1 (3)
6489.10 A 800 2.13 4.04 0-1 | 3428.37 A 20 0.00 3.60 $1\frac{1}{2} - \frac{1}{2}$
3000.09 A 40 0.38 4.49 $2\frac{1}{2} - \frac{1}{2}$ a ² D-z ² Po † 3016.94 A 6 0.00 4.09 $1\frac{1}{2} - \frac{1}{2}$ (3) | | Tm II I P % Anal B List B Jan 1942 | Yb II I P 12.05 Anal D List D May 1942 | 3317.99 A 20 0.38 4.10 21-21 a2D-z2D+ | | 4526.565 A 80 0.00 2.67 4- a ³ F°-1
4481.273 A 200 0.00 2.75 4- (1) 2 | 3389.36 A 800 0.00 3.75 111 62s-62po
3694.19// A 1000 0.00 3.34 2-2 (1) | 3217.30 A 25 0.38 4.21 2 12 (4)
3012.90 A 100 0.00 4.10 12-22 (4)
3134.72 A 150 0.38 4.31 2 2 2 2 2 2 2 4 0 1 | | 4199.918 A 100 0.00 2.94 4-4 3 3958.101 A 200 0.00 3.12 4-47 4 3890.528 A 60 0.00 3.17 4- 5 | | (5)
3352.06 A 80 1.03 4.71 4 4 4 F 24F 24F 3644.35 A 60 0.78 4.17 3 3-3 (6) | | 3848.023 A 1000 0.00 3.21 4- a ³ F°-6
3761.913 A 600 0.00 3.28 4-4 (2) 7
3761.331 A 800 0.00 3.28 4-3 8 | <u>Lu I</u> I P 5? Anal B List D May 1942
6004.53 A 100 0.25 2.30 2\frac{1}{2}-3\frac{1}{2}a^2D-\frac{2}{2}F^2?\frac{1}{2} | 4080.44 A 60 0.61 3.63 24-24
4083.16 A 150 0.45 3.47 14-14
3933.65 A 40 1.03 4.17 44-34 | | 3701.364 A 250 0.00 3.33 4-4 9 3668.088 A 120 0.00 3.36 4-4 10 | 5736.55 A 40 0.00 2.15 1 2-2 (1) | 4335.15 A 5 0.78 3.63 3\(\frac{1}{2}\) 3139.67 A 15 0.78 4.71 3\(\frac{1}{2}\) 3462.65 A 15 0.61 4.17 2\(\frac{1}{2}\) 3462.65 A 15 | | 3608.766 A 200 0.00 3.42 4-3 a ³ F°-11 3536.576 A 80 0.00 3.49 4-3 (3) 12 3425.630 A 150 0.00 3.60 4-4 13 | 5135.10 A 100 0.25 2.65 2-21 A ² D-2D°?† 5402.57 A 50 0.00 2.28 12-12 (2) 4656.03 A 50 0.00 2.65 12-22 3841.17 A 100 0.25 3.46 22-12 A ² D-2P°? | 3880.83 A 40 0.45 3.63 1½-2½ 3505.22 A 150 1.03 4.55 4½-3½ a ⁴ F-z ⁴ D° | | 3397.499 A 100 0.00 3.63 4-3 14 3291.001 A 120 0.00 3.75 4-4 15 3276.811 A 50 0.00 3.77 4-4 a ³ F°-16 | 3841.17 A 100 0.25 3.46 32-12 a ² D- ² P°?
4124.73 A 100 0.00 2.99 12-3 (3)
3567.84 A 80 0.00 3.46 12-12 | 3568.03 A 80 0.78 4.24 33-23 (7)
3719.27 A 70 0.61 3.92 24-13
3918.10 A 100 0.45 3.60 14-3
3273.66 A 6 0.78 4.55 33-34 | | 3258.048 A 150 0.00 3.79 4-3 (4) 17
3241.530 A 200 0.00 3.81 4-4 18
3210.825 A 50 0.00 3.84 4-4 20 | Strongest Unclassified Lines of Lu I | 3394.58 A 25 0.61 4.24 25 25 3552.70 A 40 0.45 3.92 15.15 3126.27 A 6 0.61 4.55 25 35 | | 3133.886 A 250 0.00 3.94 4-4 22 | 5001.15 A 100 III
4518.58 A 200 II
3647.77 A 50 III | $3\overline{2}5\overline{5}.\overline{2}8$ \overline{A} 25 $0.\overline{4}\overline{5}$ $4.\overline{2}4$ $1\overline{2}-\overline{2}\overline{2}$ 3176.85 A 50 0.61 4.49 $2\overline{2}-1\overline{2}$ $a^4F-z^2P^0$ | | 4677.858 A 40 0.03 2.67 3- a ² F°-1
4529.376 A 80 0.03 2.75 3- (5) 2
4242.153 A 300 0.03 2.94 3-4 3
3995.586 A 80 0.03 3.18 3-47 4 | | 3389.83 A 70 0.45 4.09 $\frac{1}{2}$ $\frac{1}{2}$ (8) 3054.58 A 15 0.45 4.49 $\frac{1}{2}$ $-\frac{1}{2}$ | | 3995.586 A 80 0.03 3.12 3-47 4 3883.437 A 200 0.03 3.21 3- 6 6 3795.759 A 600 0.03 3.28 3-4 a ³ F°-7 | <u>Lu II</u> I P ? Anal A List B May 1942
3507.39 A 100 0.00 3.52 0-1 a ¹ S-z ³ P° | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | 3795.169 A 80 0.03 3.28 3-3 (6) 8
3734.124 A 300 0.03 3.36 3-4 9
3700.256 A 300 0.03 3.36 3-4 10 | 5476.69 A 200 1.75 4.01 3-2 a ³ D-z ³ P° | 8975.89 A 150 0.61 4.75 23-33 a ⁴ F-z ⁴ G°† 3194.19 A 100 0.45 4.31 13-23 (10) 3109.11 A 150 0.78 4.75 33-33 8.21 A 20 0.61 4.31 23-23 326.25 A 20 0.61 4.31 23-23 | | 3566.472 A 100 0.03 3.49 3-3 12
3453.665 A 200 0.03 3.60 3-4 a ³ F°-13 | 6221.88 A 300 1.54 3.52 2-1 (2)
6463.11 A 300 1.46 3.37 1-0
4994.14 A 130 1.54 4.01 2-2 | 0400.10 A 80 0.10 4.01 02-82 | | 3425.082 A 300 0.03 3.63 3-3 (7) 14
3316.875 A 60 0.03 3.75 3-4 15
3302.454 A 150 0.03 3.77 3-4 16
3283.400 A 50 0.03 3.79 3-3 17 | 5983.90 A 100d 1.46 3.52 1-1
4839.68 A 30d 1.46 4.01 1-2 | 3031.16 A 120 0.61 4.68 $2\frac{1}{2} - 1\frac{1}{2}$ $4\frac{4-\sqrt{2}}{11}$ 3025.29 A 20 1.03 5.11 $4\frac{1}{2} - 3\frac{1}{2}$ $4\frac{4-\sqrt{2}}{12}$ $4\frac{1}{2} - \frac{1}{2}$ 41 | | 3283.400 A 50 0.03 3.79 3-3 17
3266.633 A 80 0.03 3.81 3-4 a ³ r°-18
3235.448 A 90 0.05 3.84 3-4 (6) 20 | 3876.65 A 100 1.54 4.73 3-1 a ³ D-z ¹ P° (3)
3077.59 A 150 1.54 5.55 3-3 a ³ D-z ³ P° †
3397.07 A 150 1.46 5.09 1-2 (4) | | |
3173.828 A 200 0.03 3.92 3-3 21
3157.344 A 180 0.03 3.94 3-4 22
3098.597 A 100 0.03 4.01 3-27 24 | 3854.38 A 90 1.75 5.55 3-3
3473.48 A 180 1.54 5.09 8-2 | 4926.99 A 8 1.66 4.17 23-33 a4P-z4F°†
6279.84 A 20 1.66 3.63 23-24 (13)
6835.29 A 50 1.66 3.47 23-12 | | 3015.296 A 100 0.03 4.12 3-4 27 | 4785.42 A 60 3.14 4.73 2-1 a ¹ D-z ¹ P° (5) | 4272.85 A 60 1.66 4.55 2 3 4 4 P-z 4 D° † 4664.14 A 150 1.60 4.24 1 2 2 (14) | | 3900.790 A 90 1.08 4.25 2-27 e ³ F°-33 3810.734 A 50 1.08 4.32 2-2 (9) 37 3756.860 A 100 1.08 4.37 2- 40 3704.848 A 50 1.08 4.41 2-3 41 | 3623.98 A 40 2.14 5.55 2.3 a ¹ D-z ³ F° 4184.26 A 130 3.14 5.09 2.3 (6) 3554.43 A 200 2.14 5.61 2.2 a ¹ D-z ¹ D° | 5899.85 A 10 1.60 3.92 12-12
5809.50 A 30 1.48 3.60 2-2 | | 3665.812 A 60 1.08 4.45 2-3 a ³ F°-44 3653.814 A 80 1.08 4.46 2-3 (10) 45 | 3554.43 A 300 2.14 5.61 8-2 a ¹ D-2 ¹ D* (7) | 5403.38 A 10 1.60 3.98 83-13
4367.90 A 40 1.66 4.49 23-13 a ⁴ P-z ² P°
4945.38 A 10 1.60 4.09 13-1 (15)
4863.72 A 10 1.60 4.49 13-13 | | 3557.796 A 80 1.08 4.55 2-3 47
3481.750 A 30 1.08 4.63 2-2 48
3285.609 A 60 1.08 4.64 2-2 56 | Hr I I P ? Anal D List D Dec 1942 | 4719.10 A 30 1.46 4.09 7- 7 | | 3929.583 A 100 1.11 4.25 3-27 a ¹ F°-33 | 5550.60 A 50 0.00 2.22 2.2 a ³ F- 3°
5181.86 A 40 0.00 2.38 2-3 (1) 5° | 5075.93 A 30 1.66 4.10 3 3 3 4 P-z 2 P † 4844.00 A 15 1.66 4.31 3 1 2 1 (16) 4934.46 A 60 1.60 4.10 1 2 2 2 | | 3838.198 A 200 1.11 4.32 3-2 (11) 37 3798.752 A 80 1.11 4.35 3-2 39 3783.561 A 60 1.11 4.37 3- 40 3730.810 Å 40 1.11 4.41 3-3 41 | 3777.64 A 50 0.00 3.27 2-1 17° 3662.25 A 200 0.00 3.35 2-2 18° 3497.49 A 150 0.00 3.53 2-3 24° 3472.38 A 100 0.00 3.55 2-1 25° | 4097.21 A 8 1.66 4.68 $2\frac{1}{2}-1\frac{1}{2}$ $a^{4}p_{-}y^{3}p^{6}$ (17) | | 3730.810 A 40 1.11 4.41 3-3 41 | 3472.38 A 100 0.00 3.55 2-1 25° | | | | | REVISED MULTIPLET TABLE | 97 | |---|--|--|--| | Laboratory | EP J Multiplet | Leboratory EP J Multiplet | Laboratory E P J Multiplet | | I A Ref Int | Low High (No) | Î A Ref Int Low High (Nd) | I A Ref Int Low High (No) | | Hf II continued | | Hf II continued | Hf II continued | | 3699.72 A 25 | 1.66 5.00 21-21 a4P-z4P° | 4319.51 A 8 1.88 4.74 $\frac{1}{2}$ $\frac{1}{2}$ $a^{2}P-2^{4}P^{\circ}$ (52) | 4904.51 A 30 3.52 6.04 2½-3½ b ⁴ P-y ⁴ D°†
4848.46 A 20 3.37 5.91 1½-2½ (83) | | 3800.39 A 5
3780.09 A 7 | 1.60 4.84 1 1 (18)
1.48 4.74 2 2 | 3867.32 A 15 2.20 5.39 13-23 a2P-y4F01 | 5080.44 A 10 3.33 5.76 1-1- | | 3883.77 A 20
3923.91 A 40 | 1.66 4.84 2½-1½
1.60 4.74 1½-½ | 4049.44 A 10 2.20 5.25 12-12 (53) | 5164.56 A 8 3.52 5.91 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | 3624.00 A 10 | 1.60 5.00 1 2 -25 | 4008.46 A 8 2.20 5.28 $1\frac{1}{2}-1\frac{1}{2}$ $a^{2}P-y^{2}P^{\circ}$ 1 3597.42 A 10 1.88 5.31 $\frac{1}{2}-\frac{1}{2}$ (54) 3964.96 A 15 2.20 5.31 $1\frac{1}{2}-\frac{1}{2}$ | 4765.78 A 12 3.33 5.92 ½-1½ b ⁴ P-x ² D° | | 3665.35 A 20 | 1.48 4.84 1-12 | 3964.96 A 15 2.20 5.31 12- 2 | (84) | |
3984.03 A 8 | 1.66 4.76 3½-3½ a ⁴ P-z ² F° † (19) | | 4760.59 A 20 3.33 5.93 ½-1½ b ⁴ P-2 ⁴ 8° (85) | | 3413.74 A 8.
3349.17 A 5 | 1.66 5.28 21-12 e4P-y2P0 †
1.60 5.28 13-13 (20) | 3199.99 A 30 1.88 5.74 $\frac{1}{2}$ (55) | 4570.70 A 30 3.52 6.22 $2\frac{1}{2}-1\frac{1}{2}$ $b^4P-y^4P^2$
4521.36 A 30 3.37 6.22 $1\frac{1}{2}-1\frac{1}{2}$ (66) | | | | 3206.77 A 4 2.20 6.05 1 2 a ² p-x ² p° | 4268.10 A 5 3.33 6.22 1-1-5 | | 3203.67 A 10 | 1.66 5.52 2½-3½ a ⁴ P-y ² F°†
(21) | 3055.43 A 9 1.88 5.92 $\frac{1}{2}$ -1 $\frac{1}{2}$ (56) | 4426.18 A 9 3.52 6.31 2½-1½ b ⁴ P-w ² D°† | | 4605.79 A 30 | 1.49 4.17 22-32 a2F-24F° † | 4807.14 A 20 2.15 4.71 43-43, 82G-z4F° | 4141.84 A 5 3.33 6.31 $\frac{1}{2}$ -1 $\frac{1}{2}$ (87) | | 5348.40 A 15 | 1.86 4.17 3 } -3 } (22) | 6222.81 A 10 2.19 4.17 32-32 (57) | 4007.36 A 10 3.52 6.60 2 1-1 b4P-x4P° † | | 5767.18 A 30
6980.91 A 200 | 1.49 3.63 23-23
1.86 3.63 33-23 | 5128.53 A 20 2.15 4.55 4 3 a ² G-z ⁴ D° | (88) | | 6248.95 A 100 | 1.49 3.47 2½-1½ | (58)
4050.67 A 7 2.19 5.23 3\frac{1}{2}-4\frac{1}{2}a^2Q-2^4Q^2 | 6997.83 A 20 3.47 5.23 4 4 b ² G-z ⁴ G° (89) | | 4586.25 A 10 | 1.86 4.55 3 = 3 a 2F-z4D° | 3998.51 A 6d 2.15 5.23 4\frac{1}{2} (59) | 6135.10 A 20 3.47 5.48 43-33 b2G-y4For | | 4486.14 A 30
5187.75 A 30 | 1.49 4.24 23-23 (23)
1.86 4.24 33-23 | 4809.18 A 6 2.19 4.75 3½-3½
4735.75 A 10 2.15 4.75 4½-3½ | | | 5071.23 A 8
4029.16 A 10 | 1.49 3.92 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 5801.71 A 15 2.19 4.31 3½-3½ | 6027.57 A 20 3.47 5.52 $4\frac{1}{2}$ $3\frac{1}{2}$ $b^2G_y^2F^0$ † 6473.89 A 20 3.51 5.42 $3\frac{1}{2}$ (91) | | | | 4162.40 A 50 2.15 5.11 4\frac{1}{2}-3\frac{1}{2}a^2\text{G-z}^2\text{F}^{\text{o}} \\ 4790.72 A 40 2.19 4.76 3\frac{1}{2}-2\frac{1}{2} (60) | | | 4113.58 A 20 | 1.49 4.49 2½-1½ a ³ F-z ³ P° (34) | e a | 4599.46 A 40 3.47 6.15 $4\frac{1}{2}$ $4\frac{1}{2}$ 6^{2} G- 2^{2} G° 5346.30 A 40 3.51 5.82 $3\frac{1}{2}$ $3\frac{1}{2}$ (92) | | 5524.35 A 50
4533.18 A 40 | 1.86 4.10 $3\frac{1}{2}$ $3\frac{1}{2}$ $3\frac{1}{2}$ $3\frac{1}{2}$ $3\frac{1}{2}$ (25) | 3478.98 A 30 2.15 5.69 $4\frac{1}{2}$ $4\frac{1}{2}$ $a^2G^-y^4F^0$ 3701.15 A 40 2.15 5.48 $4\frac{1}{2}$ 36 (61) 3649.53 A 55 8.19 5.39 $3\frac{1}{2}$ $3\frac{1}{2}$ | 5247.10 A 60 3.47 5.82 4\frac{1}{2}-3\frac{1}{2}
4675.45 A 10 3.51 6.15 3\frac{1}{2}-4\frac{1}{2} | | 4735.67 A 20 | 1.49 4.21 23-13 (25)
1.49 4.10 23-23 | 3849.52 A 25 2.19 5.39 3\$-2\$ | 4865.43 A 10 3.51 6.05 3½-2½ b²G-x²D° | | 3661.05 A 12 | 1.86 5.23 3-4-4 a2F-z4G° | 3661.73 A 2 2.15 5.52 41-31 a2G-y2F° | (02) | | 3782.78 A 8
4269.67 A 20 | 1.86 5.23 3 44 a ² F-z ⁴ G°
1.49 4.75 2 4.3 (26)
1.86 4.75 3 4.3 | 3661.73 A 2 2.15 5.52 4 3 2 6 y 2 F°
3817.20 A 20 2.19 5.42 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 4125.10 A 5 3.47 6.46 4\frac{1}{2}-3\frac{1}{2}\frac{1} | | 4370.95 A 100 | $1.49 4.31 2\frac{1}{2} - 2\frac{1}{2}$ $1.86 4.31 3\frac{1}{2} - 2\frac{1}{2}$ | | 4123.54 A 10 3.51 6.51 3½-2½ b ² G-w ² D° | | | | 3394.99 A 30 S.19 5.68 3/2-3/2 (63) | (95) | | 3747.48 A 7
3872.55 A 20 | 1.86 5.16 3 2 2 2 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 | 3358.30 A 8 2.15 5.82 43-33 | (96) | | 3932.40 A 10 | 1.86 5.00 3½-3½ a ² F-z ⁴ P°† | 3011.24 A 30 2.19 6.28 3½-3½ a ² G-x ² F° (64) | 3979.40 A 40 3.47 6.57 43-33 b2G-w2F° (97) | | | | | 3864.75 A 20 3.47 6.66 4 3 3 b ² 6 y ² 60 t (98) | | 3797.95 A 10
3771.36 A 8 | 1.86 5.11 3½-3½ a ² F-z ² F ⁶ 1.49 4.76 2½-3½ (29) 1.49 5.11 2½-3½ | 8236.13 A 10 2.67 4.17 3\frac{1}{2}-3\frac{1}{2} (65) | | | 3407.76 A 15 | | 6041.44 A 6 2.67 4.71 3\frac{1}{2}-4\frac{1}{2}
7328.64 A 30 2.49 4.17 2\frac{1}{2}-3\frac{1}{2} | 6584.53 A 40 3.82 5.69 $5\frac{1}{2}$ - $4\frac{1}{2}$ a^{2} H-y ⁴ F° 7983.66 A 5 3.94 5.48 $4\frac{1}{2}$ - $3\frac{1}{2}$ (99) | | 3220.66 A 50 | 1.86 5.69 31-41 a2F-y4F* | | 7016.99 A 6 3.94 5.69 45-45 | | 3092.26 A 20
3410.18 A 40 | 1.49 5.48 2½-3½ (30)
1.86 5.48 3½-3½
1.49 5.39 2½-2½ | 7861.22 A 8 2.67 4.24 3\frac{1}{2} (66) | 5289.98 A 10 3.82 6.15 $5\frac{1}{4}$ $4\frac{1}{8}$ $a^2H-z^2G^\circ$ 6542.80 A 50 3.94 5.82 $4\frac{1}{2}$ $3\frac{1}{8}$ (100) 5565.56 Λ 5 3.94 6.15 $4\frac{1}{2}$ $4\frac{1}{3}$ | | 3162.61 A 40
3405.94 A 10 | 1.49 5.39 21-21
1.86 5.39 31-21 | 8581.88 A 5? 2.49 3.92 2 -1 1 2 9742.28 A ? 2.33 3.60 1 1 1 | 6542.80 A 50 3.94 5.82 4\frac{1}{2} (100) 5565.56 A 5 3.94 6.15 4\frac{1}{2} 4\frac{1}{2} | | 3283.39 A 6 | 1.49 5.35 23-15 | 6557.91 A 100 2.67 4.55 3\frac{1}{2}-3\frac{1}{2}
7030.33 A 150 2.49 4.24 2\frac{1}{2}-2\frac{1}{2} | 3762.51 A 25 3.94 7.22 43-33 a2H-x4D° | | 3376.68 A 4 | 1.86 5.52 3\frac{1}{2} a^2F-y^2F^o †
1.49 5.42 2\frac{1}{2} (31) | 7757.89 A . 15 2.33 3.92 13-13 | (101) | | 3140.77 A 15
3064.68 A 20 | 1.49 5.42 2 2 2 31)
1.49 5.52 2 2 3 3 | 5969.38 A 5 2.49 4.55 23-33 | 4682.68 A 8 3.94 6.57 4½-3½ a ² H-w ² F° (102) | | 3046.03 A 20 | 1.86 5.91 3½-2½ a2F-y4n°+ | *6156.25 A 3d 2.49 4.49 2_{1-1}^{1} b^{4} F- z^{2} Po 7021.23 A 30 2.33 4.09 1_{2-1}^{1} (67) | 3900.64 A 20 3.82 6.98 5 3 2 H-2 ² H° † 4613.74 A 50 3.94 6.61 4 4 4 (103) 4422.76 A 150 3.82 6.61 5 4 4 | | 3116.95 A 8 | 1.86 5.82 3½-3½ a ² F-z ² G°† | 7663.09 A 30 2.49 4.10 3\frac{1}{2} b^4 \text{F} - z^2 D^0 | 4423.76 A 150 3.82 6.61 51-41 | | 0210:00 A C | (33) | - ' (69) | 4047.96 A 50 3.82 6.87 5 4 a ² H-y ² G° † | | 6644.60 A 200 | 1.77 3.63 12-32 b2D-24F° † | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 4524.74 A 30 3.94 6.66 43-33 (104) | | 4999.69 A 40 | (34) | 5444.07 A 30 2.49 4.75 2½-3½ 6230.84 A 20 2.33 4.31 1½-2½ | 6609.20 A 8 4.05 5.91 3½-3½ c ² D-y ⁴ D° | | 6935.16 A 50 | 1.77 4.24 1 2 b ² D-z ² D°†
2.14 3.92 2 1 (35)
1.77 3.60 1 2 2 | 5194.57 A 6 2.86 5.23 4\frac{1}{2}-4\frac{1}{2} | (105) | | | | 5929.35 A 5 2.67 4.75 3\frac{1}{2}-3\frac{1}{2}-6511.62 A 6 2.86 4.75 4\frac{1}{2}-3\frac{1}{2}- | (106) | | 5260.44 A 40
5324.26 A 30 | 2.14 4.49 $2\frac{1}{2}$ $-1\frac{1}{2}$ $b^{2}D-z^{2}P^{\circ}$
1.77 4.09 $1\frac{1}{2}$ $-\frac{1}{2}$ (36) | 4622.71 A 100 2.49 5.16 2 2 2 b 4 F y 2 D 6 5264.95 A 80 2.33 4.68 1 5 1 7 (70) | 4486.65 A 20 4.05 6.80 21-21 c2D-x4P° (107) | | 4541.31 A 20 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | (107)
4241.93 A 7 4.05 6.96 22-12 c2p-w2po | | 5058.18 A 10 | 1.77 4.21 13-13 b ² D-z ² D°
1.77 4.10 13-23 (37) | 5057.03 A 30 2.67 5.11 34-34 b4F-z2F0 | (108)
3945.36 A 10n 4.05 7.17 2½-2½ c2D-y2D° | | 5311.60 A 150 | - · | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | (109) | | 4731.36 A 40 | $2.14 4.75 2\frac{1}{2} - 3\frac{1}{2} b^2 D - z^4 G^{\circ}$ (38) | | | | 4249.33 A 30
3648.35 A 6 | 1.77 4.68 $1\frac{1}{2}$ | 4245.84 A 20 2.49 5.39 21-21 (72) | 8550 04 A 40 A 60 A 61 A 101 120 2-0 | | | 0.44 = 00 01 01 02 - 4 | 4350.52 A 150 2.86 5.69 44-44 b ⁴ F-y ⁴ F° 4245.84 A 20 2.49 5.39 23-23 (72) (72) 4263.43 A 60 2.33 5.25 13-14 14 4703.62 A 10 2.86 5.48 44-34 4555.38 A 30 2.67 5.39 33-23 | 6550.01 A 10 4.62 6.51 $3\frac{1}{7}-2\frac{1}{7}$ $6^{2}F-w^{2}D^{\circ}$ 7278.72 A 6 4.62 6.31 $3\frac{1}{7}-1\frac{1}{7}$ (111) | | 4320.69 A 40
4020.25 A 5 | 2.14 5.00 23-23 b2D-z4P | 4535.38 A 30 2.67 5.39 3\(\frac{1}{2}\)-2\(\frac{1}{2}\) | | | 4573.81 A 20 | 1.77 4.84 $1\frac{1}{2}$ - $1\frac{1}{2}$ (40) | 4535.38 A 30 2.67 5.39 3\(\frac{1}{2}\)-2\(\frac{1}{2}\) 4466.41 A 30 2.49 5.25 2\(\frac{1}{2}\)-1\(\frac{1}{2}\) | 5673.58 A 10 4.62 6.80 3\frac{1}{2} b^2F_x^4P^0 † | | 4158.90 A 30 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 4400.41 A 30 2.49 5.25 27-17 | 50/3.50 A 10 4.62 6.80 34-24 ber x1P (112) 5493.22 A 6 4 62 6 87 31 A1 ber x2ge + | | | | 4187.68 A 8 2.33 5.28 1½-1½ b ⁴ F-y ² P ⁶ | 50/3.50 A 10 4.62 6.80 34-24 ber x1P (112) 5493.22 A 6 4 62 6 87 31 A1 ber x2ge + | | 4127.80 A 40 | 3.14 5.11 2½-3½ b ³ D-z ² Fo†
1.77 4.76 1½-3½ (41) | 4187.68 A 8 2.33 5.28 1½-1½ b ⁴ F-y ² P ⁶ | 5493.28 A 6 4.62 6.87 32-42 627 417 (113) 4179.55 A 10 4.62 7.57 22-12 627 627 (114) | | | 3.14 5.11
2½-3½ b ³ D-z ² Fo†
1.77 4.76 1½-3½ (41) | 4187.68 A 8 2.33 5.28 1½-1½ b ⁴ F-y ² P ⁶ | 5073.56 A 10 4.62 6.80 33-43 b2F-x20 (112) 5493.28 A 6 4.62 6.87 33-43 b2F-x20 (113) 4179.55 A 10 4.62 7.57 23-13 b2F-x20 (114) 3946.00 A 7n 4.62 7.75 33-23 b2F-x20 (114) | | 4127.80 A 40
3698.39 A 10
3935.64 A 20 | 3.14 5.11 2½-3½ b ³ D-z ² Fo†
1.77 4.76 1½-3½ (41) | 4187.68 A 8 2.33 5.28 1½-1½ b ⁴ F-y ³ P ⁶ (73) 4640.14 A 20 2.86 5.52 4½-3½ b ⁴ F-y ³ P ⁶ 4490.60 A 20 2.67 5.42 3½-2½ (74) 4336.66 A 200 2.67 5.52 3½-3½ 4206.59 A 80 2.49 5.42 2½-2½ 4071.22 A 6 2.49 5.52 2½-3½ | 5073.56 A 10 4.62 6.80 33-23 ber-A17 (112) 5493.23 A 6 4.62 6.87 33-43 ber-A20 (113) 4179.55 A 10 4.62 7.57 23-13 ber-A20 (114) 3946.00 A 7n 4.62 7.75 33-23 ber-A20 (115) | | 4127.80 A 40
3698.39 A 10 | 3.14 5.11 2½-3½ b ³ D-z ² Fo†
1.77 4.76 1½-3½ (41) | 4187.68 A 8 2.33 5.28 1½-1½ b ⁴ F-y ³ P ⁶ (73) 4640.14 A 20 2.86 5.52 4½-3½ b ⁴ F-y ³ P ⁶ 4490.60 A 20 2.67 5.42 3½-2½ (74) 4336.66 A 200 2.67 5.52 3½-3½ 4206.59 A 80 2.49 5.42 2½-2½ 4071.22 A 6 2.49 5.52 2½-3½ | 5073.56 A 10 4.62 6.80 33-23 ber-A17 (112) 5493.23 A 6 4.62 6.87 33-43 ber-A20 (113) 4179.55 A 10 4.62 7.57 23-13 ber-A20 (114) 3946.00 A 7n 4.62 7.75 33-23 ber-A20 (115) | | 4127.80 A 40
3698.39 A 10
3935.64 A 20
3485.16 A 3
3518.75 A 15 | 2.14 5.11 $2\frac{1}{2}-3\frac{1}{2}$ $b^3D2^2F^{\circ}$ 1.77 4.76 $1\frac{1}{2}-2\frac{1}{2}$ (41) 2.14 5.48 $3\frac{1}{2}-3\frac{1}{2}$ $b^3Dy^2F^{\circ}$ (42) 2.14 5.28 $2\frac{1}{2}-1\frac{1}{2}$ $b^3Dy^2F^{\circ}$ 1.77 5.28 $1\frac{1}{2}-1\frac{1}{2}$ (43) | 4187.68 A 8 2.33 5.28 1½-1½ b⁴F-y³P° 4490.60 A 20 2.67 5.24 43.3½ (74) 4336.66 A 200 2.67 5.52 33-3½ 4208.59 A 80 2.49 5.42 23-2½ 4071.22 A 6 2.49 5.52 23-3½ 3877.11 A 40 2.86 6.04 4⅓-3½ b⁴F-y⁴P° 3808.07 A 40 2.67 5.91 33-2½ (75) 3765.92 A 50 2.49 5.76 23-3½ | 5493.28 A 6 4.62 6.87 3½-4½ b2F-y2G° 1 (113) 4179.55 A 10 4.62 7.57 2½-1½ b2F-y2G° 1 (114) 3946.00 A 7n 4.62 7.75 3½-2½ b2F-y2F° 1 (115) Strongest Unclassified Lines of HT II 7061.90 A 307 6850.07 A 607 | | 4127.80 A 40
3698.39 A 10
3935.64 A 20
3485.16 A 3
3518.75 A 15 | 2.14 5.11 $2\frac{1}{2}-3\frac{1}{2}$ $b^3D-2^3F^{\circ}$ 1.77 4.76 $1\frac{1}{2}-3\frac{1}{2}$ (41) 2.14 5.48 $2\frac{1}{2}-3\frac{1}{2}$ $b^3D-y^{\circ}F^{\circ}$ 1.77 5.31 $1\frac{1}{2}-\frac{1}{2}$ (43) 1.77 5.28 $1\frac{1}{2}-1\frac{1}{2}$ $b^3D-y^{\circ}F^{\circ}$ 2.14 5.28 $1\frac{1}{2}-1\frac{1}{2}$ $0^3D-y^{\circ}F^{\circ}$ 1.77 5.48 $1\frac{1}{2}-3\frac{1}{2}$ $0^3D-y^{\circ}F^{\circ}$ 1.77 5.48 $1\frac{1}{2}-2\frac{1}{2}$ (44) | 4187.68 A 8 2.33 5.28 1½-1½ b4F-y2F0 4640.14 A 20 2.86 5.52 4½-3½ b4F-y2F0 4480.60 A 20 2.67 5.42 32-3½ (74) 4336.66 A 200 2.67 5.42 32-3½ 4071.22 A 6 2.49 5.52 23-3½ 3877.11 A 40 2.86 6.04 4½-3½ b4F-y4F0 3806.07 A 40 2.67 5.91 32-3½ 3737.88 A 15 2.33 5.63 1½-2 | 5493.28 A 6 4.62 6.87 3½-4½ bêr-yêr + 4179.55 A 10 4.62 7.57 2½-1½ bêr-yêr + 3946.00 A 7n 4.62 7.75 3½-2½ bêr-yêr + Strongest Unclassified Lines of Hf II 7061.90 A 307 05548.72 A 10 | | 4127.80 A 40
3698.39 A 10
3935.64 A 20
3485.16 A 3
3518.75 A 15 | 2.14 5.11 $2\frac{1}{2}-3\frac{1}{2}$ $b^3p2^2p^\circ$ † 1.77 4.76 $1\frac{1}{2}-2\frac{1}{2}$ (41) 3.14 5.48 $2\frac{1}{2}-3\frac{1}{2}$ $b^3py^4p^\circ$ † 2.14 5.28 $2\frac{1}{2}-1\frac{1}{2}$ $b^3py^4p^\circ$ 1.77 5.31 $1\frac{1}{2}-\frac{1}{2}$ (43) 1.77 5.28 $1\frac{1}{2}-1\frac{1}{2}$ $b^3py^4p^\circ$ 1.77 5.43 $1\frac{1}{2}-3\frac{1}{2}$ $b^3py^4p^\circ$ 1.77 5.63 $1\frac{1}{2}-\frac{1}{2}$ $b^3py^4p^\circ$ † 1.77 5.63 $1\frac{1}{2}-\frac{1}{2}$ $b^3py^4p^\circ$ † 5.63 $1\frac{1}{2}-\frac{1}{2}$ $b^3py^4p^\circ$ † | 4187.68 A 8 2.33 5.28 1½-1½ b4F-y2F0 4640.14 A 20 2.86 5.52 4½-3½ b4F-y2F0 4480.60 A 20 2.67 5.42 32-3½ (74) 4336.66 A 200 2.67 5.42 32-3½ 4071.22 A 6 2.49 5.52 23-3½ 3877.11 A 40 2.86 6.04 4½-3½ b4F-y4F0 3806.07 A 40 2.67 5.91 32-3½ 3737.88 A 15 2.33 5.63 1½-2 | 5493.28 A 6 4.62 6.87 3½-4½ b2F-y2G° 1 (113) 4179.55 A 10 4.62 7.57 2½-1½ b2F-y2G° 1 (114) 3946.00 A 7n 4.62 7.75 3½-2½ b2F-y2F° 1 (115) Strongest Unclassified Lines of HT II 7061.90 A 307 6850.07 A 607 | | 4127.80 A 40
3698.39 A 10
3935.64 A 20
3485.16 A 3
3518.75 A 15
3659.08 A 4
3384.14 A 10 | 2.14 5.11 $2\frac{1}{2}-3\frac{1}{2}$ $b^3D2^2F^{\circ}$ 1.77 4.76 $1\frac{1}{2}-3\frac{1}{2}$ (41) 2.14 5.48 $3\frac{1}{2}-3\frac{1}{2}$ $b^3Dy^2F^{\circ}$ (42) 2.14 5.28 $2\frac{1}{2}-1\frac{1}{2}$ $b^3Dy^2F^{\circ}$ 1.77 5.28 $1\frac{1}{2}-1\frac{1}{2}$ (43) 1.77 5.28 $1\frac{1}{2}-1\frac{1}{2}$ (43) 1.77 5.43 $1\frac{1}{2}-3\frac{1}{2}$ $b^3Dy^2F^{\circ}$ 1.77 5.43 $1\frac{1}{2}-\frac{1}{2}$ $b^3Dy^2F^{\circ}$ 1.77 5.74 $1\frac{1}{2}-\frac{1}{2}$ $b^3Dy^2F^{\circ}$ 1.77 5.74 $1\frac{1}{2}-\frac{1}{2}$ $b^3Dy^2F^{\circ}$ | 4187.68 A 8 2.33 5.28 1½-1½ b ⁴ F-y ² P ⁶ (73) 4640.14 A 20 2.86 5.52 4½-3½ b ⁴ F-y ² P ⁶ 4336.66 A 200 2.67 5.42 3½-2½ 4306.59 A 80 2.49 5.42 3½-2½ 4071.22 A 6 2.49 5.52 2½-3½ 3877.11 A 40 2.67 5.91 3½-2½ (75) 3808.07 A 40 2.67 5.91 3½-2½ (75) 3765.92 A 50 2.49 5.76 2½-1½ 3737.88 A 15 2.33 5.63 1½-½ 3744.98 A 15 2.86 6.15 4½-4½ b ⁴ F-z ² G ⁶ 3917.47 A 20 2.67 5.82 3½-3½ (76) | 5493.28 A 6 4.62 6.87 31-41 6120 61417 (1120 61 61 61 61 61 61 61 61 61 61 61 61 61 | | 4127.80 A 40 3698.39 A 10 3935.64 A 20 3485.16 A 3 5518.75 A 15 3658.08 A 4 3384.14 A 10 3195.63 A 8 3110.87 A 40 | 2.14 5.11 $2\frac{1}{2}-3\frac{1}{2}$ $b^3D_{-2}2^{p}e^+$ 1.77 4.76 $1\frac{1}{2}-2\frac{1}{2}$ (41) 2.14 5.48 $3\frac{1}{2}-3\frac{1}{2}$ $b^3D_{-2}4^{p}e^+$ (42) 2.14 5.28 $2\frac{1}{2}-1\frac{1}{2}$ $b^3D_{-2}4^{p}e^+$ (43) 1.77 5.31 $1\frac{1}{2}-\frac{1}{2}$ (43) 2.14 5.52 $3\frac{1}{2}-\frac{1}{2}$ $b^3D_{-2}2^{p}e^-$ 1.77 5.43 $1\frac{1}{2}-2\frac{1}{2}$ $b^3D_{-2}2^{p}e^-$ 1.77 5.63 $1\frac{1}{2}-\frac{1}{2}$ $b^3D_{-2}4^{p}e^+$ (45) 1.77 5.74 $1\frac{1}{2}-\frac{1}{2}$ $b^3D_{-2}2^{p}e^-$ | 4187.68 A 8 2.33 5.28 1½-1½ b ⁴ F-y ² P° (73) 4640.14 A 20 2.86 5.52 4½-3½ b ⁴ F-y ² P° 4336.66 A 200 2.67 5.42 3½-2½ (74) 4336.66 A 200 2.67 5.52 3½-3½ 4071.22 A 6 2.49 5.52 2½-3½ 3877.11 A 40 2.66 6.04 4½-3½ b ⁴ F-y ⁴ P° 3808.07 A 40 2.67 5.91 3½-2½ (75) 3737.88 A 15 2.33 5.63 1½-½ 3744.98 A 15 2.33 5.63 1½-½ 3317.47 A 20 2.66 6.15 4½ b ⁴ F-z ² C° 3438.24 A 15 2.33 5.92 1½-1½ b ⁴ F-z ² C° | 5493.28 A 6 4.62 6.87 31-41 6120 61417 (1120 61 61 61 61 61 61 61 61 61 61 61 61 61 | | 4127.80 A 40 3698.39 A 10 3935.64 A 20 3485.16 A 3 5518.75 A 15 3658.08 A 4 3384.14 A 10 3195.63 A 8 3110.87 A 40 | 2.14 5.11 $2\frac{1}{2}-3\frac{1}{2}$ $b^3D2^2F^{\circ}$ 1.77 4.76 $1\frac{1}{2}-2\frac{1}{2}$ (41) 2.14 5.48 $2\frac{1}{2}-3\frac{1}{2}$ $b^3D\sqrt{F^{\circ}}$ (42) 2.14 5.28 $2\frac{1}{2}-1\frac{1}{2}$ $b^3D\sqrt{F^{\circ}}$ 1.77 5.38 $1\frac{1}{2}-1\frac{1}{2}$ (43) 2.14 5.58 $2\frac{1}{2}-1\frac{1}{2}$ $b^3D\sqrt{F^{\circ}}$ 1.77 5.43 $1\frac{1}{2}-1\frac{1}{2}$ $b^3D\sqrt{F^{\circ}}$ 1.77 5.63 $1\frac{1}{2}-\frac{1}{2}$ $b^3D\sqrt{F^{\circ}}$ 1.77 5.74 $1\frac{1}{2}-\frac{1}{2}$ $b^3D\sqrt{F^{\circ}}$ 1.77 5.74 $1\frac{1}{2}-\frac{1}{2}$ $b^3D\sqrt{F^{\circ}}$ 1.77 5.74 $1\frac{1}{2}-\frac{1}{2}$ $b^3D\sqrt{F^{\circ}}$ 1.77 6.28 $2\frac{1}{2}-1\frac{1}{2}$ $2\frac{1}{2}$ $2\frac{1}{2}-1\frac{1}{2}$ $2\frac{1}{2}$ | 4187.68 A 8 2.33 5.28 1½-1½ b⁴F-y²P° (73) 4640.14 A 20 2.86 5.52 4½-3½ b⁴F-y²P° 4490.60 A 20 2.67 5.42 3½-3½ (74) 4336.66 A 200 2.67 5.52 3½-3½ 4071.22 A 80 2.49 5.42 2½-2½ 4071.23 A 6 2.49 5.52 2½-3½ 3877.11 A 40 2.86 6.04 4½-3½ b⁴F-y⁴P° 3705.92 A 50 2.49 5.76 2½-1½ 3707.88 A 15 2.33 5.63 1½-½ 3744.98 A 15 2.33 5.63 1½-½ 3744.98 A 15 2.33 5.63 1½-½ 3744.98 A 15 2.33 5.92 1½-1½ b⁴F-z²P° 3737.47 A 20 2.67 5.82 3½-3½ (76) 3438.24 A 15 2.33 5.92 1½-1½ b⁴F-z²P° 3218.20 A 8 2.67 6.51 3½-2½ b⁴F-x²P° | 5493.28 A 6 4.62 6.87 31-41 6120 61417 (1120 61 61 61 61 61 61 61 61 61 61 61 61 61 | | 4127.80 A 40 3698.39 A 10 3935.64 A 20 3485.16 A 3 3518.75 A 15 3659.08 A 4 3384.14 A 10 3195.63 A 8 3110.87 A 40 3024.76 A 15 | 2.14 5.11 $2\frac{1}{2}-3\frac{1}{2}$ $b^3D2^2F^{\circ}$ 1.77 4.76 $1\frac{1}{2}-2\frac{1}{2}$ (41) 2.14 5.48 $2\frac{1}{2}-3\frac{1}{2}$ $b^3D\sqrt{F^{\circ}}$ (42) 2.14 5.28 $2\frac{1}{2}-1\frac{1}{2}$ $b^3D\sqrt{F^{\circ}}$ 1.77 5.38 $1\frac{1}{2}-1\frac{1}{2}$ (43) 2.14 5.58 $2\frac{1}{2}-1\frac{1}{2}$ $b^3D\sqrt{F^{\circ}}$ 1.77 5.43 $1\frac{1}{2}-1\frac{1}{2}$ $b^3D\sqrt{F^{\circ}}$ 1.77 5.63 $1\frac{1}{2}-\frac{1}{2}$ $b^3D\sqrt{F^{\circ}}$ 1.77 5.74 $1\frac{1}{2}-\frac{1}{2}$ $b^3D\sqrt{F^{\circ}}$ 1.77 5.74 $1\frac{1}{2}-\frac{1}{2}$ $b^3D\sqrt{F^{\circ}}$ 1.77 5.74 $1\frac{1}{2}-\frac{1}{2}$ $b^3D\sqrt{F^{\circ}}$ 1.77 6.28 $2\frac{1}{2}-1\frac{1}{2}$ $2\frac{1}{2}$ $2\frac{1}{2}-1\frac{1}{2}$ $2\frac{1}{2}$ | 4187.68 A 8 2.33 5.28 1½-1½ b⁴F-y²P° 4490.14 A 20 2.86 5.52 4½-3½ b⁴F-y²P° 4490.60 A 20 2.67 5.42 3½-3½ (74) 4336.66 A 200 2.67 5.52 3½-3½ 4071.23 A 6 2.49 5.52 3½-3½ 4071.23 A 6 2.49 5.52 3½-3½ 3877.11 A 40 2.86 6.04 4½-3½ b⁴F-y⁴P° 3806.07 A 40 2.67 5.91 3½-2½ 3737.88 A 15 2.33 5.63 1½-½ 3744.98 A 15 2.33 5.63 1½-½ 3744.98 A 15 2.33 5.63 1½-½ 3744.98 A 15 2.33 5.92 1½-1½ b⁴F-x²P° 3438.24 A 15 2.33 5.92 1½-1½ b⁴F-x²P° 3218.20 A 8 2.67 6.51 3½-2½ b⁴F-x²P° 3218.20 A 8 2.67 6.51 3½-2½ b⁴F-x²P° 3323.35 A 20 3.86 6.57 4½-3½ b⁴F-x²P° | 5493.28 A 6 4.62 6.87 3½-4½ ber-yege † 4179.55 A 10 4.62 7.57 2½-1½ ber-yege † 4179.55 A 10 4.62 7.57 2½-1½ ber-yege † 3946.00 A 7n 4.62 7.75 3½-2½ ber-yege † (115) Strongest Unclassified Lines of Hf II 7061.90 A 307 8850.07 A 607 8548.72 A 10 4519.02 A 10n 4443.07 A 20 | | 4127.80 A 40 3698.39 A 10 3935.64 A 20 3485.16 A 3 3518.75 A 15 3659.02 A 4 3384.14 A 10 3195.63 A 8 3110.87 A 40 3024.76 A 15 5391.36 A 10 5391.36 A 10 5391.36 A 10 5391.36 A 10 | 2.14 5.11 $2\frac{1}{2}-3\frac{1}{2}$ $b^3D2^2F^{\circ}$ 1.77 4.76 $1\frac{1}{2}-2\frac{1}{2}$ (41) 2.14 5.48 $2\frac{1}{2}-3\frac{1}{2}$ $b^3D\sqrt{F^{\circ}}$ (42) 2.14 5.28 $2\frac{1}{2}-1\frac{1}{2}$ $b^3D\sqrt{F^{\circ}}$ 1.77 5.38 $1\frac{1}{2}-1\frac{1}{2}$ (43) 2.14 5.58 $2\frac{1}{2}-1\frac{1}{2}$ $b^3D\sqrt{F^{\circ}}$ 1.77 5.43 $1\frac{1}{2}-1\frac{1}{2}$ $b^3D\sqrt{F^{\circ}}$ 1.77
5.63 $1\frac{1}{2}-\frac{1}{2}$ $b^3D\sqrt{F^{\circ}}$ 1.77 5.74 $1\frac{1}{2}-\frac{1}{2}$ $b^3D\sqrt{F^{\circ}}$ 1.77 5.74 $1\frac{1}{2}-\frac{1}{2}$ $b^3D\sqrt{F^{\circ}}$ 1.77 5.74 $1\frac{1}{2}-\frac{1}{2}$ $b^3D\sqrt{F^{\circ}}$ 1.77 6.28 $2\frac{1}{2}-1\frac{1}{2}$ $2\frac{1}{2}$ $2\frac{1}{2}-1\frac{1}{2}$ $2\frac{1}{2}$ | 486.41 A 30 2.86 5.52 4 3 b4F-y ² P° (73) 4640.14 A 20 2.86 5.52 4 3 b4F-y ² P° (73) 4490.60 A 20 2.67 5.42 3 2 2 2 2 4 2 4 2 4 2 5 2 2 2 2 2 2 2 2 2 | 5493.28 A 6 4.62 6.87 3½-4½ ber-yege † 4179.55 A 10 4.62 7.57 2½-1½ ber-yege † 4179.55 A 10 4.62 7.57 2½-1½ ber-yege † 3946.00 A 7n 4.62 7.75 3½-2½ ber-yege † (115) Strongest Unclassified Lines of Hf II 7061.90 A 307 8850.07 A 607 8548.72 A 10 4519.02 A 10n 4443.07 A 20 | | 4127.80 A 40 3698.39 A 10 3935.64 A 80 3485.16 A 3 3518.75 A 15 3659.03 A 4 3384.14 A 10 3195.63 A 8 3110.87 A 40 3024.76 A 13 5391.36 A 10 5391.36 A 10 5391.36 A 30 | 2.14 5.11 $2\frac{1}{2}-3\frac{1}{2}$ $b^3D2^2F^{\circ}$ 1.77 4.76 $1\frac{1}{2}-2\frac{1}{2}$ (41) 2.14 5.48 $2\frac{1}{2}-3\frac{1}{2}$ $b^3D\sqrt{4}F^{\circ}$ (42) 2.14 5.28 $2\frac{1}{2}-1\frac{1}{2}$ $b^3D\sqrt{2}F^{\circ}$ (43) 1.77 5.28 $1\frac{1}{2}-1\frac{1}{2}$ (43) 2.14 5.52 $2\frac{1}{2}-1\frac{1}{2}$ (43) 2.14 5.52 $2\frac{1}{2}-1\frac{1}{2}$ (43) 1.77 5.43 $1\frac{1}{2}-1\frac{1}{2}$ $b^3D\sqrt{4}F^{\circ}$ (45) 1.77 5.63 $1\frac{1}{2}-\frac{1}{2}$ $b^3D\sqrt{4}F^{\circ}$ (45) 1.77 5.74 $1\frac{1}{2}-\frac{1}{2}$ $b^3D\sqrt{4}F^{\circ}$ 1 2.20 4.49 $1\frac{1}{2}-1\frac{1}{2}$ $a^3P2^3F^{\circ}$ 1 3.20 4.49 $1\frac{1}{2}-\frac{1}{2}$ (48) | 4187.68 A 8 2.33 5.28 1½-1½ b4F-y²P° 4480.60 A 20 2.86 5.52 3½-3½ b4F-y²P° 4356.66 A 200 2.67 5.42 3½-3½ (74) 4356.65 A 200 2.67 5.52 3½-3½ 4071.22 A 6 2.49 5.42 3½-3½ 3877.11 A 40 2.86 6.04 4½-3½-3½-3½ 3877.12 A 40 2.67 5.91 3½-3½ 7756.92 A 50 2.49 5.76 3½-1½ 3737.88 A 15 2.33 5.63 1½-1 3744.98 A 15 2.33 5.63 1½-1 3744.98 A 15 2.33 5.92 1½-1½ b4F-x²P° 3917.47 A 20 2.67 5.92 3½-3½ (76) 3438.24 A 15 2.33 5.92 1½-1½ b4F-x²P° 3323.35 A 20 2.86 6.57 4½-3½ b4F-x²P° 7561.08 A 10 3.37 5.00 1½-3½ b4F-x²P° | 5493.28 A 6 4.62 6.87 3½-4½ ber-y2ge † 4179.55 A 10 4.62 7.57 2½-1½ ber-y2ge † 4179.55 A 10 4.62 7.57 2½-1½ ber-y2ge † 3946.00 A 7n 4.62 7.75 3½-2½ ber-y2ge † (115) Strongest Unclassified Lines of Hf II 7061.90 A 307 8500.07 A 607 8548.72 A 10 4519.02 A 10n 4443.07 A 20 Ta I I F † Anal C List D Dec 1942 5402.51 A 40w 0.00 2.28 1½- ½ a ⁴ F-1° 5212.75 A 35w 0.00 2.70 1½-1½ B° 4574.32 A 15 0.00 2.70 1½-1½ B° 35970.10 A 15 0.00 3.70 1½-1½ B° | | 4127.80 A 40 3698.39 A 10 3935.64 A 20 3485.16 A 3 3518.75 A 15 3659.02 A 4 3384.14 A 10 3195.63 A 8 3110.87 A 40 3024.76 A 15 5391.36 A 10 5391.36 A 10 5391.36 A 10 5391.36 A 10 | 2.14 5.11 $2\frac{1}{2}-3\frac{1}{2}$ $b^3D2^2F^{\circ}$ 1.77 4.76 $1\frac{1}{2}-2\frac{1}{2}$ (41) 2.14 5.48 $2\frac{1}{2}-3\frac{1}{2}$ $b^3D\sqrt{4}F^{\circ}$ (42) 2.14 5.28 $2\frac{1}{2}-1\frac{1}{2}$ $b^3D\sqrt{2}F^{\circ}$ (43) 1.77 5.28 $1\frac{1}{2}-1\frac{1}{2}$ (43) 2.14 5.52 $2\frac{1}{2}-1\frac{1}{2}$ (43) 2.14 5.52 $2\frac{1}{2}-1\frac{1}{2}$ (43) 1.77 5.43 $1\frac{1}{2}-1\frac{1}{2}$ $b^3D\sqrt{4}F^{\circ}$ (45) 1.77 5.63 $1\frac{1}{2}-\frac{1}{2}$ $b^3D\sqrt{4}F^{\circ}$ (45) 1.77 5.74 $1\frac{1}{2}-\frac{1}{2}$ $b^3D\sqrt{4}F^{\circ}$ 1 2.20 4.49 $1\frac{1}{2}-1\frac{1}{2}$ $a^3P2^3F^{\circ}$ 1 3.20 4.49 $1\frac{1}{2}-\frac{1}{2}$ (48) | 4187.68 A 8 2.33 5.28 1½-1½ b⁴F-y²P° (73) 4640.14 A 20 2.86 5.52 4½-3½ b⁴F-y²P° (73) 4490.60 A 20 2.67 5.42 3½-3½ (74) 4336.66 A 200 2.67 5.52 3½-3½ 4071.23 A 6 2.49 5.52 3½-3½ 4071.23 A 6 2.49 5.52 3½-3½ 3877.11 A 40 2.86 6.04 4½-3½-b⁴F-y²P° 3806.07 A 40 2.67 5.91 3½-2½ 3737.88 A 15 2.33 5.63 1½-½ 3737.88 A 15 2.33 5.63 1½-½ 3744.98 A 15 2.33 5.63 1½-½ 3744.98 A 15 2.33 5.63 1½-½ 3744.98 A 15 2.33 5.92 1½-1½ b⁴F-x²P° 3917.47 A 20 2.67 5.82 3½-3½ (76) 3438.24 A 15 2.33 5.92 1½-1½ b⁴F-x²P° 478.3323.35 A 20 2.86 6.57 4½-3½ b⁴F-x²P° 478.3323.35 A 20 2.86 6.57 4½-3½ b⁴F-x²P° 479.342.442.45 b⁴F-x²P° 479.342.45 b²F-x²P° 479. | 5493.28 A 6 4.62 6.87 3½-4½ b2F-y2Ge † 4179.55 A 10 4.62 7.57 2½-1½ b2F-y2Ge † (113) 3946.00 A 7n 4.62 7.75 3½-2½ b2F-y2Fe † (Strongest Unclassified Lines of Hf II 7061.90 A 307 b850.07 A 607 6548.72 A 10 4519.02 A 10n 4443.07 A 20 Ta I I P † Anal C List D Dec 1942 5402.51 A 40w 0.00 2.28 1½-1½ a4F-1° 5212.75 A 35w 0.00 2.37 1½-2½ (1) 2° 4574.32 A 15 0.00 2.70 1½-1½ 68° | | 4127.80 A 40 3698.39 A 10 3935.64 A 20 3485.16 A 3518.75 A 15 3659.02 A 4 3384.14 A 10 3195.63 A 8 3110.87 A 40 3024.76 A 15 5391.36 A 10 5590.73 A 5 6531.66 A 30 6512.61 A 10 | 2.14 5.11 $2\frac{1}{2} - 2\frac{1}{2}$ $b^3D 2^2F^{\circ}$ 1.77 4.76 $1\frac{1}{2} - 2\frac{1}{2}$ (41) 2.14 5.48 $2\frac{1}{2} - 2\frac{1}{2}$ $b^3D 2^2F^{\circ}$ (42) 2.14 5.28 $2\frac{1}{2} - 1\frac{1}{2}$ $b^2D y^2F^{\circ}$ (42) 1.77 5.28 $1\frac{1}{2} - 1\frac{1}{2}$ (43) 2.14 5.58 $2\frac{1}{2} - 1\frac{1}{2}$ $b^3D y^2F^{\circ}$ 1.77 5.28 $1\frac{1}{2} - 1\frac{1}{2}$ $b^3D y^2F^{\circ}$ 1.77 5.43 $1\frac{1}{2} - 1\frac{1}{2}$ $b^3D y^2F^{\circ}$ 1.77 5.63 $1\frac{1}{2} - \frac{1}{2}$ $b^3D 2^3F^{\circ}$ 2.14 6.28 $2\frac{1}{2} - 1\frac{1}{2}$ $2^3D y^2F^{\circ}$ 1.88 4.09 $\frac{1}{2} - \frac{1}{2}$ (48) 2.20 4.10 $1\frac{1}{2} - 2\frac{1}{2}$ $a^3P 2^2F^{\circ}$ 1.88 4.21 $\frac{1}{2} - 1\frac{1}{2}$ $a^3P 2^2F^{\circ}$ 1.88 4.21 $\frac{1}{2} - 1\frac{1}{2}$ $a^3P 2^2F^{\circ}$ 1.88 4.21 $\frac{1}{2} - 1\frac{1}{2}$ $a^3P 2^2F^{\circ}$ 1 | 4187.68 A 8 2.33 5.28 1½-1½ b4F-y2Pe (73) 4480.60 A 20 2.86 5.52 4½-3½ b4F-y2Pe (43) 4356.66 A 200 2.67 5.42 3½-3½ (74) 4356.65 A 200 2.67 5.52 3½-3½ 4071.22 A 6 2.49 5.52 2½-3½ 3877.11 A 40 2.86 6.04 4½-3½-3½-3½ 3877.13 A 40 2.67 5.91 3½-3½-3½ 7756.92 A 50 2.49 5.76 2½-1½ 3737.88 A 15 2.33 5.63 1½-1½ 3744.98 A 15 2.33 5.63 1½-1½ 3744.98 A 15 2.33 5.92 1½-1½ b4F-x2Pe (75) 3317.47 A 20 2.67 5.82 3½-3½ (76) 3438.24 A 15 2.33 5.92 1½-1½ b4F-x2Pe (77) 3438.26 A 8 2.67 6.51 3½-2½ b4F-x2Pe (77) 3561.08 A 10 3.37 5.00 1½-2½ b4F-x2Pe (80) 6308.17 A 5 3.52 5.48 2½-3½ b4F-y4Fe (80) 6563.86 A 10 3.37 5.25 1½-1½ 64F-y4Fe | 5493.22 A 6 4.62 6.87 3½-4½ 6PF-2G° † 4179.55 A 10 4.62 7.57 2½-1½ 6PF-2G° † 3946.00 A 7n 4.62 7.75 3½-2½ 6PF-2G° † (115) Strongest Unclassified Lines of Hf II 7061.90 A 307 6548.72 A 10 4519.02 A 10n 4443.07 A 20 Ta I I P † Anal C List D Dec 1942 5402.51 A 40w 0.00 2.28 1½-1½ 64F-1° 5212.76 A 35w 0.00 2.37 1½-2½ (1) 28- 4574.32 A 15 0.00 2.70 1½-1½ 88- 3970.10 A 15 0.00 3.11 1½-2½ 17° 3077.24 A 1567 0.00 4.01 1½-2½ 52° | | 4127.80 A 40 3698.39 A 10 3935.64 A 20 3485.16 A 3 3518.75 A 15 3609.02 A 4 3384.14 A 10 3195.63 A 8 3110.87 A 40 3024.76 A 15 5391.36 A 10 5391.36 A 10 5590.73 A 5 5590.73 A 5 5591.36 A 30 6512.61 A 10 5288.06 A 100 5842.23 A 80 | 2.14 5.11 $2\frac{1}{2} - 3\frac{1}{2}$ $b^3D z^2F^{\circ}$ 1.77 4.76 $1\frac{1}{2} - 2\frac{1}{2}$ (41) 2.14 5.48 $3\frac{1}{2} - 3\frac{1}{2}$ $b^3D z^2F^{\circ}$ (42) 2.14 5.28 $3\frac{1}{2} - 1\frac{1}{2}$ $b^2D y^2F^{\circ}$ (42) 1.77 5.28 $1\frac{1}{2} - 1\frac{1}{2}$ (43) 1.77 5.28 $1\frac{1}{2} - 1\frac{1}{2}$ $b^3D y^2F^{\circ}$ 1.77 5.43 $1\frac{1}{2} - 1\frac{1}{2}$ $b^3D y^2F^{\circ}$ 1.77 5.63 $1\frac{1}{2} - \frac{1}{2}$ $b^3D z^2F^{\circ}$ (44) 1.77 5.63 $1\frac{1}{2} - \frac{1}{2}$ $b^3D z^2F^{\circ}$ (45) 2.14 6.23 $3\frac{1}{2} - \frac{1}{2}$ $b^3D z^2F^{\circ}$ (47) 2.20 4.49 $1\frac{1}{2} - \frac{1}{2}$ $1\frac{1}{2}$ 1 | 4187.68 A 8 2.33 5.28 1½-1½ b⁴F-y²P° 4640.14 A 20 2.86 5.52 4½-3½ b⁴F-y²P° 4336.66 A 200 2.67 5.42 3½-3½ (74) 4336.65 A 80 2.49 5.52 3½-3½ 4071.22 A 6 2.49 5.52 3½-3½ 3877.11 A 40 2.67 5.91 3½-2½ (75) 3808.07 A 40 2.67 5.91 3½-2½ (75) 3765.92 A 50 2.49 5.76 3½-1½ 3737.88 A 15 2.33 5.63 1½-½ 3744.98 3.66 6.15 4½-4½ b⁴F-x²P° 3218.20 A 8 2.67 6.51 3½-2½ b⁴F-x²P° 7561.08 A 10 3.37 5.00 1½-2½ b⁴P-x²P° 6781.08 A 10 3.37 5.28 1½-1½ b⁴P-y²P° 6306.17 A 5 3.52 5.48 2½-3½ b⁴P-y²P° 6553.86 A 10 3.37 5.28 1½-1½ b⁴P-y²P° | 5493.22 A 6 4.62 6.87 3½-4½ 6PF-2G° † 4179.55 A 10 4.62 7.57 2½-1½ 6PF-2G° † 3946.00 A 7n 4.62 7.75 3½-2½ 6PF-2G° † (115) Strongest Unclassified Lines of Hf II 7061.90 A 307 6548.72 A 10 4519.02 A 10n 4443.07 A 20 Ta I I P † Anal C List D Dec 1942 5402.51 A 40w 0.00 2.28 1½-1½ 64F-1° 5212.76 A 35w 0.00 2.37 1½-2½ (1) 28- 4574.32 A 15 0.00 2.70 1½-1½ 88- 3970.10 A 15 0.00 3.11 1½-2½ 17° 3077.24 A 1567 0.00 4.01 1½-2½ 52° | | 4127.80 A 40 3698.39 A 10 3935.64 A 20 3485.16 A 35 5589.02 A 4 3384.14 A 10 3195.63 A 8 3110.87 A 40 3024.76 A 15 5391.36 A 10 5391.36 A 10 5398.06 A 100 | 2.14 5.11 23-32 b3p-22F0 + 1.77 4.76 12-32 (41) 2.14 5.48 23-32 b3p-y4F0 + (42) 2.14 5.28 23-12 b3p-y4F0 + (42) 1.77 5.31 12-12 (43) 1.77 5.28 23-12 (44) 1.77 5.63 12-12 (44) 1.77 5.63 12-12 b3p-y4F0 + 1.77 5.43 12-22 (44) 1.77 5.74 12-12 b3p-y4F0 + 1.88 4.09 2-12 (47) 2.20 4.49 12-12 a3p-22F0 + 1.88 4.21 2-12 (49) 2.20 4.31 12-22 a3p-22F0 + 1.88 4.21 2-12 (49) 2.20 4.31 12-23 a3p-22F0 + 1.88 4.21 2-12 (49) | 4187.68 A 8 2.33 5.28 1½-1½ b4F-y2Pe (73) 4480.60 A 20 2.86 5.52 4½-3½ b4F-y2Pe (43) 4356.66 A 200 2.67 5.42 3½-3½ (74) 4356.65 A 200 2.67 5.52 3½-3½ 4071.22 A 6 2.49 5.52 2½-3½ 3877.11 A 40 2.86 6.04 4½-3½-3½-3½ 3877.13 A 40 2.67 5.91 3½-3½-3½ 7756.92 A 50 2.49 5.76 2½-1½ 3737.88 A 15 2.33 5.63 1½-1½ 3744.98 A 15 2.33 5.63 1½-1½ 3744.98 A 15 2.33 5.92 1½-1½ b4F-x2Pe (75) 3317.47 A 20 2.67 5.82 3½-3½ (76) 3438.24 A 15 2.33 5.92 1½-1½ b4F-x2Pe (77) 3438.26 A 8 2.67 6.51 3½-2½ b4F-x2Pe (77) 3561.08 A 10 3.37 5.00 1½-2½ b4F-x2Pe (80) 6308.17 A 5 3.52 5.48 2½-3½ b4F-y4Fe (80) 6563.86 A 10 3.37 5.25 1½-1½ 64F-y4Fe | 5493.28 A 6 4.62 6.87 3½-4½ ber-y2ge † 4179.55 A 10 4.62 7.57 2½-1½ ber-y2ge † 4179.55 A 10 4.62 7.57 2½-1½ ber-y2ge † 3946.00 A 7n 4.62 7.75 3½-2½ ber-y2ge † (115) Strongest Unclassified Lines of Hf II 7061.90 A 307 0850.07 A 607 08548.72 A 10 4519.02 A 10n 4443.07 A 20 Ta I I P † Anal C List D Dec 1942 5402.51 A 40w 0.00 2.28 1½-1 a4F-1° 5212.75 A 35w 0.00 2.37 1½-2½ 17 2° 4574.32 A 15 0.00 2.70 1½-1½ 8° 3970.10 A 156 0.00 3.11 1½-2½ 17° 3077.24 A 156 0.00 3.11 1½-2½ 17° 5328.38 A 20w 0.25 2.56
2½-1½ a4F-4° | | 98 | | | | | | | REVI | 8 E | D H U | LTI | PLE | T T. | ABLE | | | | | | | | |--|--------------|------------------------------|---------------------------------------|------------------------------|---------------------------------------|---|--|-------------|--------------------------|----------------------|------------------------------|---|--|--|-----------------|-------------------------|----------------------|----------------------|---|---| | Lebor | atory
Ref | Int | Low E F | High | J | Multiplet | Labora
I A I | tor | | E P
Low | High | J | Multiplet
(No) | Labor
I A | atory
Rof | Int | E P | High | J | Multiplet
(No) | | Ta I cont | | | | | | | W II cont | lnue | đ | | | | | <u>Ir I</u> I P | 9.2 | Anal 1 | B Lis | t D | Dec 19 | 42 | | 5811.10 | A - | 2041 | 0.49 | 2.61 | 3 } _2 } | a ⁴ F-6° (3) | 3657.59
3361.11 | A
A | | | 4.46
4.76 | 1 1 | 1-1°
(3)3° | 3800.122
3448.967 | A | 60 r
60 | | | | a ⁴ F-z ⁶ D°†
(1) | | 5461.31
3063.56 | A
A | 25
18r | | 2.95
4.72 | 41-31
42-31 | a ⁴ F-13°
(4)78° | 3572.48 | A | 200 | 1.31 | 4.76 | 1출- 글 | 2-2°
(3) | 3513.638
3266.446 | A | 80r
60 | 0.71 | | | a ⁴ F-z ⁶ F°†
(2) | | 6995.35 | Α - | 2047 | | 2.51 | -
}- } | a4P_ 3° | 3024.51 | A | 300 | 1.40 | 5.48 | 2 } _2 } | 3-7°
(4) | 3437.006 | A | 60
 | 0.78 | 4.37 | 3 ۇ -3 ۇ
- | a ⁴ F_z ⁶ G ⁰ †
(3) | | 5776.76
5413.47
5349.08 | A
A
A | 20
20w
25w | 0.75 | 3.88
3.03
3.05 | * * * * * * * * * * * * * * * * * * * | (5)10°
14°
15° | 3149.87 | A | 500 | 1.63 | 5.54 | - | 4-11°
(5) | 4268.096 | A | 80 | 0.88 | 3.77 | | b ⁴ F-z ⁶ D° †
(4) | | 5136.47
4921.29 | A
A | 30w
25 | 0.75 | 3.15
3.25 | - 1
- 1 | 18°
31° | 3189.24 | A | 1001 | | 5.53 | - | | 3368.472
3992.114
3220.772 | A
A
A | 60
80
100r | 1.22 | 4.01
4.31
4.18 | 41-41
21-21
41-31 | b4F_z6F□ †
(5) | | 5419.19 | Α. | 30w | 0.75 | 3.03 | -
1}- } | | 3177.22
3051.30 | A | 150
400 | 1.66
1.66 | 5.54
5.70
5.74 | 31-31
31-31
31-41 | 5- 9°
(6)10°
13°
15° | 3915.384
3068.897 | A
A | 60
60 | 1.22 | | | b ⁴ F-z ⁶ Ge †
(6) | | 5354.67
*5141.63
4926.02 | A
A | 30 w
30w
35 | 0.75
0.75
0.75 | 3.05
3.15
3.25 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | (6) 15°
18°
21° | 3021.98 | A | 100 | | | - ` ` | | 3198.917 | A | 60 | | 4.74 | | b4F-z4D0 t | | 5939.75 | A | 20w | 1.20 | 3.28 | _ | a ⁶ D-23° | 3463.52
3179.44
3175.97
3036.68 | A
A
A | 200
150
200
100 | 1.66
1.66 | 5.22
5.54
5.54
5.72 | 23-13
23-13
23-13
23-23 | 6- 5°
(7)10°
11°
14° | 3818.121 | A | 60 | 0.88 | 4.72 | 3 }_4 } | (7)
b ⁴ F-z ⁴ G° †
(8) | | 5944.01 | Α. | 30d? | 1.23 | 3.31 |
1] -2] | 3-24° | | | 120 | | 5.53 | - | | | | | | | | | | 5435.27 | Α. | 30 | 1.35 | 3.62 | -
1] -2] | (8)
a ⁶ D?-35° | 3343.40
3160.03 | A | 300 | 1.83 | 5.74 | 42-42 | 8- 9°
(8)15° | | 9.2 | | | | Dec 19 | | | 6045.38 | A . | 30 | 1.39 | | - | (9) | 3401.90
3342.46 | A
A | 150
300 | 1.85
1.85 | 5.48
5.54 | 21-21
21-31 | 9- 7°
(9)10° | 3315.05
3290.23 | A | 8 | 1.25 | 3.72
5.00 | 1-3 | a ³ D-z ⁵ D° † | | 7148.61 |
A | 30 | | 3.34 | | (10) | 3376.17 | A | 400 | 1.87 | 5.53 | - | | 3064.71
3139.39
3156.59 | A
A
A | 50
10
10 | 0.00
0.10
1.25 | 4.03
4.03
5.16 | 3-2
3-3
1-1 | 23p-=3pe+ | | 6430.78
4936.41 | A
A | 30
30 | | 3.43
4.01 | 31-31
31-21 | a ⁶ D-20°
(11)28°
52° | *3189.24 | Ā | 1001 | 1.87 | 5.74 | - | 10- 9°
(10)15° | 2997.97 | A | 30 | 0.10 | 4.31 | 2-3 | a ³ D-z ³ F° (3) | | 7346.37
6485.36 | A
A | 30
30 | 1.65 | 3.33 | -
41-31
41-41 | 46p-36° | 3555.18
3486.14 | A | 120
100 | 2.00 | 5.48
5.54 | 21-21
21-12 | 11- 7°
(11)11° | 3408-14
3966-37 | A
A | 15
6 | 0.10 | 3.72
4.36 | -
4-4
3-3 | 23p_25pe+ | | 5997.24
5037.33 | A
A | 35w
30w | 1.65
1.65 | 3.71
4.10 | 41-41
41-31 | 39°
53° | 3529.57 | A | 100 | 2.04 | 5.54 | -
4 <u>-</u> 3-3 | 12-10°
(13) | 3042.65 | A | 20 | | 4.16 | | a ³ F-z ⁵ G° | | 5404.95 | A | 35w | 2.13 | 4.41 |
3] -1] | 9_62°
(13) | 3549.08
3358.62 | A | 150 | 2.05 | 5.53
5.72 | _ | 13- 9°
(13)14°
15°
17° | 4164.54
3638.80
5369.97 | A
A
A | .8
3 | | 4.21
4.64
4.21 | 3-3
3-4
2-3 | a ³ F-z ³ F* †
(6) | | Ta II Se | e int | roducti | on. | | | | 3343.09
*3243.36 | A | 100
100 | 2.05
2.05 | 5.74
5.85 | 31-41
31-21 | 15°
17° | 3301.87 | | 10 | 0.81 | 4.55 |
2-2 | a ³ p_5° | | | | | | | | | 3010.76 | A | 100 | 2.35 | 6.45 | _
4-3-3-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2- | 15-27°
(14) | | | | | | | (7) | | <u>WI</u> IP | 7.94 | Anal | A Li | st D | June | 1941 | *3243.36 | A | 100 | 2.47 | 6.28 |
3 <u>}_4</u> } | 16-23°
(15) | Pt II Se | e int | roduction | n . | | | | | 4244.374
4680.539 | A
A | 200
400 | 0.77 | 3.68 | 3-3 | d ⁴ s ³ 5p_ a 4sp ⁷ p•†
(1) | 3151.31 | A | 300 | 2.87 | 6.78 |
4-5-5-} | 19-38° | A. T T | P 9.2 | Amal | A 74 | n+ D | Dec 19 | | | 4843.829
5053.300
5006.169 | A
A
A | 500
500
400 | 0.41
0.21
0.77 | 2.96
2.65
3.23 | 3-2
1-1
4-3 | | 3345.86 | A | 200w | 2.89 | 6.58 |
2 | (16)
_20-31° | 3122.782 | В | (150) | 1.13 | 5.08 | | | | 5224.680
5514.712 | A | 400
500 | 0.60 | 2.96
2.65 | 3-2
3-1 | | | | | | | | (17) | 6278.30
*5064.69 | A. | 35n
15 | 2.65
2.65 | 4.61
5.08 | 13-13
13-13
- | a ^S D_6 ^S P°
(1) | | 4102.713
3881.402
3835.058 | A
A
A | 150
100
(5) | 0.77
0.60
0.41 | 3.78
3.78
3.63 | 4-3
3-3
2-2 | (2) | | 7. | 85 Anal | B I | ist D | Мау | 1942 | 7510.74
5837.29 | A | 200
40 | 5.08 | 6. 73
6. 73 | 1- 1 | 6 ² P°-7 ² 8
(2) | | *3757.093 | A | | 0.77 | 4.05 | | d ⁴ s ²⁵ p–d ⁴ sµ ⁵ pe- | | A | 2000 | 0.00 | 2.52 | - | a68-z8pe | 4792.63
4065.09 | A. | 100
45 | 5.08 | 7.66
7.65 | 11-21 | 6 ² P°-6 ² D | | 3864.335
3829.133
4219.383 | A
A | (3)
(3)
(5)
(6) | 0.21 | 3.43
3.69 | 1-1
4-3 | (3) | 3460.47 // | A
A | 1000 | 0.00 | 3.57 | 23-23 | . a6g_z6pe | 4811.61 | Ã | 60 | 5.08 | 7.65 | 1 | | | *3570.662
3760.133
3631.959 | A
A
A | (4)
(5) | 0.60
0.41
0.21 | 4.05
3.69
3.60 | 3-4
3-3
1-3 | | 3464.72
3451.88 | A
A | 800
600 | 0.00 | 3.56
3.58 | 22-12 | a ⁶ S-z ⁶ P° (2) | Au II Se | e int | roduction | on . | | | | | 3682.101
•3757.929 | A
A | (5)
(3) | 0.60 | 4.12
3.88 | 3-4 | d ⁴ 6 ² 5 _{D−d} 4 ₈₀ 5pc (4) | | | | | | | | | | | | | _ | | | *3872.835
4047.948
3847.501 | A
A
A | (3)
(4)
(2)
(3) | 0.41
0.21
0.00 | 3.60
3.26
3.21 | 2-3
1-3
0-1 | | OB I I | 8 .
A | 7 Anal
400R | 0.00 | st D
2.79 | Dec 1 | | <u>Hg I</u> I
5460.742 | P 10. | 39 Ans
500R | 5.44 | List D | Dec
2-1 | 1942
6 ³ p°_7 ³ g | | *3570.662
3326.194 | A
A | (6)
60 | 0.41 | 3.87 | | α ⁴ ε ^{3 5} D-313°
(5)362° | 4260.854
3528.602
3301.559 | A
A
A | 200
400R
500R | 0.00 | 2.90
3.50
3.74 | 4-5
4-4
4-5 | 1-26°
(1)27°
32°
37° | 4358.343
4046.557 | A
A | 300
100 | 4.87 | 7.70
7.70 | 1-1
0-1 | (1) | | 3300.819
3215.578 | A
A | 150
150 | 0.60 | 4.34
4.61 | 3-4
4-5 | 351°
373° | 3267.945
*3058.66 | A | 400R
500R | 0.00 | 3.78
4.03 | 4-4 | 39°
41° | 3663.274
3131.845 | A
A | 50R
100 | 5.44
4.87 | | 2-3
1-3 | 6 ³ P°-6 ¹ D | | 3191.577
3176.602
3046.452
3041.878 | A
A
A | 60
30
50
85 | 0.00
0.21
0.21 | 3.87
4.09
4.26
4.47 | 0-1
1-2
1-3
2-1 | 313°
331°
344°
361° | 3752.524 | A | 400R | 0.34 | 3.63 |
2-3 | 2-35°
(2) | 3650.144
3125.668 | A
B | 100R
200R | 5.44
4.87 | 8.82
8.81 | 2-3
1-8 | 6 ³ P°-6 ³ D† | | | | | | | _ | | 4135.784 | Ā | 200 | 0.51 | 3.50 | 3-4 | 3-32° | 5790.659 | A | 300 | 6.67 | 8.81 | 1-2 | 6 ¹ P°-6 ¹ D | | 4008.769
4074.374
4294.623 | A
A
A | 1000
500
1000 | 0.36 | 3.44
3.39
3.24 | 3-3
3-2 | d ⁵ s ⁷ S-d ⁴ sp ⁷ P•
(6) | 3782.195
3336.150 | A
A | 500
400R
200R | 0.51
0.51
0.51 | 3.78
4.21 | 3-4
3-3 | (3)35°
39°
43° | 5769.598 | A
a aho | 300 | | 8.81
Te | 1-3 | 61P ⁰ -6 ³ D† (5) | | 3867.086
4302.123
*4757.565 | A
A
A | 300
500
300 | 0.36
0.36 | 3.23
2.96 | 3-4
3-3
3-2 | d ⁵ e ⁷ g-d ⁴ ep ⁷ p ⁶ (7) | 3262.290
3232.055 | A | 500R
500R | 0.51 | 4.30 | 3-4
3-2 | 45°
46° | Hg II Se | | | | | | | | 3617.522
3780.770 | A
A | 800
300 | | 3.78 | 3-3 | d ⁵ s ⁷ S-d ⁴ sp ⁵ P | 4173.234 | A
A
A | 100
300
300R | 0.64
0.64
0.64 | 3.59
3.74
4,30 | 5-6
5-5
5-4 | 4-34°
(4)37°
45° | | | | | | | | | 3207.248
•3049.694 | A | 80
60 | 0.36 | 4.21 | 3-4 | d5878- 341° | 3156.248 | Ã | 500R | 0.64 | 4.55 | 5-4
5-5 | 53 9 | | P 6.0 | | | 1st D
3.27 | Dec | | | 3017.447 | A
A | 60 | 0.36 | 4.41 | | 360° | 4112.018 | A | 150 | 0.71 | 3.71 | 1-2 | 5-36°
(5) | 5350.527/
3775.724 | A | 500R
500R | 0.00 | 3.27 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 6 ² po_7 ²
g
(1) | | 8 77 ~ | ъ• | Ama? • | , , , , , , , , , , , , , , , , , , , | | Doc 15 | 40 | 3560.855 | A | 150R | 1.08 | 4.55 | 4-5 | 7-53°
(6) | 3519.24
3529.38
Many line | B
B
s sho | 500R
100R
ow fine | 0.96 | | 12-12 | (3)
(3)
(3) | | W II I
3641.42 | A | 150 | 1.08 | | | 48
1 4F_1°
2 (1)3° | | | ····· | | | | | Tl II Se | | | | | | _ | | 3286.57 | A | 100 | 1.08 | 4.83 | 1-1-1- | ∮ (1)3° | | | | | | | | | | | | | | | | Laborat
I A R | tory
ef Int | Low E F | High | J | Multiplet
(No) | |---------------------|------------------------------|----------------------|----------------------|-------------------|--| | Pb I IP | 7.38 Anal | A L | lat D | Dec | 1942 | | 4057.813// | A 500R
A 1000R
A 1000R | 0.97
1.31
0.97 | 4.36
4.36
4.32 | 1-1
2-1
1-0 | 6p ³ p_7g ³ pe † (1) | | 3739.940 7228.974 1 | A 200
B (2000) | 2.65
2.65 | 5.95
4.36 | 2-2
2-1 | 6p ¹ D-7s ³ P° (2) | | 3572.734 | A 200R | 2.65 | 6.10 | 2-1 | 6p ¹ D_7s ¹ p° (3) | # Pb II See introduction Bi I P ? Anal B List D Dec 1942 3067.713// A 9R 0.00 4.03 1½-½ 6p45°-1 (1) 4722.652 to) B (8) 1.41 4.02 $\frac{1}{2}$ $\frac{1}{$ Wide fine structure | | REV | ISED | MULTI | PLET | TABLE | |---|-----------------------|-------------------|---------|--------------------|---| | | Labo: | ratory
Ref Int | Low E | P J
High | Multiplet
(No) | | | Bi II s | ee introdu | ction | | | | • | Rn I Se | e introduc | tion | | | | | | | | | | | | Ra I I | P 5.25 A | nal A L | ist D Ma | y 1942 | | | 4825.91 // | / A 100 | 0.00 | 2.56 0- | 1 7 ¹ 8_7 ¹ p°
(1) | | | | | | | | | | | | | List D | - | | | 3814.42 //
4683.28 | A 200
A 100 | 0.00 | 3.24 }-
2.64 }- | 1 7 ² 8-7 ² P°
2 (1) | | | | | | | | Th I Wo analysis Dec 1942 | Labor | + | *** | | Þ | J Multiplet | |------------------------|--------|------------|-------|--------------|---| | I A | | Int | Low | | (No) | | Th II I | P ? | Anal | C Lis | t D J | uly 1944 | | 3539.589 | A | 400 | 0.00 | 3.49 | 12-22 a2D-z4F0+ | | 4277.322 | A | 400 | 0.00 | 2.89 | 12-12 a2D-y2po+ | | 3610.794
4019.137// | A
A | 30
1500 | 0.51 | 3.93
3.07 | 1½-1½ a ² D-y ² P° † (2) 2½-3½ a ² D-y ² F° † 1½-2½ (3) | | | | | | | _ | | 3180.199 | A | 400 | 0.19 | 4.07 | $3\frac{1}{2} - 3\frac{1}{2} a^4 F - z^4 F^0 + (4)$ | | 3392.040 | A | 300 | 0.19 | 3.83 | 22-32 a4F-y2Go+ | | 4391.114 | A | 600 | 0.55 | 3.36 | 2½-3½ a ² Fe-z ⁴ G†
(6) | | 4919.814 | A | 500 | 0.76 | 3.27 | 31-21 a4H0-z4G+ (7) | | | | | | | | Th III See introduction $\underline{\mathtt{U}}$ Not separated Dec 1943 # PRUTSED MULTIPLET TABLE | 100 | | | | REVIS | | | TABLE | | | | | | |--------------------------------|-------------------------------------|--------------------------------|---|----------------------------------|-------------------------------------|--|---|---|----------------------|------------------|---|---| | IA | E P | J | Multiplet | IA | E P
Low High | J J | Multiplet
(No) | IA | E Low | P
High | រ | Multiplet (No) | | Be I IP 9. | Low High | | (No) | FIV IP8 | | | , | P II con | ntinued | | | | | Be I I P 9. | 0.00 (2.71) | 0-1 | 2s ² 1s-2s2p ³ p° (1F) | 4059.3
3996.3 | 0.08 3.12
0.03 3.12 | | 2p ² 3p _{-2p} 2 1 _D (iF) | 7869.5 | 1.10 | 2.66 | 2-0 | 3p ² ¹ D-3p ² ¹ S
(3F) | | | | | | 3532.2 | 3.12 6.61 | 2-0 | 2p ² 1 _{D-2p} 2 1 _S (2F) | | | | | | | <u>C I</u> I P 11 | | | 2p ² | | | | | <u>S I</u> I I | P 10.31 | 1.14 | 2-2 | 3p4 3p-3p4 1p | | 9849.5
9823.4
9808.9 | 0.01 1.26
0.00 1.26
0.00 1.26 | 2-2
1-2
0-2 | 2p 1-2p D | Ne III I | P 63.3 | | | 11305.8 | 0.05 | | 1-3
2-0 | (1F)
3p ⁴ 3p-3p ⁴ 1s | | 4627.3
4621.5 | 0.01 2.67
0.00 2.67 | 2-0
1-0 | 2p ^{2 3} p-2p ^{2 1} s
(2F) | 3868.74 N
3967.51 N | 0.00 3.19
0.08 3.19 | | 2p ⁴ 3p _{-2p} ⁴ 1D
(1F) | 4506.9
4589.0 | 0.05 | 2.74 | 1-0 | (2F) | | 8727.4 | 1.26 2.67 | 2-0 | 2p ² 1p-2p ² 1s
(3F) | 3342.9 | 3.19 6.88 | 3 2-0 | 2p4 1p-2p4 1s
(2F) | 7724.7 | 1.14 | 2.74 | a-0 | 3p ⁴ 1 _{D-3p} 4 1 _S (3F) | | | | | | <u>Ne IV</u> I P | 96 | | | <u>s 11</u> 1 | P 23.3 | | | | | NI IP14 | 1.49
0.00 2.37 | 11-21 | 2p3 4se_2p3 2pe | 4716 ?
4720 ? | (4.76 7.38
(4.76 7.38 | 8) 2½-1½
8) 1½-½
8) 2½-½
8) 1½-1½ | 2p3 Spe_2p3 Spe
(1F) | 4068.62
4076.22 | | | 1출-1출
1출- 출 | 3p3 4se-3p3 2pe (1F) | | 5198.5
3466.4 | 0.00 2.37 | | (1F)
2p ^{3 4} 3°-2p ^{3 2} p° | 4714 ?
4717 ? | (4.76 7.3
(4.76 7.3 | 8) 2½-½
8) 1½-1½ | | 6717.0
6731.3 | 0.00 | | 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 3p ³ 4s°-3p ³ 3p°
(2F) | | 10395.4 | 2.37 3.56 | 21-
11- | (2F)
2p ³ 2p•-2p ³ 2p• | | | | | 10317.7 | 1.84 | 3.03 | 21-11 | 3p ³ 2p ₉ _3p ³ 2p ₉ | | 10404.1 | 2.37 3.56 | 11/2- | (3F) | Ne V I P
3425.8 N
3345.9 N | 0.10 (3.7
0.05 (3.7 | 4) 2-2
4) 1-0 | 2p ² 3p_2p ² 1 _D | 10336.0
10369.7
10284.3 | 1.83
1.84
1.83 | 3.03 | 20-10-10-10-10-10-10-10-10-10-10-10-10-10 | (3F) | | NII IP: | | | 9791 | 2972 1 | (3.74 7.8 | 9) 2-0 | 2p ² 1p-2p ² 1s | | | | | | | 6583.6 N
6548.1 N
6527.4 | 0.02 1.89
0.01 1.89
0.00 1.89 | 1-2 | 3p ² 3p _{-2p} 2 1 _D (1F) | | | | (2F) | <u>8 III</u>
9532.1 | I P 34.9 | | 2-2 | 3p2 3p-3p2 1p | | 3070.8
3063.0 | 0.02 4.04
0.01 4.04 | 2-0 | 2p ² 3p-2p ² 1s
(2F) | Na IV I I | 98.5 | | | 9069.4
3796.7 | 0.10 | 3.35 | 2-0 | (1F)
3p ² 3p-3p ² 1s | | 5754.8 N | 1.89 4.04 | 2-0 | 2p ² ¹ D-2p ² ¹ S
(3F) | 3319.3
3445.9 | 0.00 3.7
0.14 3.7 | | 2p ⁴ 3p _{-2p} 4 .1p
(1F) | 3721.1
6310.2 | 1.40 | 3.35 | 2-0 | (2F)
3p ² 1p-3p ² 1s | | | | | | <u> </u> | | | | | | | | (3F) | | OI IP1 | 3.56 | | | 4011:2 | 138.0
5.83 8.9 | 0 23-12 | 2p3 2pe_2p3 2pe | s VIII | I P ? | | | | | 6300.23 L
9303.00 L | 0.00 1.96 | 1-0 | 2p4 3p_2p4 1p
(1F) | 4021.6
4017.5
4015.3 | 5.83 8.9
6.83 8.9
5.83 8.9 | 0 13 3 | (1F) | 9917.9 | 0.00 | 1.24 | 1출. 출 | 2p5 2pe_2p5 2pe (1F) | | 2972.3 | 0.02 4.17 | | 2p ⁴ 3p ₋ 2p ⁴ 1s
(2F) | | | | | *************************************** | | | | | | 5577.350A | 1.96 4.17 | 7 2-0 | 2p ⁴ 1p-2p ⁴ 1s
(3F) | | P 186.1 | | | s XII | IP† | | | | | | | | | 3485.5
3503.0
3500.4 | 6.70 10.2
6.70 10.2
6.70 10.2 | 33 1 }- } | 3p ³ 3pe-3p ³ 3pe
(1F) | 7536 | 0.0 | 0 1.64 | - 1호 | 3p ² P-2p ² P
(1F) | | <u>0 II</u> I P
3728.91 N | 35.00
0.00 3.31 | 11-24 | 2p ³ 4se-2p ³ 2pe | 3488.1 | 6.70 10.2 | 34 1] -1] | | | | | - | | | 3726.16 N | 0.00 3.33 | 1] -1] | (1F) | Al VII I | P 241.1 | | | <u>cl II</u>
857 9. 5 | I P 23.70 | 0 1.44 | 2-2 | 3p4 3p_3p4 1p | | 7319.4
7329.9
7318.6 | 3.31 5.00
3.31 5.00
3.31 5.00 | 1 | 2p ^{3 2} D°-2p ^{3 2} p° (2F) | 3074.0
3093.4 | 7.59 11.6
7.59 11.5 | | 2p ³ 2pe-2p ³ 2pe | 9125.8 | 0.0 | | 1-2
2-0 | (iF)
3p ⁴ ³ p _{-3p} ⁴ ¹ s | | 7330.7 | 3.31 5.00 | 11/2-11/2 | | 3098.7
3068.8 | 7.59 11.5
7.59 11.5
7.59 11.6 | າດ <i>చ</i> າ ງ ⊸ າງ | (IF) | 3675.0 | 0.0 | 3.44) | | (2F) | | <u>0 III</u> I I | 54 71 | | | | | | | 6152.9 | 1.4 | 4 (3.44) | 2-0 | 3p ⁴ 1p-3p ⁴ 1s
(3F) | | 5006.84 N | 0.04 2.50 | 2-2 | 2p ² ³ P-2p ² ¹ D | <u>81 I</u> I P | | | . 2 3 2 1. | | | | | | | 4958.91 N
4931.8 | 0.01 2.50
0.00 2.50 | 0 1-2 | (1F) | 6589.74
6586.85 | 0.03 1.9 | | 3p ² 3p_3p ² 1g
(1F) | <u>C1 111</u> | I P 39.7 | | | . 3 4.0 . 3 200 | | 4363.21 N | 2.50 5.3 | 3 2-0 | 2p ² 1p-2p ² 1s
(2F) | 10991.52 | 0.78 1.9 | 90 2-0 | 3p ² 1 _{D-3p} 2 1 _S (2F) | 3342.7
3353.4 | 0.0 | | 12-13
12- 2 | 7 4 7 7 | | | | | | | | | | 5517.2
5537.7 | 0.0 | | 12-23 | 3p ³ 4s°-3p ³ 2p° (1F) | | FII I P | | | - 4 7 4 4 | <u>PI</u> IP | | | | 8481.6
8501.8 | 2.2 | 4 3.69
3 3.68 | 21-12
12- 2
22- 2
12-12 | 3p ³ 2p°-3p ³ 2p° (3F) | | 4789.5
4869.3 | 0.00 2.5 | 8 2-2
8 1-3 | 2p ⁴ ³ P-2p ⁴ ¹ D
(1F) | 8787.6
8799.1 | 0.00 1. | 40 1 2 -1 | | 8550.5
8433.7 | 2.2 | 4 3.68
3 3.69 | 21-12-12 | | | 4157.5 | 2.58 5.5 | 5 2-0 | 2p ⁴ 1p-2p ⁴ 1s
(2F) | 5332.4
5339.7 | 0.00 2. | 31 13-1
31 13- | 3p ³ 4se_3p ³ 2pe
(2F) | | | | | | | | | | | | | | | Cl IV
8046.1 | I P 53.2
0.1 | 7 1.70 | 2-2 | 3p ^{2 3} p-3p ^{2 1} D | | <u>FIII</u> II | P 62.39 | | | <u>PII</u> I F | 0.06 1. | 10 2.2 | 3p ² 3p-3p ² 1p | 7530.9 | 0.0 | 6 1.70
7 4.02 | 1-2 | (1F)
3p ² -3p _{-3p} ² 1 _S | | 5721.2
5733.0 | 4.21 6.3
4.21 6.3 | | Sp ³ Spe_Sp ³ Spe
(1F) | 11483.2
4736.6 | 0.06 1. | 10 1-2 | (iF)
3p ² 3p-3p ² 1s | 3118.3 | 0.0 | 6 4.02 | 1-0 | (3F) | | | | | | 4669.5 | 0.08 2. | 66 1-0 | (2F) | 5322.2 | 1.7 | 0 4.02 | 2-0 | 3p ² 1p-3p ² 1s | | | | | | | FORBID | DEN LINES | | | | | | |----------------------------|---|--------------------------------|---|----------------------------------|----------------------------------|---|--|--|--|---------------------------------------|--| | IA | E P
Low High | J | Multiplet
(No) | İ.A. | E P
Low High | J | Multiplet
(No)
 I A | E P
Low High | J | Multiplet
(No) | | <u>III</u> IP4 | 0.00 1.73 | 2-2 | 3p ⁴ 3p-3p ⁴ 1p | Ca V I P
5308.9
6085.9 | 0.00 2.32
0.30 2.33 | | 3p4 3p-3p4 1p
(1F) | <u>Sc VII</u> I
4987 ?
5045 ? | P 1
(0.08 2.56)
(0.00 2.45) | 21-11
11-1
21-1
21-1
12-1 | 3p ³ 2pe-3p ³ 2pe | | 751.0
6005.1
6109.0 | 0.14 1.73
0.00 (4.11)
0.14 (4.11) | 1-2
2-0
1-0 | 3p ⁴ 3p-3p ⁴ 1s
(2F) | 3996.3 | 2.32 5.41 | | 3p ⁴ 1p-3p ⁴ 1s | 5224 ?
4824 ? | (0.08 2.45)
(0.00 2.56) | 22-1
12-12 | · · · · · · · · · · · · · · · · · · · | | | 1.73 (4.11) | 2-0 | 3p4 1D-3p4 1s | | | | (2F) | Ti I I P | 6.81 | | | | | | | (3F) | Ca VI I 1 | P 7
0.00 3.3 | 8 1 1 -21 | 3p ³ 4se_3p ³ 2pe | 12168.80
12012.60
11849.83 | 0.05 1.06
0.02 1.05
0.00 1.04 | 4-2
3-1
2-0 | a ³ F-a ³ P
(1F) | | IV IP6 | 0.00 2.62 | 11_21 | 3p ³ 4se_3p ³ 2pe | 3702.7 | 0.00 3.3 | 3 12-12 | (1F) | 11856.02
11771.95
11621.54 | 0.02 1.06
0.00 1.05
0.00 1.06 | 3-2
2-1
2-2 | | | 711.4
740.3 | 0.00 2.60 | 12-22
12-12 | (1F) | 5587.2
5631.0
5766.4 | 3.38 5.5
3.33 5.5
3.38 5.5 | 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 3p ³ ² De_3p ³ ² Pe
(2F) | 8777.26
8716.24 | 0.05 1.45
0.02 1.44 | 4-4
3-3
2-2 | a ³ F-b ³ F
(2F) | | 236.0
263.3
332.0 | 2.62 4.33
2.60 4.30
2.62 4.30 | 23-12
13-2
23-2
13-12 | 3p ³ 2pe_3p ³ 2pe
(2F) | 5460.0 | 3.33 5.5 | 9 15-15 | | 8669.28
8884.12
8799.09
8613.35 | 0.00 1.42
0.05 1.44
0.02 1.42
0.02 1.45 | 4-3
3-2
3-4 | | | 169.0 | 2.60 4.33 | 12-12 | | Ca VII I | PT | | | 8588.84
8970.23
8488.93 | 0.00 1.44
0.05 1.42
0.00 1.45 | 2-3
4-2
2-4 | | | <u>V</u> IP78 | | | | 5615.8
4938.6 | 0.50 2.7
0.20 2.7 | | 3p ² 3p-3p ² 1p | 8521.66
8367.07 | 0.05 1.50
0.02 1.50 | 4-4
3-4 | a ³ F-a ¹ G
(3F) | | 006.3
434.9 | 0.25 2.01
0.09 2.01 | 2-2
1-2 | 3p ² 3p _{-3p} 2 1 _p (IF) | 3688 7 | 2.70 (6.0 | o5) z-0 | 3p ^{2 1} p-3p ^{2 1} s
(2F) | 8249.61
7287.25
7213.88 | 0.00 1.50
0.05 1.74
0.02 1.73 | 2-4
4-3
3-2 | a ³ F-a ⁵ P
(4F) | | 610 7 | 2.01 (4.69) | 2-0 | 3p ² 1 _{D-3p} ² 1 _S (2F) | | | | | 7150.21
7328.50
7238.29 | 0.00 1.73
0.05 1.73
0.02 1.73 | 2-1
4-2
3-1 | (41) | | | | | | Ca XII 3 | 0.00 3.1 | 71 1] - } | 3p ⁵ | 7173.92
7186.40
7087.39 | 0.02 1.74
0.00 1.73
0.00 1.74 | 3-3
3-3
2-3 | | | X IP? | 0.00 2.23 | 1글- 글 | 2p ⁵ 2pe_2p5 2pe | · | | | (1F) | 6739.63
6670.76 | 0.05 1.88
0.02 1.87
0.00 1.87 | 4-5
3-4
2-3 | a ³ F-a ³ G
(5F) | | | | | (1F) | Ca XIII | I P ? | | | 6617.12
6768.65
6692.48
6791.02 | 0.05 1.87
0.03 1.87
0.05 1.87 | 4-4
3-3
4-3 | | | XI IP | , | | | 4086.5 | 0.00 3.0 | 08 2-1 | 2p ⁴ 3p _{-2p} ⁴ 3p
(1F) | 6642.57
6595.88 | 0.02 1.88
0.00 1.87 | 3-5
2-4 | | | 919 | 0.00 1.78 | 3-1 | 2p ⁴ ³ p-3p ⁴ ³ p
(1F) | | | | | 5828.12
5794.16
5755.60 | 0.05 2.17
0.02 2.15
0.00 3.11 | 4-3
3-2
3-1 | a ³ F-a ³ D
(6F) | | | | | | <u>Ca XV</u> I
5648 ? | 0.00 (2. | 19) 0-1 | 2p2 3p_2p2 3p | 5867.87
5812.53
5755.39 | 0.05 2.15
0.02 2.14
0.03 2.17 | 4-2
3-1
3-3 | • | | <u>XIV</u> I P | 0.00 2.83 | 킬 _1킬 | 2p ² P°-2p ² P° | | | | (1F) | 5737.59
5699.57
5680.64 | 0.00 2.15
0.00 2.17
0.05 3.24 | 2-2
2-3
4-2 | _а 3 _{г-ь} 3 _р | | | | | (11) | | P 12.8 | | | 5587.73
5555.33
5561.66 | 0.02 2.23
0.00 2.22
0.02 2.24 | 3-1
2-0
3-2 | (7F) | | K IV I P | | | 42. 41 | 9285.20
9191.34
9134.50 | 0.02 1.
0.01 1.
0.00 1. | 35 2-2 | a ³ D-b ¹ D
(1F) | 5535.09
5509.51 | 0.00 2.23
0.00 2.24 | 2-1
2-2 | а ³ г-а ³ н | | 3101.1
3794.8 | 0.00 2.02 | 2-2 | 3p ⁴ 3p _{-3p} 4 1 _D (1F) | 8649.11
8567.60
8518.20 | 0.02 1.
0.01 1.
0.00 1. | 45 2-0 | a ³ D-a ¹ S
(2F) | 5614.62
5562.94
5542.54 | 0.05 2.25
0.02 2.24
0.00 2.23
0.05 2.24 | 4-6
3-5
2-4
4-5 | eF-aFH
(8F) | | 4511.0 | 2.02 4.76 | 2-0 | 3p ⁴ 1 _{D-3p} 4 1 _S (2F) | 8347.24
8307.67 | 0.02 1.
0.01 1. | 50 3-2 | a ³ D-a ³ P
(3F) | 5630.85
5595.31
5664.02 | 0.03 2.23 | 3-4
4-4 | | | | | | | 8379 99
8384.28
8326.66 | 0.00 1.
0.02 1.
0.01 1. | 49 1-0
49 3-1
49 2-0 | (5.7) | 5594.91
5518.00
5466.67 | 0.05 2.26
0.02 2.26
0.00 2.26 | 4-4
3-4
2-4 | 2 ³ F_b ¹ G
(9F) | | <u>K V</u> I P 7 | 0.00 (2.99 | | | 8271.32
8261.21
8403.62 | 0.01 1.
0.00 1.
0.02 1. | 49 1-1
49 3-0 | | 5396.71
5358.79 | 0.05 2.33
0.02 2.32 | 4-2
3-1 | a ³ F-c ³ P
(10F) | | 4166 7
6316.6 | (2.99 4.95 | 2 2 - 1 - 1 | • | 8225.25
11896.48 | 0.00 1. | | -
a ¹ D-b ¹ D | 5312.52
5334.30
5310.36
5286.31 | 0.00 2.32
0.02 2.33
0.00 2.32
0.00 2.33 | 2-0
3-2
2-1
2-2 | | | 6349.5
6446.5
6223.4 | (2.96 4.91
(2.99 4.91
(2.96 4.95 | 21-1
11-
21-
11-1 | (2F) | 10872.05 | 0.31 1. | 45 2-0 | (4F)
a ¹ D-a ¹ S
(5F)
a ¹ D-a ³ P | 5025.53
4982.92 | 0.02 2.48
0.00 2.48 | 3-1 | a ³ F-a ¹ P
(11F) | | | | | | 10399.33
10456.86
10486.97 | 0.31 1.
0.31 1.
0.31 1. | .50 2-2
.49 2-1
.49 2-0 | a ¹ D-a ³ P
(6F) | 5043.30
4988.75 | 0.05 2.49
0.02 2.49 | 3-2 | a ³ F-b ¹ D
(12F) | | <u>K VI</u> I P | 0.36 2.34 | 2–2 | 3p ² | 10780.17
10660.35 | 0.62 1
0.60 1 | .76 4-4
.76 3-4 | -
a ³ F-a ¹ G
(7F) | 4946.76
4898.49
4847.01 | 0.00 2.49
0.05 2.57
0.02 2.57 | 45 | a ³ F-a ¹ H
(13F) | | 5603.2 | 0.14 2.34 | 1-2 | (1F)
- | 10569.44 | 0.59 1. | 76 3-4 | | 11933.60 | 0.84 1.88 | 5-5 | -
a ⁵ F-a ³ G | | 4097 ? | 2.34 (5.35 |) 2-0 | 3p ² 1p-3p ² 1s
(3F) | Sc III | I P 24.65 | | | 11881.68
11835.06
12024.89 | 0.83 1.87
0.82 1.87
0.84 1.87 | 4-4
3-3
5-4 | (14F) | | Cal IP | 6.09 | | | 3945.34
3914.83 | 0.02 3 | 15 23
15 12 | 3 ² D-4 ² S
(1F) | 11950.77
11792.55
11767.30 | 0.83 1.87
0.83 1.88
0.82 1.87
0.81 1.87 | 4-5 | | | 4912.82
4916.18 | 0.00 2.51
0.00 2.51 | 0-2
0-1 | 4 ¹ S-3 ³ D
(1F) | y | | | | 11748.60
12095.67
11679.85
11681.81 | 0.81 1.87
0.84 1.87
0.82 1.88
0.81 1.87 | 5-3 | | | 4575.46 | 0.00 2.70 | | 4 ¹ S-3 ¹ D
(2F) | <u>Sc VI</u>
4672.2 | 0.00 2 | .64 2–2 | 3p ⁴ ³ P-3p ⁴ ¹ D | 11690.94 | 0.81 1.87
0.83 2.17 | 1-3 | | | | | | , | 5539.6 | 0.41 3 | | (1F) | 9288.45
9281.86
9189.22 | 0.82 2.15
0.81 2.14
0.82 2.17 | 3-2
2-1 | (15F) | | Ca II I | | | . 2 -2 | 3590.8 | 2.64 6 | .08 2-0 | 3p ⁴ 1 _{D-3p} 4 1 _S (2F) | 9235.10
9245.82
9137.01 | 0.81 2.15
0.81 2.14
0.81 2.17 | 2-2
1-1
2-3 | | | 7291.46
7323.88 | 0.00 1.69
0.00 1.69 | 1-2
2-1 | A ² S_3 ² D
(1F) | | | | | 9199.44 | 0.91 2.15 | 1_2 | | ### REVISED MULTIPLET TABLE | I A | E P
Low High | J | Multiplet
(No) | AI | E P
Low High | J | Multiplet (No) | I A | E P
Low High | J | Multiplet (No) | |---|---|---|---|--|---|---|--|---|---|---|--| | Ti I conti | nued | | | T1 II I P | 13.6 | | | T1 II cont | inued | | | | 8705.08
8721.54
8739.71
8658.20
8689.73
8626.85 | 0.82 2.24
0.81 2.23
0.81 2.22
0.81 2.24
0.81 2.23
0.81 2.24 | 3-2
2-1
1-0
2-2
1-1
1-3 | a ⁵ F-b ³ P
(16F) | 11971.26
11782.27
11735.52
11602.41
11557.08
11477.29 | 0.05 1.08
0.03 1.08
0.03 1.08
0.01 1.08
0.01 1.08
0.00 1.08 | 41-21
31-15
31-25
21-25
21-25
11-15 | a ⁴ F-a ² D
(1F) | 8648.72
8625.93
8722.54
8553.73
8549.64 | 0.15 1.58
0.13 1.56
0.15 1.56
0.13 1.58
0.12 1.56 | 41-51
31-41
41-41
31-51
21-42 | b ⁴ F-a ² H
(16F) | | 8808.47
8770.71
8787.81
8848.50
8851.45
8930.70 | 0.84 2.25
0.83 2.24
0.82 2.23
0.84 2.24
0.83 2.23
0.84 2.23 | 5-6
4-5
3-4
5-5
4-4
5-4 | a ⁵ F-a ³ H
(17F) | 11432.93
11458.27
11396.50
11618.68
11242.13
11228.14 | 0.00 1.08
0.05 1.13
0.03 1.11
0.05 1.11
0.03 1.13
0.01 1.11 | 14-14-14-14-14-14-14-14-14-14-14-14-14-1 | a ⁴ F-a ² G
(2F) |
7119.56
7051.04
7115.47
7055.06
6999.99
7003.95
6963.02 | 0.15 1.88
0.13 1.88
0.15 1.88
0.13 1.88
0.12 1.88
0.12 1.88
0.11 1.88 | 42-42-34-34-34-34-34-34-34-34-34-34-34-34-34- | b ⁴ F-b ³ G
(17F) | | 8731.38
8708.23
8740.05
8160.66
8176.33 | 0.83 2.25
0.82 2.24
0.81 2.23
0.82 2.33
0.81 2.32 | 4-6
3-5
2-4
3-2
2-1 | a ⁵ F-c ³ P
(18F) | 11078.26
11110.92
10956.10
10901.79
10784.80 | 0.01 1.13
0.00 1.11
0.05 1.18
0.03 1.16
0.01 1.16 | 21-41
12-31
41-21
31-11
21-11 | a ⁴ F-a ⁴ P
(3F) | 6434.04
6436.55
6391.51
6405.27
6360.66 | 0.13 2.05
0.12 2.04
0.12 2.05
0.11 2.04
0.11 2.05 | 31-11
21-12
21-12
11-12 | b ⁴ F-b ³ P
(18F) | | 8153.46
8119.46
8148.37
8091.87 | 0.81 2.32
0.81 2.33
0.81 2.32
0.81 2.33
0.84 3.57 | 1-0
2-2
1-1
1-2
5-4 | a ⁵ F-a ⁵ D | 10758.32
10747.64
10676.61
10608.18
10640.19
10503.47 | 0.03 1.18
0.01 1.16
0.00 1.16
0.01 1.18
0.00 1.16
0.00 1.18 | 35-25
25-15
15-25
15-25
15-25
15-25 | | 5080.84
5032.69
5065.43
5047.91
5006.63 | 0.15 2.58
0.13 2.59
0.15 2.59
0.13 2.58
0.12 2.59 | 41-31
31-21
41-21
31-31
21-31 | b ⁴ F-b ² F
(19F) | | 4515.52
4509.85
4504.71
4500.00
4536.05 | 0.83 3.57
0.82 3.56
0.81 3.55
0.81 3.55
0.84 3.57 | 4-3
3-2
2-1
1-0
5-3 | (19F) | 10116.66
10148.57
10021.39 | 0.01 1.23
0.00 1.22
0.00 1.23 | 21-11
12-12
12-12 | a ⁴ F-a ² P
(4F) | 5021.69
4987.68
5002.63 | 0.12 2.58
0.11 2.59
0.11 2.58 | $2\frac{1}{2} - 3\frac{1}{2}$ $1\frac{1}{2} - 3\frac{1}{2}$ | b ⁴ F-c ² D | | 4526.55
4517.36
4508.52
4501.36
4498.90
4497.23
4496.21 | 0.83 3.56
0.82 3.55
0.81 3.55
0.83 3.57
0.82 3.57
0.81 3.56
0.81 3.55 | 4-2
3-1
2-0
4-4
3-3
2-2
1-1 | | 10379.73
10300.86
10223.27
10203.05
10163.13
10125.99
10066.92 | 0.05 1.24
0.03 1.23
0.01 1.23
0.03 1.24
0.01 1.23
0.00 1.22
0.01 1.24 | 41-21
31-1
21-2
31-1
31-1
31-1
31-31
31-31 | a ⁴ F-b ⁴ P
(5F) | 4169.41
4187.46
4147.21
4169.40
4129.49
4156.25
4116.60 | 0.15 3.11
0.13 3.08
0.13 3.11
0.12 3.08
0.12 3.11
0.11 3.08
0.11 3.11 | 40-12-14-14-14-14-14-14-14-14-14-14-14-14-14- | (SOF) | | 4484.84
4486.35
4488.76
4472.37
4477.91 | 0.82 3.57
0.81 3.57
0.81 3.56
0.81 3.57
0.81 3.57 | 3-4
2-3
1-2
2-4
1-3 | | 10066.98
9972.59
8085.17
8060.16
7976.95 | 0.00 1.23
0.00 1.24
0.05 1.57
0.03 1.56
0.03 1.57 | 15-15
15-25
45-25
35-25 | a ⁴ F-b ² D
(6F) | 9649.94
9398.59
9642.42
9405.71 | 0.60 1.88
0.57 1.88
0.60 1.88
0.57 1.88 | 3 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | a ² F-b ² G
(21F) | | 9720.20
9831.29
9884.29 | 0.90 2.17
0.90 2.15
0.90 2.14 | 2-3
2-2
2-1 | a ¹ D-a ³ D
(20F) | 7975.58
7894.10
7916.25
7835.98 | 0.01 1.56
0.01 1.57
0.00 1.56
0.00 1.57 | 22 - 14
22 - 24
14 - 14
14 - 24 | | 6250.51
6124.57
6227.19
6147.13 | 0.60 2.58
0.57 2.59
0.60 2.59
0.57 2.58 | 3 - 3 - 3 - 2 - 3 - 3 | a ² F-b ² F
(22F) | | 9180.13
9251.37
9308.03
8576.73 | 0.90 2.24
0.90 2.23
0.90 2.22
0.90 2.33 | 2-2
2-1
2-0
2-2 | a ¹ D-b ³ P
(21F)
a ¹ D-c ³ P | 8074.29
8028.94
8138.59
7966.36
7945.02 | 0.05 1.58
0.03 1.56
0.05 1.56
0.03 1.58
0.01 1.56 | 42-52
32-42
42-43
32-52
22-42 | a ⁴ F-a ² H
(7F) | 4925.84
4916.81
4982.73
4861.41 | 0.60 3.11
0.57 3.08
0.60 3.08
0.57 3.11 | 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | a ² F-c ² D
(23F) | | 8640.22
8645.95
7805.66 | 0.90 2.32
0.90 2.32
0.90 2.48 | 2-1
2-0
2-1 | (22F)
a ¹ D-a ¹ P | 6725.67
6647.05
6722.02
6650.61 | 0.05 1.88
0.03 1.88
0.05 1.88
0.03 1.88 | 41-41
32-31
42-31
35-41 | a ⁴ F-b ² G
(8F) | 8229.81
8166.83
8189.44 | 1.08 2.58
1.08 2.59
1.08 2.59 | 23-31
11-21
21-21
21-21 | a ² D-b ² F
(24F) | | 7717.29
4430.79 | 0.90 3.68 | 2-2 | (23F)
a ¹ D-b ¹ D
(24F)
a ¹ D-a ¹ F
(25F) | 6589.42
6592.93
6548.87 | 0.01 1.88
0.01 1.88
0.00 1.88 | $2\frac{1}{4}$ $2\frac{1}{4}$ $2\frac{1}{4}$ $2\frac{1}{4}$ | 4 2- | 7917.03
6077.80
6151.82 | 1.08 2.63
1.08 3.11
1.08 3.08 | 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 | a ² D-a ² S
(25F)
a ² D-c ² D
(26F) | | 11185.14
11193.04
11191.43
11332.50 | 1.06 2.17
1.05 2.15
1.04 2.14
1.06 2.15 | 2-3
1-2
0-1
2-2 | a ³ P-a ³ D
(26F) | 6095.96
6087.77
6047.46
6053.14
6013.28 | 0.03 2.05
0.01 2.04
0.01 3.05
0.00 3.04
0.00 3.05 | 31-12
22-12
12-12
12-13 | a ⁴ F-b ² P
(9F) | 6164.64
6065.34
8491.16 | 1.08 3.08
1.08 3.11
 | 41-31 | a ² G-b ² F | | 11261.79
11402.97
11049.28
11123.53 | 1.05 2.14
1.06 2.14
1.05 2.17
1.04 2.15 | 1-1
2-1
1-3
0-8 | 44 | 4877.01
4823.44
4862.80
4837.42 | 0.05 2.58
0.03 2.59
0.05 2.59
0.03 2.58 | 41-37
32-27
42-27
32-37 | a ⁴ F-b ² F
(10F) | 8363.05
8405.16
6172.91 | 1.11 2.59
1.11 2.58
1.11 3.11 | $3\frac{1}{2} - 2\frac{1}{2}$
$3\frac{1}{2} - 3\frac{1}{2}$
$3\frac{1}{2} - 2\frac{1}{2}$ | (27F)
a ² G-c ² D
(28F) | | 10475.96
10447.44
10568.84
10519.77
10356.68 | 1.06 2.24
1.05 2.23
1.06 2.23
1.05 2.22
1.05 2.24 | 2-2
1-1
2-1
1-0
1-2 | a ³ P-b ³ P
(27F) | 4793.03
4806.83
4771.54
4785.21 | 0.01 2.59
0.01 2.58
0.00 2.59
0.00 2.58 | 22-22
22-32
12-22
12-32 | | 8789.70
8651.14
8743.66 | 1.18 2.58
1.16 2.59
1.18 2.59 | 2 2 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | a ⁴ P_b ² F
(29F) | | 10386.86
10642.86
10297.14
9697.42 | 1.04 2.23
1.06 2.22
1.04 2.24
1.06 2.33 | 0-1
2-0
0-2
2-2 | a ³ P-c ³ P | 4031.15
4041.57
4004.07
4020.20 | 0.05 3.11
0.03 3.08
0.03 3.11
0.01 3.08 | 41-31
31-11
31-21
21-11 | a ⁴ F-c ² D
(11F) | 8371.34
8348.93
6377.83 | 1.16 2.63
1.16 2.63
1.18 3.11 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | a ⁴ P-a ² S
(30F)
a ⁴ P-c ² D | | 9674.66
9778.67
9681.84
9595.12
9622.68 | 1.05 2.32
1.06 2.32
1.05 2.32
1.05 2.33
1.04 2.32 | 1-1
2-1
1-0
1-2 | (28F) | 3983.08
4005.07
3968.23 | 0.01 3.11
0.00 3.08
0.00 3.11 | 25-15
25-35
15-15
12-25 | . 4- 4- | 6422.66
6473.52
6328.46
6409.46 | 1.16 3.08
1.18 3.08
1.16 3.11
1.16 3.08 | 21-21
11-12
21-12
11-22
11-22 | (31F) | | 9786.00
9544.00
8723.13 | 1.06 2.32
1.04 2.33
1.06 2.48 | 0-1
2-0
0-2
2-1 | a ³ P-a ¹ P | 11857.96
11884.57
11823.03
11714.28
11778.39 | 0.13 1.18
0.12 1.16
0.11 1.16
0.12 1.18
0.11 1.16 | 31-21
21-11
12-21
11-11 | b ⁴ F-a ⁴ P
(12F) | 9108.42
8798.79
8703.03 | 1.23 2.59
1.23 2.63
1.22 2.63 | 1 2 - 2 2 | a ² P-b ² F
(32F)
a ² P-a ² S
(33F) | | 8640.27
8598.79
8612.91 | 1.05 2.48
1.04 2.48
1.06 2.49 | 1-1
0-1
2-2 | (29F) | 11611.10
11117.80
11178.94 | 0.11 1.18
0.12 1.23
0.11 1.22 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | b ⁴ F-a ² P
(13F) | 6569.73
6616.12
6671.31 | 1.23 3.11
1.22 3.08
1.23 3.08 | 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 | a ² p_o ² D
(34F) | | 8532.12
11665.66
11520.46 | 1.05 2.49
1.44 2.49
1.42 2.49 | 3-2
2-2 | (30F)
b ³ F-b ¹ D
(31F) | 11024.82
11185.70
11173.94
11151.54 | 0.11 1.23
0.13 1.24
0.12 1.23 | 31-21
21-11 | b ⁴ F-b ⁴ P
(14F) | 9199.54
9071.07
9149.11 | 1.24 2.58
1.23 2.59 | 21-31
11-21
21-21 | b ⁴ P-b ² F
(35F) | | 11084.87 | 1.45 2.57 | 4-5 | b ³ F-a ¹ H
(32F) | 11057.76
11080.02
10965.77 | 0.11 1.22
0.12 1.24
0.11 1.23
0.11 1.24 | 12-22
12-22
12-22 | | 8763.95
8719.70 | 1.24 2.59
1.23 2.63
1.22 2.63 | 2½-2½ | b ⁴ P-a ² S
(36F) | | 11521.31 | 1.50 2.57 | 4–5 | a ¹ G-a ¹ H
(33F) | 8661.20
8661.96
8565.94
8585.04
8490.71 | 0.15 1.57
0.13 1.56
0.13 1.57
0.12 1.56
0.12 1.57 | 41-21
31-11
31-21
21-12
21-22 | b ⁴ F-b ² D
(15F) | 6590.88
6651.26
6693.12
6550.29
6625.75 | 1.24 3.11
1.23 3.08
1.24 3.08
1.23 3.11
1.22 3.08 | 21-21
12-12
12-12
12-22
12-22
12-22 | b ⁴ P-c ² D
(37F) | | | | | | 8529.50
8436.37 | 0.11 1.56
0.11 1.57 | 13-15
12-25 | | • | | | | | 1 4 | E F
Low Hi | igh | 3 , | Multiplet
(No) | 1 4 | E P
Low High | J | Multiplet (No) | I A | E P
Low High | J | Multiplot
(No) | |--|--|----------------------|---|---
--|--|--------------------------|---|--|--|---|---| | Ti II con | tinued | | | | V II conti | inued | | | V II cont | inued | | | | 11478.98
8039.68 | | . 63
. 11 | 1출- 글
2 k-2k | b ² D-a ² s
(38F)
b ² D-c ² D | 7459.30
7468.52
7457.80 | 0.04 1.70
0.03 1.68
0.01 1.67 | 4-3
3-8
2-1 | a ⁵ D_a ⁵ P
(4F) | 9982.17
9733.52 | 1.12 2.36
1.09 2.36 | 4-4
3-4 | a ³ F~b ¹ G
(16F) | | 8106.38
8192.33
7956.90 | 1.56 3.
1.57 3. | .08
.08
.11 | 21-21
11-11
21-11
21-11
12-21 | (39F) | 7541.95
7515.13
7387.47
7411.90 | 0.04 1.68
0.03 1.67
0.03 1.70
0.01 1.68 | 4-8
3-1
3-3
3-8 | | 8674.27
8490.18
8413.83
8485.90 | 1.12 2.55
1.09 2.55
1.07 2.53
1.09 2.55 | 4-3
3-2
3-1
3-3 | a ³ F-b ³ D
(17F) | | | | | | | 7418.75
7332.06
7373.32 | 0.00 1.67
0.01 1.70
0.00 1.68 | 1-1
3-3
1-3 | | 8347.16
8343.02 | 1.07 2.55
1.07 2.55 | 2-3
2-3 | | | <u>T1 III</u> I
12417.8 | P 27.6 | .05 [,] | 4-3 | a ³ F-a ¹ D | 7398.95
7294.30
7353.77 | 0.00 1.67
0.00 1.70
0.00 1.68 | 0-1
1-3
0-2 | | 8235.69
8101.03 | 1.09 2.59
1.07 2.59 | 3-8
2-8 | a ³ F-a ¹ D
(18F) | | 12061.0
11799.5 | 0.02 1. | .05
.05 | 3-2
2-2 | (1F) | 5549.49
5527.92 | 0.04 2.27
0.03 2.26 | 4-3
3-8 | a ⁵ D-a ³ D
(5F) | 6114.85
6040.31 | 1.09 3.11
1.07 3.11 | 3-8
2-8 | a ³ F-b ¹ D
(19F) | | 9706.8
9594.5
9488.3
9487.4 | 0.05 1.
0.02 1.
0.00 1.
0.02 1. | .31
.30 | 4-3
3-1
2-0 | a ³ F-a ³ P
(2F) | 5504.22
5509.63
5496.84
5482.91 | 0.01 2.26
0.03 2.27
0.01 2.26
0.00 2.26 | 2-1
3-3
2-2
1-1 | | 5634.78
5554.68
5493.10 | 1.13 3.31
1.09 3.31
1.07 3.31 | 4-3
3-3
2-3 | a ³ F-a ¹ F
(20F) | | 9428.3
9324.8 | 0.00 1.
0.00 1. | . 31 | 3-3
2-1
3-3 | | 5478.76
5475.59
5472.09 | 0.01 2.27
0.00 2.26
0.00 2.26 | 2-3
1-8
0-1 | | 11918.75 | 1.42 3.46 | 1-0 | a ³ P_a ¹ S | | 7152.8
7033.0 | | . 78 | 4-4
3-4
3-4 | a ³ F-a ¹ G (3F) | 5282.88 | 0.03 2.36 | 3-2 | a ⁵ D_b ³ P | 11852.49
11658.88 | 1.47 2.51
1.43 2.48 | 2-2
1-1 | (21F)
a ³ P-c ³ P
(22F) | | 6991.8 | | . 78
 | | 1- 3- | 5245.25
5227.25
5254.49 | 0.01 2.37
0.00 2.37
0.01 2.36 | 2-1
1-0
3-3 | (6F) | 12219.66
11568.38
11324.18 | 1.47 2.48
1.43 2.49
1.43 3.51 | 2-1
1-0
1-3 | | | 3337.7
3363.2
3378.4 | 1.05 4. | 74
72
70 | 2-3
2-3
2-1 | a ¹ D-a ³ D
(4F) | 5225.90
5235.07
5216.07 | 0.00 2.37
0.00 2.36
0.00 3.37 | 1-1
1-2
0-1 | | 11368.21 | 1.39 2.48 | 0-1
a-3 | a ³ r-b ³ p | | 3008.4 | | 15 | 2-3 | a ¹ D-b ¹ D
(5F) | 4965.31
5002.88
4968.65 | 0.03 2.51
0.01 2.48
0.00 2.49 | 3-2
3-1
1-0 | a ⁵ D-c ³ P
(?F) | 10983.23
10835.22
11479.51
11098.96 | 1.42 2.55
1.39 2.53
1.47 2.55
1.42 2.53 | 1-2
0-1
2-2
1-1 | (23F) | | 3608.5
3622.9
3631.8 | 1.31 4. | 74
72
70 | 2-3
1-2
0-1 | a ³ P-a ³ D
(6F) | 4940.22
4985.27
4923.05 | 0.01 2.51
0.00 2.48
0.00 2.51 | 2-3
1-1
1-3 | | 11606.00 | 1.47 2.53
1.47 2.59 | 2-1
2-3 | a ³ P-a ¹ D | | 3638.4
3640.6
3656.3 | 1.31 4.
1.32 4. | 70 | 2-3
1-1
2-1 | | 4976.33
4928.68 | 0.00 2.48
0.04 2.55 | 0-1
4-3 | a ⁵ D-b ³ D | 10561.05
9644.96 | 1.42 2.59 | 1-2
2-1 | (24F)
a ³ P-a ¹ P | | 3593.3
3226.7 | 1.32 5. | 74
15 | 1-3
2-3 | a ³ p_b ¹ D | 4898.64
4896.87
4897.21 | 0.03 2.55
0.01 2.53
0.03 2.55 | 3-2
2-1
3-3 | (8F) | 9292.19
9106.60 | 1.42 2.75
1.39 2.75 | 1-1
0-1 | (25F) | | 3214.5
3807.6 | 1.30 5. | 15 | 0-8 | (7) | 4874.21
4880.00
4873.80
4857.50 | 0.01 2.55
0.00 2.53
0.01 2.55
0.00 2.55 | 2-3
1-1
2-3
1-3 | | 7526.46
7309.90 | 1.47 3.11 | 3-5
1-8 | a ³ P-b ¹ D
(26F) | | 4140.4 ?
4163.6 ? | 1.73 4. | 72 | 0-27 | a ¹ S-a ³ D
(8F) | 4871.43 | 0.00 2.53 | 0-1 | E 4 | 9356.40
9282.92
9217.51 | 1.57 2.89
1.56 2.89
1.55 2.89 | 6-5
5-5
4-5 | a ³ H-a ¹ H
(27F) | | 3615.5 | 1.73 5. | | 0-8 | a ¹ S-b ¹ D
(9F) | 9570.24
9454.15
9358.90 | 0.39 1.68
0.37 1.67
0.35 1.67 | 5-4
4-3
3-3 | a ⁵ F-b ³ F
(9F) | 8582.52 | 1.67 3.11 | 3-8 | b ³ F-b ¹ D | | 4160.9
4200.6 | 1.78 4. | 74 | 4-3
4-2 | a ¹ G-a ³ D
(10F) | 9395.23
9313.72
9253.44 | 0.37 1.68
0.35 1.67
0.33 1.67 | 4-4
3-3
2-2 | | 8 544-49
7556-03 | 1.67 3.11
1.68 3.31 | 2-2
4-3 | (28F)
b ³ F-a ¹ F | | 3661.3 | 1.78 5. | .15 | 4-2 | a ¹ G-b ¹ D
(11F) | 9256.51
9209.25
9183.58 | 0.35 1.68
0.33 1.67
0.32 1.67 | 3-4
2-3
1-8 | | 7518.35
7489.15 | 1.67 3.31 | 3-3 | (29F) | | T1 VII I | P 140 | | | | 9279.59
9268.77
9235.60 | 0.37 1.70
0.35 1.68
0.33 1.67 | 4-3
3-2
2-1 | a5 _{F_a} 5 _P
(10F) | 11444.66
11315.52 | 1.81 2.89
1.80 2.89 | 5-5
4-5 | a ³ G-a ¹ H
(30F) | | 4144.8
5104.5 | 0.00 a. | .98
.98 | 2-3
1-3 | 3p4 3p-3p4 1p
(1F) | 9144.25
9165.30
9166.00 | 0.35 1.70
0.33 1.68
0.32 1.67 | 3-3
2-2
1-1 | | 8138.63
8076.58 | 1.80 3.31
1.79 3.31 | 4-3
3-3 | a ³ G-a ¹ F
(31F) | | 3263.1 | 2.98 6. | 76 | 2-0 | 3p4 1p-3p4 1s
(2F) | 9043.52
9096.76
8698.69 | 0.33 1.70
0.32 1.68
0.39 1.81 | 2-3
1-2
5-5 | a ⁵ F-a ³ G | 9595.85
9522.84 | 2.03 3.31
2.02 3.31 | 4-3
3-3 | b ³ G-a ¹ F
(32F) | | | | | | | 8627.35
8579.15
8774.69 | 0.37 1.80
0.35 1.79
0.39 1.80 | 4-4
3-3
5-4 | (11F) | <u> </u> | 29.6 | | | | <u>T1 VIII</u> 1 | (0.13 2. | .90) | ol +1 | 3p3 2pe_3p3 2pe | 8698.18
8553.87
8510.24 | 0.37 1.79
0.37 1.81
0.35 1.80 | 4-3
4-5
3-4 | | 8745.0
8735.0
8683.4 | 0.04 1.45
0.02 1.43
0.00 1.42 | 3 1 - 2 1
2 1 - 1 1 | 3d ³ ⁴ F-3d ³ ⁴ P (1F) | | 4545 ?
4779 ?
4263 ? | (0.00 2.
(0.13 2. | 72)
72)
90) | 21-11
11-1
21-1
11-1 | (1F) | 8490.44
7477.26 | 0.33 1.79 | 2-3
5-5 | a ⁵ F_b ³ G | 8599.1
8635.8
8493.1 | 0.00 1.42
0.02 1.45
0.00 1.43
0.00 1.45 | 13-35
23-25
13-15
12-25 | | | | (0.00 2. | | -5-15 | **** | 7431.08
7387.74
7540.14
7475.84 | 0.37 2.03
0.35 2.02
0.39 2.03 | 4-4
3-3
5-4 | (12F) | 8615.4
8598.3 | 0.07 1.50
0.04 1.48 | | 3d ^{3 4} F-3d ^{3 2} G | | <u>V II</u> I P | 14.1 | | | | 7370.00
7344.03
7321.87 | 0.37 2.08
0.37 2.04
0.35 2.03 | 4-3
4-5
3-4 | | 8782.6
8437.9
8457.2 | 0.07 1.48
0.04 1.50
0.02 1.48 | 43-43
34-34
43-34
34-42
22-32 | (DF) | | 11414.22
11580.17
11715.30 | 0.04 1.
0.03 1.
0.01 1. | .12
.09 | 4-4
3-3
2-2 | a ⁵ D-a ³ F
(1F) | 6497.76 | 0.33 2.02 | 2-3
4-3
3-2 | a ⁵ r-a ³ D | 6233.9
6215.6 | 0.04 2.02 0.03 2.00 | | 3d ³ 4 _{F-3d} 3 2 _D | | 11757.86
11857.28
11246.87 | 0.04 1.
0.03 1.
0.03 1. | .09
.07 | 4-3
3-2
3-4 | | 6456.04
6415.69
6431.11 | 0.35 2.26
0.33 2.26
0.35 2.27 | 3-2
3-1
3-3
2-2 | (13F) | 6159.3
6160.1 | 0.02 2.02 | 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - | (3F) | | 11444.61 | 0.01 1. | 09 | 2-3 | | 6405.67
6382.03
6381.13
6372.11 | 0.33 2.26
0.32 2.26
0.33 2.27 | 1-1
2-3 | | 6104.8
6098.1
6065.2 | 0.00 2.02
0.07 2.10
0.04 2.08 | 13-23
43-53
32-42 | 30 ³ 4F-30 ³ 2H
(4F) | | 8545.12
8763.28
8878.98 | 0.03 1:
0.01 1.
0.00 1. | 42 | 3-2
2-1
1-0 | a ⁵ D-a ³ P
(2F) | 5662.62 | 0.32 2.36 | 1-2
4-3 | a ⁵ F-b ³ D | | 0.04 2.00 | 25-45 | (45) | | 8471.07
8709.38
8430.73 | 0.01 1. | . 47
. 42
. 47 | 2-2
1-1
1-2 | | 5613.81
5605.36
5611.94
5575.69 | 0.35 2.55
0.33 2.53
0.35 2.55 | 3-2
2-1
3-3 | (14F) | VIV IP | | | 2 32 1- | | 8682.13
7533.84 | 0.00 1. | .42
.68 | 0-1
4-4 | a ⁵ D-b ³ F | 5579.65
5573.84 | 0.33 2.55
0.32 2.53
0.33 2.55 | 2-2
1-1
2-3 | | 8815.9
8575.4 | 0.04 1.44
0.00 1.44 | 3-2
3-2 | 3d ² 3 _F -3d ² 1 _D (1F) | | 7497.68
7469.44
7571.69
7526.94 | 0.03 1.
0.01 1.
0.04 1. | .67
.67
.67 | 3-3
2-2
4-3 | (3F) | 10800.75 | 1.12 2.27 | 4-3 | a ³ F-a ³ D | 7611.2
7551.9
7431.2 | 0.04 1.66
0.00 1.63
0.00 1.66 | 3-2
2-1
2-2 | 3d ² 3 _{F-3d} ² 3 _F (2F) | | 7460.57
7440.63
7430.26 | 0.03 1.
0.01 1. | | 3-2
3-4
2-3
1-2 | | 10376.98
10382.14
10510.25
10355.93 | 1.09 2.26
1.07 2.26
1.09 2.27
1.07 2.26 | 3-8
2-1
3-3
2-2 | (15F) | 5446-0
5326-5
5237-7 | 0.09 2.36
0.04 2.36
0.00 2.36 | 4-4
3-4
2-4 | 3d ^{3 3} F-3d ^{3 1} G
(3F) | | | | | | | 10291.94 | 1.07 2.27 | 2-3 | | v viii i | P 1737 | | | | * | | | | | | | | | 3686
4734 | 0.00 3.35
0.74 3.35 | 2-2
1-2 | 3p ⁴ 3p-3p ⁴ 1p
(1F) | | | | | | | FORBIDDE | N LINES | • | | | | | |--|--|--|--|--|---|---|---|--|--
--|--| | IA | E P
Low High | J | Multiplet
(No) | IA | E P
Low High | J | Multiplet (No) | IA | E P
Low High | J | Multiplet
(No) | | <u>Cr I</u> IP | 6.74 | | | <u>Gr I</u> conti | nued | | | Cr II cont | inued | | | | 4577.32
4575.84
4573.93 | 0.00 2.70
0.00 2.70
0.00 2.70 | 3-3
3-2
3-1 | a ⁷ S-a ⁵ P
(1F) | 5285.34
5239.47
5197.31 | 1.03 3.36
1.00 3.35
0.98 3.35 | 4-2
3-1
2-0 | a ⁵ D-b ³ P
(15F) | 5339.65
5299.42
5270.19 | 1.54 3.85
1.52 3.85
1.50 3.84 | 41-41
32-31
22-31 | a6 _{D-a} 4 _F
(13F) | | 4149.52
4251.99 | 0.00 2.97
0.00 2.90 | 3-2
3-1 | a ⁷ S-a ³ P
(2F) | 5226.64
5193.82
5165.98
5181.21 | 1.00 3.36
0.98 3.35
0.96 3.35
0.98 3.36 | 3-3
2-1
1-0
2-2 | | 5247.84
5354.15
5313.88
5279.80 | 1.49 3.84
1.54 3.85
1.53 3.84
1.50 3.84 | 44-34
34-34
34-34
34-34 | | | 4117.09
4113.42
4114.10
4116.36 | 0.00 3.00
0.00 3.00
0.00 3.00
0.00 3.00 | 3-4
3-3
3-2
3-1 | a ⁷ S-b ⁵ D
(3F) | 5162.53
5150.07
5146.55
5134.16 | 0.96 3.35
0.96 3.36
0.96 3.35
0.96 3.36 | 1-1
1-3
0-1
0-2 | | 5285.21
5255.97
5238.35
5228.44 | 1.52 3.85
1.50 3.85
1.49 3.84
1.48 3.84 | 3-4 | | | 3672.37
3678.71 | 0.00 3.36
0.00 3.35 | 3-2
3-1 | a ⁷ S-b ³ P
(4F) | 5124.41
5098.44
5082.54 | 1.03 3.43
1.00 3.42
0.98 3.41 | 4-5
3-4
2-3 | a ⁵ D-b ³ G
(16F) | 5368.91
5323.64
5242.00
5224.30 | 1.54 3.84
1.52 3.84
1.50 3.85
1.49 3.85 | 45-25
35-15
25-45
15-35 | | | 7016.80
7013.33
7008.84 | 0.94 2.70
0.94 2.70
0.94 3.70 | 2-3
2-2
3-1 | a ⁵ S-a ⁵ P
(5F) | 5154.28
5126.25
5182.71 | 1.03 3.48
1.00 3.41
1.03 3.41 | 4-4
3-3
4-3 | | 5219.02
5248.64
5157.59 | 1.48 3.84
1.52 3.87
1.50 3.89 | \$-2\frac{1}{2}
3\frac{1}{2}-2\frac{1}{2}
2\frac{1}{2}-2\frac{1}{2}
2\frac{1}{2}-2\frac{1}{2} | a ⁶ D-a ² D
(14F) | | 6059.21
6280.22
6420.88 | 0.94 2.97
0.94 2.90
0.94 2.86 | 2-2
2-1
2-0 | a ⁵ S-a ³ P
(6F) | <u>Cr II</u> I I | 16.6 | | | 5206.02
5127.09
5174.95
5108.57 | 1.50 3.87
1.49 3.89
1.49 3.87
1.48 3.89 | 12-15
12-25
12-25
2-15 | | | 5990.31
5982.55
5983.99
5988.76
5992.15 | 0.94 3.00
0.94 3.00
0.94 3.00
0.94 3.00
0.94 3.00 | 2-4
2-3
2-2
3-1
3-0 | a ⁵ S-b ⁵ D
(7F) | 8000.12
8125.50
8229.81
8308.68
8357.78 | 0.00 1.54
0.00 1.52
0.00 1.50
0.00 1.49
0.00 1.48 | 21-41
24-32
24-32
24-14
24-14 | a ⁶ S-a ⁶ D
(1F) | 5034.05
4924.81
4985.64
4887.27
4947.17
4859.87 | 1.54 3.99
1.52 4.02
1.52 3.99
1.50 4.02
1.50 3.99
1.49 4.02 | 41-32-21-21-21-21-21-21-21-21-21-21-21-21-21 | a ⁶ D-a ² F
(15F) | | 5092.97
5105.16
5108.53 | 0.94 3.36
0.94 3.35
0.94 3.35 | 2-2
3-1
3-0 | a ⁵ 5-b ³ P
(8F) | 4992.68
5049.73
5092.60
5119.47 | 0.00 2.47
0.00 2.44
0.00 2.42
0.00 3.41 | 21-31
21-21
21-11
21-12 | a ⁶ S-a ⁴ D
(2F) | 9222.25
9512.58 | 2.47 3.81
2.44 3.74 | 31-21
22-12 | a ⁴ D-b ⁴ P
(16F) | | 8251.14
8043.80
7938.41 | 1.03 2.53
1.00 2.53
0.98 2.53 | 4-5
3-4
2-3 | a ⁵ D-a ⁵ G
(9F) | 4581.18
4580.80
4580.88 | 0.00 2.69
0.00 2.69
0.00 2.69 | 21-21
21-11
21-11
21-11 | a ⁶ S-a ⁴ P
(3F) | 9686.70
9033.73
9364.08
9590.94 | 2.42 3.70
2.44 3.81
2.43 3.74
2.41 3.70 | 12-12
24-24
12-12 | ,, | | 7867.83
8183.69
8045.57
7940.71
8185.52 | 0.96 2.53
1.03 2.53
1.00 2.53
0.98 2.53
1.03 2.53 | 1-2
4-4
3-3
2-2
4-3 | | 3993.57
3991.47
3992.08
3993.29 | 0.00 3.09
0.00 3.09
0.00 3.09
0.00 3.09 | 31-31
31-31
21-11
31-12 | a ⁶ S-b ⁴ D
(4F) | 8899.71
9274.58
9806.30
9651.02 | 2.42 3.81
3.41 3.74
2.47 3.73 | 1 1 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | a ⁴ D-a ⁴ H | | 8047.93
7387.23 | 1.00 2.53 | 3-2
4-3
3-2 | a ⁵ D-a ⁵ P | 3239.07
3298.61 | 0.00 3.81
0.00 3.74 | 22-2
23-22
23-12
22-2 | a ⁶ S-b ⁴ P
(5F) | 9866.49
8929.91 | 2.44 3.72
2.47 3.73
2.47 3.85 | 3 2 4 2 3 2 3 2 3 2 3 2 3 2 4 2 2 3 2 4 2 2 3 2 4 2 2 3 2 3 | (17F) | | 7269.33
7177.04
7383.38
7264.51
7273.06 | 1.00 2.70
0.98 2.70
1.03 2.70
1.00 2.70
1.00 2.70 | 3-2
2-1
4-3
3-1
3-3 | (10F) | 3337.77
3202.25
3207.46
3212.75 | 0.00 3.70
0.00 3.85
0.00 3.85
0.00 3.84 | 22-2
21-41
22-32
23-32
23-32
23-32 | a ⁶ S-a ⁴ F
(6F) | 8792.09
8703.79
8652.17
8970.56 | 2.44 3.85
2.42 3.84
2.41 3.84
2.47 3.85 | 31-31
11-31
31-31
31-31 | (18F) | | 7181.74
7117.45
7185.39 | 0.98 2.70
0.96 2.70
0.98 2.70 | 2-2
1-1
2-3
1-2 | | 3216.32
3188.79 | 0.00 3.84 | 22-23
22-12
23-22
23-12 | a ⁶ 5-a ² D | 8831.94
8730.02
9012.04
8858.94 | 2.44 3.84
2.42 3.84
2.47 3.84
2.44 3.84 | 12-12
32-22
22-12 | | | 7122.07
7087.10
7125.65
7091.68 | 0.96 2.70
0.96 2.70
0.96 2.70
0.96 2.70 | 0-1
1-3
0-2 | | 3170.55
3089.76
3066.29 | 0.00 3.89
0.00 3.99
0.00 4.02 | 2 2 - 1 2
2 2 - 2 2
2 2 - 2 2 | (7F)
a ⁶ S-a ² F
(8F) | 8826.02
8520.22
8653.20 | 2.47 3.87
2.44 3.89
2.44 3.87 | 3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | a ⁴ D-a ² D
(19F) | | 6333.46
6484.72
6561.75 | 1.03 2.97
1.00 2.90
0.98 2.86 | 4-2
3-1
2-0 | a ⁵ D-a ³ P
(11F) | 12471.70
12168.18 | 1.54 2.53
1.52 2.53 | 41-51
31-41
21-31 | a ⁶ D-a ⁴ G
(9F) | 8400.89
8530.15
8328.78 | 2.42 3.89
2.42 3.87
2.41 3.89 | 5-15 | | | 6249.35
6414.93
6511.90
6184.51
6367.28 | 1.00 2.97
0.98 2.90
0.96 2.86
0.99 2.97
0.96 2.90 | 3-2
2-1
1-0
2-2
1-1 | | 11943.75
11789.27
12460.65
12170.50
11951.78 | 1.50 2.53
1.49 2.53
1.54 2.53
1.52 2.63 | 15-25 | | 8106.88
7806.88
7947.28
7060.05 | 2.47 3.99
2.44 4.03
2.47 4.03
5.44 3.99 | 32-32
22-32
32-32
12-32 | a ⁴ D-a ² F
(20F) | | 6140.20
6342.98
6117.60 | 0.96 2.97
0.96 2.90
0.96 2.97 | 1-2
0-1
0-2 | | 12463.08
12178.83 | 1.50 2.53
1.54 2.53
1.52 2.53 | 44-44-34-34-34-34-34-34-34-34-34-34-34-3 | | 7706.58
10373.30 | 2.42 4.02 | | a ⁴ G-a ² I | | 6258.22
6167.84
6106.17 | 1.03 3.00
1.00 3.00
0.98 3.00 | 4-4
3-3
2-2 | a ⁵ D-b ⁵ D
(12F) | 10719.84
10500.65
10331.86
10502.67 | 1.54 2.69
1.52 2.69
1.50 2.69
1.52 2.69 | 41-21
31-12
21-21
31-21
21-12 | a ⁶ D_a ⁴ P
(10F) | 10388.07
10380.40
10119.57 | 2.53 3.72
2.53 3.72
2.53 3.75 | 51-61
42-52
52-52
51-61 | (21F)
a ⁴ G-a ⁴ H | | 6067.88
6249.75
6169.37
6111.14 | 0.96 3.00
1.03 3.00
1.00 3.00
0.98 3.00 | 1-1
4-3
3-2
2-1 | | 10331.43
10210.20
10333.39
10209.78 | 1.50 2.69
1.49 2.69
1.50 2.69
1.49 2.69 | 23-13
13- 3
23-23
13-13 | | 10223.27
10305.67
10366.26
10215.85 | 2.53 3.74
2.53 3.73
2.53 3.72
2.53 3.74 | 51-61
42-51
34-42
21-32
51-51 | (22F) | | 6071.35
6176.08
6104.67
6062.98 | 0.96 3.00
1.00 3.00
0.98 3.00
0.96 3.00 | 1-0
3-4
2-3
1-2 | | 10137.00
10211 69
10136.59
10138.47 | 1.48 2.69
1.49 2.69
1.48 2.69
1.48 2.69 | 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 10307.34
10373.30
10299.79
10373.98 | 2.53 3.73
2.63 3.72
2.53 3.73
2.53 3.73 | 52-53
44-43
33-33
53-43
42-32 | | | 6045.80
6251.33
6174.44
6114.66 | 0.96 3.00
1.03 3.00
1.00 3.00
0.98 3.00 | 0-1
4-2
3-1
2-0 | | 7974.31
7845.41
7752.86 | 1.54 3.09
1.52 3.09
1.50 3.09 | 41-31
31-31
21-11 | a ⁶ D-b ⁴ D
(11F) | 9337.40
9388.12
9432.18 | 2.53 3.85
2.53 3.85
2.53 3.84 | | a ⁴ G-a ⁴ F
(23F) | | 6112.75
6061.50
6040.94 | 0.98 3.00
0.96 3.00
0.96 3.00 | 1-3
0-2 | | 7688,64
7965,96
7847,76
7757,43 | 1.49 3.09
1.54 3.09
1.52 3.09
1.50 3.09 | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | | 9457.95
9343.61
9386.74 | 2.53 3.84
2.53 3.85
2.53 3.85 | 43221434444
5432444444444
543244444444444 | | | 5975.39
5949.99
5913.34 | 1.03 3.09
1.00 3.07
0.98 3.07 | 4-5
3-4
2-3 | a ⁵ D-a ³ G
(13F) | 7853.51
7750.56
7684.16 | 1.52 3.09
1.50 3.09
1.49 3.09 | 31-31
21-21
11-11 | | 9427.18
9342.24
9381.78 | 2.53 3.84
2.53 3.85
2.53 3.85 | | 4- 2- | | 6026.18
5972.59
6049.37 | 1.03 3.07
1.00 3.07
1.03 3.07 | 4-4
3-3
4-3 | .5⊷ 3 | 7647.06
7758.47
7681.89
7642.61 | 1.48 3.09
1.50 3.09
1.49 3.09
1.48 3.09 | 23-34
13-25
2-15 | | 9228.60
9072.86
9223.81 | 2.53 3.87
2.53 3.89
2.53 3.87 | 31-21
22-12
22-22 | 24G_225
(34F) | | 5926.18
5876.92
5876.23
5951.24
5934.73
5852.48 | 1.03 3.11
1.00 3.10
0.98 3.08
1.03 3.10
1.00 3.08
1.00 3.11 | 4-4
3-3
2-2
4-3
3-3
3-4 | a ⁵ D-a ³ F
(14F) | 7689.65
7640.39
5442.82
5552.93
5615.19 | 1.49 3.09
1.48 3.09
1.54 3.81
1.52 3.74
1.50 3.70 | 11-31
2-22
41-21
31-11
21-11 | a ⁶ D-b ⁴ P
(12F) | 8446.39
8272.21
8445.28
8268.36
8441.27 | 2.53 3.99
2.53 4.02
2.53 3.99
2.53 4.02
2.53 3.99 | 41-31
31-21
31-31
21-31
21-31 | a ⁴ 0-a ² F
(25F) | | 5819.54
5836.21
6010.53
5795.58 | 0.98 3.10
0.96 3.08
1.03 3.08
0.98 3.11 | 2-3
1-2
4-2
2-4 | | 5386.27
5505.25
5579.06
5341.39 | 1.52 3.81
1.50 3.74
1.49 3.70
1.50 3.81 | 41-1-21-21-21-21-21-21-21-21-21-21-21-21- | |
11056.70
11785.17
12300.16 | 2.69 3.81
2.69 3.74
2.69 3.70 | 21-21
11-11 | a ⁴ P-b ⁴ P
(36F) | | 5780.29
5815.79 | 0.96 3.10
0.96 3.08 | 1-3 | | 5470.51
5470.51
5557.14
5308.68
5449.43
5288.83 | 1.49 3.74
1.48 3.70
1.49 3.81
1.48 3.74
1.48 3.81 | 13-13
13-23
13-23
2-23
2-23 | | 11782.63
12300.77
11058.94
11784.63 | 2.69 3.70
2.69 3.70
2.69 3.81
2.69 3.74 | 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | | | | | | FO. | KRIDDFI | A PINES | | | | | | |----------------------------------|---------------------------------------|---|---|-------------------------------|--|----------------------|-------------------|--|-------------------------------|----------------------------------|--|---| | IA | E P
Low High | J, | Multiplet
(No) | IA | E P
Low : | High | J | Multiplet
(No) | I.A | E P
Low Hig | j
ja | Multiplet
(No) | | <u>Cr II</u> c
10696.87 | ontinued
2.69 3.85 | 2 1 _3 1 | a ⁴ P-a ⁴ F | <u>Cr V</u> cont:
9635.9 | inued
1.84 | 3.12 | 2-0 | 3d2 1p-3d2 1s | Mn V I P 75
6396.2 | 0.17 2.1 | 0 4½-2½
05 3½-1½ | 3å ³ ⁴ F-3å ³ ⁴ P | | 10758.04
10797.66
10755.91 | 2.69 3.84
2.69 3.84
2.69 3.84 | 23-33
13-33
3-13
25-23 | (27F) | 10807.8 | 1.98 | 3.12 | 2-0 | (4F)
3d ² 3p _{-3d} 2 1g | 6346.2
6220.7
6167.7 | 0.10 2.0
0.04 2.0
0.10 2.1 | 0 33-23 | (1F) | | 10798.14 | 2.69 3.84
2.69 3.84 | 12-12
22-12 | | 10394.3 | 1.94 | 3.12 | 1-0 | (5F) | 6159.3
6088.5
5991.0 | 0.04 2.0
0.00 2.0
0.04 2.1 | | | | 10491.99 | 2.69 3.87
2.69 3.89
2.69 3.89 | 21-21
12-12
23-12
13-22 | a ⁴ P-a ² D
(28F) | Cr VIII | I P 184? | | | | 6029.7
5868.3 | 0.00 2.0 |)5 1 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | 10297.11
10494.00
10298.63 | 2.69 3.89
2.69 3.89 | 12-32
2-12 | | 10098.2 | | 1.22 | 11/2 - 1/2 | 3p5 2pe_3p5 2pe
(1F) | 5889.0
5863.1
6069.2 | 0.17 2.2
0.10 2.2
0.17 2.2 | 37 41-41
34-31 | 3d ^{3 4} F-3d ^{3 2} G
(2F) | | 9491.15
9274.68 | 2.69 3.99
2.69 4.02 | $3\frac{1}{2} - 3\frac{1}{2}$ $1\frac{1}{2} - 3\frac{1}{2}$ $3\frac{1}{2} - 3\frac{1}{2}$ | a ⁴ P-a ² F
(29F) | | | | | (11) | 5694.8
5703.3 | 0.10 2.2 | 37 3}-4}
31 2}-3} | | | 9273.10 | 2.69 4.02 | 3 5 -2 5 | | <u>Cr IX</u> I | P 2091 | | | | 5543.9
5591.9 | 0.04 2.2 | 27 TA-2A | 3 4 3 9 | | Cr III | I P 31 | | | 3273.5
4407.9 | 0.00
0.97 | 3.77
3.77 | 2-2
1-2 | 3p4 3p-3p4 1p
(1F) | 4528.7
4398.4
4432.8 | 0.10 2.0
0.04 2.0
0.04 2.0 | 35 2 } -}
33 2}-1} | 3d ³ ⁴ F-3d ³ ² P
(3F) | | 5785.4
5945.1 | 0.07 2.20
0.04 2.12 | 4-2
3-1 | 3d ^{4 5} D-3d ^{4 3} P | | ······································ | | | | 4331.9
4365.2 | 0.00 2. | 22 15-15 | | | 5712.7
5884.9
5689.3 | 0.04 2.20
0.02 2.12
0.02 2.20 | 3-2
2-1
2-2 | | Mn II I | P 15.57 | | | | 4308.4
4196.3
4203.5 | 0.17 3.0
0.10 3.0
0.10 3.0 | 04 3 } -13 | 3d ³ ⁴ F-3d ³ ² D
(4F) | | 5843.6
5618.9 | 0.01 2.12
0.01 2.20 | 1-1
1-2 | | 10553.58 | | 1.17 | 3–2 | a ⁷ S-a ⁵ S
(1F)
a ⁷ S-a ⁵ D | 4113.7
4120.7 | 0.04 3. | U4 &%~68 | | | 5823.2
5600.1 | 0.00 2.12 | 0-1
0-3 | 3d ⁴ ⁵ D-3d ⁴ ³ F | 6978.57
6850.42
6763.56 | 0.00 | 1.77
1.80
1.82 | 3-4
3-3
3-8 | a S-a-D
(ar) | 4055.5
4062.2 | 0.00 3. | | · | | 5550.3
5505.1
5471.3 | 0.07 2.29
0.04 2.29
0.02 2.28 | 4-4
3-3
2-2 | (3F) | 6709.08
3344.72 | 0.00 | 3.69 | 3-1
3-3 | a ⁷ ș_a ⁵ P | | | | | | 5572.6
5523.3
5483.3 | 0.07 2.29
0.04 2.28
0.04 2.29 | 4-3
3-2
3-4 | | 3341.38
3337.82 | 0.00 | 3.69
3.70 | 3-2
3-1 | (3F) | Mn VI I P | 0.21 2. | 17 4-2 | 3a ^{2 3} r-3a ^{2 1} p | | 5453.4
5435.6
5591.3 | 0.02 2.29
0.01 2.28
0.07 2.28 | 2-3
1-2
4-2 | | 3049.05
3042.61
3042.44 | 0.00
0.00
0.00 | 4.05
4.06
4.06 | 3-4
3-3
3-2 | a ⁷ S-b ⁵ D
(4F) | 5933.4
5679.3 | 0.00 3. | 17 3-2 | (1F) | | 5432.1
•5418.0 | 0.02 2.29
(0.01 2.29
(0.00 2.28 | 2-4
1-3
0-2 | | 3044.52 | 0.00 | 4.05 | 3-1 | | 5907.1
5783.4 | 0.21 2.
0.09 2. | 23 3-1 | 3d ² 3 _{F-3d} 2 3 _P (2F) | | 4894.1 | 0.07 2.59 | 4-5 | 3d4 5p-3d4 3g | 4696.65
4889.49 | 1.17 | 3.69 | 2-3
2-2 | a ⁵ 5-a ⁵ P
(5F) | 5625.0
5601.6
5541.7 | 0.00 2.
60.00 2.
0.00 2. | 30 3-2
23 2-1 | | | 4876.0
4870.8
4928.9 | 0.04 2.57
0.02 2.56
0.07 2.57 | 3-4
2-3
4-4 | (3F) | 4881.87
4275.21 | 1.17 | 3.70
4.06 | 2-1
2-3 | a ⁵ 5-b ⁵ D | 5374.6
3866.9 | 0.00 2. | | | | 4911.9
•4842.4
4835.4 | 0.04 2.56
0.04 2.59
0.02 2.57 | 3-3
3-5
2-4 | | 4274.87
4278.97 | 1.17
1.17 | 4.06
4.05 | 2-2
2-1 | (6F) | 3733.6
3631.4 | 0.09 3. | 40 3-41
40 2-41 | | | *4842.4
4965.6 | 0.01 2.56
0.07 2.56 | 1-3
4-3 | | 7547.77
7696.30 | 1.77 | 3.40
3.41 | 4-5
3-4 | a ⁵ D-a ⁵ G
(7F) | | | | | | | | | | 7805.96
7879.32
7540.74 | 1.82
1.84
1.77 | 3.41
3.41
3.41 | 2-3
1-2
4-4 | 1, | <u>Mn IX</u> I P
7978.7 | 0.00 1. | ee +1 1 | . 3p ⁵ Spe_3p ⁵ Spe | | <u>Cr IV</u>
7390.6 | I P 50.4
0.12 1.79 | 4-2-2-2 | 3d ³ 4F-3d ³ 4P | 7693.38
7805.47
7537.93 | 1.80
1.83
1.77 | 3.41
3.41
3.41 | 3-3
2-2
4-3 | | 1010.1 | | 55 11/2- 2 | (1F) | | 7338.0
7233.4
7180.4 | 0.07 1.75
0.03 1.74
0.07 1.79 | 3 1 - 1 1 2 1 2 1 2 1 2 1 | (1F) | 7692.91 | 1.80 | 3.41 | 3-2 | 5- 5- | | | | | | 7171.6
7111.4 | 0.03 1.75
0.00 1.74 | 23-13
13-13 | | 6423.45
6523.23
6590.10 | 1.77
1.80
1.82 | 3.69
3.69
3.70 | 4-3
3-2
2-1 | a ⁵ D-a ⁵ P
(8F) | Mn X I P
9997.3 | 0.00 1. | 23 2-1 | 3p4 3p-3p4 3p | | 7021.0
7051.7
6906.1 | 0.03 1.79
0.00 1.75
0.00 1.79 | 25-25
15-15
15-25 | | 6535.99
6603.99
6642.66 | 1.80
1.82
1.84 | 3.69
3.69
3.70 | 3-3
2-2
1-1 | | 4122.6 | 1.23 4. | | (1F)
3p4 3P-3p4 1D
(2F) | | 6915.6
6893.2 | 0.12 1.90
0.07 1.86 | 41-41
31-31
41-31 | 3d ³ 4F-3d ³ 2G
(2F) | 6617.06
6656.77
6668.63 | 1.82
1.84
1.85 | 3.69
3.69
3.70 | 2-3
1-2
0-1 | | | | | 101/ | | 7086.7
6731.2
6746.2 | 0.12 1.86
0.07 1.90
0.03 1.86 | 43-33
33-43
23-33 | | 5415.04
5473.94 | 1.77 | 4.05 | 4-4
3-3 | a ⁵ D-b ⁵ D
(9F) | Fe I I P | 7.858 | | | | 6591.0
6640.0 | 0.03 1.90
0.00 1.86 | 21-41
11-31 | | 5530.11
5574.04 | 1.82 | 4.06
4.05 | 2-2
1-1 | (31) | 8347.55
8231.57 | 0.00 1.
0.05 1. | | a ⁵ D-a ³ F
(1F) | | 5296.3
5209.1
5145.5 | 0.07 2.40
0.03 2.40
0.00 2.40 | $3\frac{1}{2} - 1\frac{1}{2}$ $1\frac{1}{2} - 1\frac{1}{2}$ | 3d3 4F_3d3 2p
(3F) | 5394.78
5473.37
5536.98 | 1.82 | 4.06
4.06
4.05 | 4-3
3-2
3-1 | | 8151.33
7959.00
7964.87 | 0.09 1.
0.00 1.
0.05 1. | 55 4-3
60 3-8 | | | 5071.6 | 0.12 2.55 | | 3d3 4F-3d3 2D | 5579.73
5494.80
5530.69 | 1.84
1.80
1.82 | 4.05
4.05
4.06 | 1-0
3-4
2-3 | | 8647.89
8431.56
8275.57 | 0.05 1.
0.09 1.
0.11 1. | 55 2-3 | | | 4976.5
4971.8
4899.4 | 0.07 2.55
0.07 2.55
0.03 2.55 | 35-15
35-25
25-15 | (4F) | 5567.08
5561.21 | 1.84 | 4.06
4.05 | 1-3
0-1 | | 7708.83
8868.91
8564.56 | 0.00 1.
0.09 1.
0.11 1. | 60 4-2
48 2-4 | | | 4894.8
4843.1
4838.7 | 0.03 2.55
0.00 2.55
0.00 2.55 | 45-21
35-15-35-35-35-35-35-35-35-35-35-35-35-35-35 | | | | | | | 9337.65
5696.36 | 0.18 1. | S-0 00 | a ⁵ D-a ⁵ P | | 4907.6
4873.4 | 0.12 2.63
0.07 2.60 | | 3d ³ 4F-3d ³ 2H
(5F) | | P 52 | | | 4 54 3- | 5775.05
5804.45 | 0.00 2.
0.05 27
0.09 2. | 19 3-2
21 2-1 | (SF) | | 4969.3
4814.0
4799.4 | 0.12 2.60
0.07 2.63
0.03 2.60 | 41-51
31-41
41-41
31-51
21-42 | (51) | 4662.7
4823.3
4908.8 | 0.11
0.07
0.03 | 2.63 | 4-2
3-1
2-0 | 3d ^{4 5} D-3d ^{4 3} P
(1F) | 5639.55
5708.96
5834.64 | 0.00 2.
0.05 2.
0.05 3. | 21 3-1 | | | | 0.03 2.00 | 4 2-42 | | 4591.4
4761.9
4863.9 | 0.07
0.03
0.01 | 2.76
2.63
2.55 | 3-2
2-1
1-0 | | 5872.77
5867.17
5934.41 | 0.09 2.
0.11 2.
0.09 2. | 19 2-2
21 1-1 | | | Cr V | I P 72.8 | | | 4535.7
4719.7
4497.4 | 0.03
0.01
0.01 | 2.76
2.63
2.76 | 2-2
1-1
1-3 | | 5936.99
5898.30
5999.99 | 0.11 2.
0.12 2. | 19 1-2
21 0-1 | | | 7252.8
6932.4 | 0.14 1.84
0.06 1.84 | 4-2
3-2 | 3d ² 3 _{F-3d} 2 1 _D | 4699.3
4478.8 | 0.00 | 2.63
2.76 | 0-1 | | 5968.87 | 0.11 2. | 19 0-2 | .5 _n .3 _n | | 6700.1
6705.5 | 0.90 1.84
0.14 1.98 | 2-3
4-2 | 3d2 3r-3d2 3p | 4528.3
4480.6 | 0.11 | 2.83 | 4-4
3-3 | 3d ⁴ ⁵ D-3d ⁴ ³ F
(2F) | 5439.72
5224.15
5170.84 | 0.00 2.
0.05 2.
0.09 2. | 41 3-1
47 2-0 | a ⁵ D-a ³ P
(3F) | | 6586.7
6462.3 | 0.06 1.94
0.00 1.91 | 3-1
2-0 | (2F) | 4442.0
4548.5
4495.3 | 0.11
9.07 | 2.81
2.82
2.81 | 2-2
4-3
3-2 | | 5565.68
5303.99
5220.56 | 0.05 2.
0.09 2.
0.11 2. | 27 3-2
41 2-1 | | | 6430.7
6376.6
6230.4 | 0.06 1.98
0.00 1.94
0.00 1.98 | 3-2
2-1
3-2 | | 4461.0
4427.7
4405.2 | 0.07 | 2.83
2.82
2.81 | 3-4
2-3
1-2 | | 5656.39
5356.32
5715.94 | 0.09 2.
0.11 2.
0.11 2. | 27 2-2
41 1-1 | | | 4523.6
4396.9 | 0.14 2.87
0.96 2.87 | 4-4
3-4 | 3d ² 3 _{F-3d} 2 1 _G
(3F) | 4563.7
4408.5
4391.1 | 0.11 |
2.81
2.83
2.83 | 4-2
2-4
1-3 | | 5382.26
5745.49 | 0.12 2. | 41 0-1 | | | 4302.3 | 0.00 2.87 | 2-4 | • | 4387.4 | | 2.82 | 0-2 | | | * | | | | | | | | | FORBIDDEN | Lines | | | | | | |--|--|--|--|---|---|---|--|--|---|---|--| | I A | E P
Low High | J | Multiplet
(No) | IA | E P
Low High | J | Multiplet
(No) | ΙA | F b F b | J | Multiplet
(No) | | Fe I conti | nued | | | Fe I conti | nued | | | Fe I conti | nued | | | | 4843.34
4886.56
4916.26
4789.19
4847.58
4942.95 | 0.00 3.55
0.05 2.58
0.09 3.60
0.00 2.58
0.05 2.60
0.05 2.55
0.09 2.58 | 4-4
3-3
2-3
4-3
3-2
3-4
3-3 | a ⁵ D-b ³ F
(4F) | 8022.25
8164.85
8289.45
7876.34
8054.83
7773.91 | 0.86 2.39
0.91 2.42
0.95 2.44
0.86 2.42
0.91 2.44
0.86 2.44 | 5-6
4-5
3-4
5-5
4-4
5-4 | a ⁵ F-a ³ H
(13F) | 10264.65
10592.32
10771.88
9974.41
10318.68
9731.40 | 1.48 2.68
1.55 2.72
1.60 3.75
1.48 2.72
1.55 2.75
1.48 2.75 | 4-5
3-4
2-3
4-4
3-3
4-3 | a ³ F-a ³ G
(23F) | | 4956.35
4961.18
4751.75
5014.37
5002.01
4983.42 | 0.11 2.60
0.00 2.66
0.09 2.55
0.11 2.58
0.13 3.60 | 1-3
4-2
2-4
1-3
0-2 | _a 5 _{D-a} 3 _G | 7290.42
7406.61
7510.54
7168.42
7317.43
7536.93
7604.53 | 0.86 2.55
0.91 2.58
0.95 2.60
0.86 2.58
0.91 3.60
0.91 3.55
0.95 3.58 | 5-4
4-3
3-2
5-3
4-2
4-4
3-3 | a ⁵ F-b ³ F
(14F) | 8466.95
8649.72
8792.49
8233.22
8488.19
8086.73 | 1.48 2.94
1.55 2.98
1.60 3.00
1.48 2.98
1.55 3.00
1.48 3.00 | 4-5
3-4
2-3
4-4
3-3
4-3 | e ³ F-b ³ G
(24F) | | 4603.66
4631.93
4640.05
4544.36
4578.83 | 0.00 2.68
0.05 2.73
0.09 2.75
0.00 2.73
0.05 2.75 | 3-4
2-3
4-4
3-3 | (5F) | 7658.84
7741.96
7756.59
7759.25 | 0.99 2.60
0.95 2.55
0.99 2.58
1.01 2.60 | 3-8
3-4
3-3
1-2 | | 8490.34
8469.75
8794.80 | 1.55 3.00
1.60 3.06
1.60 3.00 | 3-2
2-1
2-2 | 23F-c3p
(25F) | | 4693.56
4694.59
4680.05 | 0.05 2.68
0.09 2.72
0r11 2.75 | 3-5
3-4
1-3 | | 7899.63
7859.60 | 0.99 2.55
1.01 2.58 | 2-4
1-3 | | 7935.32
8321.51 | 1.48 3.03
1.55 3.03 | 4-4
3-4 | a ³ F-a ¹ G
(26F) | | 4493.23
4377.37
4437.10 | 0.00 2.82
0.05 2.83 | 4-3
4-3
3-1 | a ⁵ D-b ³ P
(6F) | 6760.61
6836.94
6884.50
6633.48 | 0.86 2.68
0.91 2.72
0.95 2.75
0.86 2.72 | 5-5
4-4
3-3
5-4 | a ⁵ F-a ³ G
(15F) | 6954.69
7107.04
6823.42 | 1.48 3.25
1.55 3.29
1.48 3.29 | 4-5
3-4
4-4 | e ³ F-b ³ H
(27F) | | 4473.46
4458.57
4494.57
4510.63
1516.60
4532.09
4554.49 | 0.09 2.85
0.05 2.82
0.09 2.83
0.11 2.85
0.09 2.82
0.11 2.83
0.11 2.83 | 2-0
3-2
2-1
1-0
2-2
1-1
1-2 | • | 6721.89
6972.07
7005.23
7008.89
6525.11
7147.16
7134.08 | 0.91 2.75
0.91 2.68
0.95 2.72
0.99 2.75
0.86 2.75
0.95 2.68
0.99 2.72 | 4-3
4-5
3-4
2-3
5-3
3-5
3-4 | | 7016-21
7109-01
7439-58
7316-44
7321-23
7541-42 | 1.48 3.24
1.55 3.29
1.60 3.26
1.55 3.24
1.60 3.29
1.60 3.24 | 4-3
3-2
2-1
3-3
2-2
2-3 | a ³ F-a ³ D
(28F) | | 4550.64
4573.23 | 0.13 3.83
0.12 2.82 | 0-1
0-2 | | 7092.89
6616.18 | 1.01 2.75
0.95 2.82 | 1-3
3-2 | a ⁵ F-b ³ P | 6231.27
6393.72 | 1.55 3.53
1.60 3.53 | 3-2
2-2 | a ³ F_a ¹ D
(29F) | | 4203.39
4217.71
4229.86
4144.97
4178.93
4278.21 | 0.00 2.94
0.05 2.98
0.09 3.00
0.00 2.98
0.05 3.00
0.05 2.94 | 4-5
3-4
2-3
4-4
3-3
3-5 | a ⁵ D-b ³ G
(7F) | 6682.18
6710.88
6730.99
6758.48
6808.42 | 0.99 2.83
1.01 2.85
0.99 2.82
1.01 2.83
1.01 2.83 | 2-1
1-0
2-2
1-1
1-3 | (16F) | 5746.99
5952.21
6113.97
5946.87
6100.26
6094.65 | 1.48 3.63
1.55 3.62
1.60 3.62
1.55 3.63
1.60 3.62
1.60 3.63 | 4-3
3-2
2-1
3-3
2-2
2-3 | a ³ y_b ³ D
(30F) | | 4269.60
4263.07
4107.51 | 0.09 2.98
0.11 3.00
0.00 3.00 | 2-4
1-3
4-3 | | 5931.19
5971.33
6018.54
5815.53 | 0.86 2.94
0.91 2.98
0.95 3.00 | 5-5
4-4
3-3 | a ⁵ F-b ³ G
(17F) | 5609.27
5799.53 | 1.48 3.68
1.55 3.68 | 4-4
3-4 | a ³ F_b ¹ G
(31F) | | 4103.02
4104.59
4099.29
4179.45
4153.72
4130.47
4230.40
4185.74 | 0.00 3.00
0.05 3.06
0.09 3.10
0.05 5.00
0.09 3.06
0.11 3.10
0.08 3.00
0.11 3.06 | 4-8
3-1
2-0
3-2
3-1
1-0
3-3
1-1 | a ⁵ D-c ³ P
(8F) | 5615.53
5893.89
6093.32
6089.31
6113.40
5743.07
6226.64
6196.75
6177.21 | 0.86 3.98
0.91 3.00
0.91 2.94
0.95 2.98
0.99 3.00
0.86 3.00
0.95 2.94
0.99 2.98
1.01 3.00 | 5-4
4-3
4-5
3-4
2-3
5-3
3-5
2-4
1-3 | | 11524.46
11237.04
11790.50
11018.07
11518.28
11764.23
11495.96 | 2.17 3.24
2.19 3.29
2.21 3.26
2.17 3.29
2.19 3.26
2.19 3.24
2.21 3.29 | 3-3
2-2
1-1
3-8
2-1
2-3
1-8 | a ⁵ P-a ³ D
(32F) | | 4263.62
4201.56
4280.04
3812.07
3814.58
3889.58 | 0.11 3.00
0.12 3.06
0.13 3.00
0.00 3.24
0.05 3.29
0.09 3.26 | 1-8
0-1
0-8
4-3
3-8
2-1 | a ⁵ D-a ³ D
(9F) | 6019.63
5955.61
5902.64
6114.52
6016.15
6178.35 | 0.95 3.00
0.99 3.06
1.01 3.10
0.99 3.00
1.01 3.06
1.01 3.00 | 3-8
2-1
1-0
2-2
1-1
1-3 | a ⁵ F_c ³ P
(18F) | 8456.74
8596.27
8775.19
8467.54
8623.51
8585.14 | 2.17 3.63
3.19 3.62
3.21 3.62
3.17 3.62
3.19 3.63
3.19 3.63 | 3-3
2-2
1-1
3-2
2-1
2-3 | a ⁵ P-b ³ D
(33F) | | 3754.98
3846.46
3873.51 | 0.00 3.29
0.05 3.26
0.05 3.24 | 4-2
3-1
3-3
2-2 | | 5212.95
5268.82
5289.66 | 0.86 3.22
0.91 3.25 | 5-6
4-5 | a ⁵ F-b ³ H
(19F) | 8746.99
10908.34 | 2.21 3.62 | 1-8 | a ³ P-a ¹ P | | 3856.98
3917.64
3917.23
3884.5? | 0.09 3.29
0.11 3.26
0.09 3.24
0.11 3.29 | 1-1
2-3
1-2 | | 5147.16
5193.13
5074.90 | 0.95 3.29
0.86 3.25
0.91 3.29
0.86 3.29 | 3-4
5-5
4-4
5-4 | | 9775.94
11044.11 | 2.27 3.40
2.27 3.53
2.41 3.53 | 2-1
2-2
1-3 | (34F)
a3P_a1D
(35F) | | 3931.50
3945.70
3898.19
3403.65
3454.34
3493.55
3405.39 | 0.12 3.26
0.11 3.24
0.12 3.29
0.00 3.63
0.05 3.62
0.09 3.63
0.09 3.62 | 0-1
1-3
0-2
4-3
3-8
2-1
4-2 | a ⁵ D-b ³ D
(10F) | 5180.78
5194.19
5352.39
5304.06
5380.75
5437.17
5404.80 | 0.86 3.24
0.91 3.29
0.95 3.26
0.91 3.24
0.95 3.29
0.99 3.26
0.95 3.24 | 5-3
4-8
3-1
4-3
3-8
8-1
3-3 | a ⁵ F-a ³ D
(20F) | 9093.67
10196.82
10770.38
9106.17
10235.17
9136.73 | 2.27 3.63
2.41 3.62
2.47 3.62
2.27 3.62
2.41 3.62
2.27 3.62 | 2-3
1-2
0-1
2-2
1-1
2-1 | a ³ P-b ³ D
(36F) | | 3458.73
3453.54
3489.07
3516.17
3487.23 | 0.05 3.62
0.05 3.63
0.09 3.62
0.11 3.62
0.09 3.63 | 3-1
3-3
2-2
1-1
2-3 | | 5363.91
5477.40
5481.17
5412.97
5532.41 | 0.99 3.29
1.01 3.26
0.99 3.24
1.01 3.29
1.01 3.24 | 2-2
1-1
2-3
1-2
1-3 | | 10601.80
10867.84
11069.08 | 2.39 3.56
2.42 3.56
2.44 3.56 | 6-5
5-5
4-5 | a ³ H-a ¹ H
(37F) | | 3511.64
3527.33
3509.78 | 0.11 3.62
0.12 3.62
0.11 3.63 | 1-2
0-1
1-3 | | 4454.37
4548.33 | 1.01 3.24
0.86 3.63
0.91 3.62 | 5-3
4-8 | a ⁵ P-b ³ D
(21F) | 10075.00
10314.96 | 2.39 3.62
2.42 3.62 | 6-6
5-6 | a ³ H-a ¹ I
(38F) | | 3522.76 | 0.12 3.63 | 0-3 | | 4630.06
4545.20
4622.19 | 0.95 3.62
0.91 3.63
0.95 3.62 | 3-1
4-3
3-2 | | 9822.50
9986.60 | 2.42 3.68
2.44 3.68 | 5-4
4-4 | a ³ H-b ¹ G
(39F) | | 9826.83
9998.31
10055.97
10178.29
10263.84
10229.79
10452.56
10443.95 | 0.91 2.17
0.95 2.19
0.99 2.21
0.95 2.17
0.99 2.19
1.01 2.21
0.99 2.17
1.01 2.19 | 4-3
3-3
3-1
3-3
2-3
1-1
2-3 | a ⁵ r_a ⁵ p
(11F) | 4685.99
4618.97
4677.94
4723.39
4674.64
4715.21
4711.86 | 0.99 3.62
0.95 3.63
0.99 3.62
1.01 3.62
0.99 3.63
1.01 3.63 | 2-1
3-3
2-8
1-1
2-3
1-2
1-3 | | 11450.66
11786.08
12072.48
11765.16
12019.17 | 2.55 3.63
2.58 3.62
2.60 3.62
2.58 3.63
2.60 3.63
2.60 3.63 | 4-3
3-3
2-1
3-3
2-3
2-3 | b ³ F-b ³ D
(40F) | | 9386.96
8643.14
8413.97
9619.74
8771.24
9778.70 | 0.95 2.27
0.99 2.41
1.01 2.47
0.99 3.27
1.01 2.41
1.01 2.27 | 3-2
2-1
1-0
3-3
1-1
1-2 | a ⁵ F-a ³ P
(13F) | 11537.68
12025.23
12387.48
11233.80
11791.90
12372.55
12645.23 | 1.48 2.55
1.55 3.58
1.60 2.60
1.48 2.58
1.55 2.60
1.55 2.55
1.60 2.58 | 4-4
3-3
2-2
4-3
3-2
3-4
8-3 | a ³ F_b ³ F
(33F) | 10916.64 |
2.55 3.68
2.58 3.68 | 4-4
3-4 | b ³ F-b ¹ G
(41F) | # REVISED MULTIPLET TABLE | | | | | REVI | SED MULT
FORBIDDE | | T TABLE | | | | | |--|---|--|---|---|--|--|--|--|---|---|--| | AI | E P
Low High | 3 | Multiplet
(No) | IA | E P
Low High | 3 | Multiplet
(No) | I A | E P
Low High | J | Multiplet
(No) | | 7419.42
7523.27
7552.38
7637.52
7686.90
7665.29
7806.23 | 0.00 1.66
0.05 1.69
0.08 1.72
0.05 1.66
0.08 1.69
0.11 1.72
0.08 1.66 | 4-1-2-1-4-1-4-4-4-4-4-4-4-4-4-4-4-4-4-4- | a ⁶ D-a ⁴ P
(1 P) | Fe II cont
3124.18
3181.05
3162.21
3209.94
3190.76
3230.17 | 0.00 3.95
0.05 3.93
0.05 3.95
0.08 3.95
0.08 3.95
0.11 3.93 | 41-31
31-31
31-31
21-31
11-31 | a ⁶ D-b ² F
(12F) | Fe II cont
3376.20
3452.30
3504.51
3538.69
3387.10
3455.11
3504.02
3440.99 | 0.23 3.89
0.30 3.87
0.35 3.87
0.38 3.87
0.33 3.87
0.30 3.87
0.35 3.87 | 40-1-20-1-20-1-20-1-20-1-20-1-20-1-20-1- | a ⁴ F-b ⁴ D
(26F) | | 7803.90
7733.12
7936.90
7874.23
7999.47
5650.39 | 0.11 1.69
0.12 1.72
0.11 1.66
0.13 1.69
0.13 1.66
0.08 3.37 | 14-24
14-24
2-14
2-22
2-13 | s ⁶ D-s ² P
(2F) | 8616.96
8891.88
9033.45
9051.92
9286.60
9267.54
9399.02 | 0.23 1.66
0.30 1.69
0.35 1.72
0.30 1.66
0.35 1.69
0.38 1.72
0.35 1.66 | 43-34-34-34-34-34-34-34-34-34-34-34-34-3 | a ⁴ F-a ⁴ P
(13F) | 3501.68
3539.19
3489.98
3536.25
3524.38 | 0.35 3.87
0.38 3.87
0.35 3.89
0.38 3.87
0.38 3.89 | 24-24
15-15-
25-35
15-35
15-35
44-34 | * ⁴ F-b ³ F
(37F) | | 5546.39
5713.35
5582.01
5750.95
4965.78
4843.51
5036.55 | 0.11 8.55
0.11 2.37
0.12 3.33
0.12 3.37
0.05 3.53
0.08 3.63
0.08 3.53 | 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 | a ⁶ D-a ² D
(3F) | 9470.93
9652.70
7155.14
7171.98
6896.18
7452.50 | 0.38 1.69
0.38 1.66
0.23 1.96
0.30 2.02
0.23 2.02
0.30 1.96 | 12-12-12-12-12-12-12-12-12-12-12-12-12-1 | e ⁴ F-a ² G
(14F) | 3402.50
3339.14
3380.95
3450.39
3428.24
3484.01
3461.42 | 0.23 3.95
0.30 3.93
0.23 3.93
0.30 3.95
0.35 3.95
0.35 3.95
0.38 3.95 | 343444 | (37F) | | 489.70
5086.52
4917.22
4799.31
4665.65
4598.07 | 0.11 3.63
0.11 3.63
0.12 3.63
0.13 3.63
0.00 3.57
0.05 3.69
0.08 3.77 | 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | a ⁶ D~b ⁴ P
(4F) | 7388.16
7686.19
7544.00
6440.40
6339.70
6558.51 | 0.35 2.02
0.35 1.96
0.38 2.02
0.35 2.27
0.38 2.33
0.38 2.27 | 35 - 35
15 - 35
15 - 35
15 - 15
15 - 15
15 - 15 | a ⁴ F-a ² P
(15F) | 10028-62
9795-31
10327-56
9957-44
10508-07 | 1.04 3.27
1.07 3.33
1.07 3.27
1.09 3.33
1.09 2.27 | 23-14-40-40-40-14-40-40-14-40-40-40-40-40-40-40-40-40-40-40-40-40 | a ⁴ D-a ³ P
(38F) | | 4889.63
4788.07
4639.68
4958.23
4772.07
4664.45
5006.65 | 0.05 3.57
0.08 3.69
0.11 3.77
0.08 3.57
0.11 3.69
0.13 3.77
0.11 3.57 | 344-144-144-14-14-14-14-14-14-14-14-14-14 | | 5413.34
5440.45
5280.25
5362.06
5295.70 | 0.23 2.51
0.30 2.57
0.23 2.57
0.23 2.53
0.30 2.63 | 41-51
31-41
41-41 | a ⁴ F-a ² H
(16F)
a ⁴ F-a ² D
(17F) | 7958.50
7740.11
8245.12
7916.98
8446.11
8022.63 | 0.98 2.53
1.04 2.63
1.04 2.53
1.07 2.63
1.07 2.63 | 30-10-10-10-10-10-10-10-10-10-10-10-10-10 | a ⁴ D-a ³ D
(39F) | | 4798.28
5035.50
4664.97
4716.36
4750.57
4632.27 | 0.12 3.69
0.12 3.57
0.00 3.65
0.05 3.66
0.08 3.68
0.00 3.68 | 4 - 5 - 3 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 | a ⁶ D-a ⁴ H
(SF) | 5527.33
5412.64
5654.85
5495.82
5745.70
5273.38 | 0.30 2.53
0.35 2.63
0.35 2.53
0.38 2.63
0.38 2.53 | 4557841818 | a ⁴ F-5 ⁴ P | 7764.69
7449.45
7281.67
7214.69
7131.77
8037.29 | 0.98 2.57
1.04 2.69
1.07 2.77
0.98 2.69
1.04 2.77
1.04 2.57 | 2011 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | a ⁴ D-b ⁴ F
(30F) | | 4687-56
4504-48
4416-27
4457-95
4488-75
4509-61 | 0.05 2.68
0.00 2.68
0.00 3.79
0.05 2.82
0.08 2.83
0.11 2.84 | 34-35
42-35
43-35
35-35
15-15
43-35 | a ⁶ D-b ⁴ F
(6F) | 5158.00
5107.95
5433.15
5268.88
5161.97
5556.31
5347.67 | 0.30 2.69
0.35 2.77
0.30 2.57
0.35 3.69
0.38 2.57
0.38 3.69 | 34 34 34 34 34 34 34 34 34 34 34 34 34 3 | (18F) | 7613.15
7370.94
8228.16
7710.79
8348.34
6809.21 | 1.07 2.69
1.09 2.77
1.07 2.57
1.09 2.69
1.09 2.57 | 14 12 44 | e ⁴ D-b ⁴ F | | 4387.75
4438.45
4470.29
4492.64
4514.90
4528.39
4533.00
4358.10
4414.45
4550.42
4555.01
4551.98 | 0.00 2.82
0.05 2.83
0.08 2.84
0.05 2.79
0.08 2.82
0.11 2.83
0.12 2.84
0.00 2.83
0.05 2.84
0.01 2.83 | | | 5644.00
5158.81
5281.61
5353.65
5376.47
5111.63
5280.06
5296.84
5072.40
5184.80
5039.10 | 0.38 2.57 0.23 2.62 0.30 2.65 0.35 2.68 0.38 2.65 0.30 2.65 0.30 2.65 0.30 2.86 0.33 2.68 0.33 2.68 0.33 2.68 | 12 | a ⁴ F-a ⁴ H
(19F) | 6933.67
7011.24
7047.99
6729.85
6872.17
6966.32
6671.90
6839.01
7017.94
7075.26
7093.98
6631.20 | 1.04 2.82
1.07 2.83
1.09 2.84
0.98 2.82
1.04 2.83
1.07 2.84
0.98 2.83
1.04 2.79
1.07 2.99
1.09 2.83
0.98 2.84 | 381338144821
3813814814
381314821
381314821
381314821 | (31F) | | 4287.40
4359.34
4413.78
4452.11
4474.91
3931.44
3932.73
3949.27
3968.27
3974.07
3905.62 | 0.00 2.88
0.05 2.88
0.11 2.88
0.11 3.88
0.12 3.88
0.00 3.14
0.05 3.19
0.08 3.21
0.11 3.82
0.00 3.19
0.05 3.31 | Andrewsky to the state of s | a ⁶ D-a ⁶ S
(7F)
a ⁶ D-a ⁴ G
(SF) | 4814.55
4903.35
4973.39
5020.24
4774.74
4874.49
4950.74
4947.38
5005.52
5043.53
4745.49 | 0.33 2.79
0.30 2.82
0.35 8.83
0.38 8.84
0.30 2.83
0.35 2.83
0.35 2.84
0.30 2.79
0.35 2.83
0.38 2.83 | | 8 ⁴ F-7 ⁴ F
(30F) | 6507.68
6698.02
6830.06
5781.35
5741.11
5778.35
5809.43
5600.66
5683.56
5753.83 | 0.98 a.88
1.04 a.88
1.07 a.88
0.98 3.14
1.04 3.19
1.07 3.22
0.98 3.19
1.04 3.21
1.07 3.22 | San San San San | a ⁴ D-a ⁶ S
(32F)
a ⁴ D-a ⁴ G
(33F) | | 3937.80
3847.78
3894.40
3836.89
3991.84
3976.97
3979.93
3096.38 | 0.08 3.22
0.00 3.21
0.05 3.22
0.00 3.23
0.05 3.14
0.08 3.19
0.11 3.21
0.12 3.23 | A 4 3 4 3 A 1 | |
4852.73
5049.29
5076.57
4243.98
4276.83
4319.4358.37
4177.31
4244.81 | 0.30 2.84
0.35 2.79
0.38 2.82
0.33 3.14
0.30 3.19
0.35 3.81
0.38 3.22
0.30 3.19
0.30 3.81 | 34 32 4 3 3 4 3 3 4 4 3 3 4 4 3 4 4 4 4 | a ⁴ F-a ⁴ G
(31F) | 5545.88
5659.83
5523.28
5746.96
5477.25
5843.90
5527.61
5901.26 | 0.98 3.21
1.04 3.23
0.98 3.22
1.04 3.18
1.07 3.32
1.07 3.32
1.09 3.32 | 3000 de | s ⁴ p_b ³ p
(34F) | | 3979.78
3834.73
4010.91
3851.63
4029.41
3659.96 | 0.08 3.18
0.11 3.32
0.11 3.18
0.13 3.32
0.12 3.18
0.00 3.37 | 24-14-14-14-14-14-14-14-14-14-14-14-14-14 | a ⁶ p_b ² p
(9F)
_a 6 _{P-a} 3 _F | 4305.90
4146.65
4231.56
4134.01
4346.85
4352.78 | 0.35 3.23
0.23 3.21
0.30 3.22
0.23 3.23
0.30 3.14
0.35 3.19 | 384334434 | | 5183.94
5199.18
5083.72
5283.11
5278.39 | 0.98 3.37
1.04 3.41
0.98 3.41
1.04 3.37
1.07 3.41 | 31 31 25 31 31 31 31 31 31 31 31 31 31 31 31 31 | a ⁴ D-a ² F
(35F) | | 3670.62
3712.26
3709.14
3751.66
3736.17 | 0.05 3.41
0.05 3.37
0.08 3.41
0.08 3.37
0.11 3.41 | 33 | (10F) | 4378.43
4356.14
4197.81
4409.86
4114.48
4178.05 | 0.38 3.21
0.35 3.18
0.38 3.32
0.38 3.18
0.23 3.23 | 15-35
21-11
11-11
11-12
41-51 | a ⁴ F-b ² P
(22F)
a ⁴ F-b ² H | 4249.07
4347.35
4407.16
4438.92
4266.34
4351.80
4406.39 | 0.98 3.89
1.04 3.87
1.07 3.87
1.09 3.87
0.98 3.87
1.04 3.87
1.07 3.87 | 3-3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | a ⁴ D-b ⁴ D
(36F) | | 3234.54
3256.73
3277.12
3185.01
3226.31
3256.31 | 0.00 \$.89
0.05 3.87
0.08 3.87
0.11 3.87
0.00 3.87
0.05 3.87
0.05 3.87 | 30-11-11-15-15-15-15-15-15-15-15-15-15-15- | a ⁶ p_b 4 p
(11F) | 4178.05
4083.78
3929.35
3968.66
3862.73
4017.38
4033.98 | 0.50 3.85
0.23 3.25
0.23 3.37
0.30 3.41
0.23 3.41
0.30 3.37 | 31-41
42-42
41-31
31-31
43-31 | (23F)
a ⁴ F-a ² F
(24F) | 4389.43
4402.60
4439.73
4270.62
4351.05
4384.21
4435.08 | 1.04 3.89
1.07 3.87
1.09 3.87
0.98 3.87
1.04 3.87
1.07 3.89
1.09 3.87 | 1 de | | | 3854.84
3277.55
3289.46
3244.18
3275.02
3289.89
3264.84 | 0.08 3.87
0.12 3.87
0.08 3.89
0.11 3.87
0.12 3.87
0.12 3.87 | 25-25-25-25-25-25-25-25-25-25-25-25-25-2 | | 4084,32
4080.00
4131.51
3505.81
3528.28
3460.20 | 0.35 3.41
0.35 3.37
0.38 3.41
0.38 3.37
0.23 3.75
0.30 3.80
0.23 3.80 | 25-35
15-35
15-35
45-45
35-35
45-35 | a ⁴ F_b ³ G
(25F) | 4157.89
4368.67
4190.53
4234.81
4321.92 | 0.98 3.95
1.04 3.93
0.98 3.93
1.04 3.95
1.07 3.93 | 34-34-34-34-34-34 | a ⁴ D-b ³ F
(37F) | | 3387.35 | 0.12 3.87 | - 2-2-2-1 | | 3575.72
3575.81
3628.65
3618.00 | 0.30 3.80
0.30 3.75
0.35 3.80
0.35 3.75
0.38 3.80 | 35-45
25-35
25-35
15-35 | | 8119.16
7539.67
8252.38
7673.74
8413.26 | 1.66 3.18
1.69 3.32
1.69 3.18
1.72 3.32
1.73 3.18 | 2 - 1 de | a ⁴ P_b ² P
(38F) | | I A | | | Multiplet
(No) | I A | E P
Low High | J | Multiplet (No) | AI | E P
Low High | J | Multiplet
(No) | |---|--|--|---|--|---|---|---|--|---|---|---| | | | | | | | | | | | | | | | 4 00 7 00 | | | Fe III cont | inued | | | <u>Pe VI</u> I P | | | | | 5551.31
5643.44
5725.92
5580.82 | 1.66 3.89
1.69 3.87
1.72 3.87
1.66 3.87
1.69 3.87 | 21-31
12-21
12-21
21-22 | e ⁴ P-b ⁴ D
(39F) | 3976.2
4144.3
4130.7
4129.4 | 0.00 3.10
0.05 3.03
0.09 3.08
0.12 3.10 | 4-3
3-5
2-4
1-3 | a ⁵ D-a ³ G
(4F)
cont | 5678.0
5631.6
5485.7
5428.6
5425.3 | 0.25 2.42
0.15 2.34
0.06 2.31
0.15 2.42
0.06 2.34 | 41-21
31-12
31-22
31-22
21-12 | 3d ^{3 4} F-3d ^{3 4} P | | 5650.94
5724.62
5588.15
5649.67 | 1.69 3.87
1.72 3.87
1.66 3.87
1.69 3.87 | 15-15-15-15-15-15-15-15-15-15-15-15-15-1 | | 3323.54
3371.4
3406.2
3428.8 | 0.00 3.71
0.05 3.71
0.09 3.71
0.13 3.71 | 4-3
3-3
2-3
1-3 | a ⁵ D-a ⁷ S
(5F) | 5336.4
5236.6
5279.2
5100.4 | 0.00 2.31
0.06 2.42
0.00 2.34
0.00 2.42 | 12-22
23-22
13-12
13-22 | • | | 10431.10
10594.89
10036.79
10400.53
9862.21
10321.34 | 1.96 3.14
2.02 3.19
1.96 3.19
2.02 3.21
1.96 3.21
2.03 3.22 | 42-42-42-42-42-42-42-42-42-42-42-42-42-4 | e ² G-e ⁴ G
(40F) | 3239.7
3301.6
3333.8
3254.7
3300.5
3286.2
3334.9 | 0.00 3.81
0.05 3.79
0.09 3.79
0.00 3.79
0.05 3.79
0.05 3.81
0.09 3.79 | 4-3
3-2
2-1
4-3
3-1
3-3
3-2 | a ⁵ D-a ³ D
(6F) | 5177.0
5146.8
5370.5
4968.8
4974.0
4807.5
4850.9 | 0.25 2.63
0.15 2.54
0.25 2.54
0.15 2.63
0.06 2.63
0.06 2.63
0.00 2.54 | 42-42-32-42-42-42-42-42-42-42-42-42-42-42-42-42 | 3d ³ ⁴ F-3d ³ ² G
(2F) | | 9682.13
10013.88
9513.87 | 1.96 3.23
2.02 3.25
1.96 3.25 | 41-51
31-41
42-41 | e ³ G-b ³ H
(41F) | 3355.5
3319.2
3356.6
3366.2 | 0.12 3.79
0.09 3.81
0.12 3.79
0.13 3.79 | 1-1
2-3
1-2
0-1 | | 3995.8
3849.1
3890.9 | 0.15 3.23
0.06 3.27
0.06 3.23 | 3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | 3d ³ ⁴ F-3d ³ ² P
(3F) | | 8715.84
8885.66
9133.63 | 1.96 3.37
2.02 3.41
2.02 3.37 | 41-31
31-31
31-31 | a ² G-a ² F
(42F) | 3340.7
3367.3 | 0.12 3.81
0.13 3.79 | 0-3 | | 3774.9
3815.1 | 0.00 3.27
0.00 3.23 | 12-12 | | | 6873.87
6944.91
6700.68
7131.13 | 1.96 3.75
2.02 3.80
1.96 3.80
2.02 3.75 | 41-41
31-31
41-31
32-42 | a ² G-b ² G
(43F) | 3236.7
3283.1
3316.1 | 0.00 3.81
0.05 3.81
0.09 3.81 | 3-4 | a ⁵ D-a ¹ G
(7F) | 3776.1
3645.7
3664.1
3558.1
3575.6 | 0.25 3.51
0.15 3.53
0.15 3.51
0.06 3.53
0.06 3.51 | 41-21
31-11
31-21
21-21
21-21 | 3d ³ 4 _{F-3d} 3 2 _D (4F) | | 6188.55
6473.86
6396.30 | 1.96 3.95
2.02 3.93
2.02 3.95 | 42-31
32-21
32-31 | a ² G-b ² F
(44F) | 8728.9
9969.6
10504.3
8838.2
9960.0 | 2.40 3.81
2.55 3.79
2.62 3.79
2.40 3.79
2.55 3.79 | 2-2 | a ³ P-a ³ D
(SF) | 3494.7
3511.6
3675.2
3630.3 | 0.00 3.53
0.00 3.51
0.25 3.60 | 15-15
15-25
45-55 | 3d ³ ⁴ F-3d ³ ³ H | | 10796.48 | 2.27 3.41 | 12-32 | a ³ P-a ³ F
(45F) | 8830.7
7078.2 | 2.55 3.79
2.55 4.30 | 3-1 | a ³ P-a ¹ S | 3740.2
3569.0
3543.5 | 0.15 3.55
0.25 3.55
0.15 3.60
0.06 3.55 | 34-44
44-44
34-54
22-42 | (5F) | | 7674.06
8012.08
7687.94
8009.53 | 2.27 3.87
2.33 3.87
2.27 3.87
2.33 3.87 | 1 1 - 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | (45F)
a ³ P-b ⁴ D
(46F) | 6096.3
6614.0 | 2.40 4.42
2.55 4.42 | 2-2 | (9F)
a ³ P_a ¹ D
(10F) | | 0.00 0.00 | 22-42 | | | 7685.58
7432.23 | 2.27 3.87
2.27 3.93 | 12- 2
12- 2
12-32 | a ² P-b ² F | 9701.3
9942.2 | 2.48 3.75
2.51 3.75 | | a ³ H-a ¹ I
(11F) | <u>Fe VII</u> I
6599.7 | P †
0.29 2.16 | 4-2 | 3d ^{2 3} F-3d ^{2 1} D | | 9949.32
10038.79 | 2.51 3.75
2.57 3.80 | 51-41 | (47F)
a ² H-b ² G | 9444.2
9608.6 | 2.51 3.81
2.53 3.81 | 5-4
4-4 | a ³ H-a ¹ G
(12F) | 6085.5
5720.9 | 0.13 2.16
0.00 2.16 | 3-2
2-3 | (1F) | | 10038.79 | 2.57 3.80
2.57 3.75
2.57 3.95 | 52-42
42-32
42-42
42-32 | (48F)
a ² H-b ² F
(49F) | 10640.4
11088.0
11272.6 | 2.65 3.81
2.68 3.79
2.70 3.79 | 2-1 | a ³ F-a ³ D
(13F) | 5276.1
5158.3
4989.4
4942.3
4893.9 | 0.29 2.63
0.13 2.52
0.00 2.47
0.13 2.63
0.00 2.52 | 4-2
3-1
2-0
3-2
3-1 | 3d ² 3 _{F-3d} 2 3 _P (2F) | | 9755.81 | 2.53 3.80 | 3½-3½ | a ² D-b ² G
(50F) | 10916.5
11284.9
11107.3 | 2.68 3.81
2.70 3.79
2.70 3.81 | 2-2 | | 4699.0
3759.9 | 0.00 2.63 | 3-2
4-4 | 3d ² 3 _{F-3d} 2 1 _G | | 9116.41
9918.01
9196.26 | 2.53 3.89
2.63 3.87
2.53 3.87 | 23-31
12-31
23-31 | (50F)
a ² D-b ² D
(51F) | 10608.1
10882.6 | 2.65 3.81
2.68 3.81 | 4-4 | a ³ F-a ¹ G
(14F) | 3587.2
3457.3 | 0.13 3.57
0.00 3.57 | 3-4
3-4 | (3P) | | 9941.20
9216.20
9937.27 | 2.63 3.87
2.53 3.87
2.63 3.87 | 12-12
22-12
12-2 | | 7088.3
7220.0 | 2.68 4.42
2.70 4.42 | | a ³ F-a ¹ D
(15F) | 8738.1 | 2.16 3.57 | 2-4 | 3d ² ¹ D-3d ² ¹ G
(4F) | | 8706.79
9517.76
8851.13 | 2.53 3.95
2.63 3.93
2.53 3.93 | 21-31
11-31
21-21
21-21 | a ² D-b ² F
(52F) | Fe V I P | • | | | Fe X I P | 261? | | | | | | | | 3970.1
4136.4 | 0.16 3.27
0.10 3.08 | 3-1 | 3d ⁴ 5p-3d ⁴ 3p (1F) | 6372.9
6374.51
c) | 0.00 1.94 | 11-1 | 3p ⁵ 2pe_3p ⁵ 2pe
(1F) | | 5151.9 | I P 30.48
0.00 2.40 | 4-2 | a ⁵ p_a ³ p | 4229.8
3895.7
4071.5 | 0.05 2.97
0.10 3.27
0.05 3.08 | 2-0
3-2
2-1 | ,, | | · | | | | 4936.4
4883.9
5270.4 | 0.05 2.55
0.09 2.62
0.05 2.40 | 3-1
2-0
3-2 | (1F) | 4181.3
3838.1
4036.6 | 0.02 2.97
0.05 3.27
0.02 3.08 | 2-2 | | <u>Fe XI</u> I I | 2891 | | | | 5011.3
4930.5
5355.0 | 0.09 2.55
0.12 2.62
0.00 0.40 | 2-1
1-0
8-8 | | 3798.2
4003.2
3777.4 | 0.02 3.27
0.00 3.08
0.00 3.27 | 1-2 | | 7888.6
7891.94 C) | 0.00 1.56 | 2-1 | 3p4 3p_3p4 3p† | | 5060.3
5412.0
5084.8
5439.9 | 0.12 3.55
0.12 2.40
0.13 2.55
0.13 2.40 | 1-1
1-3
0-1
0-2 | | 4123.9
4093.0
4077.5 | 0.16 3.15
0.10 3.11
0.05 3.08 | 3-5 | 3d4 5p-3d4 3H
(2F) | 3986.1 | 1.56 4.66 | 1-2 | 3p4 3p-3p4 1p+
(2F) | | 4985.9
6030.? | 0.00 2.48
0.05 3.51 | 4-6
3-5 | a ⁵ D-a ³ H
(SF) | 4175.2
4142.5
4880.8 | 0.16 3.11
0.10 3.08
0.16 3.08 | 4-5 | • | Fe XIII 1 | P 3551 | | | | 5063.7
4924.5 | 0.09 2.53
0.00 2.51 | 2-4
4-5 | (22) | 3891.8 | 0.16 3.33 | 4-4
3-3 | 3d4 5p-3d4 3F | 10796.2 | 1.15 2.29 | 1-2 | 3p ² ³ p _{-3p} ² ³ p | | 4987.2
4881.0 | 0.05 2.53
0.00 2.53 | 3-4
4-4 | E 7 | 3838.9
3794.6
3911.1 | 0.10 3.31
0.05 3.30
0.16 3.31 | 2-2
4-3 | (3F) | 10797.95 C ⁾
10749.7
10746.80 C ⁾ | 0.00 1.15 | 0-1 | (1F) | | 4658.1
4701.5
4733.9 | 0.00 2.65
0.05 3.68
0.09 2.70 | 4-4
3-3
3-2 | a ⁵ D-a ³ F
(3F) | 3850.8
3080.8
3782.9 | 0.10 3.30
0.10 3.33
0.05 3.31 | 3-4
2-3 | | 3387.7 | a.a9 5.93 | 8-8 | 3p ² 3p-3p ² 1D
(2F) | | 4607.0
4667.0
4754.7 | 0.00 2.68
0.05 2.70
0.05 2.65 | 4-3
3-2
3-4 | | 3755.5
3923.5
3764.8 | 0.02 3.30
0.16 3.30
0.05 3.33 | 4-2 | | | · | | | | 4769.4
4777.7
4573.9 | 0.09 2.68
0.12 2.70
0.00 2.70 | 2-3
1-2
4-2 | | 3744.1
3735.2 | 0.02 3.31
0.00 3.30 | 1-3 | • | Fe XIV I | P 3907 | | | | 4824.1
4813.9
4799.5 | 0.09 2.65
0.12 2.68
0.13 2.70 | 2-4
1-3
0-2 | | 3430.3
3406.6
3400.3 | 0.16 3.76
0.10 3.72
0.05 3.68 | 3-4
2-3 | 3d ⁴ ⁵ D-3d ⁴ ³ G
(4F) | 5303.86 C) | 0.00 2.33 | <u> </u> | 3p ³ p°_3p ³ p°
(1F) | | 4070.7
4079.7 | 0.00 3.03
0.05 3.08 | 4-5
3-4 | a ⁵ D-a ³ G
(4F) | 3463.4
3445.4
3374.6 | 0.16 3.72
0.10 3.68 | 4-4
3-3 | | | | | | | 4096.6
4008.3
4046.4 | 0.09 3.10
0.00 3.08
0.05 3.10 | 2-3
4-4
3-3 | /ar/ | 3374.6
3362.5
3368.9
3503.5 | 0.10 3.76
0.05 3.72
0.02 3.68
0.16 3.68 | 2-4
1-3 | | Fe XV I F
7080.2
7059.62 C) | (39.8 31.6) | 1-2 | 3p ³ p•_3p ³ p•
(1F) | | | | | | | | | | 1000.08 0 | | | \+e / | | | | | | | FORBIDDE | LINES | | | | | | | |---|---|---|---|--|--|--|--|--|---|---------------------------------|--|---| | IA | E P
Low High | 3 | Multiplet
(No) | T A | E P
Low High | J | Multiplet (No) | IA | F P E P | gh. | J | Multiplet (No) | | Co II I 10188.1 10245.4 10280.7 9336.2 9639.4 11280.5 10972.9 | P 17.1 0.00 1.21 0.12 1.32 0.20 1.40 0.00 1.32 0.12 1.40 0.12 1.21 0.20 1.33 | 4-4
3-3
2-2
4-3
3-2
3-4
2-3 | 3d ⁸ 3 _{F-48} 3 _F (1F) | 4564.7
4492.3
4422.4
4198.0
4204.9
3946.0 | 0.42 3.13
0.19 2.94
0.09 2.79
0.19 3.13
0.00 2.94
0.00 3.13 | 4-2
3-1
2-0
3-2
2-1
2-3 | 3d ² 3 _F -3d ² 3 _P (2F) | N1 II con
4147.30
4310.46
4143.17
4314.92
4461.54
4466.33
4573.45 | 1.04 4.
1.15 4.
1.04 4.
1.15 4.
1.25 4. | 01
01
01
01
01 | 12-43-34-34-34-34-34-34-34-34-34-34-34-34- | a ⁴ F-a ² G
(10F) | | 8830.3
12168.8 | 0.00 1.40
0.20 1.21
0.00 2.19 | 4-2
3-4
4-3 | 3d ⁸ 3r_4e ⁵ p | Co XI I | P 3047 | | | 10459.79
11359.87 | 1.85 2 | .85 | 31-21
21-11
21-21 | a ² F-b ² D
(11F) | | 5625.4
5852.8
5971.6
5943.2
6083.2
6180.9 | 0.12 2.23
0.30 2.26
0.12 2.19
0.20 2.23
0.30 2.19 | 3-3
2-1
3-3
3-2
2-3 | (aF) | 5185 | 0.00 2.38 | 1 1 2 - 1 | 3p ⁵ 2pe_3p ⁵ 2pe
(1F) | 12323.27
8704.24
10209.10
9957.23 | 1.67 3
1.85 3 | | 31-21
31-21
21-11
21-21
21-21 | a ² F-a ⁴ P
(12F) | | | | | 48 ⁵ F-48 ⁵ P | 374 T T D | 7.61 | | | 7102.84 | 1.85 3 | | 3] -1] | a ² F-a ² P
(13F)
a ² F-a ² G | | 7274.6
7421.5
7467.0
7567.6
7642.3 | 0.50 2.19
0.56 2.23
0.61 2.26
0.56 2.19
0.61 2.23
0.64 2.26 | 4-3
3-2
2-1
3-3
2-2
1-1 | (3F) | Ni I I P
7393.71
8201.77
8843.42 | 0.00 1.67
0.16 1.67
0.27 1.67 | 4-2
3-2
3-3 | a ³ F-b ¹ D
(1F) | 5275.83
5703.64
5269.16
5711.46 | 1.85 4
1.67 4 | .01
.01
.01
.01 | 3 - 4 - 4 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - | a ³ F-a ² G
(14F) | | 7611.7
7797.2
7793.9 | 0.64 2.26
0.61 2.19
0.64 2.23 | 2-3
1-2 | | 6404.45
6941.63
7243.99 | 0.00 1.93
0.16 1.94
0.27 1.98
0.16 1.93 | 4-3
3-1
2-0
3-2 | a ³ F-a ³ P
(2F) | N1 VII | I P ? | | | | | | | | | 7002.02
7395.79
7464.39 | 0.16 1.93
0.27 1.94
0.27 1.93 | 2-1
2-3 | | 3191.2
3379.7 | 0.19 3 | .16
.84 | 4-3
3-1 | 3d ⁴ ⁵ D-3d ⁴ ³ P (1F) | | 3481.5
3658.1
3761.0 | 0.22 3.77
0.14 3.51
0.07 3.35 | 4-2
3-1
-2-0 | 3d ⁴ ⁵ D-3d ⁴ ³ P
(1F) | 4523.16
4813.27
5027.34 | 0.00 2.73
0.16 2.73
0.27 2.73 | 4-4
3-4
2-4 | a ³ F-a ¹ G
(3F) | 3503.8
3106.0
3299.6
3440.3
3038.3 | 0.19 4
0.10 3
0.03 3
0.10 4 | .63
.16
.84
.62
.16 | 2-0
3-2
2-1
1-0
2-2
1-1 | | | 3403.3
3586.8
2708.3 | 0.14 3.77
0.07 3.51
0.03 3.35 | 3-2
2-1
1-0 | | 7507.44
7908.30 | 0.03 1.67
0.11 1.67 | 3-2
2-2 | a^3D-b^1D (4F) | 3243.2
2990.4
3214.5 | 0.03 4 | .16 | 1-2 | | | 3341.5
3538.8
3299.8
3512.9
3277.3 | 0.07 3.77
0.03 3.51
0.03 3.77
0.00 3.51
0.00 3.77 | 2-2
1-1
1-3
0-1
0-3 | | 8466.38
6489.61
6730.25
6989.04 | 0.21 1.67
0.03 1.93
0.11 1.94
0.21 1.98 |
1-2
3-2
2-1
1-0 | a ³ D-a ³ P
(5F) | 3413.3
3396.7
3486.6 | 0.19 3
0.29 3 | .91
.83
.83 | 4-5
3-4
4-4 | 3d ⁴ ⁵ D-3d ⁴ ³ H
(2F) | | 3444.1
3388.2
3336.9
3465.7
3398.5 | 0.22 3.20
0.14 3.78
0.07 3.77
0.22 3.78
0.14 3.77 | 4-4
3-3
2-2
4-3
3-2 | 3d ⁴ 5 _{D-3d} ⁴ 3 _F (2F) | 6437.70
6604.30
6787.00
7130.24
7193.97 | 0.03 1.94
0.11 1.98
0.11 1.93
0.21 1.94
0.21 1.93 | 3-1
2-0
3-3
1-1
1-3 | | 3165.4
3106.1
3048.8
3191.3
3117.1
3081.6 | 0.19 4
0.10 4
0.29 4
0.19 4
0.19 4 | .19
.16
.15
.16
.15 | 4-4
3-3
2-2
4-3
3-2
3-4 | 3d ⁴ ⁵ D-3d ⁴ ³ F
(3F) | | 3367.5
3326.9 | 0.14 3.80
0.07 3.78 | 3-4
2-3 | | 9887.18 | 0.42 1.67 | 2–2 | a ¹ D-b ¹ D | 3038.4
3000.6 | 0.10 4
0.03 4 | 1.16
1.15 | 2-3
1-2 | | | 3295.4
3476.5
3307.0 | 0.03 3.77
0.22 3.77
0.07 3.80 | 1-3
4-2
2-4 | | 8832.31 | 0.42 1.82 | 2-0 | (6F)
a ¹ D-a ¹ S
(7F)
a ¹ D-a ³ P | | | | | | | 3285.6
3272.9 | 0.03 3.78
0.00 3.77 | 1-3
0-2 | | 8194.57
8111.97
7929.70 | 0.42 1.93
0.42 1.94
0.42 1.98 | 2-3
2-1
2-0 | a ¹ D-a ³ P
(8F) | N1 VIII
4772.4
4644.2
4493.3 | 0.27 2
0.13 2 | 3.05
3.93
3.87 | 41-21
31-11
21-1 | 3d ³ ⁴ F-3d ³ ⁴ P
(1F) | | Co VII | I P ? | | | N1 II I | P 18.4 | | | 4446.2
4404.4
4297.8 | 0.13 2 | 3.05
2.93
2.87 | 31-21
21-11
11-1 | | | 5136.3
5076.3 | 0.34 2.74
0.20 2.63 | 41-21
31-11 | 3d3 4F-3d3 4P
(1F) | 10718.16
11616.88 | 0.00 1.15
0.19 1.25 | 21-31
11-21 | a ² D-a ⁴ F
(1F) | 4225.9
4216.4
4052.5 | 0.13 | 3.05
3.93
3.05 | 12-22
12-22
12-22 | | | 4901.1
4858.4
4851.6 | 0.09 2.60
0.20 2.74
0.09 2.63 | 42-22
32-12
23-23
32-23
31-12 | | 9885.74
10921.07 | 0.00 1.25
0.19 1.32 | 21-21
11-12
22-12 | (12) | 4106.1 | 0.46 | 3.46 | | 3d ³ 4F-3d ³ 2G
(2F) | | 4738.9
4652.2
4692.6 | 0.00 2.60
0.09 2.74
0.00 2.63 | 12-32
12-32
12-32 | | 9377.33
7379.57 | 0.00 1.32 | | a ² D-a ² F | 4032.3
4298.8
3862.3 | 0.46 | 3.33
3.33
3.46 | 32-32
42-32
32-42 | (2F) | | 4505.9
4475.0 | 0.00 2.74
0.34 3.09 | | 3d ³ 4F-3d ³ 2G | 7413.3 3
6668.16
8303.23 | 0.19 1.85
0.00 1.85
0.19 1.67 | $ \begin{array}{r} $ | (2F) | 3850.3
3695.0
3705.8 | 0.13 | 3.33
3.46
3.33 | 41-41
32-32
41-32
31-42
21-42
12-32 | | | 4435.1
4665.5
•4262.7 | 0.20 2.98
0.34 2.98
(0.20 3.09
(0.09 2.98 | 41-41
31-31
41-31
31-41
21-31 | (2F) | 4326.85
4485.87
4201.74 | 0.00 2.85
0.19 2.94
0.00 2.94 | 23-23
13-13
23-13 | a ² D-b ² D
(3F) | 3228 - 2
3035 - 3
3075 - 6 | 0.27 | 4.28
4.34
4.28 | 41-21
31-11
31-21
31-21 | 3d ³ 4 _{F-3d} ³ 2 _D (3F) | | 4103.1
4139.5 | 0.09 3.09
0.00 2.98 | $2\frac{1}{2} - 4\frac{1}{2}$ $1\frac{1}{2} - 3\frac{1}{2}$ | | 4628.77
3993.65 | 0.19 2:85
0.00 3.09 | 1½-3½
2½-2½ | a ² D-a ⁴ P
(4F) | 3026.4 | 0.46 | 4.54 | 4 2 - 4 2 | 3d ^{3 4} F-3d ^{3 2} H (4F) | | 3492.5
3338.5
3361.7
3239.8
3261.7 | 0.34 3.87
0.20 3.90
0.20 3.87
0.09 3.90
0.09 3.87 | 45-25
35-25
25-25
25-25
15-25 | 3d ³ ⁴ F-3d ³ ² D
(3F) | 3993.65
4294.70
4033.56
4285.90
4249.48
4025.80 | 0.00 3.09
0.19 3.06
0.00 3.06
0.19 3.07
0.19 3.09
0.00 3.07 | 25-25
15-15
25-15
15-25
15-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25-25
25
25-25
25
25
25
25
25
25
25
25
25
25
25
25
2 | (4F) | 9977.1
8761.8
9565.8
9105.8 | 2.93
3.05
2.93 | 4.28
4.34
4.34
4.28 | 21-21
11-11
21-11
11-21
11-21
1-12 | 3d ³ 4p-3d ³ 2p
(5F) | | 3168.2
3189.1 | 0.00 3.90
0.00 3.87 | 13-13 | 3 43 2 | 3439.29
3559.86 | 0.00 3.59
0.19 3.65 | 21-11-12-12-12-12-12-12-12-12-12-12-12-1 | a ² D-a ² P
(5F) | 8430.1 | | 4.34 | | 3d ^{3 2} G-3d ^{3 2} H | | 3209.3
3159.5
3274.7
3098.6 | 0.34 4.18
0.20 4.10
0.34 4.10
0.20 4.18 | 41-51
31-41
41-41
31-51
21-41 | 3d ³ ⁴ F-3d ³ ² H
(4F) | 3378.55
3627.35
3074.11 | 0.00 3.65
0.19 3.59
0.00 4.01 | 12-12
12-12
22-32 | a ² D-a ² G | 10627.5
10225.3
11509.6 | 3.33 | 4.63
4.54
4.54 | 41-51
31-41
41-41 | (6F) | | 3071.0 | 0.09 4.10 | | | 6794.37 | 1.04 2.85 | | (6F) | N1_IX | IP? | | | ··· | | 10912.8
9752.5
10671.7
9953.5
9558.5 | 2.74 3.87
2.63 3.90
2.74 3.90
2.63 3.87
2.60 3.90 | 23-23
12-13
23-13
13-23
2-12 | 3d ³ 4p _{-3d} 3 2p
(5F) | 6911.05
7256.16
7307.82
7694.82
7612.96 | 1.15 2.94
1.15 2.85
1.25 2.94
1.25 3.85
1.32 2.94 | 41-21
31-1
31-21
21-1
21-2
11-2 | (7F) | 5056.5
4331.7
4043.4 | 0.61
0.20
0.00 | 3.05
3.05
3.05 | 4-2
3-2
2-3 | 3d ² 3 _{F-3d} ² 1 _p (1F) | | 11347.6 | 3.09 4.18 | | • | 8033.86
6007.34 | 1.32 2.85 | 41-21 | a^4F-a^4P | 4190.6
4065.7
4112.7 | 0.20 | 3.56
3.24
3.00 | 4-2
3-1
2-0 | 3d ² 3 _{F-3d} ² 3 _P (2F) | | 10986.0
12209.6 | 2.98 4.10
3.09 4.10 | 41-51
31-41
41-41 | (6F) | 6467.52
6791.61
6365.52
6813.73 | 1.15 3.06
1.25 3.07
1.15 3.09
1.25 3.06 | 3 - 1
2 - 1
3 - 2
2 - 1 | (8F) | 3680.3
3810.6
3470.0 | 0.00 | 3.56
3.24
3.56 | 3-2
2-1
2-2 | | | Co VIII | I P ? | | | 7054.37
6700.61
7078.25 | 1.32 3.07
1.25 3.09
1.32 3.08 | 23-23 | • | N1 XII | IP? | | | | | 5268.4
4785.9 | 0.42 2.77
0.19 2.77 | 4-2
3-2 | 3d ² 3F-3d ² 1D | 6956.25
5274.27 | 1.32 3.09
1.25 3.59 | 1] _2 | . a ⁴ F-a ² P | 4231.4 | 0.00. (| (2.92) | 11/2- 1/2 | 3p5 2pe_3p5 2pe | | 4461.0 | 0.00 2.77 | 2-2 | , , | 5281.46
5431.39 | 1.32 3.65
1.32 3.59 | 21-1
11-
12-1 | (9F) | | | | | | | | | | | | | FORBID | DEN LINES | | | | | | |----------------------------------|---------------------------------------|--------------|--|---|-------------------------------|-------------------------------------|---|--|-------------------------------|-------------------------------------|---|--| | IA | E
Low | P
High | J | Multiplet (No) | IA | E P
Low High | J | Multiplet (No) | IA | E P
Low High | J | Multiplet (No) | | N1 XIII | I P 350? | | | | <u>Zr II</u> conf | tinued | | | <u>Zr II</u> cont | inued | | | | 5116.3
5116.03 | c) 0.00 | (2.41) | 3-1 | 3p4 3p_3p4 3p
(1F) | 7454.82
7386.11 | 0.16 1.82
0.09 1.77 | 43-23
33-13 | a ⁴ F-c ² D
(5F) | 7710.56
7264.43 | 0.80 2.40
0.71 2.41 | 31 31
22
24
32 24
22 32 | a ² F-b ² F
(23F) | | 3643.3 | | 5.80) | 1-2 | 3p4 3p-3p4 1p | 7156.26
7149.08 | 0.09 1.82
0.04 1.77 | 35-25
25-15 | | 7662.36
7307.76 | 0.80 2.41
0.71 2.40 | 3 - 2 - 2 - 3 - 2 - 3 - 3 - 3 - 3 - 3 - | | | | | | | (2F) | 6933.53
6991.75 | 0.04 1.83
0.00 1.77 | 2号-2号
1출-1출 | | | | | A- 4 | | | | | | | 6785.44 | 0.00 1.82 | 12-22 | 42_ | 9670.04
10120.75 | 0.99 2.27
0.96 2.17 | 21-21
11-12
21-12 | a ⁴ P-d ² D
(24F) | | N1 XV | I P 455? | | | | 5855.37
5932.88 | 0.16 2.27
0.09 2.17 | 41-21
31-11
31-21 | a ⁴ F-d ² D
(6F) | 10461.95
9377.83 | 0.99 2.17
0.96 2.27 | 25-15
15-25 | | | 8024 | (1.84 | 3.38) | 1-2 | 3p ² 3p-3p ² 3p | 5669.58
5778.97 | 0.09 2.27
0.04 2.17 | 33-22
23-13
23-23 | | 8315.71 | 0.99 2.48 | 3 2-1 2 | a4P-b3P | | 8024.21
6700.6
6701.83 | , 0.00 | (1.84) | 0-1 | (IF) | 5528.87
5675.73
5434.30 | 0.04 2.27
0.00 2.17
0.00 2.27 | 1 3- 13 | | 8416.96
8098.70 | 0.96 2.42
0.96 2.48 | 2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | (25F) | | 6701.83 | · · · · · · · · · · · · · · · · · · · | | | | 5520.18 | 0.00 2.27 | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | a ⁴ F-b ³ F | 8261.59
7954.76 | 0.93 2.42
0.93 2.48 | 2-1-
2-1- | | | | | | | | 5331.46
5495.42 | 0.09 2.41
0.16 2.41 | 41-31
31-31
41-21 | (7F) | 8862.47 | 1.01 2.40 | Al 21 | e ² G-b ² F | | N1 XVI | IP† | | | | 5354.76
5206.84 | 0.09 2.40
0.04 2.41 | 31-31 | | 8561.42
8798.82 | 0.97 2.41
1.01 2.41 | 43-33
33-23
43-32
33-32 | (26F) | | 3601.3 | 0.00 | 3.43 | <u> </u> | 3p ² p°_3p ² p°
(1F) | 5229.06
5122.88 | 0.04 2.40 | 25-35
15-25 | | 8621.67 | 0.97 2.40 | 32-32 | | | | | | | | 5144.39 | 0.00 2.40 | 12-32 | | 9886.87 | 1.23 2.48 | 21-11 | b ⁴ P-b ² P | | | | | | | 9607.90 | 0.46 1.75 | 43-23 | b4F-b2D | 10128.19
9670.87 | 1.20 2.42
1.20 2.48 | 23-13
12-2
12-13 | (27F) | | | I P 20.18 | | | 10.4 7 | 9870.08
9202.81 | 0.41 1.66
0.41 1.75 | 41-21
32-11
32-21
32-11 | (8F) | 9937.20
9496.60 | 1.18 2.42
1.18 2.48 | - 1
2-12 | | | 4375.71
4165.79 | 0.00 | 2.82 | 0-2
0-1 | 3d ¹⁰ 1S-4s ³ D (1F) | 9490.96
8872.37 | 0.36 1.66
0.36 1.75 | 21-11
21-21
11-11 | | | | | | | 3806.34 | 0.00 | 3.24 | 0-2 | 3d ¹⁰ 1 _{S-48} 1 _D | 9208.72
8625.25 | 0.38 1.68
0.32 1.75 | 12-12
12-22 | | <u>Zr III</u> I | P 24.0 | | | | | | | | (2F) | 9582.55
9291.03 | 0.46 1.75 | 41-41 | b4F-b2G | 5539.74 | 0.18 2.41 | 4-3
3-2 | 4d ² 3F-5e ³ D | | | | | | | 9704.10
9179.54 | 0.41 1.74
0.46 1.74
0.41 1.75 | 41-41
32-31
43-31 | (9F) | 5517.24
5433.69 | 0.08 2.32
0.00 2.27 | 2-1 | (1F) | | Kr III | I P 36.9 | | | | 8954.34
8850.73 | 0.41 1.75
0.30 1.74
0.36 1.75 | 31-41
81-31
21-41 | | 5773.51
5643.68
5303.37 | 0.18 2.32
0.08 2.27
0.08 2.41 | 4-2
5-1 | | | 6826.9
9902.2 | 0.00
0.56 | 1.81 | 2-2
1-3 | 4p4 3p-4p4 1p
(1F) | 8702.70 | 0.32 1.74 | 1ģ~3ģ | | 5316.97
5118.07 | 0.08 2.41
0.00 2.32
0.00 2.41 | 3-3
2-2 | | | | | | | | 9108.53
9089.24 | 0.46 1.82
0.41 1.77 | 41-21
31-11
31-21
21-12 | b ⁴ F-c ² D
(10F) | 5225.01 | 0.00 5.41 | 2-3 | | | Sr II | I P 10.98 | | | | 8743.65
8766.76 | 0.41 1.82 | 3 - 2 - 2 - 3 - 1 - 1 - 1 - 1 - 1 | (/ | 7853.3 | 0.42 1.99 | 2-2 | 4d ² 1D-5s ¹ D | | 6738.40 | 0.00 | 1.83 | 1-21
1-11 | 5 ² 5-4 ² D | 8444.83
8525.41 | 0.36 1.82
0.32 1.77 | 23-23
13-13 | | 6193.7
6487.5 | 0.42 2.41
0.42 2.32 | 2-3
2-2 | (3F)
4d ² 1D-5s ³ D
(3F) | | 6868.18 | 0.00 | 1.80 | 1-11/2 | (1F) | 8220.64 | 0.32 1.82 | 1 }- 3 } | 4 6 | 6661.7 | 0.42 2.27 | 2-1 | , | | | | | | , | 6829.24
6984.07 | 0.46 2.27
0.41 2.17 | 41-21
31-11
31-21
21-11 | b ⁴ F-d ² D
(11F) | 6864.4 | 0.47 2.27 | 0-1 | 4d ^{2 1} S-5s ³ D | | | P 12.3 | | | 1- 3- | 6622.05
6793.01 | 0.41 2.27
0.36 2.17 | 3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | | | | | (4F) | | 7091.17
7131.55 | 0.00 | 1.74
1.73 | 0-2
0-1 | a ¹ S-a ³ P
(1F) | 6449.21
6646.31 | 0.36 2.27
0.32 2.17 | 24-24
14-14
14-24 | | 9349.2
9543.3 | 1.09 2.41
1.03 2.32 | 2-3
1-2 | 4d ² 3p-5e ³ p
(5F) | | 6739.91 | 0.00 | 1.83 | 0-2 | a ¹ S-b ¹ D | 6317.64 | 0.32 2.27 | | . 1 2- | 9671.2
10034.9 | 1.00 2.27
1.09 2.32 | 0-1
2-3 | | | 7904.04 | 0.18 | 1 24 | 7 2 | (3F)
a ³ p_a ³ P | 6377.59
6165.35 | 0.46 2.40
0.41 3.41 | 49-39
39-29 | b ⁴ F-b ² F
(12F) | 9926.0
8921.0 | 1.03 2.27 | 1-1
1-3 | | | 7706.06
7664.67 | 0.13 | 1.73 | 3-2
2-1
1-0 | (3F) | 6344.56
6196.53
6015.26 | 0.46 2.41
0.41 2.40 | 41-31
31-21
41-21
31-31
21-21 | | 9307.5
10458.9 | 1.00 2.32
1.09 2.27 | 0-2
2-1 | | | 7954.24 | 0.18
0.13 | 1.73 | 3-1
2-0 | | 6044.94
5900.64 | 0.36 2.41
0.36 2.40
0.32 2.41 | | | | | | | | 7658.92
7586.23 | 0.13
0.10 | 1.74 | 2-2
1-1 | | 5929.20 | 0.32 2.40 | 12-22
12-32 | | <u>Zr VI</u> I P | 99 | | | | 7540.54 | 0.10 | 1.74 | 1-3 | | 10351.92 | 0.56 1.75 | 21-21 | a ² D-b ² D | 6408.5 | 0.00 1.93 | 1之 글 | 4p5 2 pe_4 p5 2pe
(1F) | | 7470.10
7350.78 | 0.18
0.13 | 1.83
1.83 | 3-2
2-3 | a ³ D-b ¹ D
(4F) | 10890.02
11203.92 | 0.52 1.66
0.56 1.66 | 21-21
11-11
21-11
11-21 | (13F) | | | | | | 7144.60 | 0.10 | 1.83 | 1-3 | | 10083.37 | 0.52 1.75 | 15-25 | | Xe II I P | 21.1 | | | | 9255.10 | | 1.74 | 2-2 | a ¹ D-a ³ P | 9774.53
9947.19 | 0.56 1.82
0.52 1.77 | 21-21
13-13
21-13
11-21 | a^2D-c^2D (14F) | 9487.5 | 0.00 1.30 | 1출~ 호 | 5p5 2pe_5p5 2pe | | 9324.01
9442.77 | 0.41
0.41 | 1.71 | 2-1
2-0 | (5F) | 10208.43
9534.75 | 0.56 1.77
0.52 1.82 | 24-14
12-22 | | | | | (1F) | | 8665.66 | 0.41 | 1.83 | 2-2 | a ¹ D-b ¹ D
(6F) | 7196.91
7479.79 | 0.56 2.27 | 21-21 | a ² D-d ² D | | | | | | | · · · · · · · · · · · · · · · · · · · | | | (01) | 7626.54
7066.07 | 0.52 2.17
0.56 2.17
0.52 2.27 | $\begin{array}{c} 2\frac{1}{4} - 2\frac{1}{4} \\ 1\frac{1}{2} - 1\frac{1}{4} \\ 2\frac{1}{4} - 1\frac{1}{4} \\ 1\frac{1}{2} - 2\frac{1}{4} \end{array}$ | (15F) | <u>Xe III</u> I
10206.5 | P 33.0
0.00 1.21 | 2-1 | 5p4 3p-5p4 3p | | <u>y v</u> I | P 77 | | | | 6697.09 | 0.56 2.40 | | a ² D-b ² F | 5846.3 | 0.00 2.11 | 2-3 | (1F)
5p4 3p-5p4 1p | | 8284.1 | 0.00 | 1.49 | 1之 글 | 4p5 2pe_4p5 2pe | 6548.47
6660.68 | 0.52 2.41
0.56 2.41 | 21-31
11-31
21-21
11-31 | (16F) | | 0.00 5.11 | 2-2 | (SF) | | | | | | (1F) | 6583.66 | 0.52 2.40 | | | | | | | | | | | , | | 6418.86
6506.40 | 0.56 2.48 | 21-11-11-12-12-12-12-12-12-12-12-12-12-1 | a ² D-b ² P
(17F) | <u>La II</u> I P | 11.38 | | | | | I P 13.97 | | | | 6617.17
6314.58 | 0.56 2.42
0.52 2.48 | 24- 1
18-14 | • . • | 11011.70
9903.31 | 0.13 1.25
0.00 1.25 | 3-2
2-3 | a ³ F-b ¹ D
(1F) | | 10860.44
10603.65 | 0.04 | 1.23 | 3 } - 2 }
2 } - 1 } | a ⁴ F-b ⁴ P
(1F) | | | | | 11490.57 | 0.17 1.25 | 2-2 | a ¹ D-b ¹ D | | 10464.94
10355.58
10261.18 | 0.00
0.04
0.00 | 1.18 | 25-25 | | 11595.50
11659.62 | 0.75 1.82
0.71 1.77 | 11 21
2-12 | 2 _{P-0} 2 _D
(18F) | | | | (SF) | | 10028.71 | 0.00 | 1.23 | 1 1 2 - 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 | | 12211.22
11096.98 | 0.75 1.77
0.71 1.82 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | 9058.16
8909.40 | 0.16
0.09 | 1.53 | 41-51
31-41
42-42 | a ⁴ F-a ² H
(2F) | 8137.88 | 0.75 2.27 | 1-2-3 | a ² P-d ² D | | P 19.1 | al 1 | -22- | | 9376.93 | 0.16 | 1.48 | 42-42 | (25) | 8408.39
8691.53 | 0.71 2.17
0.75 2.17 | 1 2-2 2
5-1 2
1 2-1 2 | (19F) | 8339.72
7355.92 | 0.20 1.68
0.00 1.68 | 21- 1
12- 1 | 5 ² D-6 ² S
(1F) | | 7786.03
7893.57 | | 1.75 | 41-21 | a ⁴ F-b ² D
(3F) | 7889.15
7156.94 | 0.71 2.27
0.75 2.48 | 2-22 | a ² P-b ² P | | | | | | 7460.93
7623.44 | 0.09 | 1.75 | 41-21
31-11
31-21
21-21 | ,, | 7197.88
7404.36 | 0.75 2.48
0.71 2.42
0.75 2.43 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | (30F) | <u>Eu II</u> I P | 11.21 | | | | 7219.15
7444.80 | 0.04 | 1.75 | 23-24
13-14 | | 6963.85 | 0.71 2.48 | $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ | | 8983.71
9392.85 | 0.00 1.37
0.00 1.31 | 4-6
4-5 | a ⁹ 5-a ⁹ D°
(1F) | | 7058.76 | 0.00 | 1.75 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 12094.78 | 0.80 1.82 | 31.21 | a ² F-c ² D | 9694.01
9916.30 | 0.00 1.27
0.00 1.24 | 4-4 | 104/ | | 7769.35
7518.81 | 0.09 | 1.75
1.74 | 4 - 4 - 4 - 4 - 3 - 3 - 3 - 3 - 3 - 3 - | a ⁴ F_b ² G
(4F) | 11698.62
11132.24 | 0.71 1.77
0.71 1.82 | 31-21
21-11
21-21
22-21 | (21F) | 10074.84 | 0.00 1.22 | 4-2 | | | 7849.08
7445.63 | 0.16
0.09 | 1.74 | 4 3 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | 8380.68 | 0.80 2.27 | | a ² F-d ² D | 5929.31
5879.32 | 0.00 2.08
0.00 2.10 | 4-5
4-4 | a ⁹ 8-a ⁷ D°
(2F) | | 7273.33
7204.82 | 0.04
0.04 | 1.74 | 2 2-3 2
22-42 | | 8428.62
8969.06 | 0.71 2.17
0.80 2.17 | 3 1 - 2 1
2 1 - 1 1
3 1 - 1 1 | (22F) | 5832.40
5796.28 | 0.00 2.13 | 4-3
4-2 | •• | | 7110.54 | 0.00 | 1.74 | 1]- 3] | | 7906.95 | 0.71 2.27 | ล ร ์ล ร์ | | | | | | | | | | | | | | | | | | | | Part II—Finding List of All Lines in the Table of Multiplets # TABLE OF CONTENTS # PART II. FINDING LIST | | PAGE | |--|---------------| | 1. Introduction | i | | 2. Part A—Observed and Permitted Predicted Lines | i | | 3. Blends | ii | | 4 Scope | 11 | | 5. Part B—Forbidden Lines | ii | | 6. Contents of Section on Forbidden Lines | iii | | 7. Index Card 8. Errata Finding List | iii | | 8. Errata | iii | | Finding List | iii | | Body of Multiplet Table | T-90 | |
Forbidden Lines. | 87 –96 | # A MULTIPLET TABLE OF ASTROPHYSICAL INTEREST #### PART II # Finding List of All Lines in the Table of Multiplets ### 1. Introduction Any arrangement of the wave-lengths in a given spectrum, by multiplets makes it inconvenient to locate a given line. The difficulty is greatly increased when many spectra are involved. Consequently a "Finding List" containing all lines in the Revised Multiplet Table has been included as Part II of this Contribution. As in the R M T the Finding List is in two parts. The first contains permitted lines observed in the laboratory, permitted predicted lines, and a few forbidden lines observed in the laboratory when a strong electric field is present. The second contains only forbidden lines of the nebular, auroral and coronal type. See §5. ## 2. Part A—Observed and Permitted Predicted Lines The lines are listed in order of increasing wave-length and cover the range $\lambda\lambda 2951-13164$. At the violet end of this long range, the proportion of known lines included is smaller than in the main body of the list, due to the masking by the ozone in our atmosphere of all but the strongest lines. The number of lines in the same wave-length interval decreases from the violet to the red. The incompleteness of laboratory material accentuates this in the infra-red. The total number of lines in this section is approximately 23,200. Three entries are given for each line and a fourth if the line is predicted or forbidden. All entries are copied directly from Part I of this Contribution. The first is the laboratory wavelength. The source from which the wave-length is taken can be found from the references A, B, C etc. in the R M T and Table 7. The second entry headed "Type" is blank for all lines observed in the laboratory, except the selected forbidden ones that appear under special conditions, (due to Stark effect). These are marked "Forb" and include 11 lines of He 1, 6 of Na 1, 11 of Al 11, 2 of Al 111 and 2 of K 1. Predicted Lines. These fall into three classes. (a) For some faint lines observed in the laboratory but not well-measured, a predicted wave-length obtained from the spectroscopic term values is preferable to the observed value. (b) It is well-known that many predicted lines not yet observed in the laboratory are important astrophysically, and an attempt has been made to include these in the R M T. (c) If a line that would otherwise be included is masked by a strong line in the laboratory, the predicted position of the masked line is entered. Such cases are carefully noted and explained in the R M T. In every case where a predicted wave-length is used, the entry "P" occurs in the column headed "Type" in the Finding List. This column contains only the two entries "Forb" and "P". All other lines are observed laboratory wave-lengths in the usual sense of the word "observed". The third entry for each line is the spectrum to which the line belongs. Here the chemical symbols of the elements are used and Roman numerals denote arc spectra (1) and spark spectra in successive stages of ionization, i.e. first spark spectrum (11), second spark spectrum (111) etc. Finally the number of the multiplet to which the line of a given spectrum belongs, is given under the heading "Multiplet No." This number appears under the "Multiplet Designation" of each multiplet in the R M T and the numbers start with 1 for each spectrum. All lines of a given multiplet have the same multiplet number. A blank in this column indicates that the line is unclassified. In the R M T, under a given spectrum, unclassified lines follow the multiplets. When two or more numbers appear in this column, the line is a blend and occurs in each of the multiplets indicated. Examples: $\lambda 2957.56$ is due to Cr II and appears in Multiplets 104 and 141 of Cr II (See pp. 44 and 45 of the R M T). λ 2984.89 is a predicted wave-length. The line is in Multiplet No. 60 of Fe 11 (See p. 67 of the R M T). λ 2991.632 is an unclassified line of Fe 1 (See p. 65 of the R M T). ### 3. Blends Reference has been made above to a line appearing in two multiplets of a given spectrum, for example $\lambda 2957.56$. Such blends can be readily detected in the Finding List by the presence of more than one multiplet number. In the R M T they are noted by an asterisk. This applies to blended lines in the same spectrum. If, however, an arc and spark line of an element are blended the wave-length is repeated in the Finding List; or nearly identical wave-lengths are entered, if different measures were used in the two instances. For example $\lambda 2988.952$ appears in Multiplet No. 11 of Sc 1 and in Multiplet No. 34 of Sc 11. In the R M T such lines have an asterisk preceding the wave-length and the symbol "§" following it. A careful examination of close pairs of lines of a given element in the Finding List will doubtless reveal more blends than have been noted in the RMT. Similarly, it is probable that erroneous identifications of lines due to impurities that have not heretofore been suspected, can be detected. The predicted wave-lengths of masked lines (§2) fall close to observed lines. For example $\lambda 2965.25$ is the predicted position of the line of Fe 1 in Multiplet No. 316, masked by the strong Fe 1 line at $\lambda 2965.255$, which occurs in Multiplet No. 10. All predicted lines have separate entries in the Finding List, regardless of how close the pairs in a given spectrum may be—for example, $\lambda\lambda 2990.33$ and 2990.34 are both predicted lines of Fe 1. If observed in the laboratory these lines would undoubtedly be blended. When identical wave-lengths appear in spectra of different elements, the lines are arranged in the alphabetical order of the chemical symbol. When similar wave-lengths occur in spectra of different stages of ionization of a given element, the arc spectrum comes first, then the spark spectra, in order of increasing ionization. # 4. Scope of the Finding List The users of this Finding List are emphatically warned that the list is not complete. The range is that useful to the astrophysicist, having the violet limit $\lambda 2951$. Within the range covered, the elements to be included have been selected according to their astrophysical importance. For a given element, the spectra for different degrees of ionization and the lines of each have been similarly selected. It is fairly complete for the first spark spectra through the first long period. It lists only the leading arc lines for many elements, but includes all observed classified lines of Fe 1. For any element, the List grading in the R M T can be used as a guide to the completeness of selection. On account of these restrictions this book is not a list of "Hauptlinien" or a compendium of wave-lengths of elements in general. On the other hand it does contain a large number of predicted lines which invite the attention of the laboratory worker in spectroscopy. # 5. Part B. Forbidden Lines-Nebular, Auroral, Coronal etc. The second part of the Finding List contains only forbidden lines. Here the word "forbidden" applies in the general sense—i.e. lines due to downward transitions from metastable states in the atoms. The number of lines listed is roughly 2550. The arrangement is similar to Part A of the Finding List, with the exception that in Part B the great majority of lines are predicted. Consequently no column headed "Type" is given. The wave-lengths that are not predicted are noted by the following letters: N Nebular Wave-length L Laboratory Wave-length A Auroral Wave-length C Coronal Wave-length Column two contains the chemical symbol and stage of ionization of the spectrum as in Part A, and column three the Multiplet Number. In order to avoid confusion with Multiplet Numbers in Part A, all Multiplets of forbidden lines have the letter "F" accompanying the Multiplet Number. ## 6. Contents A complete list of all possible forbidden lines in the region useful to the astrophysicist would be prohibitively long. For simple spectra the lines are few, but for the complex spectra, particularly in the first long period, fairly rigid selection has been made. Anyone desiring to construct complete lists is advised to consult the references to the analysis of the various spectra. ## 7. Index of The Finding Lists In order to facilitate the work of transferring from the Multiplet Number of the Finding List to the Multiplet in the R M T, a separate card is enclosed in the Finding List, containing an index of the R M T. The elements are in order of increasing atomic number. This index gives the multiplets of each element contained on each page of the R M T. For example, $\lambda 2980.296$ is in Multiplet No. 94 of Ti 1. On the index card hunt Ti 1 and then this Multiplet Number. It is to be found on page 27 of the R M T, which contains Multiplets of Ti 1 from No. 55 through No. 140. ## 8. Errata After the tabular material in the Finding List had been completed for publication, four errors were detected, as follows: | IA E | lement Mı | ıltiplet No. | | ΙA | Type Ele | ment Multip | olet No. | |------------------|------------------|--------------|----------------------------|-----------|----------|-------------|----------| | 3497.137 | Fe 1 | 78 | should read | 3497.15 | P Fe | I | 78 | | 4618.568 | Fe 1 | 1151 | Reject-Wa | ve-length | erroneou | s | | | 4061.3
4068.7 | Sc 111
Sc 111 | | should read
should read | | Sc : | ш | 1
1 | The writer will be grateful to those who use this Table if they will call to her attention any errors they detect, so that a list of errata may be published. In the compilation of a list containing about 25,750 lines, doubtless there are a number of mistakes in spite of the care that has been taken to avoid errors. | | I A | Туро | Element | Multiplet No. | T A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. |
---|-----------|------|---------|---------------|-----------|------|---------|---------------|----------|------|---------|---------------| | 265.0.0 C FII S0 | 2951.40 | | Cr II | - 59 | 2972.277 | | Fe I | 104 | 2985.849 | | | 28 | | 2005.000 C I 20 | | | | | 2972.64 | | | | | | | | | \$250,000 \$250,000 \$270,000 | | | | - | | | | | | | | | | \$200.716 \$2 1 | | | | | | | | | | | | | | Section Part 10 2073-075 VII 216 2066-637 Part 50 2074-636 | Fe II | | | Sept. 107 Cr II 104 Sept. 208 Ps I 395 Sept. 074 Ce II 57 | P | | | | \$285.72 | 2954.67 | | Cr II | 104 | 2974.78 | | re I | 335 | 2987.074 | | GG II | 57 | | Sept. 152 | | | | | | | | | | _ | | | | 2006.00 Cr 1 | | | | | | | | | | P | | | | \$\text{\$\frac{9}{9} = \text{\$P\$}\$ \tag{2}{\tag{2}} \tag{2} \tag{2}{\tag{2}} \tag{2} \tag{2}{\tag{2}} \tag{2}{\tag{2}} \tag{2}{\tag{2}} \tag{2} \tag{2} \tag{2}{\tag{2}} \tag{2} \tag{2} \tag{2}{\tag{2}} \tag{2} 2 | | | | | | | | | | | | | | 2697-263 | | | | | | | | | | | | | | 2007.050 | | | | | | | | | | | | | | 2907.500 V II 2 2976.00 P P II 28 2086.00 V II 37 27 2875.00 P P II 28 2086.00 V II 37 27 2875.00 P P II 28 2086.00 C III 30 2876.00 P P II 2886.00 P P II 30 2886.00 P P II 30 2876.00 II 30 2876.00 P | | | | | | | | | | | | | | 2895.05 | | | | | | | | | | | | | | 2009.00 Cr I | | | | | | P | | | | | | | | 2005.08 | | | | | | | | | | | | | | 2985.44 | | | | | | | | | | | | | | 2005.001 Fe II | | | | | | | | _ | | | | | | 2505.941 Fe II 150 2577.050 Ce II 168 2586.469 Cr I 148 2586.97 Cr II 150 2577.050 Fe II 150 2577.050 Fe II 150 2586.74 Cr II 150 2586.74 Cr II 150 2586.74 Cr II 150 2586.75 Se II 148 2586.7 | | | | | | | | | | | | | | 2006.002 Pe I | | | Fe II | | | | | | | | | | | \$200.000 | | | | | , | | | | | | | | | \$260.080 | | | | | | | | | | | | | | \$2861.115 | | | | | | | | | | | | | | Section Sect | | | | | | | | | | P | | | | Section Sect | 2961.272 | | Fe ÍI | 2 | 2978, 226 | | V 11 | 87 | 2089.079 | | Fe II | 159 | | Section For Section | | | | | | | | | | | Cr II | | | \$\begin{array}{c c c c c c c c c c c c c c c c c c c | | | | | | | | | 2989.30 | | | | | ### 1 100 ### 11 1.00 ### 11 1 | | | | | | | | | | | | | | 2895.349 V II 154 2879.189 Ti II 123 2289.500 Co I 32 2896.504 V II 28 2896.500 Co I 2879.832 Ra II 4 2289.731 Fe II 86 2899.732 V II 87 2899.732 V II 87 2899.732 V II 87 2899.732 V II 87 2899.732 V II 87 2899.8772 27 28 289 | | | | | | | | | | | | | | ### 2999.360 | | | | | | | | | | | | | | 2893.73 Cr I | | | | 58 | | | | | | | | | | 2003.887 Fe II | | | | | | | | | | | | | | 2904.131 | 2803.73 | | 01 1 | | 2010.050 | | ec 11 | 44 | 2989.74 | | V 11 | 87 | | 2804.628 | | | | | | | | | 2990.10 | | | | | 2804.88 | | | | | | | | | | _ | | | | 2804.06 Y I 11 2800.280 TI I 94 2800.392 Fe I 316 2805.519 CT II 8 8 280.532 Fe I 317 2805.109 CT II 88, 1800.532 Fe I 317 2805.519 CT II 8 8 2800.532 Fe I 317 2805.519 CT II 94 2800.68 P II 154 2801.085 MI I 14,80 2805.281 TI I 94 2800.783 Sc I 11 2801.244 Fe II 60 2805.285 Fe I 10 2800.783 Sc I 11 2801.244 Fe II 60 2805.285 Fe II 10 2800.781 CT II 28 2801.33 Fe III 3 2801.532 Fe II 10 2800.781 Fe II 10 2800.781 Fe II 10 2801.502 Gt II 28 2801.33 Fe III 3 2801.532 Fe II 10 2801.502 Gt II 28 2801.532 Fe II 10 2801.502 Gt II 28 2801.502 2 | | | | | | | | | | | | | | 2865.19 Cr II 58, 160 2890.69 P Fe I 201 2890.488 V I 14, 80 2896.25 P Fe I 316 2890.792 Sc I 11 2891.344 Pe II 60 2895.755 Fe I 10 2890.791 Cr I 28 2891.333 En II 3 3 3 3 3 3 3 3 3 | | | YI | 11 | | | | | | - | | | | 2865.231 | | | | | | _ | | | | | | | | 2865.25 P F I 316 2860.752 Sc I II 2861.244 F II 60 | | | | | | P | | | | | | | | 2965.255 Fe I 10 2990.62 Cr I 28 2991.30 Pu II 3 2965.395 Fe II 59 2980.82 Hr I 2 2991.00 Cr II 8 2965.395 Gd II 29 2980.963 Fe II 61 2991.520 Cd II 25 2965.54 Ta I 2 2981.02 Zr II 24 2991.625 Pe I
2965.56 Ru II 4 2891.466 Fe I 11 2991.632 Fe I 2965.86 Ti I 94 2981.466 Fe I 11 2991.617 Fe II 160 2965.70 Ti I 94 2981.486 Fe I 11 2991.617 Fe II 160 2965.70 Ti I 94 2981.486 Fe I 11 2991.617 Fe II 160 2965.70 Ti I 30 2981.488 Ti I 29 2991.866 Cr I 28 2966.21 Cr II 30 2992.100 Fe II 146 2992.24 K III 2 2966.25 Ti I 30 2982.24 V II 114 2992.40 Cr II 28 2967.255 Ti I 30 2982.29 Fe II 170 2992.40 Cr II 28 2967.462 Cr I 28 2982.29 Fe II 70 2993.09 Gd II 42 2967.462 Cr I 28 2982.29 Fe II 70 2993.09 Gd II 42 2967.462 Cr I 28 2982.29 Fe II 70 2993.09 Gd II 42 2967.462 Cr I 28 2982.78 Cl II 53 2994.09 Cr I 14 2968.21 Cr II 196 2982.100 Cd II 12 2967.40 Cr II 28 38 I | | P | | | | | | | | | | | | 2805.428 | 2965.255 | | Fe I | 10 | 2980.791 | | Cr I | 28 | | | | | | 2865.438 | 2965.395 | | Fe II | 59 | 2980.82 | | Hf I | 2 | 2991.40 | | Zr 11 | A | | 2865.564 Ru III 4 2881.200 V III 87 2991.632 Fe I 3865.58 Ti I 94 2881.448 Fe I 1 29 2991.817 Fe II 160 2865.707 Ti I 94 2881.448 Ti I 29 2991.866 Cr I 28 2803.60 Se I 11 2881.601 Ni I 29 2991.866 Cr I 28 2803.61 Cr II 33 2891.852 Fe I 104 2992.24 K III 2 2866.26 Fe I 104 2992.378 V III 14 28 2896.26 Ti I 30 2892.334 Fe I 40 2992.55 N II 25 2897.225 Ti I 30 2892.334 Fe I 40 2992.308 Ci II 2 2896.25 Ti I 30 2892.339 Fe III 70 2992.308 Ci II 42 2896.21 Ti I 96 2892.75 V II 29 2993.386 Fe II 39 2896.21 Ti I 96 2892.75 V II 29 2993.386 Fe II 39 2896.21 Ti I 29 2896.000 V II 22, 28 2894.069 Cr I 14 2896.373 V III 28 2893.000 Ci II 77 2894.289 P AI III 14 2896.373 V III 28 2893.000 Ci II 77 2894.289 P AI III 14 2896.82 Hr III 12 2883.674 Fe I 9 2894.400 V II 228 2896.374 Fe I 9 2894.400 K II 27 2896.82 Hr III 12 2883.674 Fe I 9 2894.500 Fe I 11 12 2896.87 Ci III 78 2894.500 Fe I 11 12 2883.68 Ci II 77 2894.500 Fe I 11 12 2883.68 Ci II 77 2894.500 Fe I 11 12 2883.68 Ci II 77 2894.500 Fe I 11 12 2883.69 Ci II 77 2896.94 Ci II 77 2896.96 Ci II 77 2896.96 Ci II 77 2896.96 Ci II 77 2896.96 Ci II 77 2896.96 Ci II 77 2896.96 Ci II 28 2896.300 29 2896.300 Ci II 29 2896 | | | | | 2980.963 | | Fe II | 61 | | | | | | 2865.88 | | | | | | | | | | | | 5 | | 2865.707 | | | | | | | | | | | | 100 | | 2806.050 So. I 11 2891.051 N1 I 280 2992.11 O III 10 2966.051 Cr II 33 2991.852 Fe I 104 2992.24 K III 2 2966.26 Fe I 104 2991.924 V II 114 2992.376 V II 114 2966.27 Zr II 148 2982.050 Fe II 199 2992.40 Cr II 28 2966.80 Fe I 100 2982.100 Cb II 2 2992.555 NI I 25 2967.225 Ti I 30 2982.234 Fe I 460 2992.638 Cf II 8 2968.219 Fe II 100 2992.239 Fe II 70 2993.038 Cf II 8 2968.119 Fe II 160 2992.75 V II 28 2993.036 Fe II 199 2968.21 Cr II 96 2962.75 Cr II 53 2994.05 Zr II 2968.231 Ti I 29 2963.009 V II 22,28 2994.05 Zr II 2968.231 Ti I 29 2963.000 Gd II 77 2994.299 Cr I 14 2968.67 Cr II 56 2983.060 Ti I 29 2994.407 Fe I 9 2964.57 Fe I 9 2964.57 Fe I 9 2964.50 Fe I 11 12 2983.574 Fe I 9 2994.400 NI I 27 2968.29 Hf II 12 2983.574 Fe I 9 2994.400 V II 21 21 22 22 23 23 23 23 | | | | | | | | | | | | | | 2866.26 | | | | | | | | | 2992.11 | | 0 111 | | | 2966.27 | | | | | | | | | | | | | | 2866.901 Fe I 10 2882.100 Cb II 2 2992.595 Ni I 25 2967.225 Ti I 30 2982.234 Fe I 460 2992.63 C II 8 2967.642 Cr I 28 2982.239 Fe II 70 2993.038 Gd II 42 2968.119 Fe II 160 2982.75 V II 28 2993.366 Fe II 139 2868.21 Cr II 96 2982.76 Cl II 53 2994.05 Zr II 2968.21 Ti I 29 2983.000 V II 22, 28 2994.05 Zr II 2968.231 Ti I 28 2983.000 Gd II 77 2994.259 P AI II 14 2968.67 Cr II 58 2983.000 Gd II 77 2994.259 P AI II 14 2968.67 Cr II 61 2283.558 V II 28 2994.400 Ni I 27 2968.738 Fe II 61 2283.558 V II 28 2994.400 Ni I 27 2968.82 Hf II 12 2983.566 O III 7 2994.540 V II 218 2968.906 Fe II 2983.666 O III 7 2994.540 V II 218 2968.906 Fe II 14 2963.76 O III 7 2994.770 CD II 2968.907 Gd II 28 2984.131 Ni I 12 2994.777 Cr II 28 2969.907 Fe I 11 2994.131 Ni I 12 2994.770 CD II 2969.67 Cr II 66 2984.13 Ni II 12 2994.787 Cr II 28 2969.904 Fe I 10 2984.183 Na II 2 2994.958 Ca I 17 2969.904 Fe I 10 2984.80 P TI II 10 2995.10 Cr I 15 2969.67 Cr II 66 2984.85 P II 10 2995.50 P AI II 14 2969.904 Fe I 10 11 2984.85 P II 11 28 2995.64 P II 11 2969.904 Fe II 70 2984.85 F II 10 2995.50 P AI II 14 2970.106 Fe I 10,11 2984.85 Fe I 29 2985.500 P AI II 14 2970.035 Si I 1 1 2984.85 Fe I 29 2985.500 P AI II 14 2970.035 Fe II 29 2984.80 Fe I 18 2970.556 Ti 94 2985.52 Cr I 15 29 2985.500 P AI II 14 2970.056 Fe II 29 2984.80 Fe I 16 2970.660 Cr II 57 2985.184 V II 218 2996.544 Ce II 183 2970.560 Fe II 29 2986.80 Fe I 460 2970.662 Fe II 60 2985.25 Cr II 56 2996.549 Co I 77 2971.112 Cr I 28 2985.55 Cr II 28 2996.580 Cr I 28 2971.106 Fe II 60 2985.25 Cr II 56 2996.590 Cr I 28 2971.106 Fe II 60 2985.25 Cr II 28 2996.68 CI II 22 2971.106 Fe II 60 2985.25 Cr II 28 2996.68 CI II 22 2971.107 Gd II 77 2996.94 V II 28 2970.106 Fe II 60 2985.35 Cr II 29 2996.68 CI II 22 2971.106 Fe II 60 2985.25 Cr II 29 2996.68 CI II 22 2971.107 Gd II 77 2996.94 V II 28 2970.107 Fe II 29 2996.88 P TI II 29 2970.108 Fe II 60 2985.25 Cr II 29 2996.68 P TI II 29 2971.1096 Cr II 28 2985.55 Cr II 29 2996.88 P TI II 29 2971.106 Fe II 60 2985.477 TI 1 29 2996.88 P TI II 28 | | | | | | | | | | | | | | 2867,225 Ti I 30 2882,224 Fe I 460 2992,68 C II 8 2987,225 Ti I 30 2982,239 Fe II 70 2983,038 Gd II 42 2885,119 Fe II 160 2992,75 V II 29 2993,306 Fe II 139 2968,211 Ti I 96 2992,78 Cl II 53 2994,05 Zr II 28 2882,239 Ti I 29 2983,006 Cr I 14 2968,221 Ti I 29 2983,000 V II 22,28 2994,006 Cr I 14 2968,373 V II 28 2983,006 Gd II 77 2994,259 P Al III 14 2968,67 Cr II 58 2983,006 Ti I 29 2994,407 Fe I 9 2968,738 Fe II 61 2983,558 V II 28 2994,60 Ni I 27 2968,738 Fe II 61 2983,558 V II 28 2994,50 Fe I 11 29 2994,737 Cr II 28 2988,06 Fe II 12 2983,78 Na II 2 2994,737 Cr II 28 2968,267 Gd II 28 2994,131 Ni I 12 2994,737 Cr II 28 2968,79 Fe I 11 2984,183 Na II 2 2994,737 Cr II 28 2968,94 Fe I 11 2984,183 Na II 2 2994,737 Cr II 28 2969,94 Fe I 11 2984,183 Na II 2 2994,737 Cr II 15 2969,94 Fe I 10 2995,10 Cr I Fe I 11 2964,765 Fe I 29 2995,560 P Al III 14 2970,106 Fe I 10,11 2984,82 Cr I 15 2995,50 P Al III 14 2970,35 Si I 1 29 2984,82 Cr I 15 2995,50 P Al III 14 2970,35 Si I 1 29 2984,82 Cr I 15 2995,50 P Al III 14 2970,35 Si I 1 1 2984,82 Cr I 15 2995,634 Fe I 183 2970,384 Ti I 29 2984,89 P Fe II 60 2995,838 Fe I 460 2995,50 Fe I 183 2970,66 Cr II 28 2985,99 V II 27 2970,556 Ti I 94 2985,92 Cr II 56 2996,83 Fe I 460 2996,83 Cr I 12 22 2996,83 Cr I 12 22 2996,83 Cr I 12 22 2996,80 Cr I 12 22 2916,80 Cr I 28 2970,66 Cr II 28 2985,36 Cr II 28 2996,50 Cr I 12 28 2996,50 Cr I 12 28 2970,66 Cr II 28 2985,36 Cr II 28 2996,50 Cr I 12 28 2970,66 Cr II 28 2985,36 Cr II 28 2996,50 Cr I 12 28 2970,66 Cr II 28 2985,36 Cr II 28 2996,50 Cr I 12 28 2970,66 Cr II 28 2985,36 Cr II 29 2996,50 Cr II 28 2970,66 Cr II 28 2985,47 Ti II 29 2986,88 P Ti II 28 2970,66 Cr II 28 2985,47 Ti II 29 2986,8 | | | | | | | | | 2002.40 | | 0. 11 | 20 | | 2967.642 | | | | | | | | | | | | | | 2968.119 Fe II 160 2982.75 V II 28 2993.366 Fe II 139 2968.21 Cr II 96 2982.78 Cl II 53 2994.05 Zr II 2968.231 Tl I 29 2983.060 Gd II 77 2994.059 Cr I 14 2868.373 V II 28 2993.060 Gd II 77 2994.259 P Al II 14 2968.67 Cr II 56 2993.306 Tl I 29 2994.427 Fe I 9 2968.738 Fe II 61 2983.556 V II 28 2994.400 Ni I 27 2968.82 Hf II 12 2983.574 Fe I 9 2994.50 Fe I 11 2968.906 Fe II 2963.66 O III 7 2994.50 V II 218 2968.906 Fe II 2963.66 O III 7 2994.50 Cr II 28 2969.267 Gd II 28 2994.131 Ni I 12 2994.770 Cr II 28 2969.267 Gd II 28 2994.131 Ni I 12 2994.777 Cr II 28 2969.474 Fe I 30 2994.25 Y I 10 2994.58 Ca I 17 2969.474 Fe I 30 2994.25 Y I 10 2995.10 Cr I 15 2969.934 Fe II 70 2994.69 Cr II 27 2995.50 P Al II 14 2970.106 Fe I 10,11 2964.785 Fe I 29 2995.546 P Al II 14 2970.106 Fe I 10,11 2964.82 Cr I 15 2995.546 P Al II 14 2970.35 Si I 1 2994.82 Cr I 15 2995.546 P Al II 14 2970.35 Si I 1 2994.82 Cr I 15 2995.99 V II 27 2970.384 Tl I 29 2994.89 P Fe II 60 2995.99 V II 27 2970.566 Cr II 57 2995.10 Cr I 28 2970.566 Cr II 28 2985.32 Cr II 28 2996.549 Co I 77 2971.112 Cr I 28 2985.32 Cr II 28 2996.580 Cr I 28 2971.106 Fe II 69 2985.32 Cr II 28 2996.59 V II 27 2970.566 Cr II 28 2985.32 Cr II 28 2996.59 Cr I 28 2970.682 Fe II 69 2985.32 Cr II 28 2996.59 Cr I 28 2971.106 Fe II 69 2985.32 Cr II 28 2996.59 Cr I 28 2971.107 Cr I 28 2985.32 Cr II 28 2996.68 P TI II 28 2970.682 Fe II 69 2985.43 La II 145 2996.70 V II 28 2971.106 Fe II 28 2985.43 La II 145 2996.70 V II 28 2971.107 Cr II 28 2985.43 La II 145 2996.70 V II 28 2971.107 Cr II 28 2985.43 La II 145 2996.70 V II 28 2972.17 Gd III 77 2985.521 Gd II 77 2996.89 V II 28 | | | | | | | | | | | | | | 2868.21 | | | | 160 | 2982.75 | | V II | 28 | | | | | | 2968.373 V III 28 2983.060 Gd II 777 2984.259 P AI III 14 2968.67 Cr II 58 2983.060 T1 I 29 2994.427 Fe I 9 2968.738 Fe II 61 2983.558 V II 28 2994.460 N1 I 27 2968.82 Hf II 12 2983.574 Fe I 9 2994.50 Fe I 11 2968.906 Fe II 2983.66 O III 7 2994.540 V II 218 2968.06 Zr II 14 2803.78 O III 0 2994.725 CD II 2969.07 Gd II 28 2984.181 N1 I 12 2994.737 Cr II 28 2969.364 Fe I 11 2984.183 Na II 2 2994.737 Cr II 28 2969.474 Fe I 30 2984.25 Y I 10 2994.958 Ca I 17 2969.934 Fe II 70 2984.69 Cr II 27 2995.500 P AI II 14 2970.106 Fe I 10,11 2984.785 Fe I 29 2995.50 P AI II 14 2970.35 Si I 1 2984.785 Fe I 29 2995.546 P AI II 14 2970.36 Fe II 29 2984.831 Fe II 8 2995.88 Fe I 460 2970.510 Fe II 2 2984.89 P Fe II 60 2995.88 Fe I 460 2970.510 Fe II 2 2984.89 P Fe II 60 2995.89 V II 27 2970.682 Fe II 69 2985.22 Cr I 56 2996.89 Fe I 182 2971.616 Fe II 60 2985.35 Cr II 28 2996.540 Cr I 28 2971.616 Fe II 60 2985.35 Cr II 28 2996.68 Cr II 28 2972.17 Gd II 77 2985.521 Gd II 77 2986.88 P T1 II 28 2972.17 Gd II 77 2985.521 Gd II 77 2986.88 P T1 II 28 2972.17 Gd II 77 2985.521 Gd II 77 2986.996.99 V II 28 2972.17 Gd II 77 2985.521 Gd II 77 2986.88 P T1 II 28 2972.17 | | | | | | | | | | | | | | 2968.67 | | | | | | | | | | | | | | 2968.738 Fe II 61 | | | | | | | | | | P | | | | 2968.906 | | | | | 2983.558 | | V II | | | | | | | 2969.05 | 2968.82 | | Hf II | 12 | 2983.574 | | Fe I | 9 | 2994.50 | | Fe
I | 11 | | 9068.05 Zr II 14 2903.78 O III O 2894.725 CD II 2969.267 Gd II 28 2984.131 NI I 12 2994.737 Cr II 28 2969.364 Fe I 11 2984.183 Na II 2 2994.958 Ca I 17 2969.474 Fe I 30 2984.25 Y I 10 2995.10 Cr I 15 2969.67 Cr II 66 2984.35 P II II 28 2995.26 Y I 11 2990.334 Fe II 70 2984.69 Cr II 27 2995.590 P AI II 14 2970.106 Fe I 10,11 2984.87 Fe I 29 2995.546 P AI II 14 2970.35 Si I 1 2984.82 Cr I 15 2995.646 P AI II 14 2970.384 Ti I 2 2984.89 P Fe II 6 2995.999 V II 27 2970.556 Ti I < | | | | | | | 0 111 | 7 | 2994.540 | | v II | 218 | | 2869.364 Fe I 11 2984.183 Na II 2 2994.958 Ca I 17 2969.474 Fe I 30 2964.25 Y I 10 2995.10 Cr I 15 2969.474 Fe I 30 2964.25 Y I 10 2995.26 Y I 11 2969.934 Fe II 70 2984.69 Cr II 27 2995.590 P A1 II 14 2970.106 Fe I 10,11 2984.765 Fe I 29 2995.546 P A1 II 14 2970.35 Si I 1 2984.82 Cr I 15 2995.644 Ce II 183 2970.384 Ti I 29 2984.831 Fe II 8 2995.838 Fe I 460 2970.510 Fe II 2 2984.89 P Fe II 60 2995.999 V II 27 2970.556 Ti I 94 2985.02 Cr II 56 2006.386 Fe I 460 2970.66 Cr II 57 2995.184 V II 218 2966.51 O III 10 2970.682 Fe II 69 2985.26 P Fe II 69 2996.549 Co I 77 2971.616 Fe II 60 2985.36 Cr II 28 2996.63 CI II 22 2971.616 Fe II 60 2985.36 Tr I 28 2996.63 CI II 22 2971.906 Cr II 28 2985.43 La II 145 2996.70 V II 28 2972.17 Gd II 77 2985.521 Gd II 77 29872.17 Gd II 77 2985.95 TI I 29 2996.88 P TI II 28 2972.17 Gd II 77 2985.521 Gd II 77 | | | | | | | | 0 | | | | | | 2969.474 | | | | | | | | | | | | | | 2869.67 | | | | | | | | | | | | | | 2969.934 Fe II 70 2984.69 Cr II 27 2995.530 P Al II 14 2970.106 Fe I 10,11 2984.785 Fe I 29 2995.546 P Al II 14 2970.35 Si I 1 1 2984.82 Cr I 15 2995.644 Ce II 183 2970.384 Ti I 29 2984.831 Fe II 8 2995.838 Fe I 460 2970.510 Fe II 2 2984.89 P Fe II 60 2995.999 V II 27 2970.556 Ti I 94 2985.02 Cr II 56 2996.886 Fe I 148 2970.666 Cr II 57 2985.184 V II 218 2996.51 O III 10 2970.682 Fe II 69 2995.29 P Fe II 69 2996.549 Co I 77 2971.616 Fe II 60 2985.36 Cr II 28 2996.63 Cl II 22 2971.616 Fe II 60 2985.36 Ti I 28 2996.63 Cl II 22 2971.906 Cr II 28 2996.63 Cl II 22 2971.906 Cr II 28 2985.43 La II 145 2996.70 V II 28 2972.17 Gd II 77 2985.521 Gd II 77 2996.94 V II 28 2972.17 Gd II 77 2985.521 Gd II 77 2996.94 V II 9 | 2969.67 | | Cr II | 66 | | P | | | | | | | | 2970.35 Si I 1 2984.82 Cr I 15 2995.644 Ce II 183 2970.384 Ti I 29 2984.831 Fe II 8 2995.838 Fe I 460 2970.510 Fe II 2 2985.92 Cr II 56 2985.886 Fe I 460 2970.556 Ti I 94 2985.02 Cr II 56 2986.886 Fe I 148 2970.66 Cr II 57 2985.184 V II 218 2996.51 0 III 10 2970.682 Fe II 69 2985.29 P Fe II 69 2996.540 Co I 77 2971.112 Cr I 28 2985.35 Cr II 28 2996.50 Cr I 28 2971.616 Fe II 60 2985.36 Tr I 22 2996.63 C1 II 22 2971.906 Cr II 28 2985.43 La II 145 2996.70 V II 28 2972.17 Gd II 77 2985.521 Gd II 77 2996.94 V I 9 | | | | | 2984.69 | | Cr II | 27 | 2995.530 | _ | Al II | | | 2970.384 Ti I 29 2984.831 Fe II 8 2995.838 Fe I 460 2970.510 Fe II 2 2984.89 P Fe II 60 2995.999 V II 27 2970.556 Ti I 94 2985.02 Cr II 56 2996.386 Fe I 148 2970.66 Cr II 57 2995.184 V II 218 2996.51 0 III 10 2970.682 Fe II 69 2985.29 P Fe II 69 2996.549 Co I 77 2971.112 Cr I 28 2985.325 Cr II 28 2996.580 Cr I 28 2971.616 Fe II 60 2985.36 Zr I 22 2996.63 Cl II 22 2971.906 Cr II 28 2985.43 La II 145 2996.70 V II 28 2972.17 Gd II 77 2985.521 Gd II 77 2996.94 Y I 9 | | | | | | | | | | P | | 14 | | 2970.510 Fe II 2 2984.89 P Fe II 60 2995.999 V II 27 2970.556 Ti I 94 2985.02 Cr II 56 2996.386 Fe I 149 2970.66 Cr II 57 2985.184 V II 218 2996.51 0 III 10 2970.682 Fe II 69 2985.29 P Fe II 69 2996.549 Co I 77 2971.112 Cr I 28 2985.325 Cr II 28 2996.56 Cr I 28 2971.616 Fe II 60 2985.36 Zr I 22 2996.63 C1 II 22 2971.906 Cr II 28 2985.43 La II 145 2996.70 V II 28 2972.016 Fe II 160 2985.477 Ti I 29 2996.88 P Ti II 28 2972.17 Gd II 77 2985.521 Gd II 77 2996.94 V I 9 | | | | | | | | | | | | | | 2970.556 Ti I 94 2985.02 Cr II 56 2986.386 Fe I 148 2970.66 Cr II 57 2985.184 V II 218 2996.51 0 III 10 2970.682 Fe II 69 2985.29 P Fe II 69 2996.549 Co I 77 2971.112 Cr I 28 2985.325 Cr II 28 2996.580 Cr I 28 2971.616 Fe II 60 2985.36 Zr I 22 2996.63 Cl II 22 2971.906 Cr II 28 2985.43 La II 145 2996.70 V II 28 2972.016 Fe II 160 2985.477 Ti I 29 2996.88 P Ti II 28 2972.17 Gd II 77 2985.521 Gd II 77 2996.94 Y I 9 | | | | | | | | | | | | | | 2970.66 | | | | | | P | | | | | | | | 2970.682 Fe II 69 2985.29 P Fe II 69 2996.549 Co I 77 2971.112 Cr I 28 2985.325 Cr II 28 2996.580 Cr I 28 2971.616 Fe II 60 2985.36 Zr I 22 2996.68 Cl II 22 2971.906 Cr II 28 2985.43 La II 145 2996.70 V II 28 2972.016 Fe II 160 2985.477 Ti I 29 2996.88 P Ti II 28 2972.17 Gd II 77 2985.521 Gd II 77 2996.94 Y I 9 | | | | | | | V II | | | | | | | 2971.112 Cr I 28 2985.325 Cr II 28 2996.580 Cr I 28 2971.616 Fe II 60 2985.36 Zr I 22 2996.63 Cl II 22 2971.906 Cr II 28 2985.43 La II 145 2996.70 V II 28 2972.016 Fe II 160 2985.477 Ti I 29 2996.88 P Ti II 28 2972.17 Gd II 77 2985.521 Gd II 77 2996.94 Y I 9 | 2970.682 | | | 69 | 2985.29 | P | Fe II | 69 | | | | | | 2971.906 | | | | | | | | | 2996.580 | | Cr I | 28 | | 2972.016 Fe II 160 2985.477 Ti I 29 2996.88 P Ti II 28 2972.17 Gd II 77 2985.521 Gd II 77 2996.94 Y I 9 | | | | | | | | | | | | | | 2972-17 Gd II 77 2985-521 Gd II 77 2996.94 Y I 9 | | | | | | | | | | P | | | | | | | Gd II | 77 | 2985.521 | | Gd II | 77 | | - | YI | | | | 2972. 263 | | v II | 87 | 2985-545 | | Fe II | 8 | 2997.08 | | A I | 116 | | I A | Туре | Element | Multiplet No. | IA | Туре | Element | Multiplet No. | I A | Type | Element | Multiplet No. | |---|-------------|---|--|---|---------------------------------|---|---|---|----------------------|---|--| | 2997.298
2997.309
2997.364
2997.749
2997.71
2997.87
2997.945
2997.97
2990.150 | r | Fe II Ca I Cu I Fe II O III V I V II Pt I Al II | 139
17
5
85
10
116
141
3
14 | 3006.82
3006.858
3006.86
3006.90
3006.95
3006.98
3007.035
3007.071
3007.08 | p | O II Ca I N II V I Fe III C1 II V II Na II O II Fe I | 17
18
116
21
53
141
12
74
55 | 3015.67
3015.86
3015.86
3015.913
3015.98
3016.14
3016.15
3016.16
3016.186 | | Zr II Co I Zr II Fe I V II A IV V I Fe I Mn I | 86
76
127
198
42
26
1
58
30 | | 2998.163
2998.34
2998.49
2998.855
2998.855
2999.045
2999.238
2999.30
2999.512
2999.641 | P | Zr II Zr II Cr I Fe II Ru II Gd II V I Cr II Fe I Ca I | 13
86
14
60
5
12
58
33
30 | 3007.2
3007.284
3007.296
3007.32
3007.442
3007.487
3007.655
3007.74
3007.75 | P | Fe III Fe I V II La II Na II Ti I Mn I O II Fe I Fe III | 116
11
27
102
1
35
74
262 | 3016.775
3016.94
3017.187
3017.195
3017.254
3017.34
3017.447
3017.548
3017.569 | | V II Hf II T1 II. Ce II Co I Ne II W I Co I Cr I Fe I | 27
3
85
107
78
8
9
11
27 | | 2999.92
2999.96
3000.059
3000.04
3000.14
3000.45
3000.545
3000.559
3000.896 | P | Ti II Cr II Fe II Hf II A II A II Fe I Co I Zr II Fe III | 28
42
69
3
72
56
13
147 | 3007.975
3008.13
3008.189
3008.28
3008.28
3008.322
3008.506
3008.610
3008.610 | | Nd II Zr II Fe I Mn I O II Ti II Fe IIII V II V II Cr II | 86
9
35
74
85
9
141
26
75 | 3017.63
3017.80
3018.08
3018.134
3016.25
3018.32
3018.352
3018.496
3018.53
3018.744 | P | O III Cr II Zr II Fe I Hf I Zn I Cr I Zr II Fe III | 10
95
199
peo
2
5
26
147
10 | | 3000.863
3000.868
3000.890
3000.950
3001.203
3001.42
3001.569
3001.66
3001.754 | р | Ca I Ti I Cr I Fe I V II Fe III Ne II Fe I V II | 17
29
28
9
27
53
9
4
506 | 3008.789
3008.79
3008.996
3009.098
3009.136
3009.138
3009.205
3009.366
3009.570 | | Ce II O III Rh II Fe I Sn I Na II Ca I Gd II Fe I Gd II | 122
10
4
198
1
13
17
25
30
27 | 3018.82
3018.821
3018.95
3018.983
3019.09
3019.143
3019.291
3019.350
3019.819
3019.84 | | C1 II Cr I La II Fe I V II Ni I Fe I Sc I Rh II Zr II | 22
26
30
86
11
199
10
3
6 | | 3001.90
3001.93
3002.09
3002.197
3002.330
3002.442
3002.65
3002.65
3002.66 | P | V I V II Fe II Gd II Fe II V I N1 I V I Fe II Pd I | 116
43
138
77
96
26
47
8 | 3009.85
3009.998
3010.129
3010.220
3010.28
3010.42
3010.76
3010.838
3010.899 | P
 | Zr II Fe III Gd II Fe II Zr II Ti I W II Cu I Gd II Fe III | 64
41
12
181
39
170
14
3
42
31 | 3020.001
3020.45
3020.495
3020.54
3020.643
3020.65
3020.673
3021.074
3021.407
3021.558 | | Fe II Zr II Fe I Hf I Fe I V II Cr I Fe I Fe I | 110
26
9
4
9
26
27
9
59 | | 3002.710
3002.728
3002.860
3002.99
3003.00
3003.031
3003.282
3003.37
3003.461 | P | Gd II Ti I Gd II Fe III A II Fe III Ti II V II Gd II | 77
29
9
90
69
28
27
25 | 3011.162
3011.24
3011.376
3011.42
3011.482
3011.473
3012.004
3012.01
3012.020
3012.190 | | Mn I Hf II Mn I Cr II Fe I Zr I N1 I Cr II V II Gd II |
35
64
35
27
316
22
41
87
43 | 3021.74
3021.78
3021.97
3021.98
3022.00
3022.146
3022.28
3022.28 | | Pd I
Y I
V I
Zr II
W II
Fe III
V II
La II
Y I | 6
9
75
39
6
76
50
116
10
26 | | 3003.629
3003.73
3003.924
3004.109
3004.119
3004.249
3004.35
3004.39 | | Ni I Zr II Cr II Fe III Fe I Fe II O III Cl II Cr II Fe I | 26
26
33
21,41
199
69
10
22
88 | 3012.34
3012.59
3012.847
3012.90
3013.030
3013.102
3013.125
3013.32
3013.37 |)
: | Cr II Fe III Fe III Hf II Cr I V II Fe III Zr II O II Fe II | 42
69
10
4
26
26
9
27
56 | 3022.736
3022.749
3022.804
3022.820
3022.93
3023.45
3023.50
3023.563
3023.80 | P | Ce III Mn I Al II Ti II Cl II O III Y II Fe I N II Fe III | 5
35
13
126
57
4
79
103
35 | | 3004.490
3004.62
3004.68
3004.82
3005.05
3005.26
3005.30
3005.30
3005.36 | l
7
2 | Fe III Fe I La II V I Cr I Gd II Y I Fe I Zr I Zr I | 41
57
47
28
9
199
38
60 | 3013.592
3013.66
3013.713
3013.803
3014.120
3014.163
3014.177
3014.37
3014.44
3014.44 | 3
2
5 | Co I Zr II Cr F Fe II Fe I Nd II Fe I V I Zr I A II | 10
52
26
124
458
31
116
21
72 | 3023.859
3023.86
3023.88
3024.03
3024.05
3024.05
3024.11
3024.35
3024.36 | 2
3
8 P
1 P | Fe II Ti II V II Fe I A III Al II Cr I O III Co I | 52 | | 3005.62
3005.76
3005.81
3006.0
3006.04
3006.05
3006.12
3006.24
3006.35 | 3 | O II CO I V II Y II CO II Fe III V I V I V II | 77
86
54
22
21
115
75 | 3014.66
3014.76
3014.82
3014.91
3015.23
3015.29
3015.30
3015.40 | 0
2
5
4
0
6
4 | Mn I Cr I V II Cr I Cr I Fe III Tm II sc I Na II Cr II | 35
27
27
27
27
27
9
8
10
5 | 3024.51
3024.57
3024.68:
3024.72
3024.78
3024.92
3024.98
3025.28 | р
1
3 | W II
O III
Cr II
Zr II
Hf II
Fe II
V II
Zr II
Fe I
Hf II | 4
117
147
47
138
85
86
29 | | | | | | | | | | | _ | | W-2+1-2-4-N- | |----------------------------|------|-----------------|---------------|-----------------------|------|-----------------|---------------|----------------------|------|-----------------|-----------------------| | 1 A | Type | Element | Multiplet No. | I A | Type | Element | Multiplet No. | IA | Type | Zlement | Multiplet No. | | 3025.40 | P | Cr I | 27 | 3034.95
3034.99 | | Cb II
Cr II | 42 | 3044.567
3044.843 | | Mn I
Fe II | 15
98 | | 30 25, 638
30 25, 68 | | Fe I
V II | 198
75 | 3035.013 | | Rh II | 4 | 3044.936 | | V I | 17 | | 3025.7 0 | | Zr I·I | 76 | 3035.14
3035.25 | P | V II
Fe I | 245
506 | 3045.00
3045.006 | | Cl II
Ni I | 21
12 | | 3025.75
3025.843 | | 0 II
Fe I | 84
9 | 3035.43 | P | 0 111 | 4 | 3045.077 | | Fe I | 29 | | 30 25. 99 | P | Fe II | 84 | 3035.781 | | Zn I | 5 | 3045.085
3045.313 | | Ti II
Fe II | 179 | | 30 26 . 18 | | Zr II
Co I | 147
77 | 3035.802
3035.98 | | Fe III
Ne II | 30
17 | 3045.36 | | YI | 9 | | 3026.373
3026.462 | | Fe I | 30 | 3036.07 | | V II | 40 | 3045.53 | | Cr II | 48 | | 3026.47 | | Y II | 44 | 3036.101 | | Cu I | 5 | 3045.58 | | Ne II
Mn I | 8
34 | | 3026.647 | | Cr II | 95 | 3036.33
3036.39 | P | Zr II
Zr II | 86
25 | 3045.593
3045.593 | | Na II | 11 | | 3026.75
3026.776 | P | A II | 120
13 | 3036.50 | | Zr II | 24 | 3045.594 | | Fe I | 198 | | 3026.781 | P | Al II | 13 | 3036.59 | | Y II
W II | 68
7 | 3045.714
3045.808 | | Sc II
Mn I | 37
34 | | 3026.85
3026.985 | | Cr II
Fe III | 41
21 | 3036.68
3036.784 | | T1 II | ,
78 | 3045.82 | | Zr I | 36 | | 3027.04 | | Ne II | 8 | 3036.986 | | Fe II | 181 | 3045.877
3046.03 | | Fe III
Hf II | 76
32 | | 30 27.38
30 27.46 | P | Fe II
Fe III | 99
10 | 3037.044
3037.26 | | Cr I
Si III | 27
10 | 3046, 10 | | A II | | | 3027.600 | | v II | 85 | 3037.388 | | Fe I | 9 | 3046.266 | | Mn II | 10 | | 30 27 . 60 2 | | Gd II | 12 | 3037.73 | | Ne II | 8 | 3046.399
3046.452 | | Fe III
W I | 78
5 | | 30 27.75 | | Y II
Pd I | 60
5 | 3037.731
3037.782 | | Ce II
Fe I | 18 1
3 1 | 3046.675 | | Fe II | 179 | | 3027.92
3028.04 | | 0 IV | 5 | 3037.935 | | N1 I | 25 | 3046.685 | | Ti II | 47
92 | | 3028.042 | | V II | 85 | 3037.98
3037.98 | | A IV | 2
53 | 3046.714
3046.819 | | Fe III
Fe I | 315 | | 3028.05
3028.125 | | Zr II
Cr II | 76
87 | 3038.00 | | v II | 246 | 3046.929 | | Fe I | 198 | | 3028.436 | | CP II | 2 | 3038.04
3038.52 | | Cr II
Cr II | 154
41 | 3047.035
3047.047 | | Mn I
Fe I | 34
457 | | 3028.608 | | Rh II | 1 | | | | | 3047.119 | | Fe III | 80 | | 3028.66
3028.82 | | Ca III | 3
73 | 3038.520
3038.59 | | V II
Zr II | 96 | 3047.119 | | 0 111 | 4 | | 3028.84 | | Ne II | 4 | 3038.706 | | Ti II | 85 | 3047.160 | | Rh II
Fe I | 4
382€ | | 3028.93 | | AII | 84 | 3038.777
3039.064 | | Fe II
Ge I | 84
2 | 3047.201
3047.455 | | Cr I | 164 | | 3028.981
3029.041 | | Gd II
Mn II | 26
10 | 3039.254 | | F III | 3 | 3047.57 | | Ne II | 8 | | 3029.164 | | Cr I | 26 | 3039.322 | | Fe I
O II | 199
72 | 3047.60
3047.605 | P | Fe II
Fe I | 84
9 | | 30 29 . 237
30 29 . 297 | | Fe I
Ni I | 56
56 | 3039.51
3039.551 | | Mn II | 10 | 3047.63 | | Cr II | 15 | | 3029.52 | | Zr I | 22 | 3039.563 | | Co I | 52 | 3047.76 | | Cr II | 15 | | 3029.56 | | v II | 26 | 3039.65 | | Ne II
C II | 17
29 | 3047.9
3048.108 | | Co I | 82
77 | | 30 29.681
30 29.730 | | Fe II
Ti II | 124
85 | 3039.67
3039.74 | P | Cr I | 117 | 3048.214 | | V II | 123 | | 3029.83 | | Sb I | 2 | 3039.746 | | F III | 3 | 3048.28 | | Zr II
Zr II | 1 44
65 | | 3030.149 | | Fe I
Y II | 198
79 | 3039.76
3039.767 | | 0 II
V 11 | 72
153 | 3048.42
3048.65 | | V 11 | 67 | | 3030.214
3030.245 | | Cr I | 27 | 3039.780 | | Cr I | 26 | 3048.766 | | Ti II | 78
34 | | 3030.61 | P | Fe I
Fe I | 145
459 | 3039.92
3040.34 | | Sc II
Gd II | 47
55 | 3048.864
3048.888 | | Mn I
Co I | 11 | | 3030.757
3030.769 | | Sc I | 10 | 3040.428 | | Fe I | 30 | 3048.891 | | V 11 | 40 | | 3030.85 | | Ne II | 17 | 3040.603 | | Mn I | 34 | 3049.011 | | Fe II
Mn II | 181
21 | | 3030.91 | | Zr II
V I | 6
74 | 3040.812
3040.829 | | Co I
Fe II | 50
123 | 3049.027
3049.18 | P | Fe II | 109 | | 3031.007
3031.16 | | Hf II | 11 | 3040.846 | | Cr I | 27 | 3049.39 | | La II | 115 | | 3031.213 | | Fe I
Cr I | 198
27 | 3040.92
3040.93 | | Cr II
Si III | 65
10 | 3049.44
3049.694 | | C II | 43
9 | | 3031.353
3031.486 | | Cr I | 117 | 3041, 224 | | Mn I | 34 | 3049.883 | | Cr I | 27 | | 3031.559 | | Ce III | 1 | 3041.278 | | Al II
V II | 28
40 | 3050.073
3050.137 | | Al I
Cr II | 7
65 | | 3031.63
3031.63 | P | Cr II
Fe II | . 87
138 | 3041.42
3041.639 | | Fe I | 56 | 3050.400 | | V I | 74 | | 30 31. 638 | | Fe I | 30 | 3041.74 | | Cr II | 95 | 3050.465 | | Fe III | 10 | | 3031.870 | | N1 I | 11 | 3041.745
3041.86 | | Fe I
V I | 30 | 3050.496
3050.5 | | Co I
Y II | 77
69 | | 3032.00
3032.08 | | Zr II
0 II | 144
83 | 3041.876 | i | wı | 5 | 3050.57 | | Ne II | 48 | | 3032.187 | | V II | 75 | 3042.020 | 1 | Fe I
V II | 30
40 | 3050.661
3050.735 | | Mn II
V II | 21
66 | | 3032.44
3032.50 | | Ni II
O II | 3
83 | 3042.27
3042.481 | L | Co I | 10 | 3050.75 | | Cr II | 95 | | 3032.767 | | СР 11 | | 3042.65 | | Pt I | 5
30 | 3050.819
3050.890 | | N1 I
V I | 25
16 | | 3032.845
3032.85 | | Gd II
As I | 12
1 | 3042.666
3042.733 | | Fe I
Mn I | 34 | 3050.93 | | Co I | 51 | | 3032.927 | | Cr II | 15 | 3042.79 | | Cr II | 47 | 3051.30 | | W II | 6 | | 3033.104 | ŧ | Fe I | 146 | 3043.02 | , | 0 III | 4
91 | 3051.308
3051.92 | | V II
Ce II | 228
184 | | 3033.445
3033.445 | | Fe II
V II | 181
123 | 3043.067
3043.124 | | Fe III
V I | 91
17 | 3051.97 | | Ce II | 180 | | 3033.52 | • | A II | 19 | 3043.13 | 2 | Mn II | 21 | 3052.07 | | K III
V I | 2
15 | | 30 33.591 | | Mn II
V II | 21
34 | 3043. 14:
3043. 31 | | Mn I
Fe II | 34
138 | 3052. 19
3052. 22 | € | Cr I | 164 | | 3033.821
3034.05 | L | Cr II | 74 | 3043.31 | | Mn I | 34 | 3052.51 | | Gd II | 9 | | 3034,051 | | Gd II
Sn I | 12
1 | 3043.439
3043.54 | | Fe III
V II | 91
40 | 3052.54
3052.78 | P | O IV
Fe I | 5
262 | | 3034.120 | | | | | | V I | 17 | 3052.92 | 9 | Sc II | 37 | | 3034.190
3034.32 | , | Cr I
O III | | 3043.55
3043.77 | 0 | Mn I | 34 | 3053.06 | | Fe I | 146 | | 3034.433 | 5 | Co I | 12 | 3043.85 | | Ti II
Cr II | 78
48 | 3053.20
3053.27 | | A II
Y II | 68 | | 3034.48
3034.51 | | Ne II
Fe I | 8
57 | 3043.90
3044.00 | | Co I | 11 | 3053.39 | _ | V II | 34 | | 3034.54 | | Cr II | 33 | 3044.04 | P | Co I | 78
26 | 3053.44
3053.57 | | Fe I
Gd II | 31, 398
25 | | 3034.54
3034.71 | 9 | F III
Fe II | 3
84 | 3044. 12
3044. 16 | | Zr II
Ne II | 26
17 | 3053.65 | | Cr II | 64 | | (3034,71 | | Si III | 10 | 3044.24 | | Cr II | 154 | 3053.65 | | V I
Na II | 17
15 | | 3034.81 | | Mn II | 21 | 3044.43 | 8 | Fe III | | 3053.66 | * | πα 11 | 10 | | IA | Туре | El ement | Multiplet No. | I A | Type | Element | Multiplet No. | r A | Type | El emen (| Multiplet No | |------------------------|------|----------------|---------------|---|------|----------------|---------------|----------------------|------|-----------------|--------------| | 0050 74 | | C1 II | 14 |
3063.25 | | Co I | 59 | 3072.664 | | Co I | 125 | | 3053.74
3053.880 | | Cr I | 26 | 3063.280 | | T1 II | 1.19 | 30.72.68 | | Ne II | 17,48 | | 3053.894 | | V 11 | 40 | 3063.411 | | Cu I | 4 | 3072.88 | | Hf I .
Ti II | 2
5 | | 3054.02 | | La II | 115 | 3063.46 | | O IV | 1 | 3072.971
3073.126 | | Mn I | 15 | | 3054.134 | | Fe III | 10 | 3063.502 | | Ti II | 47 | 3073.244 | | Fe I | 549 | | 3054.24 | | A II | 67 | 3063.56 | | Ta I | 4.
36 | 3073.25 | | Cr II | 47 | | 3054.316 | | N1 I | 25 | 3063.58 | | Zr I
Zr II | 30 | 3073.520 | | Co I | 51 | | 3054.362 | | Mn I | 15
51 | 3063.63
3063.734 | | V I | 16 | 3073.679 | | Cr I | 184 | | 3054.39 | | Zr II
Hf II | 8 | 3063.814 | | Fe II | 20 | 3073.823 | | V I | 15, 17 | | 3054.52 | | H1 11 | 6 | 0000.012 | | | | | | | | | 3054.69 | | Ne II | .8 | 3063.84 | | Cr II | 32 | 3073.982 | | Fe I | 313 | | 3054.694 | | Al I | 7 | 3063.93 | | Ni II | 3 | 3074.061 | | Rh II | 1 | | 3054,724 | | Co I | 13 | 3063.939 | | Fe I | 147 | 3074.15 | | 0 111 | 26 | | 3054.62 | | A III | 4 | 3064.302 | | A1 I | 7 | 3074.157
3074.334 | | Fe I
Na II | 457
9 | | 3054.84 | | Zr II | 76 | 3064.370 | | Col | 13 | 3074.47 | | Cr I | 55 | | 3054.89 | | V I | 16 | 3064.372 | | Na II | 6 | 3974.55 | | Zr II | 105 | | 3054,94 | | Eu II | 7 | 3064.530 | | Cb II
Ni I | 26 | 3074.66 | | v II | 112 | | 3054.949 | | Fe I
Ce II | 263
201 | 3064.623
3064.64 | | Zr II | 25 | 3074.665 | | Al II | 27 | | 3055, 243
3055, 263 | | Fe I | 55 | 3054.68 | | Hf II | 9.7 | 3074.67 | | Cr II | 73 | | 2000.200 | | 10 1 | 50 | | | | | | | | | | 3055.3 | | Y II | 68 | 3064.71 | | Pt I | 2 | 3074.68 | | 0 111 | 26 | | 3055.368 | | Fe II | 181 | 3064.77 | | A III | 4 | 3074.91 | | Cr II
V II | 73 | | 3055.43 | | Hf II | 56 | 3065.01 | | 0 111 | 26 | 3075.043
3075.19 | | 0 111 | 228
26 | | 3055.44 | | Cr II | 33 | 3065.067 | | Cr I | 184
37 | 3075.225 | | T1 II | 5 | | 3055.55 | | Fe III | 10
1 | 3065 . 1 06
3065 . 2 0 | | Sc II
Zr II | 5 | 3075. 228 | | Fe II | 68 | | 3055,585
3055,942 | | Ce III
V II | 123 | 3065.30 | | Pd I | 3 | 3075.269 | | v i | 105 | | 3056, 942 | | Na II | 1 | 3065.315 | | Fe II | 97 | 3075.32 | | As I | 1 | | 3056, 334 | | VI | 17 | 3065.61 | | V II | 112 | 3075.336 | | Ru II | 7 | | 8056.556 | | Co III | 0 | 3066.019 | | Mn I | 15 | 3075.38 | | Sc II | 37 | | | | | | | | | * | DOME 000 | | Nd II | | | 3056.68 | | Cr II | 48 | 3066.02 | | Y II | 68 | 3075.380 | | Gd II | 56 | | 3056.740 | | T1 II | 47 | 3066.158 | | Al I | 7 | 3075.422
3075.474 | | V II | 67 | | 3056.775 | | Ce II | 121 | 3066.220 | | T1 II | 5 | 3075.55 | | Zr II | 144 | | 3056.802 | | Fe II | 109 | 3066.354 | | Ti II | 5 | 3075.58 | | v II | 228 | | 3056.84 | | K III | 2 | 3066.375 | | V I
Fe I | 17
313 | 3075.721 | | Fe I | 28 | | 3057.08 | | Al I | 95
7 | 3066.487
3066.51 | | A I | 17 | 3075.901 | | Zn I | 1 | | 3057, 155
3057, 214 | | Ce III | 8 | 3066.514 | | Ti ÎI | 47 | 3075.933 | | v r | 57 | | 3057.22 | | Zr II | 76 | 3066.536 | | Na II | 18 | 3075.95 | | o III | 26 | | 3057.395 | | Ti II | 5 | 3066.69 | P | Fe I | 456 | 3076.016 | | A II | 34 | | | | | | | | | | 3076.455 | | Fe II | 181 | | 3057.446 | | Fe I | 28 | 3066.80 | | V II | 128 | 3076.58 | | Cr I | 55 | | 3057.575 | | Ce III | 4 | 3066.92 | | A II
V II | 34 | 3076.864 | | CP II | 2 | | 3057.638 | P | Ni I
Fe I | 26
29 | 3067.104
3067.123 | | Fe I | 56 | 3076.925 | | Gd II | 10 | | 3057.80
3057.86 | r | Cr II | 65 | 3067.132 | | Ge I | 5 | 3077.077 | | GG II | 25 | | 3058.00 | | C1 11 | 14 | 3067.18 | | Cr II | 15 | 3077.14 | | YII | 52 | | 3058.090 | | Ti II | 47 | 3067.22 | P | Cr I | 55 | 3077.168 | | Fe II | 108 | | 3058.119 | | Gd II | 57 | 3067.23 | P | Cr II | 15 | 3077.24 | | Cr II
Ta I | 103 | | 3058.17 | | Cr I | 164 | 3067.244 | | Fe I | 28 | 3077.24
3077.358 | | Eu II | 1 | | 3058,38 | | Cr II | 48 | 3067.41 | | Hf I | 4 | ay 11.000 | | Du II | • | | | | | | 00.00 010 | | Bi I | 1 | 3077.40 | | A IV | 2 | | 3058.66 | | Os I | 1 | 3067.712
3067.952 | | Fe I | 315a | 3077.59 | | Lu II | 4 | | 3058.68 | | O V | 6 | 3068 | P | o VI | 2 | 3077.79 | | Cr II | 103 | | 3059.047
3059.064 | | Mn II | 21 | 3068.02 | • | Zr II | 5 | 3077.831 | | Cr I | 184 | | 3059.086 | | Fe I | 9 | 3068.06 | | 0 11 | 26 | 3078.014 | | Fe I | 29 | | 3059.16 | | Ne 11 | 17 | 3068.175 | | Fe I | 35 | 3078.15
3078.315 | | A 111
Na II | 2,5 | | 3059.24 | | CII | 47 | 3068.32 | | Zr II | 40 | 3078.436 | | Fe I | 146 | | 3059.30 | | 0 111 | 4 | 3068.643 | | Gå II | 12
26 | 3078.44 | P | Fe II | 97 | | 3059.41 | | Cr II | 15 | 3068.68
3068.757 | | O III
Fe II | 122 | 3078.64 | | Y II | 78 | | 3059.521 | | Cr II | 15 | 3008.757 | | re 11 | 144 | | | | | | 3059.741 | | Ti II | 5,47 | 3068,897 | | Ir I | 6 | 8078.045 | | T1 II | 8 | | 3059.91 | | Le II | 147 | 3068.927 | | Fe I | 53 | 3078.698 | | Fe II | 18 1 | | 3060.023 | | Fe II | 109 | 3069.26 | | Y II | 43 | 3078.948 | | V II
Cr II | 66
102 | | 3060.048 | | Co. I | 77 | 3069.335 | | Fe III | 1 | 3079.34
3079.356 | | Fe II | 102 | | 3060.11 | | Zr 11 | 6 | 3069.645 | | V I | 15 | 3079.394 | | Co I | 10,49 | | 3060 162 | | FA III | 92 | 3070.072 | | Fe III
V II | 30
228 | 3079.627 | | Mn I | 15 | | 3060.252 | | Ru II
V I | 6 | 3070.12
3070.266 | | Mn I | 15 | 3079.75 | | v II | 113 | | 3060.460
3060.531 | | Se II | 17
37 | 3070.591 | | Fe II | 83 | 3079.84 | P | Fe I | 102 | | 3060.531 | | Fe I | 457 | 3070.692 | | Fe II | 68 | 3080.146 | | V I | 15 | | 20001040 | | | 201 | ******** | | | | | | ** * | | | 3000.03 | | Gr I | 104 | 3071.00 | | Cr II | 41 | 3080.333
3080.405 | | V I
Fe II | 57
108 | | 3060.93 | | V I | 15 | 3071.08 | | Ne II | 17 | 3080.64 | | Hf II | 63 | | 2060.94 | | A II | | 3071.141 | | Fe II | 181 | 3080.72 | | Cr I | 184 | | 3060.984 | | Fe I | 55 | 3071.238 | | Fe III | 1 | 3080.755 | | Ni I | 26 | | 3061.14 | Þ | Cr II | 103 | 3071.242
3071.270 | | Tí II
Fe II | 47 | 3080.84 | | Hf I | 4 | | 3061.33 | | Zr II
Cr II | 6
41 | 3071.270 | | C1 II | 14 | 3081.01 | | VII | 112 | | 3061.59
3061.652 | | CP II | 41
55 | 3071.58 | | Cr II | 47 | 3081.254 | | V II | 66 | | 3061.822 | | Co I | 11 | 3071.583 | | Ba I | 4 | 3081.30 | | A II | 164 | | 3061.983 | | Co I | 52 | 3071.653 | | Fe II | 123 | 3081.330 | | Mn I | 15 | | | | | | | | | | 2004 40 | | T.e. TT | 115 | | 3062, 119 | | Mn I | 15 | 3071.66 | | 0 14 | 1 | 3081.42
3081.46 | | 0 II | 115 | | 3062, 178 | | Y II | 113 | 3071.69 | P | Cr I | 55 | 3081.575 | | Ti II | 119 | | 3062. 199 | | Co I | 12 | 3071.77 | | / II | 250
12 | 3081.585 | | Rh II | 5 | | 3062, 201 | | Rh II | 4 | 3071.957 | | Co I
Zn I | 12
5 | 3081.600 | | YII | 50 | | 3062, 234
3062, 702 | | Fe II
V II | 108
34 | 3072.062
3072.107 | | Ti II | 5 | 3081.83 | P | Fe I | 53 | | 3062,702 | | Fe I | 456 | 3072.341 | | Co I | 11 | 3081.993 | | Gd II | 12 | | 3063.010 | | Ce II | 185 | 3072.47 | | Cr II | 32, 116 | 3082.010 | | V I | 105 | | 3063, 149 | | Fe I | 102 | 3072.54 | | Ti II | 119 | 3082.052 | | Mn I
V I | 25
17 | | 3063, 247 | | A II | 123 | 3072.565 | | Gd II | 93 | 3082, 109 | | ¥ 1 | 1. / | | | | | | | | | | | | | | | I A | Туре | Element | Multiplet No. | I A | Туре | El ement | Multiplet No. | I A | Туре | El ement | Multiplet No. | |--------------------------|------|-----------------|---------------|------------------------|--------|------------------|-----------------|-----------------------|------|-----------------|---------------| | 3082, 159
3082, 16 | | Al I
Y II | 3
68 | 3092, 915
3092, 997 | | Nd II
Mg I | . 5 | 3101.557
3101.77 | | Mn I
Ti I | 181 | | 3082.304
3082.524 | | Ce II
V II | 105
39 | 3093.108
3093.16 | P | V 11 | 1
39 | 3101.879
3101.911 | | Ni I
Gd II | 40
10 | | 3082.56 | | Sc II | 36 | 3093.24 | • | V I | 15 | 3102. 295 | | V II | 1 | | 3082,614
3082,844 | | Co I
Co I | 10
73 | 3093.41
3093.423 | | A II
Si III | 84
1 | 3102.36
3102.405 | | Ca I
Co I | 16
49 | | 3082.99 | | A II
Fe II | 120
97 | 3093, 48
3093, 481 | | Cr II
Rh II | 125
4 | 3102, 517
3102, 55 | P | Ti I
Fe III | 18 1
29 | | 3083.024
3083.07 | P | Sc II | 37 | 3093, 53 | P | Fe I | 102 | 3102.551 | • | Gd II | 76 | | 3083, 152
3083, 208 | | Fe I
V II | 197
112 | 3093.613
3093.76 | | Si III
Y II | 1
78 | 3102.58
3102.63 | | Cr II
A II | 116 | | 3083.350 | | Gd II
V I | 10
57 | 3093.792
3093.806 | | V I
Fe I | 57
55 | 3102.64
3102.71 | P | Fe I
Fe I | 29 | | 3083.539
3083.62 | | Cr II | 47 | 3093.846 | | Gd II | 10 | 3102.975 | | T1 II | 58 | | 3083.65
3083.670 | | O III
Ce II | 26
237 | 3093.888
3093.97 | | Fe I
Cr II | 261
47 | 3103.3
3103.377 | | Y II
Ce II | 78
151 | | 3083.68 | P | Fe III | 39 | 3093.989 | | Cu I | , 3 | 3103.48 | | Cr II | 71 | | 3083.742
3084.007 | | Fe I
Gd II | 28 | 3094.08
3094.08 | P | Fe I
Ne II | 165
24 | 3103.60
3103.735 | | V I | 56
73 | | 3084.09
3084.46 | | Fe III
Cr II | 40
71 | 3094. 156
3094. 172 | | Fe III
Cb II | 78
1 | 3103.804
3103.983 | | Ti II
Co I | 90
48 | | 3084.59 | | Cr I | 184 | 3094. 196 | | V II | 39 | 3103.994 | | v i | 56 | | 3084,63
3084.819 | | O III
Ti I | 26
93 | 3094, 555
3094, 692 | | Ru II
V I | 3
56 | 3104.29
3104.38 | | Cr II
A II | 102
118 | | 3085.05 | | A II
Ce III | | 3094.79 | | Zr I
Fe I | 36 | 3104.396 | | Na II
Cl III | 17
3 | | 3085.089
3085.34 | | Zr I | 4
20 | 3094.870
3094.94 | | Cr II | 315a
47,86 | 3104.46
3104.58 | | La II | 17 | | 3085.36
3085.47 | | Cr II
V II | 47
34 | 3094.98
3095.07 | | A II
Zr II | 118
5 | 3104.593
3104.70 | | Ti II
Cr I | 90
163 | | 3085.621
3086.210 | | Gd
II | 10
66 | 3095, 22
3095, 270 | | Cr II
Fe I | 86
314 | 3104.713
3104.805 | | Mg II
Mg II | 6
6 | | 3086.225 | | Si III | 1 | 3095.716 | | Co I | 49 | 3104.82 | | Y II | 59 | | 3086.311
3086.393 | | Fe III
Co I | 50 | 3095.81
3095.82 | | 0 III
Zr I | 26
36 | 3104.906
3105.084 | | V II
T1 II | 39
67 | | 3086.429 | | Si III | 1 | 3095.859 | | Cr I | | 3105, 166 | | Fe II | 82, 122 | | 3086, 44
3086, 507 | | Zr II
V II | 24
39 | 3095.88
3095.902 | | Y II
V I | 11
57 | 3105.220
3105.469 | | Ti I
Ni I | 181
12 | | 3086.620
3086.777 | | Si III
Co I | 1
11 | 3096, 11
3096, 296 | | Cr II
Fe II | 126
97 | 3105.548
3105.57 | | Fe II
Cr I | 82
163 | | 3086.83 | | Co I | 76 | 3096.402 | | Co I | 52 | 3105.929 | | Co I | 21 | | 3086.858
3086.880 | | Y II
Fe III | 42
81 | 3096.424
3096.531 | | Ti II
Cr I | 77 | 3105.973
3106.11 | | VI | 140
56 | | 3087.02 | | Al I | 19 | 3096.72 | | C1 II | 31 | 3106. 234 | | Ti II | 67 | | 3087.065
3087.07 | | V I
Ni II | 57
7 | 3096.740
3096.77 | P | Rh II
Se II | 4
6 | 3106.542
3106.559 | | Fe I
Fe II | 196
68 | | 3087.659 | | Fe III | 77 | 3096.786 | = | Si III | 1 | 3106.58 | | Zr II
Ti I | 63
92 | | 3087.806
3087.90 | | Co I
Cr II | 77
10 2 | 3096.86
3096.902 | | Fe III | 65
5 . | 3106.806
3106.829 | | V II | 139 | | 3088.027 | | Ti II | 5 | 3097.063 | | Mn I | | 3106.974 | | Ce III | 4 | | 3088.04
3088.114 | | A I
O III | 26
56 | 3097.118
3097.15 | | Ni I
Ne II | 11
44 | 3107.044
3107.142 | | Co I
V I | 49
57 | | 3088.23
3088.24 | | Ne II
A II | 24
119 | 3097.186
3097.415 | | Ti II
Fe II | 67
96 | 3107.387
3107.388 | | Sc II
Ca I | 6
16 | | 3088.28 | | Zr II | 38 | 3097.45 | | Eu II | 6 | 3107.468 | | Ti I | 181 | | 3068.523
3089.00 | | Al II
Zr II | 20
25 | 3097.46
3097.48 | P | S IV
Fe I | 1
165 | 3107.529
3107.540 | | Sc II
Co I | 35
125 | | 3089, 130
3089, 204 | | V I
Gd II | 37
54 | 3097, 626
3098, 16 | | Ti II
Cr II | 77
86 | 3107.58
3107.586 | | Cr II
Ru II | 125
3 | | 3089.388 | | Fe II | 158 | 3098.191 | | Fe I | 313 | 3107.714 | | Ni I | 12 | | 3089.401
3089.596 | | T1 II
Co I | 90
10 | 3098. 194
3098. 476 | | Co I
Nd II | 10 | 3107.774
3107.950 | | Mn I
Fe III | 36
29 | | 3089.633
3089.649 | | V II | 112 | 3098.597 | | Tm II | 8 | 3108.230 | | Gd II | 54 | | 3089.75 | | Fe III
Cr II | 40
195 | 3098.644
3098.88 | | Gd II
Cr II | 11
86 | 3108.36
3108.360 | | Zr I
Gd II | 38
93 | | 3089.954
3090.051 | | Gd II
Ti II | 93
119 | 3098.899
3098.93 | P | Gd II
Fe III | 10
51 | 3108.46
3108.511 | | La II
Se II | 16
86 | | 3090.137 | | Ti I | 93 | 3099.05 | • | Fe III | 65 | 3108.635 | | Mn I | 38 | | 3090.209
3090.251 | | Fe I
Co I | 313
77 | 3099.115
3099.180 | | N1 I
Cb II | 13
2 | 3108.66
3108.704 | | Cr II
V II | 55
39 | | 3090.40
3090.44 | | V I
Zr I | 15
54 | 3099.22
3099.667 | | Zr II
Co I | 5
75 | 3108.78
3108.82 | P | Fe III
A II | 29
18 | | 3090.772 | | Fe III | 20 | 3099.898 | | Fe I | 28 | 3108.85 | | Fe III | 12 | | 3090.94
3091.076 | | Cr II
Mg I | 126
5 | 3099.968
3098.97 | | Fe I
A II | 28 | 3108.927
3109.05 | | Ti II
Fe I | 77
165 | | \$091.30 | | Zr II | 38 | 3100.304 | _ | Fe I | 28 | 3109.11 | | H? II | 10 | | 309 1. 437
309 1. 552 | | v r | 15
15 | 3100.21
3100.48 | P
P | Fe III
Fe III | 51
29 | 3109.3
3109.32 | | Y II
Fe III | 87
8 | | 3091.578
3091.70 | | Fe I
Y I | 28 | 3100.504
3100.666 | | Gd II
Fe I | 12
28 | 3109.336
3109.375 | | V II | 163
186 | | 3092.058 | | Gd II | 98 | 3100.666 | | Ti I | 92,93 | 3109.506 | | Co I | 50 | | 3092, 22
3092, 26 | | Cl II
HP II | 14
30 | 3100.838
3100.938 | | Fe I
V II | 196a
39 | 3109.59
3109.75 | | Fe III
A II | 1 | | 3092.519
3092.716 | | Sc II
Al I | 36
3 | 3101.003 | | Fe I
Gd II | 313
93 | 3109.92
3110.021 | P | Ti II
Co I | 58
109 | | 3092.72 | | V I | | 3101.185
3101.39 | | HP II | 12 | 3110.052 | | Fe III | 39 | | 3092.729
3092.785 | | Na II
Fe I | 1
29 | 3101.407
3101.52 | P | Gd II
Ti II | 76
58 | 3110.07
3110.095 | | V II
T1 II | 139
77 | | 3092.843 | | Al I | 3 | 3101.528 | - | Ti I | 181 | 3110.276 | | Ce II | 152 | | 3092.91 | | Ne II | 44 | 9101.554 | | N1 I | 25 | 3110.516 | | Ce III | *8 | | 1 A | Туре | El ement | Multiplet No. | I A | Туре | El ement | Multiplet No | . I A | Туре | Element | Multiplet No | |-----------------------|------|----------------------------|----------------|------------------------|------|-----------------|----------------|-----------------------------|--------|-----------------|---------------| | 3110.52 | | Zr II | 105 | 3119.60 | | As I | 1 | 3128.640 | | Ti II | 121 | | 3110.620
3110.65 | | Ti II
Y II | 67
50,78 | 3119.66
3119.660 | | Ca III
Fe II | 4 | 3128.686
3128.699 | | V II
Cr II | 83
5 | | 3110.708 | | V II | 1 | 3119.706 | | Cr I | 183 | 3128.789 | | Y II | 51 | | 3110.821
3110.85 | | Co I
Fe III | 11
29 | 3119.725
3119.800 | | Ti I
Ti II | 137
67 | 3128.79
3128.901 | | Zr II
Fe I | 38
54 | | 3110.860 | | Cr I | 163 | 3119.82 | | Cl II
Rh II | 20 | 3129.013 | | Fe II
Fe III | 96 | | 3110.87
3110.87 | | Hf II
Zr II | 46
5 | 3119.837
3119.941 | | Gd II | 8
11 | 3129.04
3129.075 | | Ti I | 8
192 | | 3111.15 | | Zr II | 24 | 3120.023 | | Fe II | 96 | 3129.16 | | Zr II | 23 | | 3111.283
3111.339 | | Ti I
Co I | 181
73 | 3120.03
3120.03 | P | Fe I
Fe III | 161
29 | 3129.18
3129.314 | P | Fe I
Ni I | 16 1
12 | | 3111.609 | | Fe III | 8 | 3120.10 | | Co I | 74 | 3129.334 | | Fe I | 52 | | 3111.686
3111.95 | | Fe I
Cr II | 260
55 | 3120.181
3120.24 | | Gd II
Fe III | 76
1 | 3129.368
3129.44 | | Na II
O II | 2
14 | | 3112.05 | | Y II | 4 | 3120.371 | | Cr II | 5 | 3129,481 | | Cò I | 74 | | 3112.050
3112.079 | | Ti II
Fe I | 67
455 | 3120.435
3120.72 | P | Fe I
Zr II | 194
50 | 3129.696
3129.76 | | Gd II
Zr II | 93
5 | | 3112. 125 | | Mo I | 2 | 3120.726 | | V II | 138 | 3129.933 | | Y II | 51 | | 3112.202 | | Ce II | 138 | 3120.74 | | Zr I | 37 | 3129.955 | | Gd II | 76 | | 3112.482
3112.63 | | Ti I
La II | 92
156 | 3120.84
3121.05 | | Fe III
Cr II | 29
72 | 3130.05
3130.175 | | Zr I
Ti I | 37
180 | | 3112.81 | P | Cr II | 125 | 3121.08 | | Fe III | | 3130.262 | | V II | 1 | | 3112,925
3113,172 | | V I
Gd II | 56
93 | 3121, 138
3121, 415 | | V II
Co I | 9 | 3130.416
3130.561 | | Be II
Fe II | 1
66 | | 3113, 31 | P | Fe I | 161 | 3121.515 | | F III | 1 | 3130.73 | | Eu II
Ch II | 1 | | 3113.473
3113.50 | | Co I
Zr I | 48
37 | 3121, 548
3121, 566 | | Ce III
Co I | 2
11 | 3130.780
3130.804 | | Ti I | • | | 3113.560
3113.579 | | V 11
F 111 | 174
1 | 3121, 599
3121, 62 | | Ti II
Cl II | 4
20 | 3130.804
3130.812 | | Ti II
Gd II | 4
76 | | 3113, 59 | | Cr II | 186 | 3121.71 | | 0 111 | 12 | 3131.064 | | Be II | 1 | | 3113.67 | P | Fe I | 165 | 3121.749 | | V I | 56 | 3131.11 | | Zr I | 37 | | 3113.71
3114.05 | | O II | 14
4 | 3121.76
3121.700 | | Fe I | 102
70 | 3131.211
3131.257 | | Cr I
Tw II | 183 | | 3114.092
3114.118 | | Ti I
Co I | 181 | 3121.84 | | Cr II
Cr II | 72
55 | 3131.54 | | Cr II
Fe II | 53, 55
107 | | 3114.118 | | Ni I | 49
24 | 3121.97
3122.065 | | Ti II | 58 | 3131.719
3131.81 | | Hf I | 3 | | 3114, 295
3114, 45 | | Fe II
Y II | 82 | 3122, 542
3122, 596 | | Sc II
Cr II | 46
54 | 3131.829
3131.845 | : | Co I
Hg I | 48
2 | | 3114.680 | | Fe II | 49,58
82 | 3122.61 | | Zr II | 51 | 3132.058 | | Cr II | 5 | | 3115.088 | | Ti II | 58 | 3122, 62 | | 0 11 | 14 | 3132.06 | _ | Zr I | 37 | | 3115, 16
3115, 172 | | NG II | 111 | 3122, 665
3122, 782 | | Fe I
Au I | 314
1 | 3 132. 12
3 132. 218 | P | Cr II
Co I | 125
7 | | 3115.28 | | Cr II
Fe II | 54 | 3122.887
3122.954 | | V II
Sc II | 173
39 | 3132.22
3132.514 | | Ne II
Fe I | 13
578 | | 3115,352
3115,465 | | Mn I | 38 | 3123.074 | | Ti I | 67 | 3132.591 | | Mo I | 3 | | 3115.492
3115.51 | | Fe II
Cr I | 96
163 | 3123. 18
3123. 29 | | Fe III
Ca II | 10 | 3132.793
3132.820 | | V II
Cr I | 122
183 | | 3115.65 | | Cr II | 46 | 3123.353 | | Fe I | 164 | 3132.86 | | 0 III
Fe II | 12
82 | | 3115.669 | | F 111 | 1 | 3123.715 | | Fe II | | 3133.048 | | | | | 3115,73
3115,73 | | 0 III
Z r II | 12
75 | 3123,72
3123,769 | | Cl II
Ti I | 20
181 | 3133.094
3133.096 | | Gd II
Sc II | 9
39 | | 3116.02 | | V II
V II | 139
139 | 3123,989
3124,02 | | Gd II | 11
14 | 3133, 329
3133, 49 | 1 | V II
Zr II | 1
63 | | 3116.11
3116.141 | | Nd II | | 3124.02 | | Fe I | 165 | 3133.603 | | Na II | | | 3116.250
3116.39 | P | Fe I
Fe I | 165
261 | 3124, 250
3124, 762 | | Gd II
F III | 10
1 | 3133.852
3133.886 | | Gd II
Tm II | 76
4 | | 3116.590 | • | Fe II | 82 | 3124.817 | | Ge I | i | 3133.96 | P | Fe I | 161 | | 3116.633
3116.714 | | Fe I
Ni I | 28
95 | 3124.978
3125.01 | | Cr II
V II | 5
84 | 3134.08
3134.108 | P | Fe I
Ni I | 160
`25 | | 3116.76 | | Cr II | 126 | 3125.02 | | Cr II | 70 | 3134.111 | L | Fe I | 28 | | 3116.78
3116.95 | | V II
Hf II | 237
33 | 3125.03
3125.15 | P | Fe I
Ca II | 53
10 | 3134.15
3134.17 | P
P | Fe I
Fe II | 29
121 | | 3117.28 | | Cr II | 46 | 3125.21 | | Zr II | 24 | 3134.208 | | F III | 1 | |
3117.455
3117.505 | | Ti I
Fe II | 92
226 | 3125.282
3125.46 | | V II
Cr II | 1
55 | 3134.32
3134.33 | | O II
Cr II | 14
94 | | 3117.63 | | Fe I | 29 | 3125.553 | | Ti I | 192 | 3134.654 | ŀ | Ti I | 91 | | 3117.656
3117.669 | | Ca I
Ti II | 16
67 | 3125,653
3125,656 | | Fe I
Ti I | 28, 160
192 | 3134.72
3134.819 | , | Hf II
Mn II | 5
15 | | 3117.75 | | s iv | 1 | 3125.668 | | Hg I | 3 | 3134.82 | | 0 11 | 14 | | 3117.899 | | Ti I | 92
76 | 3125.68 | P | Fe I
Cr II | 194
186 | 3134.89°
3134.90 | 7 | Nd II
A IV | 1 | | 3117.974
3118.02 | | Gd II
Ne II | 16 | 3125.79
3125.92 | | Zr II | 5 | 3134.92 | 8 | V II | 122 | | 3118.130 | | Ti I
Cr II | 181
55 | 3126.02
3126.16 | | Sc II
Y II | 39
78 | 3135.03
3135.06 | | Gd II
Ti I | 11
180 | | 3118.14
3118.249 | | Co T | 11 | 3126.175 | | Fe I | | 3135.17 | | Y II | 11 | | 3118.376
3118.56 | P | V II
Ni I | 1
94 | 3126.215
3126.25 | | V II
Si III | 1
11 | 3135.35
3135.36 | 0 | Cr II
Fe II | 124
82 | | 3118.600 | • | Gd II
Co I | 93 | 3126.27 | | Hf II
V II | 7
122 | 3135.48
3135.50 | 3 | Na II
Mn II | 3
15 | | 3118.636 | | | 12 | 3126.79 | Р | | | | | Cr II | 94 | | 3118.652
3118.74 | P | Cr II
Fe II | 5
121 | 3126.84
3127.252 | P | Fe I
Co I | 260
26 | 3135.74
3135.80 | | Fe III | 77 | | 3118.75
3118.824 | | Fe III
Ti II | 51
27 | 3127.526
3127.530 | | Cb II
Ce II | 150 | 3135.82
31 35. 86 | | Ne II
Fe I | 3
194 | | 3119.04 | P | Fe I | 315a | 3127.684 | | Ti I | 180 | 3138.87 | 5 | Al II | 19 | | 3119.08
3119.246 | | Gd II
Cr I | 10
163 | 3127.883
3128.286 | | Ti II
Sc II | 121
39 | 3135. 91
3136.00 | | Cr I
S III | 183
13 | | 3119.32 | , | v 11 | 110 | 3128.288 | | V II | 84 | 3136.00 | 3 | Ca I | 15 | | 3119.336
3119.495 | | Gd II
Fe I | 10
194 | 3128.560
3128.640 | | Gd II
Ti I | 76
92, 192 | 3136.02
3136.08 | 8
P | Ti I
Fe I | 91
160 | | | | | | | | | | | | | · | |----------------------|--------|-----------------|-----------------------|------------------------------|------|-----------------|-----------------|----------------------|------|-----------------|---------------| | 1 A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | IA | Туре | Element | Multiplet No. | | 3136.17 | | Fe I | | 3144.488 | | Fe I | 161 | 3154.195 | | Ti II | 10 | | 3136.315 | | Mn II | 15 | 3144.68 | | 0 A | 2 | 3154.201 | | Fe II | 66 | | 3136.43
3136.465 | | Fe III
Mo II | 39
2 | 3144.700
3144.730 | | V II
Ti II | 122
111 | 3154.387 | P | F III
Fe I | 4 | | 3136.503 | | V II | 122 | 3144.74 | P | Ti II | 10 | 3154.41
3154.510 | r | Fe I | 100
161 | | 3136.55 | | A II | _ | 3144.751 | _ | Fe II | 82 | 3154.585 | _ | Ni I | 78 | | 3136.680
3136.726 | | Cr II
Co I | . 5
8 | 3144.92
3145.00 | P | Fe I
Gd II | 195
10 | 3154.66
3154.678 | P | Cr II
Co I | 54
108 | | 3136.77 | | Ti II | 27 | 3145.022 | | Co I | 50 | 3154.794 | | Co I | 73 | | 3136.95 | | Zr I | 54 | 3145.057 | | Fe I | 455 | 3154.80 | | V II | 249 | | 3136.999 | | Co I | 48 | 3145.10 | | Cr II | 5 | 3154.82 | | Ne II | 14 | | 3137.328 | | Co I | 10 | 3145.121 | | N1 I | 7 | 3155.12 | P | Fe I | 161 | | 3137.352
3137.454 | | Ti I
Co I | , 91
108 | 3145.283
3145.32 | | Ce II
Hf II | 120
2 | 3155.149 | | Cr I
Fe I | 115
193 | | 3197.55 | | Cr II | 54 | 3145.337 | | V II | í | 3155.293
3155.409 | | V II | 51 | | 3137.66 | | A II | 71 | 3145.402 | | Ti II | 10,111 | 3155.50 | P | Ti II | 27 | | 3137.755
3137.940 | | Co I
Gd II | 49
54 | 3145.405
3145.46 | P | Cb II
Fe I | 5
160 | 3155.63
3155.670 | P | Ti II
Ti II | 37
10 | | 3138.05 | | V II | 205 | 3145.515 | _ | Ti I | 91 | 3155.68 | | Zr II | 63 | | 3138.094 | | Gd II | 10 | 3145.516 | | Gd II | 76 | 3155.704 | | Ce II | 217 | | 3138.203 | | Cr I | 183 | 3145.536 | | F III | 1 | 3155.80 | P | Fe I | 192a | | 3138.207 | _ | Fe II | 227 | 3145.719 | | N1 I | 11 | 3155.91 | P | Ti II | 121 | | 3138.40
3138.44 | P | Fe I
O II | 53
14 | 3145.77
3145.971 | | Cr II
V II | 85
1 | 3155.95
3155.950 | | Zr II
.Fe II | 49
67 | | 3138.46 | | Sc II | 39 | 3146.226 | | V II | 138 | 3156.11 | | F III | 4 | | 3138.66
3139.02 | | Zr II
A II | 5
47 | 3146.407
3146.47 | | Ce II
A II | 70
49 | 3156.222 | | V I
Os I | 4 | | 3139.10 | P | Fe I | 161 | 3146.475 | | Fe I | 160 | 3156.248
3156.275 | | Fe I | 4
578 | | 3139.34 | | C1 III | 3 | 3146.748 | | Fe II | 67 | 3156.464 | | Fe I | 454 | | 3139.39 | | Pt I | 2 | 3146.818 | | V II | 138 | 3156.532 | | Gd II | 11 | | 3139.60 | P | Fe I | 161 | 3146.878 | | Gd II | 76 | 3156.59 | | Pt I | 2 | | 3139.661 | | Fe I
Hf II | 155
6 | 3146.91 | | Sc II | 39 | 3156.68 | | Hf I | 5 | | 3139.67
3139.729 | | Sc II | 39 | 3146.962
3147.05 | | F III
Ce III | 1
7 | 3157.00
3157.040 | | Zr II
Fe I | 23
160 | | 3139.733 | | V II | 122 | 3147.060 | | Co I | 10 | 3157.15 | P | Fe I | 144 | | 3139.77
3139.79 | | o II
Zr I | 14
56 | 3147-10
3147 - 227 | P | Cr II
Cr II | 54
5 | 8157.844
3157.397 | | Tm II
Ti II | 8
4 | | 3139.87 | | Ti I | 180 | 3147.38 | | Si III | 11 | 3157.44 | P | Sc II | 32 | | 3139.908 | | Fe I
Cr II | | 3147.792 | | Fe I | 455 | 3157.52 | | Cr II | 93 | | 3139.91 | | | 54 | 3147.84 | | Cr II | 93 | 3157.82 | | Zr I | 36,55 | | 3139.947 | | Co I | 9 | 3147.86 | | C1 II | 10 | 3157.88 | | Fe I | 164 | | 3139.98
3140.04 | P
P | Co I
Ti II | 73
27 | 3147.931
3148.033 | | Rh II
Ti II | 8
4 | 3157.900
3157.992 | | V II
Fe I | 50
159 | | 3140.08 | | Fe III | 94 | 3148.179 | | Mn I | 19 | 3158.03 | | Cr II | 70 | | 3140.21
3140.272 | | Cr II
Rh II | 124
8 | 3148.24
3148.420 | | A II
Fe I | 194 | 3158.156 | P | Mo I
Fe I | 2 | | 3140.385 | | Fe I | 578 | 3148.445 | | Cr I | 115 | 3158.21
3158.293 | F | Co I | 160
12 | | 3140.67 | | Cr II | 124 | 3148.46 | P | Fe I | 161 | 3158.32 | P | Fe II | 95 | | 3140.692
3140.715 | | Fe II
Co I | 227
75 | 3148.738
3148.81 | | V II
Zr I | 249
37 | 3158.772
3158.869 | | Co I
Ca II | 10
4 | | | | na ** | | | | | | | | | | | 3140.77
3140.782 | | Hf II
Ca I | 31
15 | 3149.12
3149.267 | | Cr II
Na II | 8 4
4 | 3158.99
3159.10 | | Fe I
Cr II | 452
5 | | 3141.07 | | V II | 205 | 3149.310 | | Co I | 9 | 3159.12 | | Zr II | 126 | | 3141.164
3141.247 | | Ca I
Ce III | 15
2 | 3149.50
3149.56 | P | Fe I
Si IV | 453
2 | 3159.25
3159.254 | P | Fe I
Rh II | 259
2 | | 3141.35 | | Ne II | 47 | 3149.83 | | Cr II | 54 | 3159.32 | P | Fe II | 120 | | 3141.486
3141.537 | | V II
Ti I | 152
66 | 3149.87 | | W II
Cr II | 5 | 3159.365 | | V II | 83 | | 3141.670 | | Ti I | 192 | 3150.11
3150.20 | P | Fe I | 54
161 | 3159.521
3159.59 | | Ni I
Cr I | 11
92 | | 3141.80 | | Cr II | 175 | 3150.301 | | Fe I | 578a | 3159.662 | | Co I | 9,26 | | 3141.891 | | Cr I | 116 | 3150.568 | | v i | | 3159.86 | | Cr II | 54 | | 3142.183
3142.22 | | V II | 172 | 3150.738 | | Ca I | 15 | 3160.03 | | w II | 8 | | 3142.22 | | Fe III
Fe II | 1
7 | 3151.036
3151.11 | | Tm II
Ti I | 28 | 3160.09
3160.11 | | Ti I
Cr II | 28
54 | | 3142.312 | | Ce II | 46 | 3151.16 | | Ne II | 16 | 3160.200 | | Fe I | 578 | | 3142.445
3142.484 | | Fe 1
V II | 164
52 | 3151.259 | | Ni I
Ca I | 15 | 3160.342 | | Fe I
C1 II | 192a | | 3142.670 | | Mn I | 52 | 3151.280
3151.31 | | WII | 16 | 3160.52
3160.60 | | YII | 57 | | 3142.74
3142.76 | | Cr II | 85 | 3151.319 | | V II | 138 | 3160.61 | | Cr I | 115 | | 3142.70 | | La II | 31 | 3151.353 | | Fe I | 311 | 3160.658 | | Fe I | 155 | | 3142.777 | | F III | 4 | 3151.500 | | Rh II | 2 | 3160.69 | | Gd II | 11 | | 3142.988
3142.900 | | Fo I
Gd II | 1 44
76 | 0151.66
3151.867 | | Fe III
Fe I | 7 | 3160.77
3160.781 | P | Fe I
V II | 159
65,138 | | 3142.97 | | Cr II | 125 | 3152.14 | P | Ti II | 27 | 3160.92 | P | Fe I | 160 | | 3143.131
3143.16 | P | Gd II
Ti I | 25
28 | 3152.21 | | Cr II
Ti II | 71 | 3161 | P | N V | 2 | | 3143.242 | • | Fe I | 7 | 3152.251
3152.525 | | Sm II | 10 | 3161.01
3161.039 | | Zr II
Mn I | 104
19 | | 3143.350 | | Ti I | 180 | 3152.707 | | Co I | 73 | 3161.205 | | Ti II | 10 | | 3143.36
3143.477 | | Fe III
V II | 13
122 | 3152.881
3153.064 | | Cr I
.Fe I | 116
99 452 | 3161.313 | | V II
Gd II | 151
10 | | | | | | 0200+004 | | | 99,452 | 3161.369 | | | 10 | | 3143.657
3143.68 | | Ru II
Cr II | 2
53 | 3153.200 | | Fe I | 161 | 3161.370 | | Fe I
A II | 52 | | 3143.68 | P | Ti II | 37 | 3153.322 | | Fe I | 161
160 | 3161.38
3161.44 | | C1 II | 97
11 | | 3143.74 | | Ne II | 24 | 3153.54 | | Cr I | 200 | 3161.45 | | A II | | | 3143.756
3143.91 | | Ti II
Cr II | 4
94 | 3153.549
3153.692 | | V I
Co I | 7 | 3161.55
3161.638 | P | Fe I
Gd II | 195
25 | | 3143.956 | | Ce III | 2 | 3153.80 | | A II | 118 | 3161.652 | | Co I | 25
73 | | 3143.990
3144.37 | | Fe I
Y II | 578 | 3154.04 | | Cr II | 53 | 3161.66 | P | Ti II | 27 | | 3144.409 | | Cr I | 49
92 | 3154.10
3154.11 | P | Cr II
Fe I | 69
53 | 3161.755
3161.945 | | Ti II
Fe II | 10
7 | | • | | | | | _ | - | | | | | • | | IA | Туре | Element | Multiplet No. | I. A | Туре | Element | Multiplet No. | I A | Туре | E. nt | Multiplet No. | |----------------------|------|----------------|----------------------|----------------------|------|-----------------|-----------------|----------------------|------|-----------------|-----------------| | 3161.949 | | Fe I | 160 | 3170.337 | | Fe
II | 6 | 3179.44 | | w | 7 | | 3162.284 | | Rh II | 1 | 3170.40 | | Sc II | 32 | 3179.45 | | Cr | 82 | | 3162.335 | | Fe I | 159,310 | 3170.715 | | N1 I
Fe II | 78 | 3179.479 | | Fe 1 | 52 | | 3162.46
3162.57 | | Cr II
Hf I | 46
2 | 3171.016
3171.09 | | Gd II | 10 | 3179.504
3179.538 | | Fe I\ Fe I | 157 | | 3162.570 | | Ti II | 10 | 3171.14 | | N III | | 3180.164 | | Fe II | 157 | | 3162.61 | | Hf II | 30 | 3171.353 | | Fe I | 52,548 | 3180.17 | P | Fe III | 38 | | 3162.714 | | V II | 83
54 | 3171.615 | | Ce II
Fe I | 99
160 | 3180.199 | | Th II | 4 | | 3162.764
3162.799 | | Gd II
Fe II | 120 | 3171.659
3171.68 | | La III | 1 | 3180.223
3180.225 | | Fe I
Ti II | 155
120 | | 02021100 | | | | | | | | 200124 | | | | | 3163.024 | | V II | 84
7 | 3171.739
3172.067 | | V II
Fe I | 217
99,193 | 3180.290 | | Cb II | 5 | | 3163.091
3163.403 | | Fe II
Cb II | 1 | 3172.08 | | Cr II | 71 | 3180.290
3180.521 | | Co I
Ca I | • | | 3163.61 | | AII | 118 | 3172.11 | P | Fe I | 100 | 3180.701 | | Cr I | | | 3163.731 | | Na II | 7 | 3172.169 | | Gd II
V II | 129 | 3180.72 | | O IV | | | 3163.756 | | Cr I
V II | 115
249 | 3172.230
3172.30 | P | V II
Fe I | 249
312 | 3180.73 | | Cr II | ٤ | | 3163.76
3163.77 | P | Cr II | 123 | 3172.731 | - | Ti I | 65 | 3180.756
3180.98 | P | Fe I
O IV | 7
7 | | 3163.86 | P | Fe II | 79 | 3172.79 | | Mg II | 13 | 3181.05 | • | A II | 47 | | 3163.93 | | Cr II | 69 | 3172.828 | | Tm II | 8 | 3181.275 | | Ca II | 4 | | 3164.06 | | Cr I | 200 | 3172.94 | | Hf I | 5 | 3181.428 | | Cr II | 9 | | 3164.154 | | Ce II | 69 | 3172.97 | | N III | | 3181.522 | | Fe I | 258 | | 3164.166 | | N1 I | 79 | 3173.07 | | Y II | 51: | 3181.58 | | Zr II | 63 | | 3164.26
3164.28 | | Fe II
Cr II | 79
4 6 | 3173.140
3173.40 | | Co I
Fe I | 48
333 | 3181.740 | | Ni I | 78 | | 3164.308 | | Fe I | 163 | 3173.56 | | Co I | 72 | 3181.84
3181.85 | | Ti II
Fe I | 122
333 | | 3164.32 | | Zr II | 50 | 3173.58 | | Cr II | 83 | 3181.922 | | Fe I | 155,505 | | 3164.46 | | Ne II | 13 | 3173.58 | | Ne II | 13
3 | 3181.94 | | Zr II | 48 | | 3164.48
3164.618 | | Cr II
Ca I | 115
14 | 3173.607
3173.608 | | Eu II
Fe I | 333 | 3182.076
3182.118 | | Fe I
Co I | 159,333
73 | | 01011010 | | - | | | | | | 0102.110 | | 00 1 | 10 | | 3164.67 | | Fe III | .8 | 3173.66 | | C1 11 | *** | 3182.42 | | Y II | 49 | | 3164.82
3164.91 | | V II
Ti II | 8 | 3173.663
3173.678 | | Fe I
Rh II | 101
5 | 3182.57 | | Ti II
V II | 122 | | 3165.005 | | Fe I | 155 | 3174.077 | | V 11 | 84 | 3182.59
3182.674 | | V II | 217
150 | | 3165.08 | P | Fe I | 194 | 3174.09 | | Fe III | 38 | 3182.86 | | Zr II | 23 | | 3165.16 | P | Fe I | 100 | 3174.125 | | F III | 2 | 3182.970 | | Fe I | 100 | | 3165.24
3165.31 | P | Ti II
A II | 37 | 3174.140
3174.22 | P | Co I
Fe I | 138
578 | 3183.038 | | Ni I
Fe II | 78
7 | | 3165.45 | | Zr II | 63 | 3174.531 | • | V II | 217 | 3183.115
3183.251 | | Ni I | 78 | | 3165.508 | | Ni I | 21 | 3174.725 | | F III | 2 . | 3183.26 | P | Zr II | 105 | | 3165.51 | | C 11 | 9 | 3174.80 | | T1 II | | 3183.325 | | Cr II | 82 | | 3165.70 | | Né II | 13 | 3174.88 | | La II | 157 | 3183.406 | | V I | 14 | | 3165.72 | | S1 IV | 2 | 3174.905 | | Co I | 71 | 3183.523 | | Ce II | 216 | | 3165.86 | P | F III
Fe I | 1
160 | 3175.046 | | Sn I
Fe II | <u>1</u>
157 | 3183.58 | P. | Fe I
Sm II | 192a | | 3165.860
3165.89 | | V II | 84 | 3175.077
3175.16 | | P V | 1 | 3183.916
3183.96 | | V I | 14 | | 3165.94 | | Mg II | 14 | 3175.317 | | Ru II | 2 | 3183.982 | | VI | 14 | | 3165.957 | | Fe II | | 3175.447 | | Fe I | 155 | 3184.09 | | Ti II | 3 | | 3165.98 | | Zr II
C II | 5
9 | 3175.66
3175.84 | | Ti II
Mg II | 120
13 | 3184.36 | | Cr II
Ni I | 129 | | 3165.99 | | 0 11 | | 2110.04 | | -E 11 | | 3184.367 | | NI I | 11 | | 3166.22 | P | Fe II | 79 | 3175.97 | | Fe I
W II | 333
7 | 3184.43 | P | Fe II | 67 | | 3166.24
3166.29 | P | Fe I
Zr II | 155
48 | 3175.97
3176.00 | | W II
Fe III | 38 | 3184.631
3184.896 | | Fe I
Fe I | 155, 162
7 | | 3166.39 | | V 11 | 84 | 3176.16 | | Ne II | 16 | 3185.095 | | Fe II | 67 | | 3166.495 | _ | Fe T | 259 | 3176.292 | | N1 I | 77 | 3185.16 | | 8 111 | 13 | | 3166.59 | P | Fe I
Fe II | 100
6 | 3176.366 | | Fe I
W I | 258
5 | 3185.16 | | Si III
Fe II | 8
7 | | 3166.670
3166.948 | | Rh II | 5 | 3176.602
3176.70 | P | Sc II | 32 | 3185.315
3185.396 | | V I | 14 | | 3166.98 | P | Fe I | 455 | 3176.85 | | Hf II | 8 | 3185.72 | | 0 IV | 7 | | 3167.420 | | v II | 217 | 3176.86 | | Fe III | 38 | 3186.01 | | S1 III | | | 3167.49 | | v II | 236 | 3177.060 | | Ru II | 2 | 3186.10 | | v II | 64 | | 3167.54 | | Fe III | 28 | 3177.137 | | Ce II | 103 | 3186.126 | | Ce II | 167 | | 3167.78 | P | Fe I | 99 | 3177.22 | | W II
Fe II | 6
79 | 3186.19 | | A II | 48 | | 3167.853
3167.907 | | Fe II
Fe I | 66
578 | 3177.260
3177.266 | | Co I | 18 | 3186.350
3186.451 | | Co I
Ti I | 8
27 | | 3167.94 | P | Fe ÎI | 82 | 3177.490 | | 0d II | 129 | 3186.740 | | Fe II | 6 | | 3167.95 | | C II | 9 | 3177.52 | P | Fe I | 159 | 3186.75 | | Cr II | 69 | | 3168.060 | | Co I
V II | 108 | 3177.531 | p | Fe II
Fe II | 82
95 | 3186.82 | P | Fe I | 100
63 | | 3168.127
3168.21 | | V II
Fe III | 8
94 | 3177.61
3177.65 | p | Fe II | 79 | 3186.86
3187.006 | | V II
Sm II | 21 | | | | | | | | | | | _ | | | | 3168.519 | | Ti II
Fe I | 10
160 | 3177.696 | | 0 IV | 217
7 | 3187.16 | P | Fe I
Sm II | 333
13,40 | | \$168.86
\$168.94 | P | Fe I | 160 | 3177.80
3177.90 | | Cr II | 40 | 3187.216
3187.294 | | Fe II | 120 | | 3168.98 | • | Mg II | 14 | 3177.96 | P | Fe I | 159 | 3187.592 | | Mo II | 2 | | 3169.09 | P | Fe I | 813 | 3178.015 | | Fe I | 156 | 3187.60 | _ | Ne II | 3 | | 3169.168
3169.20 | | Ce II
Cr II | 74
123 | 3178.00
3178.10 | | Fe III
Zr II | 88
63 | 0187.68
3187.717 | r | Fo I
V II | 52
8 | | 3169.20 | | V II | 65 | 3178.10 | | Sm II | 21 | 3187.717 | | He I | 3 | | 3169.30 | | Ne II | 16 | 3178.495 | | Mn I | 19 | 3187.787 | | Sm II | 31 | | 3169.58 | | Cr I | 115 | 3178.545 | | Fe I | 454 | 3187.889 | | Rh II | 5 | | 3169.58 | P | Fe I | 161 | 3178.630 | | T1 11 | 120 | 3188.011 | | Cr 1 | 92 | | 3169.68 | | A II | 47 | 3178.79 | | Cr II | 173 | 3188.10 | _ | V II | 49 | | 3169.768 | | Co I
Cr II | 109
173 | 3178.970 | | Fe I
Na II | 192a
7 | 3188.17 | P | O IV | 7
7 4 | | 3169.85
3169.854 | | Cr II
Ca I | 178
14 | 3179.055
3179.08 | | Fe III | 38 | 3188.377
3188.522 | | A II | 8 | | 3169.875 | | Sm Iİ | 31 | 3179.283 | | Cr I | 92 | 3188.567 | | Fe I | 159 | | 3170.16 | | C III | 8 | 3179.291 | | Ti I | 65 | 3188.603 | | Rh II | 8 | | 3170.208
3170.23 | | V II
C1 II | 217 | 3179.332
3179.416 | | Ca II
V II | 4
217 | 3188.65
3188.74 | P | O IV
Ne II | 7
14 | | 3170.333 | | Mo I | 3 | 3179.42 | | A II | 10 | 3188.819 | | Fe I | 159 | | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I Á | Туре | Element | Multiplet No. | |----------------------|--------------|----------------|---------------|----------------------|------|-----------------|---------------|----------------------|------|----------------|-----------------| | 3188.95 | | Si II | | 3196.532 | | Gd II | 9 | 3206.16 | | V II | | | 3189.04 | | C1 II | 65 | 3196,574 | | V II
Fe II | 62 | 3206.344 | | Ti I | 179 | | 3189.24
3189.52 | | W II
Ti II | 6,10
120 | 3196.63
3196.930 | P | Fe I | 95.
155 | 3206.350
3206.466 | | Cb II
Gd II | 5
129 | | 3189.638 | | Ce II | 97 | 3196.96 | | Cr II | 9 | 3206.77 | | Hf II | 56 | | 3189.74 | | Fe III | 55 | 3197.00 | | Fe I | 8 | 3206.825 | | Ti I | 179 | | 3189.752 | | Co I | 9 | 3197.08 | | Zr II | 126 | 3206.908 | | Mn I | 14 | | 3189.76 | | V II | 83 | 3197.113
3197.12 | | Ni I
Cr II | 24
9 | 3206.952 | | Ni I
Fe III | 9 4
6 | | 3189.783
3189.85 | | Na II
Cr II | 4
123 | 3197.518 | | Ti II | 3 | 3206.98
3207.092 | | Fe I | 159 | | 0100 00 | | P. T | 050 | 3197.53 | | Fe I | 711 | 3207.12 | P | 0 111 | 94 | | 3190.02
3190.403 | | Fe I
Sc II | 259
42 | 3197.574 | | V II | 150 | 3207.12 | P | Sm II | 31
2 | | 3190.651 | | Fe I | 548 | 3198.00 | | Cr II | | 3207.248 | | WI | 9 | | 3190.686 | | V II | 8 | 3198.012 | | V I | 14 | 3207.297 | | Rh II | 1 | | 3190.69 | | Cr II | 174 | 3198.112 | | Cr I
Fe I | 91
258 | 3207.337 | | Ti I | 90 | | 3190.81
3190.825 | | Fe III
Fe I | 548 | 3198.266
3198.42 | | YII | 39 | 3207.410
3207.61 | | V I
A II | 14
132 | | 3190.84 | \mathbf{P} | Fe II | 120 | 3198.62 | | Ne II | 13 | 3207.649 | | Fe I | 382 | | 3190.86 | | Ne II | 13 | 3198.660 | | Co I | 26 | 3207.897 | | Ti I | 179 | | 3190.874 | | Ti II | 26 | 3198.726 | | Ti I | 191 | 3208.02 | | Cr II | 114 | | 3191.005 | | Sc II | 42 | 3198.81 | _ | Fe III | 6 | 3208.13 | | La II | | | 3191.044 | | Gd II | 129 | 3198.88 | P | Ne II
Ir I | 13
7 | 3208.231 | | Cu I | 3 | | 3191.096
3191.11 | | Cb II
Fe I | 1
258 | 3198.917
3199.279 | | Ce II | 106 | 3208.32
3208.345 | | Zr II
V II | · 4 | | 3191.180 | | Fe I | 452 | 3199.322 | | Co I | 9 | 3208.470 | | Fe I | 711 | | 3191.23 | | Zr I | 19 | 3199.34 | | T1 I | 191 | 3208.607 | | T1 II | 120 | | 3191.297 | | Co I | 7 | 3199.342
3199.37 | | N1 I
Sc II | 42 | 3208.62 | | Cr II | 9 | | 3191.374
3191.39 | | Fe II
La II | 79
157 | 3199.43 | | Ti I | 191 | 3208.838
3208.91 | | Mo I
Ni II | 2
2 | | 3191.41 | P | Fe I | 682 | 3199.50 | P | Fe I | 7 | 3208.99 | | Ne II | 14 | | 3191.45 | | C1 III | 3 | 3199.53 | | o iv | 7 | 3209.030 | | Ti I | 179 | | 3191.577 | | WI | 5 | 3199.530 | | Fe I | 156 |
3209.115 | | Fe I | 97 | | 3191.659 | | Fe I | 8 | 3199.54 | | S1 II | | 3209.13 | | La II | 114 | | 3191.875 | | Ni I | 125 | 3199.87 | | Cr II
Ti I | 101 | 3209.21 | | Cr II | 9 | | 3191.93
3101.004 | | Zr II
Ti I | 50
27 | 3199.915
3199.93 | Þ | Fe I | 27
156 | 3209.297
3209.34 | | Fe I
K III | 333,711
5 | | 3192.059 | | Fe II | 66 | 3199.99 | | Hf II | 55 | 3209.38 | | Ne II | 16 | | 3192.12 | | Cr I | 13 | 3200.28 | | Y II | 10 | 3209.603 | | Fe II | 137 | | 3192.220
3192.26 | | Co I
Ti II | 72
25 | 3200.423
3200.45 | | N1 I
Cr II | 23
114 | 3209.64
3209.80 | | O IV
Co I | 7
70 | | 0102.20 | | | 20 | | | | | 0200100 | | 00 1 | 70 | | 3192.417 | | Fe I | 100,711 | 3200.454 | | Gd II
Fe I | 129 | 3209.912 | | Ni I | 94 | | 3192.68
3192.699 | | T1 II
V II | 120
83 | 3200.475
3200.67 | | Zr II | 155,162
37 | 3209.930
3210.04 | | Ca I
Si II | 13
7 | | 3192.799 | | Fe I | 155 | 3200.790 | | Fe I | 8 | 3210.219 | | Co I | 106 | | 3192.84 | P | Fe I | 452 | 3200.95 | _ | 0 111 | 31 | 3210.230 | | Fe I | 159 | | 3192.917 | | Fe II | 6 | 3201.24
3201.26 | P | Cr I
Cr II | 79
114 | 3210.449 | | Fe II | 6 | | 3193.014
3193.02 | | Sm II
La II | 45 | 3201.28 | | V II | 114 | 3210.52
3210.62 | | Si III
Cr I | 13 | | 3193.10 | | Si II | #0 | 3201.594 | | Ti I | 90 | 3210.825 | | Tm II | 4 | | 3193.164 | | Co I | 26 | 3201.714 | | Ce II | 76 | 3210.830 | | Fe I | 156 | | 3193.174 | | Gd II | 54 | 3201.891 | | Fe I | 159 | 3210.98 | | Zr II | 63 | | 3193.200 | | V II | 83 | 3201.90
3201.95 | | Fe III
K III | 6
5 | 3211.01 | | Co I | 154 | | 3193.214
3193.314 | | Fe I
Fe I | 7
159 | 3201.97 | P | Cr I | 79 | 3211.07
3211.072 | | Ti I
Fe II | 191
95 | | 3193.41 | | Cr II | 52 | 3202.142 | | N1 I | 94 | 3211.309 | | Cr I | 220 | | 3193.48 | | Y II | 48 | 3202.381 | | V I | 14 | 3211.494 | | Fe I | 162 | | 3193.53
3193.74 | P | Hf II
Fe I | ·2
682 | 3202.52
3202.535 | | Cr II
Ti II | 173
26 | 3211.693
3211.734 | | Fe I
Sm II | 711 | | 3193.75 | P | N1 I | 92 | 3202.562 | | Fe I | 547 | 3211.872 | | Fe I | 98,711 | | 3193.76 | P | Fe II | 79 | 3202.66 | P | Fe I | 52 | 3211.947 | | Rh II | 6 | | 3193.809 | | Fe II | 6 | 3202.711 | | V II | 62 | 3211.989 | | Fe I | 158 | | 3193.85 | P | Fe II | 67 | 3202.740 | | FII | 8 | 3212.02 | | Zr I | 19 | | 3193.969
3193.97 | | Mo I
V II | 3 | 3203.026
3203.05 | | Co I
Cl II | 9 | 3212.121 | | Ir I | 8 | | 3194.03 | P | Fe I | 49
156 | 3203.104 | | He II | 1 | 3212.186
3212.274 | | Na II
Gd II | 4
54 | | 3194.099 | - | Cu I | 3 | 3203.33 | | Y II | 10 | 3212.40 | | YII | 67 | | 3194.19 | | Hf II | 10 | 3203.39
3203.435 | | Al I
Ti II | 20
3 | 9212.494 | | v r | 73 | | 3194.25
3194.26 | | A II
Ti II | 46
120 | 3203.435 | | Fe II | 3
79 | 3212.53 | | Cr II
A II | 81 | | 3194.422 | | Fe I | 155 | 3203.53 | | Cr II | 46 | 3212.54
3212.56 | | La II | 47
122 | | 3194.56 | | Ti II | 120 | 3203.58 | | Ti I | 26 | 3212.70 | P | Ti II | 9 | | 3194.61 | | Ne II | 16 | 3203.67 | | HF II | 21 | 3212.85 | • | Zr 11 | 49 | | 3194.63 | | Cr II | 70 | 3203,741 | | Fe II | 196 | 3212.884 | | Mn I | 14 | | 3194.75 | r | O IV | 7 | 3203.828
3203.89 | | Ti I
Si II | 27
7 | 3212.91 | | Cr II | 114 | | 3194.76
3194.76 | P | N1 I
T1 II | 108 | 3204.06 | | P V | í | 3213.145
3213.145 | | Ti I
Ti II | 90,191
3 | | 3194.825 | | Ce II | 217 | 3204.196 | | VI | 13 | 3213.311 | | Fe II | 6 | | 3194.983 | | CP II | 1 | 3204.34 | | A II | 71 | 3213.423 | | Ni I | 91 | | 3195.50
3195.573 | | V II
Ni I | 12 | 3204.36
3204.55 | P | Zr II
Cr I | 63
79 | 3213.46
3213.59 | | Cr II
Ti II | 153
120 | | | | | | | | | | | | | | | 3195.62
3195.63 | | Y II
Hf II | 10
45 | 3204.76
3204.870 | | Fe III
Ti I | 6
90 | 3213.70
3213.771 | | Ne II
Fe I | 13
452 | | 3195.717 | | Ti II | 25 | 3205.03 | | Ă II | 133 | 3213.972 | | F III | 2 | | 3195.994 | | Ti II | 46 | 3205.11 | | Cr II | 114 | 3214.044 | | Fe I | 156,711 | | 3196.070 | | Fe II
Fe I | 7 | 3205.168
3205.400 | | Ti I
Fe I | 26
155 | 3214.059 | P | Ni I
Fe I | 93 | | 3196.147
3196.182 | | Sm II | 333
40 | 3205.582 | | V I | 73 | 3214.07
3214.125 | r | re I
Sm II | 158
25 | | 3196.37 | P | Cr I | 79 | 3205.64 | P | Ti II | 46 | 3214.14 | | Ti II | 84 | | 3196.40 | | Cr II | 9,115 | 3205.848
3205.990 | | Ti I
Ti II | 26
26 | 3214.19 | | Zr II | 3 | | 3196.50 | | Si III | | 0200.88U | | ** ** | 40 | 3214.240 | | Ti I | 27 | | I Å | Type | Element | Multiplet No. | I A | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |----------------------|------|----------------|---------------|----------------------|------|----------------|---------------|-----------------------|------|----------------|---------------| | 3214.38 | | Ne II | 14 | 3223.332 | | CP II | 5 | 3231.528 | | Sm II | 13 | | 3214.396 | | Fe I | 7 | 3223.444 | | Fe II | | 3231.599 | | Fe I | 50 | | 3214.624 | | Fe I | 143 | 3223.519 | | Ti I | 179 | 3231.64 | | Cr II | 122 | | 3214.750 | | Ti II
V II | | 3223.534
3223.740 | | Ni I
Gd II | 92,94
10 | 3231.69 | | Zr II
Fe II | 3
80 | | 3214.750
3215.145 | | Ca I | 8
13 | 3223.853 | | Fe I | 27 | 3231.702
3231.71 | P | Ti II | 46 | | 3215, 262 | | Sm II | 40 | 3224.05 | P. | Fe I | 920 | 3231.75 | • | Cl II | 73 | | 3215.334 | | Ca I | 13- | 3224.241 | | Ti II | 84 | 3231.952 | | V II | 61 | | 3215,375 | | V I | 13 | 3224.297 | | Ga II | 92 | 3231.97 | | Ne II | 11 | | 3215.578 | | W I | . 5 | 3224.632 | | Co I | 71 | 3232.00 | | Y II | 49 | | 3215.595 | | Cb II | 1 | 3224.761 | | Mn I | 3 | 3232.055 | | Os I | 3 | | 3215.60 | | Fe III | 6 | 3224.82 | | Ne II | 43 | 3232.16 | P | Fe I | 258 | | 3215.637 | | Fe I | 332 | 3224.86 | P | Fe II | 178 | 3232.280 | | T1 II | 36 | | 3215.940 | | Fe I | 156 | 3225.020 | | Ni I
Y II | 39 | 3232.38 | | Ne II | 11 | | 3215.97
3216.06 | P | 0 III
Fe I | 31
682 | 3225.17
3225.39 | | Cr II | 39
140 | 3232.52 | | Sb I
Li I | 2
2 | | 3216.08 | | 0 11 | 107 | 3225.44 | | Cr II | 45 | 3232.61
3232.791 | | Fe II | 119 | | 3216.203 | | Ti I | 90 | 3225.460 | | Gd TI | | 3232.791 | | Ti I | 179 | | 3216.31 | P | O IV | 7 | 3225.478 | | CP II | 1 | 3232.874 | | Co I | 106 | | 3216.55 | | Cr II | 82 | 3225.607 | | Fe I | 192,920 | 3232.963 | | N1 I | 7 | | 3216,70 | | Y II | 10 | 3225.789 | | Fe I | 155 | 3233.02 | | Ca III | 4 | | 3216.75 | | AII | 10 | 3225.896 | | CaI | 13 | 3233.02 | | Fe I | 620 | | 3216.76 | | 0 11 | 107 | 3225.976 | | Na II | 17 | 3233.174 | | Ni I | 91,184 | | 3216.821 | | Ni I | 93 | 3226.00 | | A II | 46 | 3233.190 | | v i | 72 | | 3216.850 | _ | Sm II | 13 | 3226.034 | | Mn I
V I | 14 | 3233.234 | | Cr I | 25 | | 3216.88
3216.946 | P | Ti II
Mn I | 36
3∈ | 3226.106
3226.128 | | Ti I | 14
179 | 3233.24 | | S III
Fe I | 3 | | 3216.996 | | CoI | 70 | 3226.129 | | Ca I | 13 | 3233.304
3233.324 | | Rh II | 142
2 | | 3217.056 | | T1 II | 2 | 3226.240 | | Ti I | 27 | 3233.546 | | V II | 61 | | 3217.12 | | La Il | 156 | 3226.318 | | Gd II | 75 | 3233.62 | | P III | 4 | | 9917 191 | | v I | 14 | 3226.36 | | Cr II | 114 | 0000 000 | | 37 77 | | | 3217.121
3217.121 | | N II | 14
38 | 3226.378 | | Fe II | 114
178 | 3233.772
3233.88 | | V II
Ni I | 61 | | 3217.30 | | Hf II | 4 | 3226.55 | | Cr I | 25 | 3233.967 | | Fe I | 158 | | 3217.380 | | Fe I | 157 | 3226.727 | | Fe I | 8 | 3233.968 | | Mn I | | | 3217.44 | _ | Cr II | 9 | 3226.771 | | Ti II | 3 | 3234.00 | | Si III | 6 | | 3217.53
3217.70 | P | Fe I
A II | 254
132 | 3226.924
3226.984 | | V II
Ni I | 185
7 | 3234.06 | | Cr II | 63 | | 3217.830 | | N1 I | 91 | 3226.986 | | Co I | 124 | 3234.119
3234.12 | | Co I
Zr I | 72
19 | | 3217.942 | | Ti I | 179 | 3227.067 | | Fe I | 156 | 3234.165 | | Ce II | 119 | | 3218.10 | | O II | 107 | 3227.114 | | Ce II | 95 | 3234.17 | | S III | 3 | | 3218.20 | | Hf II | 78 | 3227.17 | P | Fe I | 247 | 0004 074 | | Ce II | 00 | | 3218.21 | | Ne II | 13 | 3227.23 | • | Cr I | 162 | 3234.274
3234.50 | P | Ti II | 80
46 | | 3218.26 | P | T1 II | 46 | 3227.409 | | v I | 134 | 3234.504 | - | V II | 61 | | 3218.270 | | T1 II | 84 | 3227.48 | | Cr II | 153 | 3234.517 | | Ti II | 2 | | 3218.34 | P | Fe III | 87 | 3227.732 | | Fe II | 6 | 3234.614 | | Fe I | - 8 | | 3218.44
3218.614 | • | Ti II
Sm II | 46 | 3227.752
3227.798 | | Co I
Fe I | 8
157 | 3234.649
3234.923 | | Ni I
Fe II | 21 | | 3218.68 | | Zr II | 35 | 3228.003 | | Fe I | 379 | 3234.926 | | Na II | 1
10 | | 3218.683 | | Ti I | 90 | 3228.090 | | Mn I | 14 | 3235.003 | | Mn I | | | 9218.70 | | Cr I | 92 | 9228.169 | | Ti I | 179 | 3235.20 | | Cr II | 139 | | 3218.869 | | v I | 72 | 3228.262 | | Fe I | 157 | 3235.33 | P | Fe I | 309 | | 3218.944 | | Ce II | 75 | 3228.36 | P | T1 II | 46 | 3235.448 | | Tm II | 8 | | 3218.98 | | Pd I | 2 | 3228,564 | | Ce III | 1 | 3235.532 | | Co I | 71,138 | | 3219.13
3219.150 | | Cr II
Co I | 140
8 | 3228,600
3228,605 | | Fe II
Ti II | 24 | 3235.592
3235.753 | | Fe I
Ni I | 308
11 | | 3219.212 | | Ti I | 179 | 3228.784 | | Sm II | 52 | 3235.783 | | CoI | 72 | | 3219.32 | | P III | 4 | 3228.81 | | Zr II | 49 | 3235.95 | P | Ti I | 47 | | 3219.37 | P | Fe I | 308 | 3228.900 | | Fe I | 157 | 3236, 106 | | Gd II | 75 | | 3219.58 | _ | Fe I | 156 | 3229.123 | | Fe I | 8 | 3236.122 | | Ti II | 24 | | 3219.60 | P | Fe I | 254 | 3229,193 | | Ti II | 2 | 3236,17 | | Zr II | 104 | | 3219.616 | | Cr I | 220 | 3229.204 | | Cr I | 220 | 3236,223 | | Fe I | 7 | | 3219.77 | P | Fe I | - 8 | 3229.36 | | Co I | 152 | 3236,403 | | CP II | 1 | | 3219.79 | | Cr II | 63 | 3229.363 | | Ce II | 94 | 3236.573 | | Ti II | 2 | | 3219.806
3219.811 | | Fe I | 158
94 |
3229.38
3229.397 | | Cr II
Ti II | 46
36 | 3236.61
3236.698 | | Zr II
Sm II | 125 | | 3220.467 | | Ti II | 9 | 3229.50 | | Ne II | 43 | 3236.735 | | Ce II | 101 | | 3220.62 | | Co I | 152 | 3229.604 | | v r | 134 | 3236.778 | | Mn I | 14 | | 3220.66 | | Hf II | 30 | 3229.73 | | Zr II | 149 | 3236,806 | | Tm II | 13 | | 3220.772 | | Ir I | 5 | 3229.78 | | Fe I | 247 | 3236.82 | | A II | 83 | | 3220.835 | | Fe II | 106 | 3229,89 | | Cr II | 114 | 3237.028 | | Co I | 7 | | 3221.151 | | T1 I | 26 | 3229.994 | | Fe I | 546 | 3237.234 | | Fe I | 256 | | 3221.171 | | Ce II | 215 | 3230 | P | 0 V | 9 | 3237.402 | | Fe II | 81 | | 3221.273 | | N1 I | 185 | 3230.09 | P | Fe I | 27 | 3237.414 | | Mn I | | | 3221.578
3221.380 | | Ru II
V II | 3
109 | 3230.16
3230.16 | P | Fe I
Ne II | 156
11 | 3237.54
3237.729 | | Zr II
Cr I | 50
114 | | 3221.380 | | Ti I | 179 | 3230.16 | | Fe I | 158 | 3237.729
3237.815 | | Fe II | 114
81 | | 3221.64 | | A II | 46 | 3230.496 | | Fe II | 95 | 3237.876 | | V II | 38 | | 3221.652 | _ | N1 I | . 8 | 3230.55 | | Si III | 6 | 3238.087 | | Cr I | 114 | | 3221.76
3221.036 | P | Ti II
Fe I | 46
188 | 3230.559
3230.646 | | Sm II
V I | 21 | 3238.224 | | Ti I | 179 | | 3221.936 | | Le I | 156 | 3230.646 | | 4 I | 13 | 3238.31 | | Fe III | 79 | | 3221.978 | | Ru II | 7 | 3230.719 | | Mn I | 14 | 3238.32 | P | Fe I | 545 | | 3222 | P | 0 V | 5,9 | 3230.919 | | V II | 48 | 3238.50 | | Cr I | 162 | | 3222.05
3222.069 | P | Fe I
Fe I | 451
156 | 3230.963
3231.09 | P | Fe I
Ni I | 157
106 | 3238.535 | | Fe I | 397 | | 3222.42 | | A II | 132 | 3231.10 | • | 8 111 | 3 | 3238.57
3238.621 | | GG II | 9
92 | | 9222.48 | | 2r II | 104 | 9231.20 | | Y II | 68 | 3238.74 | | Fe III | 04 | | 3222.741 | | Ti I | 26 | 3231.236 | | Ce II | 149 | 3238.77 | | Cr II | 63 | | 3222.843
3223.08 | P | Ti II
Fe I | 2 | 3231.315 | | Ti II
Nd II | 9
42 | 3239 | P | 0 V | 5 | | 3223.08 | • | Fe I | 682
51 | 3231.349
3231.509 | | Tm II | 42
13 | 3239.029.
3239.037 | | Fe I
Ti I | 141,142
2 | | | | - | | | | | , | 0_00.001 | | | . = | | | | | | | _ | *** | Multiplet No. | .I A | Туре | Element | Multiplet No. | |--------------------------|--------|-----------------|----------------|----------------------|--------|---------------|---------------|---|--------|----------------|---------------| | A | Type | Element | Multiplet No. | IA | Type | Element | - | 3256.779 | | v I | 138 | | 3239.04 | | Fe III | 63 | 3248.516 | | Mn I
Ti I | 14
89 | 3257.072 | | Gd II | 92 | | 3239.101 | | Rh II | 2 | 3248.602
3248.602 | | Ti II | 66 | 3257.244 | | Fe I | 27,451
94 | | 3239.14 | | Cr I
Co I | 92
47 | 3248.70 | | Ti II | 9 | 3257.358 | | Fe II
Fe I | 90 | | 3239.256
3239.35 | P | Fe I | 379 | 3249 | P | 0 V | 9 | 3257.594
3257.822 | | Cr I | 113 | | 3239.436 | • | Fe I | 157 | 3249.037 | P | Fe I
Fe II | 308
65 | 3257.83 | | s II | 17 | | 3239.46 | P | Fe I | 157 | 3249.16
3249.204 | P | Fe I | 253 | 3257.893 | | v II | 108
178 | | 3239.657 | | Sm II
Ti II | 48
24 | 3249.35 | | La II | 31 | 3257.894 | | Fe II
C III | 6 | | 3239.664 | | V II | 61 | 3249.370 | | T1 II | 23 | 3257.90 | | 0 111 | • | | 3239.833 | | | | | | NA T | 10 | 3257.965 | | Na II | 14 | | 3239.87 | P | Fe II | 81 | 3249.440
3249.464 | | N1 I
V II | 82 | 3258.01 | | Cr II | 152 | | 3240.013 | | Fe I | 545 | 3249.566 | | v I | 13 | 3258.035 | | Co I | 47
4 | | 3240.07 | P | Cr II
Fe I | 140
158 | 3249.617 | | V II | 38 | 3258.048
3258.413 | | Tm II
Mn I | 14 | | 3240.11
3240.230 | • | Tm II | | 3249.657 | | Fe II | 81
75 | 3258.62 | P | Fe I | 157 | | 3240.399 | | MA I | 13 | 3249.742 | | A II | 47 | 3258.67 | | Si III | 12 | | 3240.516 | | Rh II | 6 | 3249.82
3249.911 | | Fe II | 78 | 3258.77 | | Cr II | 159 | | 3240.616 | | Mn I
Ti II | 14
9 | 3249.995 | | CoI | 26 | 3258.773 | | Fe II
Pd I | 81
-5 | | 3240.71
3240.785 | | v 11 | 61 | 3250.187 | | Gd II | 92 | 3258.80 | | ru r | · | | 0210,1.00 | | | | | | Fe III | 37 | 3259.007 | | Ru II | 6 | | 3240.84 | P | T1 I | 47 | 3250.27
3250.34 | P | Fe II | 78 | 3259.04 | | T1 I | 123 | | 3240.85 | P | Zr II | 12
25 | 3250.372 | • | Sm II | 2 | 3259.048 | | Fe II | . 81 | | 3240.951
3241.01 | | Cr I
Zr II | 4 | 3250.400 | | Fe I | 142,379 | 3259 . 2 0
3259 . 2 50 | | Co I
Gd II | 153
92 | | 3241.05 | | Co I | 9 | 3250.42 | | Zr I
Zr II | 19
125 | 3259.32 | | CI III | 6 | | 3241.161 | | Sm II | 6 | 3250.44
3250.51 | | Co I | 154 | 3259.42 | | T1 I | 123 | | 3241.38 | _ | Cr II | 153 | 3250.58 | | CrI | 114 | 3259.44 | _ | C III | 6 | | 3241.43 | P
P | Fe I
Fe I | 158
27 | 3250.634 | | Fe I | 95 | 3259.44
3259.60 | P | Fe II
Cr I | 178
25 | | 3241.50
8241.500 | F | Tm II | 4 | 3250.743 | | N1 I | 39 | 3239.00 | | 0. 1 | | | | | | | 3250.747 | | Mo II | 2 | 3259.684 | | A 11 | 48 | | 3241.586 | | Sm II
Si III | 22
6 | 3250.775 | | V II | 171 | 3259.71 | _ | A II | 81 | | 3241.67
3241.685 | | Fe II | 80 | 3250.79 | | Cr II | 61 | 3259.75 | P | Fe II
Cr I | 114 | | 3241.835 | | Be II | 5 | 3251.135 | | Mn I | 14
93 | 3259.975
3259.991 | | Fe I | 157 | | 3241.984 | | Ti II | 9 | 3251.236
3251.32 | | Fe I
Sc II | 93
5 | 3260.11 | | Zr I | 85 | | 3242.18 | | Zr II | 126
255 | 3251.34 | P | Fe II | 137 | 3280.231 | | Mn I | 14 | | 3242.268 | | Fe I*
Y Il | 10 | 3251.46 | P | Zr II | 62 | 3260.259 | | Ti I
Ti II | 89
45 | | 3242.30
3242.304 | | Ga II | 92 | 3251.656 | | Co I | 152 | 3260.259
3260.276 | | Fe Í | 250 | | 3242.72 | | Pd I | 3 | 3251.66 | | Pd I | 6 | 020012.0 | | | | | | | Gd II | 75 | 3251.836 | | Cr I | 113 | 3260.286 | | Co I | 104 | | 3242.834 | | Ni I | 22 | 3251.869 | | VII | 108 | 3260.564 | | Cb II
Co I | 107 | | 3243.058
3243.118 | | Fe I | 192 | 3251.911 | | Ti II
Fe I | 2
247 | 3260.814
3260.975 | | Ce II | 258 | | 3243.34 | | Ne II | 15 | 3252.12
3252.40 | P
P | Fe II | 78 | 3260.98 | | O III | 8 | | 3243.36 | | W II | 13, 15 | 3252.483 | _ | Ce II | 182 | 3261.050 | | Ca I | 1 | | 3243.370 | | Ce II
Fe I | 214
381,710 | 3252.743 | | Gđ II | 136 | 3261.081 | | V I
Fe I | 712 | | 3243.406
3243.513 | | Ti I | 179 | 3252.914 | | T1 II | 2 | 3261.332
3261.509 | | Fe II | 195 | | 3243.579 | | Co I | 47 | 3252.928
3252.94 | | Fe I
O III | 252
9 | 3261.56 | | Cr II | 159 | | 3243.70 | | A II | 47 | 3202.84 | | • | _ | | | | | | 3243.723 | | Fe II | 119 | 3252.94 | P | Ti II | 23 | 3261.596 | | Ti II | 66,89
109 | | 3243.74 | P | V II | 48 | 3252.948 | ı | Mn I
Cr I | 14
114 | 3261.80
3262.009 | | Fe I | 710 | | 3243.780 | | Mn I | 14 | 3253.26
3253.401 | | Sm II | 114 | 3262.23 | | C III | 6 | | 3243.803 | | Ti I
Co I | 26
69 | 3253.41 | • | La II | 114 | 3262.284 | | Fe I | _ | | 3243.840
3244.115 | | Cr I | 25 | 3253.416 | 3 | Co I | 70 | 3262.290 | | Os I
Sn I | 3
3 | | 3244.15 | | Ne II | 14 | 3253.44 | | 81 III | 12
681 | 3262.340
3262.44 | ' | Fe III | 74 | | 3244.17 | P | Sc II | .5 | 3253.610
3253.70 | ' | Fe I
Hf II | 1 | 3262.515 | i | Gd II | :75 | | 3244.190 | | Fe I | 156
6 | 3253.839 |) | Fe I | 250 | 3262.63 | | Ti I | 88 | | 3244.44 | | cı iii | v | | | | | 3263.04 | | Fe III | 64 | | 3244.53 | P | Ti I | 47 | 3253.943 | | Sm II
Fe I | 40
257 | 3263.213 | 3 | Co I | 124 | | 3244.69 | | Cr I | 114 | 3253.954
3254.03 | • | A II | 46 | 3263.238 | | v I | 12 | | 3245 | P | 0 V | 9
32 | 3254.039 | • | Mn I | 12 | 3263.25 | P | Cr I | 25 | | 3245.13
3245.31 | | La II
Cr II | 62 | 3254.070 | | CP II | 1 | 3263.33 | | CP II | 38 | | 3245.370 | | Ni I | 108 | 3254.203 | | Co I | 69
2 | 3263.368
3263.378 | | Gd II | 75 | | 3245.485 | | Cr 1 | 25 | 3254.261 | | Fe I | 249 | 3263.37 | | Fe I | 144 | | 3245.542 | | Cr I
Co I | 113
138 | 3254.32 | | Lu II | 4 | 3263.43 | | Ne II | 15 | | 3245.750
3245.80 | P | Fe I | 920 | 3254.36 | | Fe I | 620 | 3263.45 | P | Fe I | 680 | | 0240.00 | - | | | | _ | a_ ** | 6 | 3263.60 | | A II | 46 | | 3245.984 | | .Fe I | 27 | 3254.37°
3254.46 | | Sm II
Fe I | 158 | 3263.686 | В | Ti II | 45 | | 3246.005 | | Fe I | 8 ·
309 | 3254.63 | | Co. I | 154 | 3263.98 | | La II | 114 | | 3246.05
3246.492 | P | Fe I
Fe I | 252 | 3254.73 | 4 | Fe I | 308 | 3264, | P
T | O V
Gall | 9
92 | | 3246.674 | | Ce II | 130 | 3254.77 | | V I | 13 | 3264.13°
3264.22 | | Fe III | 64 | | 3246.973 | | Fe I | 95 | 3254.77
3254.95 | | V 11
Cr I | 38 | 3264.26 | | Cr II | 61 | | 8247.01 | | Cr II | 62
70 | 3255.28 | | Hr II | 7 | 3204.28 | 1 | Rh II | 8 | | 3247 . 170
3247 . 170 | | Co I
Fe Il | 70
81 | 3255.30 | | Cr II | 138 | 3284.44 | | Ni I
Fe I | 90 | | 3247.17:
3247.27 | | Cr I | 25 | 3255.39 | | Ne II | 23 | 3264.52 | i.C | TA T | ••• | | 2-2-1-W1 | | | | 90EE 40 | | Fe III | 96 | 3264.71 | .1 | Mn I | 13 | | 3247.29 | | Fe I | 157 | 3255.49
3255.62 | | Cr II | 153 | 3264.71 | .6 | Fe I | 157 | | 3247.33
3247.39 | | Cr II
Fe II | 61
119 | 3255.67 | 8 | Sc I | 9 | 3264.71 | | Go I
Fe II | 47
.1 | | 3247.47 | | CP II | | 3255.81 | | Gd II | 92 | 3264.76
3264.81 | | 2r II | 62 | | 3247.54 | | Cu I | 1 | 3255.88 | | Fe II
Mn I | 1
14 | 3264.82 | | Co I | 153 | | 3247.55 | | A II | | 3256.13
3256.52 | | Fe I | 158 | 3264.83 | P | Co I | 9 | | 3247.90 | | V II
Ne II | | 3256.52 | | Fe I | 397 | 3264-84 | | Co I
Fe I | 105
8 | | 3248.15
3248.20 | | Fe I | 157 | 3256.55 | 3 | Zr II | 49 | 3265.04
3265.35 | | Co I | 106 | | 3248.45 | | N1 I | 21 | 3256.54 | ł | Fe III | 75 | 0200100 | | | | | | | | | | | | | | | | | | I A | Туре | Element | Multiplet No. | I A | Type | Element | Multiplet No. | | I A | Туре | Element |
Multiplet No. | |----------------------|------|----------------|---------------|----------------------|----------|-----------------|-----------------------|----|----------------------|------|-----------------|--------------------| | 3265.46 | | 0 III | 8 | 3273.50 | | Ni I | 108 | | 3280.91 | | Y II | 29 | | 3265.480 | | Ti I | 123 | 3273.52 | | 0 11 | 39 | | 3281.120 | | v II | 136 | | 3265.55
3265.616 | P | Fe I
Fe I | 308
91 | 3273.53 | | Fe III | 7 | | 3281.293 | | Fe II | 1 | | 3265.67 | | La II | 45 | 3273.619
3273.66 | | Sc I
Hf II | 9
7 ₆ - | | 3281.585
3281.607 | | Co I
Gd II | 8
92 | | 3265.893 | | V II | 74 | 3273.957 | | Cu I | ī | | 3281.72 | | A II | 47 | | 3265.899 | | V I | 138 | 3274.047 | | Ti I | 123 | | 3281.755 | | V II | 136 | | 3266.25 | | Cr II | 121 | 3274.183 | | Gd II | 92 | | 3281.83 | P | Fe I | 50 | | 3266.39
3266.43 | | Eu II
Ti II | 24
57 | 3274.220
3274.24 | P | Na TT
Fe I | 14
95 | | 3281.880
3281.94 | | N1 I
O III | 106
8 | | 0.2007.20 | | | •• | 0217127 | • | | 80 | | 0201104 | | 0 ,111 | • | | 3266.446 | | Ir I | 2 | 3274.452 | | Fe I | 710 | | 3282.232 | | Co I | 47 | | 3266.633 | | Tm II | 8 | 3274.50 | | V II | 163 | | 3282.305 | | Gd II | 92 | | 3266.634
3266.68 | | Cr I
Fe III | 25
7 | 3274.640
3274.05 | | Be II
Fe III | 2
90 | | 3282.329
3282.333 | | Ti II
Zn I | 66
4 | | 3266.91 | | V II | 137 | 3274.661 | | Ca I | 12 | | 3282.51 | | Y II | 65 | | 3266.938 | | Fe II | 65 | 3274.864 | | Ce II | 104 | | 3282.534 | | V II | 72 | | 3267.035 | | Fe II | 80 | 3274.90 | | Ni II | 1 | | 3282.696 | | N1 I | 7 | | 3267.31
3267.401 | | O III
Tm II | 8
13 | 3274.95
3275.15 | | Fe III
Zr II | 96
12 | | 3282.725
3282.73 | | Fe I
Zr I | 449 | | 3267.41 | | Ti I | 64 | 3275.20 | | Ne II | 29 | | 3282.777 | | Nd II | 19
41 | | | | | | | | | | | | | | | | 3267.480 | | Rh II | 6 | 3275.218 | _ | Nd II | | | 3282.827 | | Ni I | 106 | | 3267.51
3267.639 | | Sb I
Mo II | 2
6 | 3275.24
3275.293 | P | Fe I
Ti II | 27
23 | | 3282.84
3282.891 | | Zr II
Fe I | 125 | | 3267.709 | | V II | 7 | 3275.60 | P | Ni I | 107 | | 3283.04 | | Cr II | 680
1 59 | | 3267.794 | | Mn I | | 3275.65 | | Zr II | 92 | | 3283.11 | | Al III | 10 | | 3267.945 | | Os I | 1 | 3275.66 | | Co I | 43 | | 3283.14 | P | T1 II | 57 | | 3268.064
3268.234 | | Ni I
Fe I | 95 | 3275.67 | | 0 V | 5 | | 3283.21 | | Sn II | 2 | | 3268.335 | | Gd II | 4 | 3275.685
3275.776 | | Fe I | 308
5 | | 3283.22
3283.30 | | P III
Fe III | 2 | | 3268.48 | | Cr II | 62 | 9278 946 | | Fe I | 450a | | 0280.011 | | V I | 14
12 | | **** | | n | | | | | | | | | | | | 3268.512
3268.61 | | Fe II
Ti I | 118
88 | 3275.92
3276.08 | | Cr II
Fe III | 151
7 | | 3283.39
3283.40 | P | Hf II
Fe II | 30 | | 3268.722 | | Mn I | 99 | 3276.12 | | V II | 7 | | 3283.400 | P | Tm II | 118
7 | | 3268.92 | P | Fe II | 81 | 3276.25 | | Si III | 12 | | 3283.41 | | C1 III | 2 | | 3268.971 | | NT I | 9.1 | 3276.251 | | Ce 11 | 93 | | 3283.430 | | Fe 1 | 27 | | 3269.05
3269.090 | | A II
Ca I | 46
12 | 3276.28
3276.37 | | Cr II
Zr II | 172 | | 3283.463
3283.466 | | Co I | 107 | | 3269.240 | | Fé I | 710 | 3276.477 | | Fe I | 35
90 | | 3283.573 | | Rh I | 107
4 | | 3269.42 | P | Fe I | 95 | 3276.483 | | Co I | 154 | | 3283.75 | | Fe III | 7 | | 3269.494 | | Ge I | 1 | 3276.606 | | Fe II | 92 | | 3283.777 | | Co I | 47 | | 3269.60 | P | Rh II | 8 | 3276.747 | | Sm II | 40 | | 3283.95 | | La II | 120 | | 3269.66 | • | Zr I | 34 | 3276.774 | | Ti II | 48
45 | | 3284.360 | | V I | 71 | | 3269.75 | P | Cr II | 152 | 3276.81 | | C1 11 | 30 | | 3284.432 | | N1 I | 96 | | 3269.77 | | Cr II | 138 | 3276.811 | | Tm II | 4 | | 3284.57 | | 0 111 | 8 | | 3269.77
3269.772 | | Ti II
Fe II | 57
118 | 3276.998
3277.082 | | T1 II
V II | 8
137 | | 3284.588
3284.72 | | Fe I
Zr II | 91
-4 | | 3269.86 | | Ne II | 15 | 3277.23 | | NA I | 90 | | 3284.996 | | Fe II | 93 | | 3269.904 | | Sc I | 9 | 3277.347 | | Fe II | 1 | | 3285.022 | | V II | 108 | | 3269.964 | | Fe I | 90 | 3277.448 | | V II | 194 | | 3285.093 | | Nd II | | | 3270.115 | | A II | 94 | 3277.662 | | Co I | 152 | | 3285.20 | | Fe I | 396 | | 3270.14 | | Cr II | 61 | 3277.69 | | o II | 23 | | 3285.224 | | Ce II | 148 | | 3270.198
3270.23 | | Co I | 152 | 3277.71 | | V II | 137 | | 3285.425 | P | Fe II | 1 | | 3270.23 | | Fe III
Mn I | 63 | 3277.78
3277.82 | | Eu II
P III | 24
2 | | 3285.54
3285.603 | P | Fe I
Na II | 248
4 | | 3270.515 | | Gd II | 92 | 3277.853 | | Fe II | 65 | | 3285.609 | | Tm II | 10 | | 3270.562 | _ | T1 I | 123 | 3277.86 | | Cr I | 219 | | 3285.664 | | Sm II | 21 | | 3270.69
3270.70 | P | Fe I
Cr I | 954
219 | 3277.939 | | V I | 12 | | 3285.672
3285.77 | | V II
Zr II | 162
91 | | 3270.79 | | Ne II | 2 | 3278.04
3278.105 | | Fe III
Co I | 7
153 | | 3285.85 | | A III | 1 | | 3270.98 | | 0 11 | 39 | 3278.290 | | Ti II | 66 | | 3285.89 | | Zr II | 62 | | | | | | | | | | | | | | | | 3271.002
3271.118 | | re I
Ni I | 91
23 | 3278.43
3278.553 | | Y I
Mn I | 12 | | 3285.96
3286.026 | | Cr II
Fe I | 137
90 | | 3271.124 | | V II | 7 | 3278.741 | | Fe I | 144,250 | | 3286.029 | | Ce II | 199 | | 3271.13 | | Zr II | 22 | 3278.79 | | Cr II | 113 | +1 | 3286.067 | | CaI | 12 | | 3271.151 | | Ce II | 146 | 3278.79 | | K III | | | 3286.229 | | Sm II | 48 | | 3271.17
3271.498 | P | Ni I
Fe I | 108
680 | 3278.842
3278.89 | | Co I
Zr II | 72
149 | | 3286.34
3286.463 | | Cr II
Fe I | 172
710 | | 3271.61 | | Rh II | 2 | 3278.922 | | Ti Í | 63 | | 3286.545 | | Co I | 46 | | 3271.612 | | Rh I | 6 | 3278.922 | | Ti II | 23 | | 3286.57 | | w II | 1 | | 3271.637 | | V I | 12 | 3279.25 | | 81 III | 12 | | 3286.71 | | A II | 65 | | 8271.052 | | Ti II | 66 | 3279.254 | | Co I | 70 | | 9286.755 | | Fe I | 91 | | 3271.666 | | Mo II | 6 | 3279.26 | | Zr II | 3 | | 3286.756 | | Ti II | 89 | | 3271.693 | | Fe I | 49 | 3279.529 | | Gd II | 92 | | 3286.946 | _ | N1 I | 19 | | 3271.778
3272.080 | | Co I
T1 II | 70
66 | 3279.54 | | Cr II | 121 | | 3286.98
3287.117 | P | N1 I
Fe I | 107
396 | | 3272.21 | | Zr II | 3 | 3279.649
3279.743 | | Fe II
.Fe I | 118
449 | | 3287.192 | | Col | 71 | | 3272.25 | | S II | 17 | 3279.842 | | Ce II | 68 | | 3287.192 | | GG II | 136 | | 3272.253 | | Ce II | 73 | 3279.844 | | A II | 73 | | 3287.221 | | N1 I | 55 | | 3272.30
3272.405 | P | Zr II
Co I | 62
152 | 3279.97 | n | 0 111 | 29 | | 3287.26
3287.31 | | Pd I
Zr II | 3
12 | | J&1 &1 TUU | | | 102 | 3279.97 | P | T1 II | 57 | | 0401101 | | 2. II | 14 | | 3272.60 | | Fe I | 51 | 3279.98 | | HP II | 9 . | | 3287.37 | | Al III | 10 | | 3272.71 | | Fe I | 712 | 3279.995 | | Ti II | 35 | | 3287.468 | | Fe II | 118 | | 3272.76
3272.77 | | Co I
Eu II | 151
24 | 3280.22
3280.261 | | P III
Fe I | 6
620 | | 3287.575
3287.59 | | O II | 154
23 | | 3272.807 | | Sm II | 40 | 3280.391 | | Ti I | 88 | | 3287.657 | | T1 II | 89 | | 3273.027 | | V I | 71 | 3280.58 | | Fe III | 7 | | 3287.70 | | Cr I | | | 3273.04
3273.36 | | Zr II
A II | 3. | 3280.682 | | Ag I | 1 | | 3287.827
3288.04 | | Co I
Cr II | 43
62 | | 3273.483 | | Sm II | 71 | 3280.75
3280.758 | | Zr II
Mn I | 34
10 | | 3288.142 | | Ti II | 8 | | 3273.499 | | Fe II | 118 | 3280.763 | | Fe I | 451 | | 3288.324 | | V II | 89 | | | | | | | | | | | | | | | | A. | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Type | Element | Multiplet No. | |--------------|------|-----------------|----------------------|----------------------|------|----------------|---------------|----------------------|------|-----------------|---------------| | .428 | | Ti II | 66 | 3299.11 | | Co I | 151 | 3307.717 | | T1 II | 8 | | .575 | | T1 II | 66 | 3299.36 | _ | 0 111 | 3 | 3307.755 | | Cr I | 78 | | . 59 | P | T1 I | 63 | 3299.41 | P | Sc II | 35 | 3307.90 | | C1 II | 37 | | .660 | | Fe I | 144 | 3299.413 | P | Ti I
Ti II | 61
8 | 3308.02
3308.15 | | Eu II
Cr II | 25
137 | | .81
.81 | | Fe III
Zr II | 7
4,62 | 3299.44
3299.511 | F | Fe I | 49 | 3308.246 | | V I | 12 | | .972 | | Fe I | 90 | 3299.77 | | Fe III | 96 | 3308.391 | | Tr I | 87 | | .985 | | V II | 109 | 3299.771 | | Fe II | | 3308.4 | | Y II | 64 | | .016 | | Mo I | 11 | 3300.056 | | Fe II | 228 | 3308.480 | | V II | 137 | | .06 | | K III | 4 | 3300.148 | | Nd II | | 3308.482 | | Co I | 155 | | . 150 | | Gd II | 75 | 3300.152 | | Ce II | 166 | 3308.517 | | Gd II | 4 | | . 347 | | Fe II | 65 | 3300.20 | | Fe III | 96 | 3308.688 | | Co I | 105 | | . 36 | | Yb II | 1 | 3300.819 | | WI | 5 | 3308.75 | P | Fe I | 190 | | .391 | | V II | 7 | 3300.905 | | V II
Gd II | 60
74 | 3308.785
3308.806 | | Mn I
Ti II | 11
7 | | .442
.80 | | Fe I
Cl III | 380
2 | 3300.976
3301.09 | | Fe III | 50 | 3308.814 | | Co I | 153 | | . 13 | | 0 11 | 23 | 3301.21 | | Cr II | 137 | 3308.86 | | PII | 4 | | . 23 | | Pt I | 1 | 3301.227 | | Fe I | 380 | 3308.91 | P | Ni I | 107 | | . 240 | | V II | 108 | 3301.559 | | Os I | 1 | 3309.176 | | V I | 55 | | .54 | | N1 II | 5 | 3301.56 | | 0 11 | 23 | 3309.32 | P | N1 I | 105 | | .69 | | Ni II | 1 | 3301.587 | | Ru I | 4 | 3309.32 | P | T1 I | 122 | | .722 | | Fe I | 90 | 3301.66 | | A II | | 3309.40 | | Fe III | | | 988 | | -Fe I | 95 | 3301.678 | | Sm II | 21,48 | 3309.428 | | N1 I | | | .001 | | Tm II
V II | 3
60 | 3301.71 | | T1 II
Sr I | 44
7 | 3309.501 | P | T1 I
T1 II | 87
44 | | .04 | P | Fe I | 954 | 3301.734
3301.87 | | Pt I | 7 | 3309.53
3309.582 | F | Gd II | 24 | | .47 | r | A II | 30% | 3301.88 | | A III | 1 | 3309.730 | | Ti I | 190 | | .676 | | V I | 12 | 3301.927 | | Fe I | 617 | 3309.78 | | Ne II | 7 | | .75 | |
Cr II | 68 | 3301.95 | | Eu II | 24 | 3309.804 | | Tm II | | | ,022 | | Fe I | 680 | 3302.096 | | Ti II | 8 | 3309.82 | | Cr I | 161 | | .04 | | Fe III | 7 | 3302.15 | | Pd I | 3 | 3309.90 | | Zr II
Ni I | 72 | | .078 | | Ti I
Ga II | 0 2
74 | 3302.19
9902.94 | | Fe III
Na I | 37
2 | 3310.202
3310.317 | | Fe I | 38
449 | | . 22 | | Co I | 153 | 3302.454 | | Tm II | 7 | 3310.496 | | Fe I | 679 | | .312 | | Mo II | 6 | 3302.588 | - | Zn I | 4 | 3310.55 | | Ne II | 23 | | ,590 | | Fe I | 91 | 3302.66 | | Zr II | 85 | 3310.65 | | Cr II | 120,158 | | .89 | P | Fe II | 136 | 3302.86 | | Cr I | 161 | 3310.661 | | Sm II | 31 | | 146 | | Fe I
V II | 51 | 3302.861 | | Fe II | 1 | 3311.25 | | A III | 1
2 | | .146
.210 | | V II
Co I | 235
154 | 3302.94
3302.941 | | Na I
Zn I | 2
4 | 3311.30
3311.34 | | Ne II
Zr II | 34 | | .48 | P | Ti II | 57 | 3303.11 | | La II | 45 | 3311.451 | | Fe I | . 27 | | .66 | • | A II | 83 | 3303.278 | | Mn I | | 3311.708 | | Sc II | 41 | | 674 | | Ni I | 90 | 3303.466 | | Fe II | 1 | 3311.905 | | Mn I | 10 | | .81 | | Cr I | 219 | 3303.574 | | Fe I | 449 | 3311.929 | | Cr II | 51 | | .861 | | Co I | 107 | 3303.881 | | Co I | 47 | 3312.06 | | Cr I | 78 | | .9 | | Y II
A II | 64 | 3304.01 | | Y II | 66 | 3312.148 | | Co I
Cr II | 69 | | .95
.098 | | A II
Co I | 154 | 3304.119
3304.31 | | Co I
Fe III | 154 | 3312.18
3312.215 | | Ce II | 51
25 | | .220 | | Ru II | 2 | 3304.36 | P | Fe I | 710 | 3312.232 | | Fe I | 450a | | .44 | | La II | 155 | 3304.433 | - | Fe II | 93 | 3312.30 | | 0 111 | 3 | | .50 | | Fe III | 14 | 3304.474 | | V II | 136 | 3312.320 | | N1 I | 106 | | .536 | | Co I | 152 | 3304.523 | | Sm II | 2 | 3312.39 | | Y II | 65 | | .85 | | Fe III | 37 | 3304.73 | | Cr II | 120 | 3312.415 | | Sm II | 21 | | .03 | - | Zr II
Fe II | 36
93 | 3304.836 | | Ce II
N1 I | 103 | 3312.690 | | Ti I | 190 | | .06
.13 | P | 0 II | 23 | 3304.950
3305.15 | | 0 11 | 108
23 | 3312.707
3312.736 | | Fe II
Sc. II | 1
41 | | . 24 | | Fe III | 20 | 3305.15 | | Zr II | 2 | 3312.78 | • | C1 II | 8 | | 240 | | Fe II | 79 | 8305.185 | | Sm II | 35 | 3312.87 | | Hr I | 3 | | . 289 | | Ce II | 147 | 3305.22 | | Fe III | 7 | 3312.90 | P | T1 II | 56 | | .427 | | Cr II | 51 | 3305.634 | | Fe II | 79 | 3312.992 | | Ni I | 106 | | .813 | | Sm II | 13 | 3305.730 | | Co I | 152 | 3313.08 | | Cr II | 119 | | .814 | | Fe II | 1 | 3305.75 | P | Fe I | 618 | 3313.116 | | Co I | 153 . | | .027 | | Mn I
V II | 11
162 | 3305.77
3305.971 | | · O III | 8
01 | 3313.33
3313.344 | | Eu II | 24
8 | | .41 | | Zr II | 62 | 3306.053 | | Ti II | 44 | 3313.470 | | Al II | 8 | | .467 | | Fe I | 250 | 3306.27 | | Zr II | 3 | 3313.524 | | Mn I | 30 | | .668 | | Gd II | 21 | 3306.35 | P | Fe I | 544 | 3313.539 | | Sc II | 35 | | .786 | | He I | 9 | 3306.356 | | Fe I | 91 | 3313.70 | | Zr II | 61 | | .806 | | Fe I | 619 | 3306.388 | | Sm II | 48 | 3313.721 | | Cr I | 161 | | .826 | | re II | 92 | 3306.45 | | C1 11 | 37 | 3313.723 | | Fe I | 50 | | .882
.883 | | Mn I
Ce II | 12
247 | 3306.495
3306.50 | | Fe I
A II | 680 | 3313.731
3313.996 | | Gd II
Fe II | 24
1 | | .528 | | V II | 108 | 3306.60 | | 0 II | 23 | 3313.996
3314 | P | O VI | 4 | | .68 | P | Ti I | 122 | 3306.703 | | Fe I | 396 | 3314.06 | • | Cr II | 158 | | .684 | | Mo II | 6 | 3306.879 | | Ti I | 190 | 3314.070 | | Fe I | 736 | | .74 | | Ne II | 2 | 3306.94 | | Fe III | 73 | 3314.073 | | Co I | 43,149 | | .888 | _ | Fe II | 91 | 3306.95 | | Cr II | 150 | 3314.345 | | Co I | 152 | | | P | 0 V | 9 | 3306.98 | | La II | 17 | 3314.393 | | Mn I | 30 | | .02
.104 | P | Ni I
Sm II | 91 | 3307.013
3307.015 | | Ni I
Fe I | 107
450 | 3314.422
3314.450 | | Ti I
Fe I | 87
250 | | .133 | | Fe I | 90 | 3307.017 | | Sm II | | 3314.49 | | Zr II | 47 | | .139 | | VI | 12 | 3307.044 | | Cr II | 51 | 3314.50 | | S II | 17 | | . 21 | | Ti II | 44 | 3307.156 | | Co I | 69 | 3314.523 | | Ti I | 87 | | . 224 | *. | Mn I | , | 3307.234 | | Fe I | 617 | 3314.56 | P | Cr I | 182 | | .318 | | Cr I | 161 | 3307.24 | | A II | 83 | 3314.57 | | Cr II
Ne II | 150 | | .680 | | Co I
La II | 70 | 3307.362
3307.445 | | Rh II
V II | 5
60 | 3314.60
3314.721 | | Ne II
Ce II | 22
146 | | .72 | | V II | 7 | 3307.53 | | re III | 7 | 3314.742 | | Fe I | 680 | | .079 | | Fe I | 710 | 3307.534 | | Sr I | 7 | 3314.756 | Forb | Al II | 8 | | .086 | | v I | 55 | 3307.57 | P | Fe II | 65 | 3314.80 | P | Fe II | 93 | | | | | | | FIND | ING LIST | • | | | | | |----------------|-----------|----------------|----------------|-------------------------------|------|----------------|---------------------|----------------------|------|-----------------|---------------| | A | Type | Element | Multiplet No. | IA | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | | 4.862
1.876 | | V II
Mn I | 136
30 | 3322.310
3322.40 | | Ni I
K III | 39
1 | 3330.40
3330.620 | | 0 III
Sn I | 22,28
2 | | 4.883 | | Al II | 8 | 3322.474 | | Fe I | 396 | 3330.668 | | Mn I | 9. | | 4.981
5.035 | | Al II
Co I | 8
154 | 3322.69
3322.936 | | Cr II
Ti II | 51
7 | 3330.78
3330.880 | | Ne II
Y II | 19
85 | | 5.05 | | Pt I | 1 | 3322.98 | P | Ti II | 44 | 3331.07 | | Sc II | 35 | | 5.17
5.176 | P | Fe I
V II | 618
71 | 3322.99
3323.066 | | Zr II
Fe II | 34
· 92 | 3331.26
3331.32 | P | N1 I
N IT | 107
22 | | 5.19 | | Cr I | 78 | 3323.092
3323.35 | | Rh I
Hf II | 4
79 | 3331.382 | | Gd II
Fe I | 8
191 | | 5.237 | | Ti I | 190 | | | | | 3331.616 | | | | | 5.29
5.324 | | Cr II
Ti II | 51
65 | 3323.39
3323.53 | P | Ti II
Cr II | 43
51 | 3331.62
3331.778 | | Fe III
Fe I | 73
144 | | 5.44 | | C1 II | 8,37 | 3323.660 | | Ti I
V II | 255 | 3331.90 | | Zr II | 11 | | 5.516
5.53 | Forb
P | Al II
Fe II | 8
93 | 3323.731
3323.737 | | Fe I | 81
379 | 3332.111
3332.133 | | Ti II
Gd II | 65
73 | | 5.53 | | V II | 136
41 . | 3323.75
3323.896 | | Ne II
Ti I | 7
255 | 3332.17
3332.180 | | Mg I
Ni I | 4 | | 5.590
5.608 | | Al II | 8 | 3324.01 | | S III | 2 | 3332.42 | | . Cl II | 8 | | 5.663
5.80 | | Ni I
Fe III | 22
73 | 3324.03
3324.060 | P | Zr II
Cr II | 62
4 | 3332.49
3332.73 | | Hf I
O III | 28
2 | | | _ | | | | | Cr II | 120 | | | | | | 5.18
5.324 | P | Fe II
Mn I | 5
11 | 3324.10
3324.346 | | Cr II | 80 | 3332.879
3333.00 | | Cr I
O III | 182
22 | | 6.440
5.503 | | Mn I
Cr I | 90
255 | 3324.372
3 324. 541 | | Fe I | 617
191 | 3333.16
3333.27 | | Si II
Fe III | 6
18,73 | | 6.579 | | Sm II | | 3324.58 | | N II | 22 | 3333.388 | | Co I | 25 | | 8.79
6.86 | | Sc II
Cl II | 35
37 | 3324.61
3324.67 | P | Ti I
Cr II | 60
92 | 3333.41
3333.605 | P | Co I
Cr I | 71 | | 6.873 | | V II | 137 | 3324.72
3324.754 | | Fe III | 96
190 | 3333.606 | | Y II | 64 | | 5.875
7.038 | | Tm II
Sc II | 7
41 | 3324.838 | | Fe II | 194 | 3333.608
3333.635 | | V II | 59
52 | | 7.121 | | Fe I | 139 | 3324.87 | | s III | 2 | 3333.64 | | C1 11 | . 8 | | 7.295 | | V II | 7 | 3325.012 | | Fe II
Ti I | 93
190 | 3333.912 | _ | Ti I | 25 | | 7.305
7.693 | | Mn I
Sc II | 30
41 | 3325.155
3325.229 | | Ti I | 190 | 3334.12
3334.146 | P | Co I
Co I | 101
23 | | 7.70 | | S II
Ce II | 42
102 | 3325.240
3325.258 | | Co I
Sm II | 70 | 3334.223
3334.25 | | Fe I
Zr II | 190
58 | | 7.797
7.912 | | V II | 108 | 3325.329 | | Ce II | 25 | 3334.278 | | Fe I | 617 | | 7.93
7.90 | | Co I
Hf II | 69
4 | 3325.365
3325.468 | | Ti I
Fe I | 255
191 | 3334.35
3334.455 | | Ti I
Ce II | 190
25 | | 3.024 | | Ti II | 7 | 3326.16 | | 0 111 | 28 | 3334.471 | | Nd II | 42 | | 3.032 | | Na II | 16 | 3326.194 | | wr | 5 | 3334.62 | | Zr II | 21 | | 3.055
3.14 | | Gd II
N II | 24
22 | 3326.21
3326.27 | | La II
Co I | 121
46 | 3334.690
3334.87 | | Cr I
Ne II | 2 | | 3.362 | | T1 I | 190
45 | 3326.504
3326.590 | | Co I
Cr I | 43
182 | 3334.925
3335.192 | | Cr I
Ti II | 160
7 | | 3.398
3.52 | | Co I
Zr II | 35 | 3326.639 | | Ti I | 87 | 3335.28 | | Cr II | 80 | | 8.6
3.60 | | Y II | 64
151 | 3326.670
3326.68 | P | N1 I
T1 II | 108
56 | 3335.403
3335.46 | | Fe I
Cr II | 246
92 | | 3.62 | P | Fe II | 136 | 3326.74 | P | Sc II | 41 | 3335.482 | | v II | 161 | | 8.862 | | Fe II | 135 | 3326.762 | | Ťí II | 7 | 3335.513 | | Fe I | 49 | | 3.907
9.03 | | V II
Zr II | 137
4 | 3326.81
3326.991 | | Zr II
Co I | 91
152 | 3335.59
3335.72 | P | N1 I
Fe I | 307 | | 9.083 | | T1 II | 8 | 3327.16 | | Ne II
Mo I | 2
9 | 3335.776
3335.90 | p | Fe I
Fe II | 379
76 | | 0.156
9.258 | | Co I
Fe I | 155
449 | 3327.308
3327.392 | | N1 I | 90 | 3335.93 | , | Cr II | 119 | | 9.478
9.561 | | Co I
Co I | 154
45 | 3327.498
3327.578 | | Fe I
Tm II | 190
12 | 3336.12
3336.124 | | Ne II
Sm II | 46
31 | | 9.75 | | Ne II | 10 | 3327.63 | | Fe II | 64 | 3336.13 | | A III | 3 | | 9.78
9.822 | | Y II | 64
153 | 3327.67
3327.085 | | Zr II
Na II | 11
16 | 3336.150
3330.10 | | 0s I
cl 111 | 3
6 | | 9.89 | | Eu II | 24 | 3327.89 | | Y II | 18 | 3336.16 | | Cr II | 14 | | 0.14 | | C1 II | 8 | 3327.961 | | Fe I
Hf II | 86
10 | 3336.180 | | Gd II | 8
66 | | 0.155
0.257 | | Sm II
Ni I | 20
9 | 3328.21
3328.270 | | Nd II | 40 | 3336.25
3336.262 | | Y II
Fe I | 618 | | 0.29 | | Ne II | 12 | 3328.326
3328.351 | | Ti I
Cr II | 255
4 | 3336.330
3336.34 | P | Cr II
Fe II | 4
76 | | 0.422 | | Sc II
Gd II | 35
74 | 3328.714 | | Ni I | 20. | 3336.54 | P | Fe I | 450a
| | 0.57 | | C1 III | 6 | 3328.79
3328.80 | | N II
Cr I | 22
160 | 3336.69
3336.78 | | Mg I
O III | 4
22,28 | | 0.650
0.690 | | Fe I
Mn I | 190 | 9928.867 | | Fe I | 617 | 3336-97 | | Cr I | 255 | | 0.709 | | Sc II | 41 | 3329.013 | | Co I | 152 | 3336.984 | | Gd II | 72 | | 0.779
0.780 | | N1 I
V II | 108
149 | 3329.053
3329.06 | | Cr I
Cl III | 182
2 | 3336.998
3337.014 | | Ti II
Ni I | 43
17 | | 0.800 | | Fe I | 396 | 3329.07 | | La II
Fe II | 120 | 3337.171 | _ | Co I | 25 | | 0.902
1.013 | | Mo II
Be I | 6
1 | 3329.070
3329.12 | | C1 II | 37 | 3337.30 | P | Ni I
Ti I | 122
190 | | 1.086 | | Be I | 1 | 3329.20
3329.215 | | Ne II
Mo II | 12
6 | 3337.49
3337.666 | | La II
Fe I | 45
304 | | 1.179
1.19 | | Sm II
Cr I | 40
182 | 3329.3 | | S II | 17 | 3337.76 | P | V II | 136 | | 1.242 | | N1 I | 92 | 3329.345 | | Gd II | 74 | 3337.845 | | V II | 184 | | 1.347 | | Be I | 1 | 3329.45
3329.455 | | Cr II
Ti II | 150
7 | 3337.85
3337.93 | | Ti II
Zr II | 55
74 | | 1.348
1.491 | | Gd II
Fe II | 21
194 | 3329.466 | | Co I | 153 | 3338.19 | p | Fe II | 5 | | 1.539 | | y II
Ti I | 71
87 | 3329.532
3329.855 | | Fe I
V I | 542a
55 | 3338.41
3338.519 | | Co I | 61
123 | | 1.588
1.700 | | Ti II | 65 | 3329.89 | | Fe III | 18 | 3338.522 | | Fe II | 76 | | 1.857
1.912 | | Eu II
Co I | 21
106 | 3329.93
3329.988 | | Mg I
Sr I | 4 · 7 | 3338.643
3338.72 | | Fe I
Fe III | 396 | | 2.198 | | Co I | 104,149 | 3330.30
3330.340 | | N II
Gd II | 22 | 3338.758
3339.050 | | Ni I
Ni I | 54
104 | | 2.231 | | Sr I | 7 | 0000.04U | | 50 II | | 9999-000 | | 1 | -U E | | A | Туре | Element | Multiplet No. | I A | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |----------------|------|----------------|----------------|----------------------|------|-----------------|----------------------|----------------------|------|----------------|---------------| | .063 | | Nd II | 41 | 3347.298 | | Sm II | 48 | 3356.407 | | Fe I | 137 | | . 15 | | Co I | 148
190,446 | 3347.507 | | Fe I | 449 | 3356.464 | | Co I
Gd II | 104
24 | | .202 | | Fe I
Fe III | 190,446 | 3347.70 | | Fe III | 18 | 3356.513
3356.842 | | Co I | 151 | | .36
.54 | | Ti I | 178 | 3347.72
3347.837 | | P IV
Cr II | 1
4 | 3357.07 | | Fe III | 19 | | .588 | | Fe I | 502 | 3347.927 | | Fe I | 138 | 3357.215 | | Ce II | 164 | | .780 | | Co I | 155 | 3348.05 | | 0 III | 28 | 3357.26 | | Zr II | 3 | | .804 | | Cr II | 4 | 3348.08 | | O IV | 4 | 3357.40 | | Cr II | 79 | | .810 | | Ru II | 2 | 3348.112 | | Co I | 103 | 3357.40 | | Fe III | 63,72 | | .84 | | Si II | 6 | 3348.372 | | V II | 136 | 3357.72 | | Cr II | 91 | | .90 | | Cr II | 92 | 3348.535 | | Ti I | 25 | 3357.82 | P | Fe I | 448 | | . 344 | | Ti II | 7 | 3348.683 | | Sm II | | 3357.90 | | Ne II | 12 | | .42 | | C1 III | 2 | 3348.844 | | Ti II | 7 . | 3357.965 | | Fe II | 117
123 | | .55 | | Zr II
Fe I | 3
139 | 3349.035 | | Ti II
Cr I | 16 | 3358.003
3358.130 | | Co I
Mo I | 9 | | .566
.579 | | Sm II | 6 | 3349.072
3349.11 | | 0 17 | 4 | 3358.252 | | Fe II | 77 | | .74 | | 0 111 | 3 | 3349.17 | | Hf II | 20 | 3358.271 | | Ti I | 23 | | .77 | | Ti I | 190 | 3349.322 | | Cr I | 159 | 3358.30 | | Hf II | 63 | | .341 | | Co I | 148 | 3349.34 | | Cr II | 4 | 3358.434 | | Gd II | 41 | | .554 | | Ti I | 60,178 | 3349.399 | * | Ti II | 1 | 3358.49 | | A III | 3 | | .77 | | A II | 59 | 3349.68 | P | Cr II | 14 | 3358.501 | | Cr II | 4 | | .868 | | Ce II | 198 | 3349.739 | | Fe I | 377 | 3358.56 | P | T1 I | 169 | | .875 | | Ti I
Ti II | 24
16 | 3349.967 | | Ce II | 200 | 3358.59 | | Co II
w II | 2
13 | | .875 | | Fe I | 303 | 3350.097
3350.209 | | Ca I | 7 4
11 | 9958.6£
3358.620 | | Gd II | 8 | | .906
.98 | | Cr II | 119 | 3350.284 | | Fe I | 191 | 3358.72 | | N III | 5 | | . 151 | | Ti I | 23 | 3350.361 | | Ca I | 11 | 3358.74 | | Fe III | 72 | | . 225 | | Fe I | 137 | 3350.42 | | N1 II | 1 | 3358.78 | P | Fe II | 5 | | . 298 | | Fe I | 378 | 3350.474 | | Gd II | 7 | 3359.066 | | Co I | 69 | | .46 | | WII | 9 | 3350.548 | | Ti I | 178 | 3359.106 | | Ni I | 108 | | :.51 | | Cr II | 4 | 3350.548 | | Ti II | 43 | 3359.18 | | Fe III | 72 | | . 707 | | Ti Í | 25 | 3350.68 | | 0 III | 22 | 3359.284 | | Co I | 44 | | .734 | _ | Co I | 105 | 3350.875 | | Sm II | | 3359.496 | | Fe I | 25 | | - 76 | P | Fe I
N III | 396
7 | 3350.94 | | A II
O III | 109
22 | 3359.50 | | V II
Sc II | 148
4 | | :.77
 .09 | | WII | 13 | 3350.99
3351.06 | P | N1 I | 3 | 3359.679
3359.814 | | Fe I | 617 | | . 227 | | Cr I | 159 | 3351.138 | • | Co I | 151 | 3359.96 | | Zr II | 91 | | . 243 | | Fe I | 88 | 3351.246 | | Sr I | 7 | 3360.103 | | Fe II | 105 | | . 27 | | Sc II | 35 | 3351.424 | | Mn I | 9 . | 3360.15 | | 0 11 | 52 | | .312 | | V II | 234 | 3351.456 | | Al II | 26 | 3360.16 | P | Ti II | 54 | | .342 | | Cr I | 159 | 3351.529 | | Fe I | 89 | 3360.295 | | Cr II | 21 | | 1.379 | | Ti I | 178 | 3351.53 | | V II | 234 | 3360.45 | | Zr I | 53 | | 1.40 | | WII | 8 | 3351.596 | | Cr I | 160 | 3360.541 | | Ce II | 25
2 | | 1.494 | | Sm II
Co I | 151 | 3351.67 | | Ti II
Fe I | 124
304 | 3360.63
3360.711 | | Ne II
Gd II | 8 | | 1.530
1.678 | | Fe I | 449 | 3351.750
3351.966 | | Cr I | 5 | 3360.711 | | Fe III | 72 | | 1.731 | | Mn I | 9 | 3351.97 | | Sn II | 2 | 3360.935 | | Fe I | 142 | | 1.770 | | T1 II | 7 | 3352.048 | | Sc II | 4 | 3360.990 | | Ti I | 24 | | 1.81 | | Zr II
Ce II | 85
159 | 3352.06 | | Hf II
Ti II | 6
54 | 3361.07 | P | Ti II
C II | 64
7 | | .861 | | | | 3352.071 | | ** ** | 01 | 3361.09 | | 0 11 | • | | 1.09 | P | Fe I
O III | 450
22,28 | 3352.43 | P | Ti I | 169 | 3361.11 | | WII | 2 | | . 26
. 353 | | Sm II | 39 | 3352.80
3352.929 | | Co II
Fe I | 2
190 | 3361.213
3361.241 | | Ti II
Ni I | 1
107 | | 1.43 | | Ne II | 2 | 3352.937 | | Ti I | 25 | 3361.263 | | Ti I | 23 | | l. 50 | | Cr I | 160 | 3353.026 | | Cr I | 255 | 3361.270 | | Sc II | 4 | | 1.513 | | Ca I | 11 | 3353.12 | | Cr II | 4 | 3361.371 | | Mo I | 10 | | ↓. 56 | | La II | 45 | 3353.262 | | Ce III | 2 | 3361.50 | | Ti I | 178 | | 1.62 | P | Ti I | 25 | 3353.268 | | Fe I | 190 | 3361.506 | | V II | 70 | | . 630 | | Ti I
A III | 178
3 | 3353.39 | | Cl II
Ne II | 4
23 | 3361.553 | | Co I
Ni I | 157
19 | | 1.72 | | | - | 3353.63 | | WG 11 | ل م | 3361.556 | | MI I | 10 | | . 750 | | Mo I | 9 | 3353.65 | | Zr I | 18 | 3361.73 | | A II | 109 | | 1.761
1.80 | | Ce II
Zr II | 165
72 | 3353.734
3353.776 | | Sc II
V II | 12
107 / | 3361.75 | | C II
Cr II | 7
21 | | 1.931 | | Ti I | 178 | 3353.78 | | N III | 5 | 3361.770
3361.835 | | Ti I | 21
25 | | .020 | | Zn Î | 4 | 3354.068 | | Fe I | 378 | 3361.90 | | N III | 20
5 | | i. 14 | | Cr I | 218 | 3354.185 | | Sm II | 39 | 3361.918 | | Ca I | 11 | | i. 146 | | Co I | 45 | 3354.213 | | Co I | 152 | 3361.935 | | Sc II | 4 | | 5.352 | | Mn I | 040 | 3354.29 | | N III | 5 | 3361.959 | | Fe I | 377 | | i. 36
i. 49 | | Cr I
Ne II | 218
10 | 3354.31
3354.374 | | O IV
Co I | 8
23 | 3362.00
3362.131 | | Y II
Ca I | 36
11 | | | | | | | | | | | | | | | i.572 | | Zn I
Fe I | 4
141 | 3354.39
3354.54 | P | Zr II
Ti II | 34
64 | 3362.213
3362.233 | | Cr I
Gd II | 54
8 | | 1.86 | | WII | 17 | 3354.550 | F | He I | 8 | 3362.28 | | Ca I | 11 | | 3.88 | | Ne II | 10,12 | 3354.621 | | Nd II | 71 | 3362.38 | | 0 111 | 22 | | 3.899 | | V II | 244 | 3354.634 | | Ti I | 24 | 3362.619 | | Tm II | | | 1.934 | | Zn I | . 4 | 3355.05 | | Ne II | 2 | 3362.63 | P | 0 IV | 8 | | j. 985 | | Gd II | 8 | 3355.228 | | Fe I | 617 | 3362.653 | | Ti II | 64 | | 3.018 | • | Cr I
Cr I | 112 | 3355.366
3355.47 | | V II
N III | 149
7 | 3362.70
3362.70 | | Cr I
Zr II | 54
60 | | 3.09
3.310 | ı | Co I | 45 | 3355.517 | | Fe I | 25 | 3362.70
3362.764 | | Fe II | 78 | | | | Mo II | 6 | | | | | | | | | | 3.403
3.71 | • | Mo II
Cr I | 112 | 3355.92
3355.940 | | O III
Co I | 28
103 | 3362.806
3362.89 | | Ni I
Ne II | 23
12 | | 3.724 | | Ti II | 7 | 3356.08 | | Zr II | 3 | 3363.501 | | Sc II | 38 | | 3.78 | | Cr I | 112 | 3356.196 | | Ti I | 178 | 3363.613 | | Ni I | 105 | | 3.91 | P | Ti II | 43 | 3356.24 | P | Fe II | 105 | 3363.71 | | Cr II | 3 | | 3.932 | | Co I | 153 | 3356.265 | | Fe II | | 3363.81 | | Zr II | 11 | | 3.942 | \$ | Fe I
Ca II | 87
9 | 3356.332 | * | Fe I | 25
2 | 3363.815 | | Fe I | 307 | | 3.99
7.10 | | Sb I | 1 | 3356.35
3356.35 | P | Ce III
Ne II | 20 | 3363.83
3363.974 | | 6d II | 11
107 | | 7.269 | , | Mo II | 6 | 3356.352 | | V I | 54
54 | 3364.10 | P | Ti I | 169 | | | | | | | | • | | | - | | | | | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |----------------|------|----------------|---------------|----------------------|------|-----------------|---------------|----------------------|------|-----------------|---------------------| | 22 | P | Fe II | 5 | 3371.209 | | Sm II | 52 | 3379.762 | | Mo II | 6 | | . 22 | | Gd II | 5 | 3371.447 | | Ti I
O II | 24
52 | 3379.825 | | Cr I | 54 | | . 241 | P | Ti II | 43 | 3371.85
3371.87 | | O II
Ne II | 52
22 | 3379.825
3379.930 | | Cr II
Ti II | 21
64 | | .44 | • | PIV | 1 | 3371.90 | | 8 11 | | 3380.004 | | Fe I | 709 | | 591 | | Ni I | 107 | 3371.993 | | N1 I | 7 | 3380.111 | | Fe I | 304 | | 639 | | Fe I | 245 | 3372.070 | | Fe I | 83 | 3380.114 | | YII | 41 | | , 9 | | Ti II | 124 | 3372.13 | | Cr II | 91 | 3380.215 | | Mo II | 6 | | .950
.014 | | Nd II
Co I | 69 | 3372.151
3372.208 | | Sc II
Ti II | . 4
16 | 3380.25
3380.278 | | Eu
II
Ti II | 23
1 | | 419 | | Fe II | 78 | 2070 250 | | Fo T | 447 | 3380.515 | | Gd II | 74 | | .413
.54 | | A II | 109 | 3372.359
3372.666 | | Fe I
V II | 447
106 | 3380.574 | | N1 I | 37 | | .553 | | V I | 54 | 3372.68 | | Ca III | 1 | 3380.711 | | Sr II | 4 | | .591 | | Gd II
Fe II | 8
194 | 3372.70
3372.800 | | P II
Ti II | 34
1 | 3380.885
3380.91 | | Ni I
La II | 7
45 | | .766 | | Ni I | 38 | 3373.02 | | Pd I | 3 | 3381.003 | | Fe II | 177 | | .79 | | N III | . 5 | 3373.226 | | Co I | 122 | 3381.28 | | O IV | 3 | | .863 | | Sm II | | 3373.42 | | Zr II | 74 | 3381.33 | P | O IV | 3 | | .168
.176 | | N1 I
T1 I | 8
178 | 3373.455
3373.51 | | Ce II
Fe III | 244
18 | 3381.340
3381.36 | P | Fe I
Fe II | 376,677
5 | | .176 | | Ti II | 54 | 3373.57 | | Se II | 38 | 3381.49 | | Co I | 88 | | .333 | | Sr I | 7 | 3373.729 | | Ce II | 212 | 3382.07 | | Cr I | 181 | | .46 | | Sc II | 38 | 3373.87 | | A II | 108 | 3382.071 | | Co I | 123 | | .532 | | Gd II | 74 | 3373.874 | | Fe I | 303 | 3382.19 | | Fe III | 72 | | .554
.59 | | Ce II
A II | 99
83 | 3373.96 | | Cr I
Co I | 181 | 3382.312
3382.399 | | Ti I
Sm II | 86
20 | | .790 | | Fe I | 302 | 3373.969
3373.98 | | N1 II | 44
1 | 3382.403 | | Fe I | 84 | | .807 | | N1 I | 108 | 3374.06 | | N III | 5 | 3382.529 | | V II | 107 | | .870 | | Fe I | 87 | 3374.10 | | Ne II | 12 | 3382.683 | | . Cr II | 3 | | .880 | | V. I | 54 | 3374.221 | | Fe I | 89 | 3382.69 | | 0 111 | 27 | | .960 | | Fe II
O II | 177
52 | 3374.221 | | N1 I
T1 II | 17 | 3382.79 | P | Cr II | 112 | | .00 | | Fe III | 32 | 3374.352
3374.512 | | To II | 54
12 | 3382.890
3383.15 | | Ag I
Sb I | 1
1 | | .05 | P | Ne II | 12 | 3374.584 | | Gd II | 72 | 3383.387 | | Fe I | 245 | | .093 | | Gd II | 4 | 3374.642 | | Ni I | 106 | 3383.57 | P | Ti II | 63 | | .111 | | Co I
Fe I | 22 | 3374.088 | | 0d II | 24 . | 3383.092 | | Fe I | 85,444 | | .161 | | S III | 142
2 | 3374.71
3374.77 | | Zr II
0 II | 61
96 | 3383.761
3383.85 | | T1 II
O III | 1
27 | | .20 | | Ne II | 19 | 3374.93 | | Cr I | 181 | 3383.94 | | A II | 92 | | . 29 | P | N1 I | 96 | 3374.95 | | Cr II | 4 | 3383.981 | | Fe I | 83 | | . 36 | | N III | 5 | 3374.99 | | Cr II | 149 | 3384.14 | | Hf II | 44 | | .42 | | Cr II
Cr I | 79
54 | 3375.238 | | Co I
O IV | 153
8 | 3384.24
3384.617 | | Cr I
Mo I | 54
9 | | .54 | | Fe III | 17 | 3375.50
3375.561 | | Ni I | 108 | 3384.65 | | Cr I | 54 | | .661 | | Gd II | 91 | 3375.77 | | 0 11 | 52 | 3384.658 | | Sm II | 30,39 | | .666 | | V II
Ca III | 170
4 | 3376.057 | | V I | 54 | 3384.70 | P | Hf II | 9 . | | .81
.81 | | Zr II | 11 | 3376.17
3376.18 | | W II
Cr I | 10 | 3384.80
3384.95 | P | Fe I
O III | 25
27 | | .892 | | N1 I | 20 | 3376.24 | P | Fe II | 78 | 3385.219 | | Co I | 22 | | .054 | | Cr II | 4 | 3346.25 | | Zr II | 60 | 3385.31 | | Cr I | 236 | | .09 | _ | S II | 670 | 3376.27 | | Cr II | 78 | 3385.55 | | O IV | 3 | | . 25
. 447 | P | Fe I
Fe II | 678
134 | 3376.33
3376.331 | | La II
Ni I | 46
104 | 3385.664
3385.790 | | Ti I
V II | 24
183 | | .472 | | Ir I | 5 | 3376.397 | | Cr I | 254 | 3385.81 | | SII | 100 | | .568 | | Sm II | 30 | 3376.46 | | A II | 109 | 3385.944 | | Ti I | 23 | | .626 | | Fe II | 177 | 3376.68 | | Hf II | 31 | 3386.129 | | Rh II | 2 | | .63
.67 | | Zr I
Co I | 17
101 | 3376.72
3376.82 | | Cr II
O III | 412,148
27 | 3386.22
3386.24 | | Cl III
Ne II | 11
12 | | .73 | | Cr II | 91 | 3377.060 | | Co I | 42 | 3386.452 | | Fe II | 88 | | .946 | | Sc II | 4 | 3377.127 | | Ce II | 213 | 3386.50 | | Cr I | 236 | | .983 | | Fe I | 376 | 3377.20 | | 0 II | 9 | 3386.724 | | Fe II | | | 05 | | Cr II
Ti I | 68
25 | 3377.23 | | Ne II | 42 | 3387.061
3387.13 | | Co I
S III | 119
2 | | .054 | | Eu II | 20 | 3377.36
3377.394 | | Cr II
V I | 149
54 | 3387.410 | | Fe I | 306 | | 1.14 | P | Fe I | 191 | 3377.45 | | Zr II | 11 | 3387.466 | | N1 I | 17 | | 1.212 | | Ti II | 64 | 3377.485 | | Ti I | 25 | 3387.47 | | Co I | 45 | | 1.27 | | Zr II | 85 | 3377.52 | | P II | 12 | 3387.60 | | C1 III | 2 | | . 295 | | Ru II
Fe II | 2
76 | 3377.577
3377.625 | | Ti I
V I | 23
54 | 3387.72
3387.73 | | Co II
Cr II | 90 | | 40 | | 0 III | 11 | 3377.77 | · | Fe III | 97 | 3387.834 | | Ti II | 1 | | 1.455 | | Sm II | 35 | 3378.09 | | O IV | 4 | 3387.87 | | Zr II | 74 | | .49 | | s III | 2 | 3378.209 | | Sc II | 38 | 3387.96 | | Cr II | 112 | | 1.549 | | Fe I
Ni I | 304
6 | 3378.28 | | Ne II | 7 | 3388.065 | | Gd II
Fe II | 7 1
77 | | 1.573
1.618 | | Gd II | 21,73 | 3378.30
3378.337 | | Zr II
Cr II | 73
21 | 3388.134
3388.163 | | Co I | 23 | | 1.67 | | Ti II | 124 | 3378.676 | | Fe I | 301 | 3388.18 | | Co II | 2 | | 1.80 | P | Fe II | 76 | 3378.73 | P | Fe I | 137 | 3388.29 | | Zr II | 2 | | 1.8086 | | Ne I | 2
2 | 3378.736 | | Co I | 121 | 3388.46
3388.54 | | Ne II
A II | 19
96 | |).908: | | Ne I
O II | 2
52 | 3379.017
3379.171 | | Fe I
Cr I | 85
5 | 3388.54 | | Cr I | 96
54 | | 1.322 | | Co I | 24 | 3379.172 | | Ce II | 98 | 3388.755 | | Ti II | 53 | | 1.38 | | s III | 2 | 3379.18 | | Sc II | 43 | 3388.81 | P | Fe I | 140 | | 1.40 | | V II | 88 | 3379.216 | | Ti I | 24 | 3388.88 | | Cr I | 90 | |).436 | | Ti I
Os I | 23
4 | 3379.371 | | Cr II
Ne II | 21
12 | 3388.912
3388.966 | | Gd II
Fe I | 73
502 | | 1.588 | | Fe I | 304 | 3379.39
3379.397 | | Sc II | 38 | 3389.325 | | Sm II | 52 | |).94 | | Co II | 2 | 3379.48 | | A II | 59 | 3389.748 | | Fe I | 87 | |).97 | | A II | 57 | 3379.564 | | Cr I | 54 | 3389.83 | | Hf II | 8 | | 1.015 | | Co I | 151 | 3379.58 | | AII | 01 | 3390.082
3390.25 | P | Fe II
Fe I | 207
188 | | 1.10 | | P IV | 1 | 3379.756 | | Gd II | 91 | 3390.25 | | | 100 | | A | Type | El ement | Multiplet No. | I A | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |------------------------|------|-----------------|---------------|----------------------|------|----------------|---------------|----------------------|------|----------------|---------------| | 1.25 | | 0 11 | 9 | 3399.54 | | Cr II | 100 | 3409.177 | | Co I | 23 | | 1.37 | P | O IV
Co I | 3
102 | 3399.80 | | Hf II
Tm II | 1 | 3409.191
3409.20 | | Cb II
Fe I | 3
614 | | 1,396 | | Gd II | 73 | 3399.951
3399.991 | | Gd II | 12
22 | 3409.207 | | Gd II | 21 | | 1.515 | | Ce II | 145 | 3400.08 | | Cr II | 67 | 3409.36 | | Cr I | ~- | | 1.56 | | Ne II | 12 | 3400.110 | | Na II | 4 | 3409.40 | P | Fe I | 445 | | .682 | | Ti I | 86 | 3400.395 | | V I | 46 | 3409.578 | | N1 I | 5 | | 1.77
1.783 | | Cr I
Eu II | 236 | 3400.471 | | Co I | 42 | 3409.60
3409.646 | P | Cr II
Co I | 8
24 | | 878 | | Ģd II | 73 | 3401.067
3401.166 | | Gd II
Ni I | 8
107 | 3409.75 | | 0 IV | 3 | | .01 | | V II | 121 | 3401.521 | | Fe I | 26 | 3409.79 | P | Cr II | 8 | | 050 | | Ni I
Or I | 5
230 | 3401.617 | | Co I | 44 | 3409.809
3409.84 | | Ti II
o II | 1
44 | | . 294 | | Gd II | 73 | 3401.740
3401.76 | | V II
Ni II | 106
4 | 3409.87 | | Y II | 63 | | 303 | | Fe II | 117 | 3401.90 | | w II | 9 | 3410.031 | | Fe I | 542 | | 372 | | Cr I | 254 | 3401.913 | | Co I | 157 | 3410.171 | | Fe I | 735 | | 434
i.84 | P | Cr II
Fe I | 3
678 | 3401.997 | | V II
Co I | 47 | 3410.18
3410.26 | | Hf II
Zr II | 30
11 | | 1.85 | • | A III | 6 | 3402.064
3402.072 | | Gđ II | 123
91,149 | 3410.46 | | V 11 | 119 | | 96 | | Zr II | 1 | 3402.256 | | Fe I | 614 | 3410.56 | P | Fe I | 244 | | 1.989
1.018 | | Eu II
Fe I | 17
499 | 3402.32
3402.422 | P | Fe II
Ti II | 105
53 | 3410.74
3410.905 | | Fe III
Fe I | 61,62
25 | | 1.040 | | Th II | .5 | 3402.43 | | Cr II | 21 | 3411.01 | | Cr T | 20 | | 1.304 | | Fe I | 83 | 3402.464 | | Sm II | 39 | 3411.134 | | Fe I | 299 | | 3.530
3.652 | | Gd II
Fe I | .7
.85 | 3402.52 | | Zr II
V I | 85 | 3411.353
3411.38 | | Fe I
Ne II | 301 | | 1.659 | | V II | 70 | 3402.571
3402.87 | | V I
Zr II | 46
91 | 3411.68 | P | Ti II | 45
63 | | 1.713 | | Ti I | 136 | 3403.081 | | Gd II | 73 | 3411.76 | | La II | 155 | | :. 78 | | Ne II | 7 | 3403.159 | | V II | 135 | 3411.76 | | o iv | 2 | | 89 | | C1 II | 11 | 3403.29 | P | Cr II | 21 | 3411.88 | P | Fe I | 298 | | 1.992
1.00 | | Ni+I
Cr II | 20
21 | 3403.29
3403.299 | P | Fe I
Fe I | 377
304 | 3412.020
3412.339 | | Gd II
Co I | 73
25 | | 1. 12 | | Zr II | 3 | 3403.322 | | Cr II | 3 | 3412.47 | P | N1 I | 90 | | 1.382
1.45 | | Fe I
Cl III | 376
11 | 3403.369
3403.432 | | Ti I
Ni I | 86
108 | 3412.583
3412.633 | | Gd II
Co I | 70
6 | | 1.609 | | Fe I | 305,376 | 3403.51 | | Fe III | 61 | 3412.753 | | Gd II | 23 | | 1.630 | | Gd II | 91 | 3403.58 | | O IV | 2 | 3412.934 | | CP II | 3 | | 1.641
1.86 | | Nd II
Cr II | 21 | 3403.59 | | Cr. I | 254 | 3413.13 | | Ne II | 45 | | 1.915 | | Fe I | 136 | 3403.69
3404.301 | | Zr II
Fe I | 59
25,301 | 3413.135
3413.273 | | Fe I
Gd II | 85
91 | | 1.920 | | Ce II
Fe I | 46
188 | 3404.34 | | P II | 12,21 | 3413.39 | _ | Zr II | 60 | | 1.26 | | 0 111 | 27 | 3404.357
3404.43 | | Fe I
V II | 83
243 | 3413.46
3413.478 | P | Ni I
Ni I | 124
5 | | 1. 29 | | Se II | 38 | 3404.60 | | ra I | 2 | 3413.71 | | o iv | â | | i. 32
i. 37 | n | Cr II | 21 | 3404.755 | | Fe I | 300 | 3413.74 | | Hf II | 20 | | 1.574 | P | Ti II
Ti II | 63
1 | 3404.77
3404.84 | | Ne II
Zr II | 51 | 3413.939
3414.02 | | N1 I
T1 II | 17 | | 1.58 | | Hr II | 7 | 3404.923 | | Fe I | 11
300 | 3414.144 | | Fe II | 127
91 | | i. 583 | | Fe I
Zr II | 81
85 | 3404.97
3405.038 | | Ti II
Gd II | 63
91 | 3414.192
3414.207 |
| V II
Gd II | 135
107 | | 1.916 | | Co I | 42 | 3405.094 | | Ti I | 86 | 3414.46 | | A II | 107 | | 1.92 | | A II | 80 | 3405.120 | | Co I | 23 | 3414.65 | | Zr II | 73 | | 1.99
5.120 | | Hf II
Gd II | 63
91 | 3405, 160 | _ | VI | 46 | 3414.66 | | Zr I | 17 | | 5. 336 | | Fe II | 117 | 3405.50
3405.74 | P | Ni I
O III | 122
15 | 3414.765
3414.82 | | Ni I
Ne II | 19
20 | | 3.370 | | Ço I | 25 | 3405.83 | | Fe I | 299 | 3414.879 | | A II | 135 | | 5.62
5.87 | P | Cr II | 100 | 3405.934 | | Mo I | 9 : | 3415.29 | | 0 111 | 15 | | 5.90 | P | Fe I
Fe I | 543
189 | 3405.97 | P | 0 IV | 3 | 3415.47
3415.519 | | Cr II | 100 | | 3.184 | - | N1 I | 122 | 3405.977
3406.06 | | Ce II
V II | 96
119 | 3415.530 | | Co I
Fe I | 5
83 | | 3.187 | | Sm II | 44 | 3406.17 | P | Fe I | 376 | 3415.67 | P | N1 I | 123 | | 3.34
3.386 | | Zr II
Fe I | 58
25 | 3406.18
3406.442 | | Fe III
Fe I | 61 | 3415.78 | | Co II | 2 | | 3.457 | | Co I | 102 | 3406.76 | P | Fe II | 676
90 | 3415.91
3416.021 | | V II
Fe II | 169
16 | | 3.50 | P | Ni I | 118 | 3406.803 | | Fe I | 85 | 3416.52 | P | Fe I | 708 | | 3.58
3.66 | | Eu II | 30 | 3406.837 | | V I | 46 | 3416.674 | | Sc I | 21 | | 3.71 | | Zr II
Fe III | 103
18 | 3406.88
3407.00 | | Ne II
La II | 51 | 3416.688 | | Fe í | 142 | | 3.83 | | 0 17 | 3 | 3407.06 | P | Fe I | 155
377 | 3416.87
3416.948 | | Ne II
Gd II | 21
22 | | 3.85 | | Rh I | 3 | 3407.205 | - | Ti II | 1 | 3416.957 | | Ti II | 53 | | 3.978
7.07 | | Fe I
Lu II | 26
4 | 3407.22
3407.30 | | Cr I
Ni II | 4 | 3417.154
3417.273 | | Co I
Fe I | 23
26 | | 7.221 | | Fe I | 503 | 3407.38 | | 0 11 | 44 | 3417.330 | | Gd II | 91 | | 7.499 | | Tm II | 3 | 3407.461 | | Fe I | 83 | 3417.353 | | Co I | 135 | | 7.560
7.580 | | Fe I
V I | 447
54 | 3407.53 | P | Fe I | 81 | 3417.353 | | Ru I | 3 | | 7.642 | | Fe I | 26 | 3407.56
3407.61 | | Gd II | 91
24 | 3417.450
3417.673 | | Ce II
Co I | 100 | | 7.77 | | La II | 128 | 3407.7 | | Y II | 67 | 3417.71 | | Ne II | 122
20 | | 7.82
7.89 | | N1 ȚI
A II | 6
59 | 3407.76
3407.960 | | Hf II
Mn I | 29
26 | 3417.795
3417.842 | | Co I
Fe I | 19
81 | | 7.90 | | Ne II | 36 | 3408.01 | | Cr I | | 3417.88 | P | Ti I | 86 | | 3.12 | P | Fe I | 615 | 3408.09 | | Zr II | 72 | 3417.9036 | | Ne I | 4 | | 3.226 | | Fe I | 304
105 | 3408.13 | | 0 III | 15 | 3418.02 | P | Fe II | 104 | | 8.355
8.6 34 | | Fe II
Ti I | 105
86 | 3408.136 | | N II | . 7 | 3418.151 | | Sm II
Fe I | E 77 | | 8.811 | | Co I | 157 | 3408.14
3408.676 | | Pt I
Sm II | 4 | 3418.176
3418.507 | | re I
Fe I | 577
81 | | 9.230 | | Fe I | 302 | 3408.678 | | СРІІ | 3 | 3418.514 | | Sm II | 47 | | 9.336 | | Fe I | 85 | 3408.765 | | Cr II | 3 | 3418.528 | | Sc I | 21 | | 9.36
9.406 | | Zr II
Gd II | 11
22 | 3408.955 | D | V II | 120 | 3418.733 | | Gd II | 7 24 | | 0. TO | | A1 | | 3408.96 | P | Cr II | 8 | 3419.069 | | Gd II | 24 | | 1-10 | A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | IA | Туре | Klement | Multiplet No. | |--|-------|------|---------|---------------|----------|------|---------|---------------|-----------------------|------|---------|---------------| | 1.07 | . 10 | | Zr II | 2 | 3428.64 | P | | | 3438.24 | | Hf II | 77 | | 1869 | | | | | | | | | | | | | | 100 | | | | | | | | | | | | | | 100 | | | | | | | | | | | | | | 147 | | | | | | | | | | | | | | 1985 | | | | • | | | | | | | | | | 144 | | | | | | | | | | | | | | 1.5 | | | | | | | | | | | | | | 0 | .474 | | CO I | 42 | 3429.403 | | 9C 1 | 21 | 3439.352 | | AL I | 2 | | 1-10 | . 54 | | La II | 126 | 3429.64 | | A II | 107 | 3439.40 | | Sc I | 21 | | 1.1 | | | | | | | | | | | | | | 1.00 | | | | | | | | | | | | | | 1985 10 11 13 130 140 150 111 15 150 150 111 15 15 | | | | | | P | | | | _ | | | | 192 | | | | 102 | | | | | | P | | | | 202 P Ni 105 | | | | 1 | 3430.42 | | | | | | | | | 22 | .029 | | | | | | | | 3440.589 | | | | | 244 | | _ | | | | | | | | _ | | | | 1.542 1.51 1.52 2040.08 1.5 1.5 1.5 2040.08 1.5 1.5 2.5 | . 22 | P | N1 I | 105 | 3430.00 | | 0 111 | 10 | 3440.74 | P | re 1 | 301 | | 1. 1 120 | . 24 | | Pd I | 3 | 3430.772 | | Ru I | 3 | 3440.80 | | Ne II | 45 | | 1989 | | | | | | | | | | | | | | 18 | | | | | | | | | 3440.999 | | | | | 197 F 111 | | | | | | P | | | | _ | | | | 197 | | | | | | | | | | P | | | | 1.332 | | | | | | | Sc I | | | | | | | 1489 | .332 | | | | | P | | | | | | | | .0556 Fe I I 95 3431.09 Cr I 53 3441.983 Mn II 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | | | | | | | .499 | | re 1 | 444 | 3431.582 | | COI | О | 3441.7 9 0 | | Gd II | 39 | | | -656 | | Fe I | 85 | 3431.59 | | Cr I | 53 | 3441.983 | | Mn II | 3 | | 1789 | | | | | | | Cr I | 53 | | | | | | 1751 | | | | | | | | | | | | | | 1976 | | | | | | | | | | | | | | 1920 | | | | | | P | | | | | | | | 172 | | | | | | - | | | | | | | | | | | | | 3432.318 | | | 102 | | | | | | 1.82 | | | | | | | | | | | | | | .853 | .711 | | N1 I | 20 | 3432.41 | | ZF 11 | 98 | 3442.79 | P | Fe II | 76 | | .853 | .82 | | Zr II | | 3432.64 | | A II | 107 | 3449.018 | | Co I | 6 | | 1.00 | | | | 2 | | | | | | | | | | 16 | | | | | | | | | | | | | | 16 | | | | | | | | | | p | | 7 | | 17 | | | | • | | P | | | | | | 99 | | .43 P C II B 3443.30 C II 3 3443.64 C I 22 .500 C I 103 3433.44 Pd I 11 3443.644 C I 22 .500 C I 103 3433.44 Pd I 11 3443.644 Th I 120 .502 C I 103 3433.588 Ni I 19 3443.681 Ni I 120 .64 2r II 85 3433.588 C I 52 3443.70 Ne II 42 .88 P II 3 3443.707 V II 134 3443.700 C I 110 .88 P II 3 3443.707 V II 19 3443.700 C I 110 .88 P II 3 3443.707 V II 19 3443.818 P Fe II 16 .022 E II 20 3443.024 V II 104 3443.889 S I 21 .022 E II 20 3443.4024 V II 104 3443.889 S I 21 .032 Tm II 7 3443.412 C I 52 3444.251 NI I 122 .042 C II 7 3443.412 C I 52 3444.251 NI I 122 .432 C II 7 3443.45 P II 1 1 3444.403 T II 10 .57 O IV 3 3434.69 P II 1 121 3444.403 T II 120 .582 Fe II 5 34343.883 Rh I 2 3444.76 P Fe II 110 .582 Fe II 5 34343.883 Rh I 2 3444.76 P Fe II 145 .634 C II 91 3434.88 P Fe I 776 3444.71 Al I 2 .630 Th II 3 3435.88 P Fe I 776 3444.71 Al I 2 .630 Th II 3 3455.88 P II 1 33 3444.80 P II 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | P | | 116 | | | | | | | | | | 1.500 Co I 103 3433.44 Pd I 11 3443.644 Ti I 120 | | | | | | | | | 3443.609 | | | | | 1.592 | | P | | | | | | | | | | | | 1.64 | . 500 | | COI | 103 | 3433.44 | | Pu 1 | 11 | 3443.644 | | TI I | 120 | | 1.64 | .592 | | Gd II | 22 | 3433.558 | | N1 I | 19 | 3443,651 | | Al I | 2 | | 10 | .64 | |
 | | | | | | | Ne II | 42 | | 1009 Fe I | | | | | | | | | | _ | | | | No. | | | | | | P | | | | P | | | | 0.070 | | | | | | | V II | 104 | | | | | | 100 | | | | | | | | | | | | 15 | | Ang | | _ | | | | | | | | | | | | 1.57 | | P | | | | Þ | | | | | | | | 1.582 Fe II 5 | 14.12 | | 00 11 | • • • | 0101101 | - | | - | 3444.34 | | | | | 6824 0d II 91 3434.95 P Fe I 776 3444.891 Al I 2 630 Tm II 3 3435.38 V III 133 3444.899 Ti I 46 930 Gd II 23 3435.408 V III 133 3445.99 Ti I 46 96 Cr I 158 3435.432 Ti I 3445.04 Cr II 110 9 P P Fe I 502 3435.488 Ni I 53 3445.151 Fe I 81 .20 P II 31 3435.488 Ni I 53 3445.151 Fe I 81 .20 P II 3 3435.679 Cr I 52 3445.20 P Cr II 148 .208 Ce II 44 3435.819 Cr I 53 3445.58 P Fe II 76 .337 Fe I 135 3436.045 Fe I 614 3445.98 Cr I 51 .342 Cd II 7 | .57 | | | | | P | | | 3444.403 | | | 120 | | .630 Tm II 3 3435.38 V II 133 3446.999 T1 I 46 .930 Gd II 23 3435.408 T1 II 98 3445 P N IV 7 .96 Cr I 158 3435.408 T1 II 98 3445 P N IV 7 .96 Cr I 158 3435.408 Cr I 53 3445.04 Cr II 110 .97 O VI 6 3435.408 Cr I 53 3445.10 Cr I 51 .98 P Fe I 502 3435.408 N1 I 53 .09 P Fe I 502 3435.408 N1 I 53 .13 Cr II 111 3455.555 Sc I 21 3445.20 P Cr II 148 .20 P II 3 3435.679 Cr I 52 3445.566 T1 I 46 .208 Ce II 44 3435.819 Cr I 53 3445.566 T1 I 46 .208 Ce II 44 3435.819 Cr I 53 3445.56 P Fe II 76 .337 Fe I 135 3436.045 Fe I 614 3445.618 Cr I 51 .342 Gd II 73 3436.112 Fe II 91 3446.0 P Mn II 9 .383 Fe I 25,82 3436.112 Fe II 91 3446.0 P Mn II 9 .383 Fe I 25,82 3436.187 Cr I 52 3446.005 M0 II 1 .383 Fe I 83.436.304 Ce II 94 3446.089 Co I 162 .583 Ce II 51 3436.304 Ce II 94 3446.089 Co I 162 .583 Ce II 51 3436.304 Ce II 94 3446.089 Co I 162 .583 Fe I 82 3436.737 Ru I 4 3446.38 K I 4 .67 P Fe I 615 3437.006 Ir I 3 3446.40 Co II 2 .81 P Fe II 103 3437.046 Fe I 59 3446.603 T1 I 168 .602 Fe I 26 3437.046 Fe I 33 3446.73 O III 2 .81 P Fe II 103 3437.046 Fe I 33 3446.72 Ce II 56 .121 Fe I 81 3437.250 Ni I 3 3446.73 O III 25 .332 Ce III 1 12 3437.260 Ni I 3 3446.73 O III 25 .333 A46.77 Fe III 68 .345.79 La III 132 3437.680 Co I 162 3446.947 Fe I 244 .341 P Fe I 616 3437.93 Cr II 111 3447.015 Cr I 52 .341 P Fe I 616 3437.93 Cr II 111 3447.015 Cr I 52 .341 P Fe I 616 3437.93 Cr II 111 3447.015 Cr I 52 .341 P Fe I 616 3437.93 Cr II 111 3447.015 Cr I 52 .341 P Fe I 616 3437.93 Cr II 111 3447.015 Cr I 52 .342 P NI I 123 3438.14 A II 58 3447.26 Cr I 616 | | | | | | _ | | | | P | | | | 930 Gd II 23 3435.408 T1 II 98 3445.0 P N IV 7 | | | | | | P | | | | | | | | 156 | | | | | | | | | | P | | | | 13 | | | | 158 | 3435.432 | | | | | | | 110 | | .13 | | | | | | | | | | | | | | .20 P II 3 3435.679 Cr I 52 3445.566 Ti I 46 .208 Ce II 44 3435.819 Cr I 53 3445.58 P Fe II 76 .337 Fe I 135 3436.045 Fe I 614 3445.618 Cr I 51 .342 Gd II 73 3436.112 Fe II 91 3446.0 P Mn II 9 .383 Fe I 25,82 3436.187 Cr I 52 3446.085 Mo II 1 .562 Ch II 7 3436.304 Ce II 94 3446.088 Co I 162 .583 Ce II 51 3436.393 V II 79 3446.088 Co I 162 .637 Fe I 82 3436.737 Ru I 4 3446.38 K I 4 .67 P Fe I 615 3437.006 Ir I 3 3446.40 Co II 2 .81 P Fe II 103 3437.046 Fe I 539 3446.40 Co II 2 .81 P Fe II 103 3437.046 Fe I 539 3446.603 Ti I 168 .002 Fe I 26 3437.16 Zr II 33 3446.71 Ce II 56 .121 Fe I 81 3437.162 N II 13 3446.71 Ce II 56 .121 Fe I 81 3437.620 Ni I 3 3446.77 Fe III 68 .332 Ce III 2 3437.600 Co I 162 .346.670 Fe III 98 .357 La II 132 3437.680 Co I 162 3446.947 Fe I 244 .57 La II 132 3437.680 Co I 162 3446.947 Fe I 266 .192 Fe I 616 3437.93 Cr II 111 3447.015 Cr I 52 .41 P Fe I 302 3438 P 0 VI 7 3447.276 Fe I 82 .41 P Fe I 302 3438.10 P Fe I 300 3447.276 Fe I 82 .41 P Fe I 302 3438.10 P Fe I 300 3447.276 Fe I 82 .44 P NI I 123 3438.10 P Fe I 300 3447.281 Co I 161 | | P | | | | | | | | _ | | | | 208 Ce II 44 3435.819 Cr I 53 3445.58 P Fe II 76 | | | | | | | | | | P | | | | 337 Fe I 135 3436.045 Fe I 614 3445.618 Cr I 51 | | | | · | | | | | 0440.000 | | | | | .342 | | | | | | | | | | P | | | | 383 Fe I 25,82 3436.187 Cr I 52 3446.085 Mo II 1 1 1 1 1 1 1 1 1 | | | | | | | | | | _ | | | | Second S | | | | | | | | | | r | | | | .583 | | | | | 3436.304 | | Ce II | 94 | | | | | | Second Color Seco | | | | | | | | | 3446.263 | | | | | Ref | | P | | | | | | | | | | | | .002 Fe I 26 3437.16 Zr II 33 3446.721 Ce II 56 .121 Fe I 81 3437.162 N II 13 3446.73 O III 25 .332 Ce III 2 3437.280 Ni I 3 3446.77 Fe III 88 .362 Gd II 91 3437.631 Fe I 187 3446.791 Fe I 244 .57 La II 132 3437.680 Co I 162 3446.947 Fe I 26 .01 P Fe I 616 3447.93 Cr II 111 3447.015 Cr I 52 .192 Fe I 81 3437.958 Fe I 614 3447.22 O III 20 .37 Hf II 2 3438 P O VI 7 3447.278 Fe I 82 .41 P Fe I 302 3438.10 P Fe I 300 3447.281 Co I 161 .42 P Ni I 123 3438.14 A II 58 3447.86 Zr I 16 | | | | | | | | | | | | | | 121 Fe I 81 3437.162 N II 13 3446.73 O III 25 332 Ce III 2 3437.280 Ni I 3 3446.77 Fe III 88 362 Gd II 91 3437.681 Fe I 187 3446.791 Fe I 244 57 La II 132 3437.680 Co I 162 3446.947 Fe I 26 341.01 P Fe I 616 3437.93 Cr II 111 347.015 Cr I 52 348 P 0 VI 7 3447.278 Fe I 82 348 P 0 VI 7 3447.278 Fe I 82 341 P Fe I 302 3438.10 P Fe I 300 3447.281 Co I 161 42 P Ni I 123 3438.14 A II 58 3447.286 Zr I 16 | | • | | | | | | | | | | | | 332 Ce III 2 3437.280 Ni I 3 3446.77 Fe III 88 352 Gd II 91 3437.631 Fe I 187 3446.791 Fe I 244 57 La II 132 3437.680 Co I 162 3446.947 Fe I 26 57 La II 132 3437.680 Cr II 111 3447.015 Cr I 52 192 Fe I 81 3437.958 Fe I 614 3447.22 O III 25 37 Hf II 2 3438 P O VI 7 3447.278 Fe I 82 441 P Fe I 302 3438.10 P Fe I 300 3447.281 Co I 161 42 P Ni I 123 3438.14 A II 58 3447.86 Zr I 16 43 Tr Tr Tr Tr Tr Tr Tr T | | | | | | | | | | | | | | .362 Gd II 91 3437.631 Fe I 187 3446.791 Fe I 244 .57 La II 132 3437.680 Co I 162 3446.947 Fe I 26 .01 P Fe I 616 3437.93 Cr II 111 3447.015 Cr I 52 .192 Fe I 81 3437.958 Fe I 614 3447.22 O III 25 .37 Hf II 2 3438 P O VI 7 3447.278 Fe I 82 .41 P Fe I 302 3438.10 P Fe I 300 3447.281 Co I 161 .42 P Ni I 123 3438.14 A II 58 3447.36 Zr I 16 | | | | | | | | | | | | | | .57 La II 132 3437.680 Co I 162 3446.947 Fe I 26 .01 P Fe I 616 3437.93 Cr II 111 3447.015 Cr I 52 .192 Fe I 81 3437.958 Fe I 614 3447.22 O III 25 .37 Hf II 2 3438 P O VI 7 3447.276 Fe I 82 .41 P Fe I 302 3438.10 P Fe I 300 3447.281 Co I 161 .42 P Ni I 123 3438.14 A II 58 3447.36 Zr I 16 | | | | | | | | | | | | | | 01 P Fe I 616 3437.93 Cr II 111 3447.015 Cr I 52 192 Fe I 81 3437.958 Fe I 614 3447.22 0 III 25 37 Hf II 2 3438 P 0 VI 7 3447.278 Fe I 82 41 P Fe I 302 3438.10 P Fe I 300 3447.281 Co I 161 42 P Ni I 123 3438.14 A II 58 3447.36 Zr I 16 | | | | | | | | | | | | | | 192 Fe I 81 3437.958 Fe I 614 3447.22 O III 25
37 Hf II 2 3438 P O VI 7 3447.278 Fe I 82
41 P Fe I 302 3438.10 P Fe I 300 3447.281 Co I 161
42 P Ni I 123 3438.14 A II 58 3447.36 Zr I 16 | | P | | | 3437.93 | | Cr II | 111 | | | Cr I | | | 41 P Fe I 302 3438.10 P Fe I 300 3447.281 Co I 161
42 P Ni I 123 3438.14 A II 58 3447.36 Zr I 16 | .192 | | Fe I | 81 | | ** | | | 3447.22 | | | 25 | | 42 P Ni I 123 3438.14 A II 58 3447.36 Zr I 16 | | n | | | | | | | | | | | | VIII-00 III III | | | | | | • | | | | | | | | | | | | | | | Zr II | | | | | | | A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |---------------|------|----------------|---------------|----------------------|------|----------------|----------------|----------------------|------|----------------|-----------------| | .430 | | Cr I | 52 | 3457.047 | | Gd II | | 3465.25 | | v II | 160 | | .594 | | He I | 7 | 3457.088 | | Y II | 77 | 3465.562 | | Ti II | 99 | | .760
.98 | | Cr I
O II | 52
27 | 3457.090
3457.153 | | Fe I
V II | 374,835
147 | 3465.57
3465.62 | | Cr I
Ni II | 51
4 | | .05 | P | 0 111 | 25 | 3457.16 | P | Ne II | 51 | 3465.63 | | Zr I | 17 | | . 19 | P | Fe I | 186 | 3457.298 | | T1 I | 46 | 3465.792 | | Co I | 5 | | . 255 | | Til | 46 | 3457.494 | | T1 I | 46 | 3465.80 | | AII | 96 | | .358 | | Co I
Fe II | 163
90 | 3457.512
3457.56 | | Fe I
Zr II | 187
20 | 3465.863 | | Fe I
O III | 6 | | .433
.478 | | Fe I | 444 | 3457.62 | | Cr II | 135 | 3466.15
3466.25 | | O III
Cr II | 25
77,148 | | | | | | | | | | | | | , | | .503 | | Sc I
Mo II | 21 | 3457.809 | | Mn II | 9 | 3466.279 | | Fe I | 185 | | , 542
, 63 | P | Fe III | 1
27 | 3457.99
3458.020 | | O II
Ti I | 81
46 | 3466.336
3466.34 | | Mn II
A II | 12
44,56 | | ,69 | • | V II | 118 | 3458.028 | | Co I | 101 | 3466.498 | | Gd II | 53 | | ,786 | | Fe I | 372 | 3458.090 | | Cr I | 253 | 3466.501 | | Fe I | 24 | | .82 | | Y II | 17 | 3458.13 | P | Fe II | 10 | 3466.59 | _ | V II | 58 | | .869
.967 | | Fe I
Ir I | 242
1 | 3458.18
3458.230 | | Fe III
Al I | 100 | 3466.85
3466.90 | P | Fe II
O III | 156
25 | | ,06 | P | Fe I | 442 | 3458.304 | | Fe I | 139 | 3466.952 | | Gd II | 23 | | .170 | | Co I | 22 | 3458.474 | | Ni I | 19 | 3467.022 | | Cr I | 141,253 | | . 28 | | Cr II | 111 | 3458.91 | | Fe III | 27 | 3467.09 | P | Cr II | 2 | | .441 | | Co I | 22 | 3458.93 | | Zr II | 58 | 3467.12 | r | Ni I | 123 | | , 5 | r | Mn II | 0 | 9459.09 | | Ti II | 125 | 9467.260 | | T1 I | 6· 1 | | ,616 | | Gd II | 7 | 3459.07 | | 0 II | 81 | 3467.267 | | Gd II | 22 | | ,874
,00 | p | Ti I
Cr I | 46
90 | 3459.29
3459.29 | P | Cr II
Fe I | 136
576 | 3467.33
3467.502 | | V II
Ni I | 58
3 | | . 14 | P | Fe I | 242 | 3459.374 | • | Ce III | 3 | 3467.715 | | Cr I | 110 | | , 328 | | Fe I | 82 | 3459.38 | | Ne II | 51 | 3467.732 | | Ni I | 123 | | 376 | | Gd II | 22 | 3459.429 | | Fe I | 297 | 3467.874 | | Sm II | 54 | | 735 | | Ti I | 46 | 3459.431 | | Ti I | | 3467.88 | | Y II | 17 | | 84 | | Cr II | 60 | 3459.52 | | 0 111 | 25 | 3468.083 | | Gd II | 21 | | 94 | | 0 111 | 25 | 3459.61 | P | Fe I | 577 | 3468.113 | | Ce II | 178 | | .046 | | V II
Fe II | 118
208 | 3459.911
3459.95 | P | Fe I
Fe I | 501
133 | 3468.32
3468.476 | | K II
Ca I | 1
10 | | 233 | | Gd II | 22 | 3459.95 | • | Zr II | 90 |
3468.680 | | Fe II | 114 | | . 318 | | Fe II | | 3459.98 | | 0 11 | 25 | 3468.849 | | Fe I | 242 | | . 33 | | O III
B II | 25 | 3460.03 | | Cr II
Mn II | 60 | 3468.973 | | Co I | 159 | | .41
.614 | | B II
Fe II | 1
207 | 3460.039
3460.31 | | Mn II
La II | 1
119 | 3468.989
3469.012 | | Gd II
Fe I | 40
614 | | .628 | | Fe I | 139 | 3460.312 | | Mn II | 3 | 3469.307 | | Gd II | 39 | | | P | Fe I | 241 | 0400 400 | | 0 7 | | | | | | | ,66
,88 | F | Re I | 2 | 3460.430
3460.47 | | Cr I
Re I | 141
2 | 3469.390
3469.486 | | Fe I
N1 I | 375
8 | | 914 | | Gd II | 70 | 3460.719 | | Co I | 35 | 3469.528 | | V II | 58 | | 915 | | Fe I | 81 | 3460.76 | | Pd I | 2 | 3469.590 | | Cr I | 141 | | , 18
, 18 | | Co I
La II | 160
30 | 3460.776
3461.0 | | Gd II
Y II | 73
40 | 3469.683
3469.834 | | Co I
Fe I | 137
242 | | , 273 | | Fe I | 25 | 3461.173 | | Co I | 162 | 3469.94 | | Zr II | 59 | | .31 | P | Fe III | 49 | 3461.28 | | Cr II | 148 | 3470.18 | | YII | 40 | | . 33 | P | Fe II
Ti II | 89
99 | 3461.34 | | N IV | 7 | 3470.242 | | Fe II
V II | 89 | | .470 | | 11 11 | 99 | 3461.38 | | Eu II | 13 | 3470.263 | | V 11 | 58 | | , 55 | | Fe III | 88 | 3461.496 | | Ti II | 6 | 3470.27 | | A II | | | .670
.890 | | Al I
Ni I | 2
17 | 3461.580 | | V II
Ni I | 6
17 | 3470.401
3470.42 | | Cr I
O II | 77
27 | | .022 | | Fe I | 301 | 3461.652
3461.952 | | Gd II | 23 | 3470.529 | | Cr I | 77 | | .087 | | V II | 132 | 3462.040 | | Rh I | 3 | 3470.657 | | Rh I | 3 | | , 10 | | Ne II | 21 | 3462.108 | | Tm II | | 3470.72 | | Cr I | 77 | | . 17
. 23 | | La II
Cr I | 46
253 | 3462.353
3462.494 | | Fe I
Na II | 79
4 | 3470.81 | | O II
P II | 27
12 | | , 31 | | 0 11 | 71 | 3462.65 | | Hf II | 6 | 3470.83
3470.866 | | Nd II | 70 | | ,328 | | Cr I | 52 | 3462.73 | | Cr II | 2 | 3470.594 | | Ce III | 1 | | .514 | | Co I | 22 | 3462.748 | | Mn I | 41 | 3471.14 | | Zr II | 114 | | .595 | | Fe II | ~~ | 3462.804 | | Co I | 23 | 3471.18 | | Zr I | 15 | | .654 | | T1 I | 46 | 3462.808 | | Fe I | 373 | 3471.27 | | Fe I | 82 | | .665
.743 | | Tm II
Cr I | 7
52 | 3462.878
3462.997 | | Mn II
Gd II | 12
8 | 3471.35
3471.350 | | Ni II
Fe I | 4
130 | | .78 | | v II | 132 | 3463.02 | | Zr II | 90 | 3471.382 | | Co I | 161 | | .84 | P | Cr 1 | 90 | 3463.079 | | V II | 104 | 3471.49 | | Cr I | . 77 | | | P | N IV | 7 | 3463.205 | | Ti I | 85 | 3471.59 | _ | A II | 57 | | •10
•145 | | A II | 44
7 | 3463.305
3463.330 | | Fe I
Mn II | 48
12 | 3471.63
3471.80 | P | Ni I
He I | 124
44 | | | | | | | | | | | | | | | .16
.165 | | Ni II
Ti I | 1
168 | 3463.36 | | N IV
Co I | 7 | 3472.07 | | Cr II | 135 | | .35 | | Fe III | 86 | 3463.499
3463.52 | | WII | 42
7 | 3472.196
3472.38 | | Co I
Hf I | 161
1 | | .368 | | Ce III | 2 | 3463.63 | | Al II | 55 | 3472.48 | | Lu II | 4 | | .57 | * | Zr II | 59 | 3463.831 | | V II | 168 | 3472.545 | | Ni I | 20 | | .90 | | Gd II | 25
7 | 3463.974 | | Fe II | 4 | 3472.5711 | | Ne I | 2 | | .904
.98 | | Cr II | 136 | 3463.984
3464.02 | | Gd II
Cr II | 40
2 | 3472.707
3472.764 | | Co I
Cr I | 160
77 | | .04 | | Mn I | 41 | 3464.043 | | Mn II | 12 | 3472.793 | | Ti I | 271 | | .12 | | 0 111 | 25 | 3464.132 | | Gd II | 90 | 3472.88 | | P II | 2 | | .237 | | Co I | 6 | 3464.14 | | A II | 70 | 3472.886 | | Fe II | 156 | | .281 | | Cr I | 51 | 3464.17 | | VII | 104 | 3472.906 | | Cr I | 111 | | .602 | | Cr I | 51 | 3464.27 | | Fe III | 16 | 3473.01 | P | Fe ! | 576 | | .755
.00 | P | Ti I
Fe II | 46
4 | 3464.457 | | Sr II
Fe II | 4 | 3473.219
3473.23 | P | Gd II
Fe I | 7
576 | | .390 | r | Ti II | 99 | 3464.497
3464.72 | | Re I | 114
2 | 3473.497 | • | Fe I | 26 | | .661 | | Ti I | 134 | 3464.82 | | Cr I | 51 | 3473.612 | | Cr I | 77 | | .68 | | Ne II | 28 | 3464.914 | | Fe I | 241 | 3473.82 | | Fe III | 27 | | .924 | | Co I
Fe II | 5
76 | 3465.037
3465.245 | | Mn II
Cr I | 12
51 | 3473.825
3474.018 | | Fe II
Co I | 4,23 | | | | ** | | 0400.540 | | J. 1 | 01 | 0.21.240.10 | | JU 1 | -, | | A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |----------------|------|-----------------|---------------|----------------------|--------|-----------------|---------------|----------------------|------|-----------------|---------------| | 1.037 | | Mn II | 3 | 3481.536 | | Cr I | 110 | 3490.765 | | Ti I | 22 | | . 124 | | Mn II | 3 | 3481.558 | | Fe I | 132 | 3490.89 | | A II | 30 | | 379 | P | Cr I
.Fe II1 | 27 | 3481.675 | | Ti I | 271 | 3491.053 | | Ti II | 6 | | 1.530 | r | Co I | 24 | 3481.750
3481.797 | | Tm II
Gd II | 10
22 | 3491.16
3491.19 | P | Fe III
Ti II | 103
118 | | 56 | | N IV | 7 | 3481.92 | P | Fe II | 102 | 3491.24 | • | A II | 44 | | .763 | | Ca I | 10 | 3481.96 | - | Ne II | 6 | 3491.316 | | Co I | 6 | | 780 | | Rh I | 2 | 3482.05 | P | Fe II | 10 | 3491.54 | | · A II | 44 | | 84
87 | | La II
Cr I | 143 | 3482.06 | | Mn II | 9 | 3491.954 | | Gd II | 6 | | :•87 | | CF I | 141 | 3482.36 | | Fe 1H | 103 | 3491.987 | | Co I | 159 | | . 887 | | Sr II | 4 | 3482.39 | P | Fe II | 133 | 3492.24 | | o iv | 14 | | .94 | | Fe III | 90 | 3482.426 | | Fe II | | 3492.39 | | Ti II | 125 | | .94 | | 0 11 | . 8 | 3482.56 | P | Cr II | 148 | 3492.956 | | Ni I | 18 | | . 13
. 25 | P | Cr II
Fe II | 2
4 | 3482.58 | | Al I | 17 | 3493.163 | | V II
Ti I | 6 | | . 25 | P | Ne II | 35 | 3482.58
3482.602 | | Cr II
Gd II | 67
40 | 3493.280
3493.29 | | Fe I | 22
48 | | . 36 | P | Cr I | 141 | 3482.70 | | Si III | 40 | 3493.34 | P | Fe II | 102 | | 450 | | Fe I | 6 | 3482.73 | | Ni I | 120 | 3493.468 | | Fe II | 114 | | .651 | | Fe I | 78 | 3482.905 | | Mn II | 3 | 3493.57 | P | Fe I | 327 | | -74 | P | Fe II | 4 | 3482.98 | | N IV | 1 | 3493.69 | | Fe I | 297 | | 867 | | Fe I | 186,373 | 3483.006 | | Fe I | 24 | 3494.15 | | Fe I | 137 | | . 252 | | V II | 58 | 3483.010 | | Ti I | 22 | 3494.25 | P | Fe I | 185 | | . 336 | | Fe I | 133,835 | 3483.410 | | Co I | 23 | 3494.404 | | Gd II | 7 | | . 360 | | Co I | 161 | 3483.54 | | Zr II | 33 | 3494.52 | | Cr II | 2 | | 452 | | Ti I | 85 | 3483.59 | P | Zr II | 103 | 3494.66 | | 0 11 | 70 | | .63
.704 | | N1 I
Fe I | · 123
6 | 3483.62 | P | Ni I | 120 | 3494.672 | | Fe II | 16 | | .74 | | A II | 44 | 3483.774
3483.80 | | Ni I
Co I | 6
5 | 3494.703
3494.967 | | N1 I
Cr I | 154
109 | | .842 | | Ce II | 132 | 3483.80 | | Ti II | 125 | 3495.16 | P | Fe I | 102 | | .853 | | Fe I | 242 | 3484.15 | | Cr II | 2 , | 3495.285 | - | Fe I | 238 | | 000 | | m | • | | _ | | | 0405 00 | | 0 | _ | | .982
.007 | | Ti II
Fe I | 6
139 | 3484.16 | P | Cr II | 185 | 3495.37 | | Cr II
O II | 2 | | .161 | | re 1
Cr I | 139
141 | 3484.18
3484.32 | | Fe III
V II | 100
168 | 3495.44
3495.56 | | O II | 70 | | 181 | | Ti II | 6 | 3484.348 | | Fe II | 115 | 3495.6 | P | N1 II | 4 | | .514 | | V II | 58 | 3484.39 | 4 | La II | 113 | 3495.616 | - | Fe II | 115 | | .69 | | Ne II | 21 | 3484.65 | | V H | 6 | 3495.682 | | Co I | 22 | | -828 | | Rh II | 4 | 3484.84 | | Fe I | 185 | 3495.75 | | HF II | 10 | | .836
.850 | | Co I
Fe I | 161
82 | 3484.90 | | N IV | 1 | 3495.754
3495.831 | | Ti I
Mn II | 84
3 | | 864 | | Ni I | 124 | 3484.97
3485.054 | | Fe I
Ce II | 138
44 | 3495.94 | | Hf II | 30 | | | | | | | | | · • | | | | | | .98 | P | Fe I | 836 | 3485.110 | | N1 I | 118 | 3495.960 | | Ti I | 22 | | .17 | | Cr II
A II | 109
45 | 3485.16
3485.31 | | Hf II
Zr II | 43
57 | 3496.070
3496.08 | | Co I
Y II | 136
3 | | . 29 | | Zr II | 2 | 3485.342 | | Fe I | 78 | 3496.18 | | Zr II | 1 | | .292 | | N1 I | 173 | 3485.368 | | Co I | 162 | 3496.19 | | Fe I | 186 | | .382 | | Fe I | 185 | 3485.689 | | Ti I | 84 | 3496.27 | | 0 11 | 7 | | . 50 | | Zr II | 84 | 3485.700 | | Co I | 68 | 3496.27 | P | V II | 131 | | . 55 | P | Fe II
Co I | 16 | 3485.728 | _ | Fe II | 133 | 3496.29
3496.29 | P | Fe III
Ti II | 103 | | .555
.69 | | N IA | 120
1 | 3485.82
3485.867 | P | V II
V I | 131
81 | 3406.25 | r | Ni I | 118
118 | | | | | | | | | | | | | | | .74 | | PII | 2,18 | 3485.888 | | N1 I | 17 | 3496.60 | P | Fe I
Fe II | 572 | | .744
.77 | | Co I
Cr I | 67
141 | 3485.916 | | V II | 6 | 3496.67
3496.681 | P | Co I | 88
19 | | 788 | | Fe I | 137 | 3486.08
3486.14 | P | Fe II
W II | 102
11 | 3496.794 | | Co I | 161 | | 1.79 | | Cb II | 7 | 3486.556 | | Fe I | 79 | 3496.814 | | Mn 11 | 3 | | 1.906 | | Rh I | - 6 | 3486.93 | | Si III | | 3497.00 | P | V II | 131 | | .918 | | Ti I
V II | 84 | 3487.008 | | V I | 81 | 3497.00 | | Zr II
V II | 10 | | .961
.97 | | W II | 182
43 | 3487.11
3487.33 | | Fe III | 90
56 | 3497.031
3497.115 | P | V II
Fe I | 146
78 | | 1.98 | | Hf II | 61 | 3487.57 | | A II
Hf II | 55 | 3497.137 | • | Fe I | 78 | | | | | ~- | | | | | | | | · · | | 1.02 | | Zr II | 20 | 3487.598 | | Ca I | 10 | 3497.340 | | SIII | 101 | | 1.14 | | Cr I | 141 | 3487.712 | | Co I | 65 | 3497.39
3497.49 | | V II
Hf I | 131
1 | | 1.264 | | N1 I
Al I | 105
17 | 3487.721
3487.80 | P | He I
Ti I | 42
119 | 3497.49 | | Mn II | 3 | | 1.20 | | HP II | 2, | 0487.990 | • | Fe II | 4 | 3497.73 | P | Fe II | 114 | | 1.39 | | Zr II | 46 | 3488.18 | | 0 11 | 7 | 3497.81 | P | Fe II | 133 | | 1.53 | | Ne II | 49 | 3488.293 | | Ni I | 121 | 3497.843 | _ | Fe I | 6 | | 1.567 | | Cb II | 6 | 3488.453 | | Cr I | 109 | 3497.89
3497.90 | P | Fe I
Zr II | 499
58,84 | |).683
).78 | | Fe I
Al I | 443,812
17 | 3488.553 | | Ce II
Mn II | 187
3 | 3498.12 | P | V 11 | 131 | | | | | | 3488.676 | | 1011 TT | U | | | | | | .82 | | C1 II | _ | 3488.92 | | Fe
III | 60 | 3498.18 | P | Fe I | 326 | | 837 | | V II | 6 | 3489.07 | _ | Cr II | 135 | 3498.19 | P | Ni I
He I | 2
40 | |).914
).012 | | Fe II
Co I | 4
67 | 3489.07 | P
P | Fe III
Fe II | 26
102 | 3498.641
3498.83 | P | N II | 117 | | 1.183 | | Ni I | 123,124 | 3489.17
3489.281 | E' | Gd II | 102 | 3498.942 | - | · Ru I | 4 | | 1.28 | | Cr I | 141 | 3489.399 | | Co I | 36 | 3499.099 | | T1 I | 84 | | 1.40 | | Zr II | 58 | 3489.45 | | Cr II | 109, 185 | 3499.49 | | A II | 5 | |).52 | | A II | 57 | 3489.48 | P | Fe III | 27 | 3499.57 | | Fe III | 26 | | 1.525 | | Ti I | 84 | 3489.670 | | Fe I | 442
6 | 3499.58
3499.67 | | Zr II
A III | 9
2 | | 1.547 | | Gd II | 23 | 3489.739 | | Ti II | U | | | | | | 1.55 | | A III | 2 | 3489.79 | | Pd I | 8 | 3499.823 | | V II | 5 | |).75 | | Ne II | 49 | 3489.84 | | 0 IV | 14 | 3499.877 | | Fe II | 115 | | 1.897 | | Ti II | 22 | 3489.947 | _ | V II | 131 | 3500.15
3500.29 | | Zr II
Fe III | 123
48 | | l.11
l.126 | | K III
Ti I | 3
271 | 3490.04 | P | Fe I
P II | 331
19 | 3500.29 | | Ti II | 6 | | 1.120 | | Zr 11 | 271
46 | 3490.45
3490.47 | P | Fe I | 19
835 | 3500.5 | | 0 11 | 60 | | l. 17 | | Pđ I | 2 | 3490.575 | | Fe I | 6 | 3500.564 | | Fe I | 238 | | 1.275 | | Gd II | 22 | 3490.62 | | He I | 41 | 3500.852 | | Ni I | 6 | | 1.303 | | Cr I | 77 | 3490.736 | _ | Co I | 20 | 3501.107
3501.32 | P | Ba I
Fe III | 3
48 | | 1.44 | | Zr II | 59 | 3490.74 | P | Fe I | 133 | 0001.06 | - | | | 21 | | Type | Element | Multiplet No | • | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |---------------|------|----------------|--------------|---|----------------------|------|-----------------|---------------|-----------------------|------|----------------|---------------| | 33 | | Zr I | 14 | | 3509.843 | | Co I | 22 | 3518.632 | | Gd II | 7 | | 416 | | F II | 3 | | 3509.844 | | Ti II | 88 | 3518.634 | | N1 I | 124 | | 453 | | Ce II
O II | 87
70 | | 3509.870 | | Fe I
Mn II | 78
9 | 3518.68 | | Fe I
Hf II | 327 | | 67
73 | | Co II | 2 | | 3509.971
3510.00 | | La II | 15 | 3518.75
3518.86 | | Fe I | 43
78 | | 75 | | Fe III | 26,48 | | 3510.133 | | Gd II | 21 | 3519.077 | | Ce II | 92 | | 2 | P | O IV | 13 | | 3510.18 | P | Fe I | 836 | 3519.24 | | Tl I | 2 | | 278 | | Co I | 21 | | 3510.262 | | Cb II | 40 | 3519.25 | | Fe III | 54 | | 381
46 | P | He I
Fe I | 39
576 | | 3510.338 | | Ni I
Cr I | 18
263 | 3519.60 | P | Zr I
Ti II | 13
118 | | 40 | r | re 1 | 0.0 | | 3510.40 | | 01 1 | 200 | 3519.67 | F | ** ** | 110 | | 524 | | Rh I | 2 | | 3510.426 | | Co I | 6 | 3519.72 | P | Fe II | 88 | | 595 | | Ni I | 3 | | 3510.443 | | Fe I | 139 | 3519.766 | | Ni I | 5 | | 63 | _ | Co I | 6 | | 3510.46 | | Zr II | 20 | 3519.85 | | Fe III | 59 | | 85
954 | P | Fe I
F II | 577
3 | | 3510.538
3510.840 | | Cr I
Ti II | 109
88 | 3519.939
3520.00 | | Ti I
A II | 22
56 | | 998 | | Co I | 135 | | 3511.227 | | Sm II | 12 | 3520.022 | | A II | 5 | | 00 | | P II | 2 | | 3511.25 | P | Fe II | 102 | 3520.075 | | Co I | 4 | | 095 | | F II | 3 , | | 3511.42 | | A. II | 57 | 3520.253 | | Ti II | 98 | | 206
36 | | Gd II
Cr II | 90
157 | | 3511.55
3511.613 | | Zr II
Ni I | 124
152 | 3520.4717
3520.522 | | Ne I
Ce II | 7
55 | | • | | v | 20. | | | | | 104 | 0020.022 | | 06 11 | 30 | | 38 | | Cr I | 109 | | 3511.626 | | Ti I | 22 | 3520.547 | | V II | 57 | | 474 | | Fe II | 4 | | 3511.748 | | Fe I | 238 | 3520.55 | | Cr I | 235 | | 58 | | A III
Ne II | 2
28 | | 3511.84 | | Cr II
Fe III | 2 | 3520.72 | | La II | 127 | | 61
717 | | CO I | 88 | | 3511.93
3511.94 | | N1 I | 26
124 | 3520.85
3520.87 | | Fe I
Zr II | 238
19 | | 760 | | Ti I | 22 | | 3512.08 | | Fe I | 327 | 3520.9 | P | O IV | 13 | | 96 | P | Fe III | 48 | | 3512.13 | | V II | 193 | 3520.91 | P | Zr II | 59 | | 40
432 | | Fe III
V II | 48
6 | | 3512.219
3512.239 | | Gd II
Fe I | 38
326 | 3521.09 | | Eu II
Fe I | 24
24 | | 452
455 | | Fe I | 371 | | 3512.239 | P | Fe III | 26 | 3521.264
3521.27 | | A II | 24
56 | | . 400 | | | 0.2 | | 0012101 | • | | 20 | 0021.27 | | 2 11 | 00 | | 48 | | Sb I | 2 | | 3512.496 | | Gd II | 89 | 3521.28 | P | Zr II | 84 | | 596 | | Ce III | 6 | | 3512.511 | | He I | 38 | 3521.53 | | Cr I | 263 | | 728
773 | | Co I
Ti I | 135
167 | | 3512.640
3512.67 | | Co I
Zr II | - 21
57 | 3521.567 | P | Co I
Fe II | 20 | | 966 | | Fe I | 131 | | 3512.68 | p | Fe I | 327 | 3521.64
9521.791 | r | Co I | 10
24,100 | | 890 | | Ti II | 88 | | 3512.70 | | Cr I | 109 | 3521.833 | | Fe I | 78 | | 065 | | Fe I | 498 | | 3512.74 | P | Fe I | 613 | 3521.836 | | v ir | 57 | | 133
22 | | Co I
Hf II | 160
7 | | 3512.80
3512.93 | P | Fe I
La II | 330
44 | 3521.880
3521.98 | | Ce II | 211
45 | | 44 | | C1 II | 64 | | 3512.95 | | Fe I | 501 | 3522.044 | | Nd II | 71 | | | | | | | | | | | | | | | | 45 | P | Ti II | 6 | | 3513.03 | | Cr II | 107 | 3522.05 | P | Fe II | 10 | | 47
512 | | Zr II
Gd II | 90
22 | | 3513.065
3513.09 | | Fe I
Ti II | 48
6 | 3522.063
3522.13 | | Mo II
Cr II | 1
184 | | 614 | | F 17 | 3 | | 3513.22 | | C1 II | 64 | 3522.13 | | C1 II | 64 | | 67 | | Zr II | 1 | | 3513.478 | | Co I | 5 | 3522.268 | | Fe I | 326 | | 690 | | V I | 81 | | 3513.59 | P | Fe I | 327 | 3522.72 | _ | Ne II | 35 | | 901
.02 | | T1 II
O II | 88
70 | | 3513.638
3513.69 | | Ir I
Cl II | 2
64 | 3522.73
3522.856 | P | Fe I
Co I | 538
159 | | 04 | | Zr II | 84 | | 3513.820 | | Fe I | 24 | 3522.896 | | Fe I | 330 | | . 23 | | Fe I | 327 | | 3513.877 | | V II | 117 | 3523.02 | | Hf I | 3 | | 940 | | Co I | 04 | | 0540 00 | | | | | | | | | 310
40 | | Fe I | 21 | | 3513.88
3513.933 | | K III
Ni I | 1
17 | 3523.074
3523.18 | P | N1 I
Fe I | 34
673 | | 48 | | Zr II | 84 | | 3513.933 | | N1 II | i | 3523.16 | r | Fe I | 326 | | .498 | | Fe I | 130 | | 3514.21 | | Co II | 1 | 3523.423 | | Co I | 21 | | .57
.58 | D | V. II
Fo I | 193
327 | | 3514.29 | Þ | Fe III | 27 | 3523.444 | _ | N1 I | 16 | | 61 | - | Cr II | 108,157 | | 0514.09
3514.422 | | A II
V II | 44
57 | 9529.47
3523.701 | P | N1 I
Co I | 154
66 | | 643 | | Ti I | 22 | | 3514.48 | P | Fe I | 47 | 3524.04 | P | Fe I | 238 | | 843 | | VI | 81 | | 3514.62 | | Fe I | 183 | 3524.075 | | Fe I | 239 | | ,93 | | Fe III | 48 | | 3514.64 | | Zr II | 114 | 3524.196 | | Gd II | 6 | | 14 | P | Fe I | 835 | | 3514.87 | | Fe III | 26 | 3524.236 | | Fe I | 130 | | 316 | - | Rh I | 2 | | 3515.054 | | N1 I | 19 | 3524.54 | P | Cr II | 107 | | .37 | | PII | 18 | | 3515.41 | P | Fe I | 243 | 3524.541 | | Ni I | 18 | | , 387
, 39 | | Fe II
Fe I | 16
-500 | | 3515.421 | | Cb II
Be I | 6
7 | 3524.646 | | Mo II
V II | 1 | | .39 | | Lu II | 1 | | 3515.538
3515.57 | | Fe III | 54 | 3524.713
3524.87 | | V II
Ti II | 5
118 | | 426 | | T1 I | = | | 3515.818 | | Fe II | 208 | 3525.161 | | Ťi I | 167 | | ,534 | | V II | 159 | | 3516.00 | | V II | 6 | 3525.17 | | Fe III | 60 | | ,66 | | Zr II | 58 | | 3516.05 | | Al II | 54 | 3525.44 | | Cr I | | | .694 | | Ni I | 3 | | 3516, 234 | | N1 I | 123 | 3525.81 | | Zr II | 9 | | .945 | | Ce II | 51 | | 3516,408 | | Fo I | 113 | 9525.956 | | Fo I | 920 | | ,964 | | Y II | 47 | | 3516.55 | | Fe I | 326 | 3525.872 | | Co I | 63 | | .09 | | Cr I | | | 3516.58 | P | Fe III | 54 | 3526.016 | | Fe I | 240 | | .213
.470 | | Fe II
Ce II | 4
114 | | 3516.675
3516.838 | | Co I
Ti I | 65
167 | 3526.039 | | Fe I
Cl II | 6
64 | | .494 | | Fe I | 442 | | 3516.838
3516.92 | | 0 H | 69 | 3526.13
3526.167 | | Fe I | 24 | | .52 | | Fe I | 239 | | 3516.95 | | Pd I | 1 | 3526.23 | | Fe I | 327 | | .67 | P | Cr II | 77 | | 3517.03 | P | N1 I | 123 | 3526.377 | | Fe I | 326 | | .731 | | Eu II | 13 | | 3517.14 | | La III | 1 | 3526.465 | | Fe I | 131 | | .31 | | Cr I | | | 3517.298 | | A II | ₽ | 3526.540 | | Ni I | 155 | | .852 | | Eu II | 13 | | 3517.327 | | He I | 37 | 3526.673 | | Fe I | 326 | | .94 | _ | C1 II | 64 | | 3517.380 | | Ce II | 230 | 3526.69 | P | Fe I | 497 | | .024 | P | V II | 5
117 | | 3517.48 | P | Co II
V II | 1
57 | 3526.78 | P | Fe I
Co I | 321
4 | | .12 | | Fe I | 326 | | 3517.53
3517.890 | | Gd II | 88 | 3526.847
3526.96 | P | Fe I | 835 | | .20 | P | V II | 117 | | 3517.90 | | A II | 5 | 3527.08 | - | Cr I | 274 | | . 32 | | Zr I | 15 | | 3518.23 | P | Fe I | 575 | 3527.11 | | P II | 21 | | .39 | P | Cl II
Fe I | 64
327 | | 3518.340 | | Co I | 36 | 3527.42 | | Zr II | 103
396 | | .73
.78 | P | A II | 327
44 | | 3518.61
3518.62 | | P II
Cr II | 2·
107 | 3527.792
3527.867 | | Fe I
V II | 326
117 | | -10 | | | | | 00.10.05 | | | | 554,1551 | | | | | , · A | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | IA | Type | Element | Multiplet No. | |-----------------|------|----------------|---------------|----------------------|------|----------------|---------------|----------------------|------|----------------|---------------| | 7.90 | P | Fe I | 296 | 3538.142 | | Rh I | 8 | 3550.82 | _ | La II | 15 | | 7.982 | | Ni I | 6 | 3538.238 | | V II | 4 | 3551.11 | P | Fe I
P II | 321
12,21 | | 8.024 | | Rh I
Cr II | 3
109 | 3538.31 | | Fe I
Fe I | 775
137 | 3551.16
3551.52 | | Ne II | 25 | | 8.23
8.24 | P | Fe I | 182 | 3538.55
3538.77 | | Fe I | 811 | 3551.534 | | N1 I | 5 | | 3.545 | - | Gd II | 23 | 3538.86 | | Mg II | 12 | 3551.666 | | Co I | 67 | | 8.602 | | Os I | 1 | 3539.00 | | Cr II | 157 | 3551.94 | | Zr II | 1 | | 3.891 | | Ni I | 154 | 3539.05 | | Zr II | 102 | 3552.00 | | Al II | 53 | | 8.94 | P | Fe I | 23 | 3539.086 | | Ce II | 118 | 3552.112 | _ | Fe I | 499 | | 9.032 | | Co I | 5 | 3539.589 | |
Th II | 1 | 3552.42 | P | Fe I | 182 | | 9.38 | | Tl I
Fe I | 2
537 | 3539.94 | | Ne II
Fe I | 50
329 | 3552.50
3552.516 | P | Cr II
Eu II | 89
19 | | 9.531
9.57 | | W II | 12 | 3540.121
3540.28 | P | Cr II | 89 | 3552.70 | | Hf II | 7 | | 3.625 | | Ni I | 76 | 3540.530 | • | V I | 45 | 3552.70 | | Y I | 8 | | 9.73 | | Cr II | 89 | 3540.709 | | Fe I | 23 | 3552.720 | | Co I | 6 | | 9.735 | | v I | 53 | 3540.961 | | CP II | 4 | 3552.828 | | Fe I | 321 | | 3.816 | | Co I
Fe I | 22
326 | 3541.083 | _ , | Fe I | 326 | 3552.85 | P | Ti II
Cr I | 15 | | 9.818
9.99 | | Zr II | 326
84 | 3541.22
3541.341 | P | Fe I
V II | 47
145 | 3552.953
3552.989 | | Cc I | 67 | | 0.03 | | C1 III | 10 | 3541.44 | | Ti IV | 140 | 3553.10 | | Pd I | 9 | |).22 | | Zr I | 52 | 3541.765 | | F II | 6 | 3553.161 | | Co I | 137 | |). 25 | | PII | 21 | 3542.00 | | Ni I | 119 | 3553.271 | | V I | 53 | |).385 | | Fe I
V II | 326
57 | 3542.076 | | Fe I | 326 | 3553.483 | | Ni I | 16
11 | |).45
).487 | | He I | 36 | 3542.152
3542.243 | | Eu II
Fe I | 17
128 | 3553.51
3553.716 | | Mg II
Gd II | 89 | |).580 | | Ti I | 22 | 3542.28 | | Ne II | 50 | 3553.741 | | Fe I | 810 | |).595 | | N1 I | 121 | 3542.480 | | V II | 145 | 3553.968 | | Cr I | 157 | |).600 | | Sm II | 20 | 3542.56 | P | Fe I | 321 | 3554.09 | | Zr II | 83 | |).67 | | La II | 12 | 3542.65 | | Zr II | 113 | 3554.122 | | Fe I | 23 | |). 75 | | K II | 7 | 3542.657 | | VI | 45 | 3554.39 | | Ne II | 18 | |).765
).85 | | V II
Zr II | 5
114 | 3542.768 | | Gd II
Ne II | 51 | 3554.394
3554.43 | | He I
Lu II | 34
7 | | l. 151 | | Eu II | 24 | 3542.90
3542.976 | | Co I | 34
19 | 3554.44 | P. | Fe I | 395 | | 1.22 | | AII | 5 | 3543.09 | P | Fe I | 182 | 3554.50 | • | Fe I | 325 | | L. 43 | | Fe I | 182 | 3543.16 | - | A II | | 3554.50 | P | Fe II | 176 | | l•44 | | Or I | 203 | 3543.256 | | CO I | 64 | 3554,524 | | He i | 04 | | 1.48 | | V II | 4 | 3543.352 | | Nd II | | 3554.65 | P | Fe I | 154 | | L.848
L.998 | | Mn I
Mn I | 18
18 | 3543.39
3543.500 | | Fe I
V I | 183
53 | 3554.802
3554.922 | | Gd II
Fe I | 52
326 | | 2. 121 | | Mn I | 18 | 3543.669 | | Fe I | 734 | 3554.993 | | Ce II | 117 | | 3.19 | | A II | 57 | 3543.948 | | Rh I | 6 | 3555.08 | P | Fe II | 113 | | 2.285 | | V II | 192 | 3544.001 | | Y II | 56 | 3555.142 | | V I | 53 | | 2.647 | | Fe II | 132 | 3544.631 | _ | Fe I | 239 | 3555.18 | | W II | 11 | | 3.65 | P | N I
Fe II | 75 | 3544.88 | P | Fe I | 154 | 3555.93 | | Co II
Y II | 1
46 | | 3.69
3.888 | P | Cr I | 70 | 3544.985
3545.03 | | Gd II
Co II | 51
1 | 3556.083
3556.120 | | Co I | 117 | | 3.008 | | Fe I | 326 | 3545.16 | | Ni I | 76 | 3556.130 | | Cr II | 7 | | 1.043 | | Na II | 1 | 3545.190 | | V II | 5 | 3556.184 | | Ti I | | | 3.19
3.201 | P | Fe II
Fe I | 75
326 | 3545.339
3545.58 | | V I
A II | 53
70 | 3556.49
3556.54 | Р | P II
Zr II | 21
19 | | | | Zr I | | | | | | | | Zr II | 9 | | 1. 22
3. 356 | | Co I | 14
5 | 3545.603
3545.639 | | Ce II
Fe I | 44
321 | 3556.61
3556.68 | | Fe I | 325 | | 1.67 | | PII | 21 | 3545.797 | | Gd II | 2 | 3556.800 | | V II | 3 | | 3.676 | | v i | 53 | 3545.832 | | Fe I | 536 | 3556.877 | | Fe I | 327 | | 1.757 | | v I | 53 . | 3545.84 | | A II | 106 | 3556.91 | | AII | 29 | | 3.868 | | Ti II | 98 | 3546.15 | P | Cr II | 134 | 3556.92 | | 0 111 | 24
22 | | 1.97 | | O II
Ce II | 69
44 | 3546.190 | | Ce II
Fe I | 131 | 3557.053
3557.26 | | Gd II
La II | 29 | | i.051 | | V II | 12 | 3546.21
3546.22 | | Ne II | 183
27 | 3557.548 | | Fe II | 176 | | 1.52 | | Fe I | 811 | 3546.707 | | Co I | 41 | 3557.796 | | Tm II | 10 | | 1.688 | | Mo II | 1 | 9547.029 | | Ti I | 193 | 9557.84 | | Ne II | 6 | | 1.769 | | Co I | 118 | 3547.07 | | V II | 69 | 3557.85 | P | Cr II
Fe I | 76
572 | | 1.914 | | Fe I
Mg II | 48
12 | 3547.10 | | Cr II | 134 | 3558.08
3558.189 | P | Gd II | 69 | | i.04
i.16 | | Zr I | 59 | 3547.203
3547.69 | | Fe I
Zr I | 321,613
13 | 3558.21 | P | Fe I | 239 | | 1. 18 | P | V II | 4 | 3547.802 | | Mn I | 18 | 3558.22 | P | Cr II | 89 | |). 304 | | Ср І | 4 | 3547.98 | | Gr I | | 3556.468 | | GG II | 51 | | 1.33 | | AII | 44 | 3548.029 | | Mn I | 18 | 3558.518 | | Fe I | 24 | | i. 408 | | Ti II
Tm II | 98 | 3548.037
3548.185 | | Fe I
Ni I | 496
3,20 | 3558.538
3558.60 | | Sc II
Cr I | 3 | | i. 54 | | Hr II | . 9 | | | Mn I | 18 | 3558.772 | | Co I | 20 | | i.628 | | Fe II | 9
75 | 3548.202
3548.438 | | Mn I
Co I | 41 | 3559.101 | | Sm II | | | 1.653 | | Sm II | 44 | 3548.51 | | AII | 56 | 3559.21 | | Cr I | | | 1.729 | | Sc II | 11 | 3548.55 | P | Fe II | 132 | 3559.328 | - | Ce II | 243 | | 3-30 | | P II | 20 | 3548.731 | | Cr I | 76 | 3559.45 | P | Fe I | 321
498 | | 1.556 | | Fe I
Tm II | 326
3 | 3549.02 | | Y II
V II | 9 | 3559.506
3559.53 | | Fe I
A II | 498
70 | | 3.576
3.820 | | He I | 3
35 | 3549.030
3549.08 | | W II | 103
13 | 3559.53 | | Co I | 97 | | 3.838 | | FII | 6 | 3549.27 | P | Ti II | 117 | 3559.781 | | Cr I | 89 | | 1.89 | | Cr I | 50 | 3549.365 | • | Gd II | 7 | 3559.93 | | P II | 21 | | 3.94 | | Zr II | 10 | 3549.51 | | Zr II | 84 | 3559.930 | | Ni I
Fe I | 118
321 | | . 243 | | Ni I | 153
50 | 3549.61 | | Mg II | 11 | 3560.07
3560.306 | P | Co I | 64 | | '.25
'.491 | | Cr I
Fe I | 50
239 | 3549.72 | | S III
Fe I | 48 | 3560.42 | | O IV | 12 | | '.634 | | Ni I | 120 | 3549.868
3550.03 | | A II | 68 | 3560.594 | | V II | 4 | | 7.707 | | Co I | 68 | 3550.11 | P | Zr II | 124 | 3560.68 | | C1 III | 10 | | 7.729 | | Fe I | 239 | 3550.19 | P | Ti II | 117 | 3560.705 | | Fe I | 675 | | .75 | | Ca III | 2 | 3550.46 | | Zr I | 12 | 3560.798 | | Ce II | 51
6 | | '-896 | | Fe I | 327 | 3550.592 | | Co I | 4 | 3560.855 | | Os I
Co I | 21 | | '•99 | | Ne II | 50 | 3550.635 | | Cr I | | 3560.891 | | UU 1 | . ~- | | | | | | | | | | | | | | | | Туре | Element | Multiplet No. | IA | Туре | Element | Multiplet No. | IA | Type | Element | Multiplet No. | |-------------|--------|----------------|----------------|----------------------|------|----------------|---------------|----------------------|--------|-----------------|---------------| |)4 | | A II | 106 | 3570.77 | | A II | 69 | 3581.91 | | Gd II | 69 | | ii | | Zr II | 82 | 3571.037 | | V I | 122 | 3581.916 | | Fe I | 497 | | 23 | | Ne II | 31 | 3571.16 | | Pd I | 1 | 3582.08 | | Zr II | 101 | | 575 | | Ti II | 15 | 3571.228 | | Fe I | 46 | 3582.201 | | Fe I | 612 | | 35 | | Hf II
Ni I | 1
2 | 3571.26
3571.37 | | Ne II
Cr II | 31
107 | 3582.34 | P | Fe I | 568
56 | | 751
)10 | | Ti II | 42 | 3571.64 | P | Cr II | 89 | 3582.35
3582.56 | | Fe I | 181 | |)91 | | Ce II | 36 | 3571.653 | _ | V I | 122 | 3582.69 | | Fe I | 328 | |)97 | | Co I | 115 | 3571.869 | | Ni I | 5 | 3583.098 | | Rh I | 3 | | L9 | | A II | 106 | 9571.933 | | C4 II | 4 | 0590.007 | | Fe I | 574 | | 29 | | Cr I | 308 | 3571.97 | P | Cr I | 157 | 3583.394 | | Sm II | 20 | | 18 | | Cr I | 281 | 3571.995 | _ | Fe I | 321 | 3583.54 | P | Fe II | 101 | | 18 | _ | P II | 22
237 | 3572.32 | P | Fe I
Fe III | 182
105 | 3583.676 | | Mn I
V I | 25
45 | | 30
312 | P | Fe I
Co I | 64 | 3572.46
3572.47 | | Zr II | 1 | 3583.704
3584.01 | P | Cr 11 | 107 | | 350 | | He I | 33 | 3572.48 | | WII | 3 | 3584.259 | - | Sm II | 12 | | 36 | | O IA | 12 | 3572.523 | | Sc II | 3 | 3584.366 | | Cr I | | | 31 | P | Fe I | 325 | 3572.60 | | Fe I
Pb I | 325
3 | 3584.53 | | Y II
Fe I | 9 | | 71
92 | | V II
Cr II | 4
134 | 3572.734
3572.748 | | Cr I | 75 | 3584.663
3584.790 | | Fe I | 294
322 | | | | | | 9579 00 | | 7- 11 | 0 | | | a - T | • | |)46 | | Gd II
Fe I | 52
48 | 3573.09
3573.27 | P | Zr II
Ni I | 9
123 | 3584.801
3584.960 | | Co I
Fe I | 6
395,611 | | 11
115 | | Co I | 159 | 3573.403 | • | Fe I | 673 | 3584.962 | | Gd II | 7 | | 30 | | Cr I | 281 | 3573.516 | | V I | 122 | 3584.98 | | C II | 23 | | 34 | | A II | 43 | 0579.557 | | v II | 78 | 3585.154 | | Co I | 21 | | 51 | P | Fe I | 183
113 | 3573.643 | | Cr I
Ti II | 75
15 | 3585.193 | | Fe I
Cr II | 438
13 | | 54
56 | P
P | Fe II
Fe I | 183 | 3573.737
3573.842 | | Fe I | 181 | 3585.31
3585.320 | | Fe I | 23 | | 67 | P | Ni I | 73 | 3573.896 | | Fe I | 611 | 3585.54 | | Cr II | 13 | | 947 | _ | Co I | 19 | 3574.039 | | Cr I | 74,308 | 3585.708 | | Fe I | 23 | | 953 | | Cr I | 308 | 3574.23 | | Ne II | 9 | 3585.808 | | Co I | 100 | | 02 | | A II | 57 | 3574.245 | | Ti I | 247 | 3585.83 | | C II | 23 | | 15 | | Cr I
Cr II | 50 | 3574.340 | P | V II
Fe I | 78 | 3585.852 | | Ti I
Mo IJ | | | 31
326 | | Ti II | 107
76 | 3574.37
3574.38 | P | Cr I | 181 | 3585.91
3586.082 | | Co I | 1
87 | | 381 | | Fe I | 24 | 3574.64 | | Ne II | 9 | 3586.10 | P | Fe I | 497 | | 41 | | Zr II | 102 | 3574.805 | | Cr I | 75 | 3586.114 | | Fe I | 611 | | 55 | | Cr I | 50,281 | 3574.935 | | Cr I | 74 | 3586.12 | | Fe III | 36 | | 583
83 | P | Fe I
Fe I | 321,328
571 | 3574.967
3575.11 | | Co I
Fe I | 21
321 | 3586.23
3586.28 | | Cr I
Zr I | 157
12 | | | • | | | | | Fe I | 322 | | | | | | 84
00 | | Ne II
Ti II | 34
42 | 3575.249
3575.361 | | Co I | 4 | 3586.543
3586.557 | | Mn I
Al II | 8
7 | | 052 | | Fe II | 155 | 3575.374 | | Fe I | 496 | 3586.708 | Forb | Al II | 7 | | 10 | | Cr I | 284 | 3575.69 | P | Cr II | 107 | 3586.75 | P | Fe I | 325 | | 10 | | Zr I | 15 | 3575.79 | | Zr I
Cb I | 12 | 3586.811 | | Al II
SC II | 7 | | 148
177 | | re II
V I | 132
45 | 3575.850
3575.952 | | N1 I | 4
120 | 3586.83
3586.912 | P | Al II | 40
7 | | 177 | | v ii | 4 | 3575.976 | | Fe I | 321,328 | 3586.936 | | Al II | 7 |
 31 | P | Fe I | 127 | 3576.00 | | C1 II | 78 | 3586.985 | | Fe I | 23 | | 37 | | Cr II | 76 | 3576.23 | P | Cr II | 171 | 3587.068 | | Al II | 7 | | 372 | | N1 I | 36 | 3576.340 | | Sc II | 3 | 3587.130 | | T1 II | 15 | | 43 | | PII | 22 | 3576.38 | | Ti II
Ti IV | 76 | 3587.16 | P Forb | He I | 32 | | 472
59 | | Tm II
Fe I | 6
181 | 3576.44
3576.62 | | A II | 56 | 3587.165
3587.186 | | Al II
Co I | 7
35 | | 836 | | Sm II | 101 | 3576.760 | | Fe I | 613a | 3587.186 | | Gd II | 1 | | 045 | | Fe I | 325 | 3576.762 | | N1 TT | 4 | 3587.195 | | Al II | 7 | | 116 | | Gd II | 89 | 3576.772 | | Gd II
Zr II | 51
9 | 3587.252 | | He I | 31 | | 171
36 | | S II
Fe I | 56
183 | 3576.88
3577.220 | | V II | 78 | 3587.253
3587.309 | | Fe I
Al II | 325
7 | | 654 | | Gd II | 51 | 3577.240 | | N1 I | 3 | 3587.342 | | Al II | 7 | | 701 | | SC II | 3 | 3577.260 | | Co I | 41 | 3587.396 | | He I | 31 | | 84 | | Lu I | 3 | 3577.458 | | Ce II | 51 | 3587.424 | | Fe I | 134 | | 04 | | C1 II | 78 | 3577.644 | | V II | 69 | 3587.450 | | Al II | 7 | | 14 | | Zr II
Sm II | 46
47 | 3577.857
3577.880 | | V II
Mn I | 78
8 | 3587.504 | | Nd II
Fe III | 36 | | 271
36 | | Cr I | 284 | 3578.03 | | Co II | 1 | 3587.53
3587.68 | | CII | 23 | | 423 | | Fe I | 321 | 3578.076 | | Co I | 117 | 3587.69 | P | Fe I | 322 | | 426 | | CoI | 61 | 3578.22 | | Zr II | 83 | 3587.75 | | Y I | | | 53
828 | | Ne II
Fe I | 9
673 | 3578.380
3578.596 | | Fe I
Gd II | 321
21 | 3587.752
3587.78 | 1 | Fe I
Cl II | 78 | | | | | | | | | | | | | | | 910
97 | P | V I
Fe II | 122
113 | 3578.636
3578.67 | P | V II
Fe I | 78
127 | 9587.931
3587.95 | P | N1 I
Fe II | 18
10 | | 977 | • | Fe I | 294 | 3578.687 | - | Cr I | 4 | 3587.98 | - | Zr II | 10 | | 03 | | Hf II | 7 | 3578.687 | | Ti II | 117 | 3588.13 | | A 11 | 78 | | 083 | | V I | 53 | 3578.89 | | La II | 155 | 3588.23 | P | Fe I | 47 | | 14
370 | | Cr I
Co I | 281
35 | 3578.903
3579.029 | | Co I | 41
41 | 3588.30
3588.32 | | Cr II
Zr II | 107
10 | | 493 | | Nn I | 18 | 3579.549 | | Gd II | 89 | 3588.44 | | A II | 56 | | 566 | | Gd II | 51 | 3579.83 | P | Fe I | 573 | 3588.52 | P | Fe I | -394 | | 804 | | Mn I | 18 | 3580.10 | | La II | 155 | 3588.615 | 5 | Fe I | 325 | | 94 | | A II | 57 | 3580.277 | | Cb I | 4 | 3588.80 | | Zr II | 57 | | .99 | | Fe I | 135 | 3580.618 | • | Gd II | 89
40 | 3588.918 | 3 | Fe I
C II | 322
23 | | 041 | | Mn I
La II | 18
142 | 3580.71
3580.927 | P | Sc II
Sc II | 40
3 | 3588.92
3589.107 | , | Fe I | 23
23 | | 10
100 | | Fe I | 142
24 | 3580.941 | | Sm II | • | 3589.215 | | Ru I | 4 | | 243 | | Fe I | 326 | 3581.195 | | Fe I | 23 | 3589.456 | 3 | Fe I | 295 | | 84 | _ | PII | 18 | 3591.62 | | A II
Fe I | 56
295 | 3589.635 | • | Se II
C II | 9
23 | | .57 | P
P | Cr II
Fe I | 89
154 | 3581.645
3581.68 | | La II | 295
136 | 3589.67
3589.745 | 3 | V II | 23
4 | | .60
.662 | r | WI | 3,5 | 3581.80 | | C II | 23 | 3589.77 | | Fe III | | | | | | • | | | | | | | | | | A | Туре | K1 ement | Multiplet No. | I A | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |-----------------|--------|-----------------|---------------|----------------------|--------|----------------|---------------|----------------------|------|----------------|---------------| | 19.973 | | Mn I | 25 | 3601.666 | | Cr I | 74 | 3609.687 | | Ce II | 179 | | 10.08 | | Fe I | 440 | 3601.692 | | Sm II
Mn I | 20
25 | 3609.752
3609.788 | | Co I | 147 | | 10.29
10.46 | P | Fe I
Si III | 497
7 | 3601.782
3601.916 | | Mn 1 | 25
1 | 3610.052 | | Cr I | 49 | | 10.468 | | Gd II | 22 | 3601.93 | | YII | 9 | 3610.07 | | C1 11 | | | 10.47 | | Ne II | 32 | 3602.079 | | Co I | 4 | 3610.154 | | Ti I
Fe I | 58
321 | | 0.475
0.598 | | Sc II
Ce II | 3
232 | 3602.10
3602.10 | | C1 III
Fe I | 1
322 | 3610.159
3610.25 | | La II | 321 | | 10.66 | | Fe I | 953 | 3602.281 | | Ni I | 3 | 3610.299 | | Mn I | 8 | | Ю.87 | | C II | 23 | 3602.46 | | Fe I | 322 | 3610.33 | P | Fe II | 112 | | 0.99 | | Fe I | 573 | 3602.534 | | Fe I | 324,391 | 3610.38 | Ŗ | Fe II | 175 | | 1.345 | | Fe I | 321 | 3602.574 | | Cr I | 74 | 3610.462 | | Ni I
Fe I | 18
323 | | 1.485 | | Fe I
Co I | 568
134 | 3602.60
3602.61 | P
P | Fe II
Cr I | 101
140 | 3610.703
3610.76 | | Gd II | 323
89 | | 1.912 | | Gd II | 51 | 3602.70 | P | Fe I | 390 | 3610.794 | | Th II | 3 | | 2.012 | | A II | 4 | 3602.77 | P | Fe I | 370 | 3610.85 | P | Cr II
Y II | 171 | | 2.486
2.595 | | Fe I
Nd II | 237 | 3603.20
3603.205 | | Eu II
Fe I | 16
295 | 3611.06
3611.418 | | N1 I | 9
119 | | 2.603 | | Sm II | 39 | 3603.46 | | A II | 57 | 3611.54 | P | N1 I | 2 | | 2.68 | | Fe I | 569 | 3603.572 | | .Fe I | 181 | 3611.57 | | Eu II | 15 | | 2.709 | | Gd II | 69,89 | 3603.61 | | Cr II | 13 | 3611.58 | | V II
Co I | *** | | 2.881
2.92 | | Fe I
Y I | 77
8 | 3603.72
3603.745 | | Cl II
Cr I | 78
74 | 3611.701
3611.72 | | Fe III | 115
36 | | 3.02 | P | Cr II | 13 | 3603.80 | | Cr II | 13 | 3611.84 | | A II | 30 | | 3.022 | | Ru I | 4 | 3603.828 | | Fe I | 496 | 3611.90 | | Zr II | 113 | | 3.093
3.15 | | Ti II
Fe III | 76
36 | 3603.845
3503.85 | | Ti I
Cr II | 20
13 | 3612.068
3612.34 | | Fe I
La II | 325
125 | | 3.323 | | V II | 4 | 3603.88 | | Fe III | 36 | 3612.34 | | Zr II | 146 | | 3.33 | | Fe I | 871 | 3603.91 | _ | A II | 43,68 | 3612.35 | | Ne II | 26 | | 3.445 | | Gd AI | 52 | 3604.21 | P | Fe II | 175 | 3612.352 | | Al III | 1 | | 3.488
3.5259 | | Cr I
Ne I | 4
7 | 3604.284
3604.285 | | Ti I
Sm II | 21
47 | 3612.470
3612.51 | P | Rh I
Fe I | 1
613a | | 3.60 | | N II | 26 | 3604.375 | | V II | 130 | 3612.609 | - | Cr I | 252 | | 3.76 | _ | A II | 117 | 3604.383 | | Fe I | 323 | 3612.741 | | NF I | 6 | | 3.80
4.10 | P
P | Fe I
Fe I | 182
154 | 3604.469
3604.51 | | Co I
Cl II | 136
78 | 3612.85
3612.940 | | Cl III
Fe I | 1
46,77 | | 4.13 | p | Sc II | 40 | 3604.54 | | Cr I | 10,89 | 3613.03 | | 8 11 | 4 | | 4.18 | | Ne II | 34
23 | 3604.95 | P | Cr I | 74 | 3613.08 | P | Fe I
Zr II | 322 | | 4.41
4.462 | | A II
S II | 23
16 | 3604.96
3605.015 | P | Fe I
Co I | 77
97 | 3613.08
3613.15 | | Fe I | 1
324 | | 4.632 | | Fe I | 322 | 3605.05 | P | Cr I | 49 | 3613.21 | | Cr II | 13 | | 4.87 | P | Co I | 135 | 3605.333 | | Cr I | 4 | 3613.26 | | Cr II | 13 | | 4.870 | P | Co I
Sc II | 4 | 3605.370 | - | Co I | 20 | 3613.30
3613.392 | P | T1 II
Gd II | 76
69 | | 4.89
5.119 | P | Mn I | 40
. 8 | 3605.41
3605.450 | P | Cr I
Fe I | 49
294 | 3613.43 | | Zr II | 8,45 | | 5.294 | | Fe I | 322 | 3605.46 | | Y II | 46 | 3613.45 | P | .Fe I | 672 | | 5.66 | | Fe I | 322 | 3605.50 | P
P | Fe I
Sc II | 322 | 3613.490 | | Gd II
He I | 87
6 | | 5.87
5.991 | | Fe I
S II | 181
4 | 3605.50
3605.52 | P | Cr I | 40
252 | 3613.641
3613.669 | | Cr I | 89 | | 6.048 | | Ti II | 15 | 3605.665 | | Gd II | 4 | 3613.70 | | Zr I | 33 | | B. 179 | | Ru I | 4 | 3605,691 | | Mn I | 25 | 3613.701 | | Ce II | 110 | | 8.194 | | Rh I | 1 | 3605.89
3606.062 | | A II | 30 | 3613.80
3613.836 | | Mg II
Sc II | 2
2 | | 8.20
6.351 | | Fe I
Mo II | 181
1 | 3606.18 | P | Ti I
Fe II | 303
175 | 3613.95 | P | Fe I | 612 | | 5.510 | | Co I | 118 | 3606.38 | P | Fe I | 233 | 3614.10 | | Co I | 64 | | 6.55 | | Ti II
Fe I | 76
569 | 3606.5224 | P | A I | 5 | 3614.21
3614.26 | | Gd II
Cr II | 51
132 | | 7.05
7.147 | | Rh I | 5 | 3606.53
3606.679 | P | Fe I
Fe I | 133
294 | 3614.34 | | Co I | 134 | | 7.24 | P | Fe I | 856 | 3606.786 | | Ti I | 20 | 3614.550 | | Fe I | • | | 7.39 | P | Sc II | 40 | 3606.852 | | Ni I | 120,173 | 3614.673 | | Nd II | 38 | | 7.42 | | Hf II | 54 | 3607.04 | _ | Co I | 67 | 3614.77 | P | Fe I | 395 | | 7.50
7.705 | | Al II
Ni I | 52
18 | 3607.05
3607.25 | P
P | Fe II
Cr I | 101
140 | 3614.79
3614.873 | | Zr II
Fe II | 9
112 | | 3.196 | | Ce II | 116 | 3607.30 | | V II | 77 | 3615.01 | P | Fe I | 154 | | 3.22 | | Fe III | 105 | 3607.39 | | Zr II
Mn I | 83 | 3615.09
3615.19 | | Cl II
Fe I | 70
569 | | 3.71
3.714 | | Fe I
Ti I | 674
59 | 3607.537
3607.625 | | Ce II | 8
178 | 3615.387 | | Co I | 66 | | 3.93 | | Fe T | 568 | 3607.92 | p | Cr T | 140 | 3615.45 | P | Cr II | 147 | | 3.98
3.304 | | Fe I
He I | 322
30 | 3608.146
3608.307 | | Fe I
Co I | 325,438
20 | 3615.64
3615.645 | | Mg II
Cr I | 2
3 | | 9.395 | | Cr I | 89 | 3608.32 | | V 11 | | 3615.68 | | Fe I | 46 | | 3.395
3.442 | | He I | 30 | 3608.401 | | Cr I | 242
252 | 3615.817 | | Nd II | 69 | | 3.49 | | Fe III | 30 | 3608.49 | P | Fe II | 175 | 3015.88 | - | N II | 26 | |).530
).624 | | N1 I
Fe I | 121
809 | 3608.494
3608.58 | P | Mn I
Cr I | 8
140 | 3616.15
3616.152 | P | Fe I
Eu II | 569
28 | | 3.91 | | Zr II | 123 | 3608.66 | • | Cr II | 133 | 3616.29 | F | Cr II | 147 | | 9.974 | | Ce II | 219 | 3608.7 | P | N1 II | 4 | 3616.326 | | Fe I | 132 | |).22 | P | A II
Fe I | 115
498 | 3608.753
3608.766 | | Gd II
Tm II | 69
3 | 3616.572
3616.916 | | Fė I
S II | 56 | |).583 | • | Ce II | 236 | 3608.861 | | Fe I | 23 | 3617.09 | | Fe I | 535 | |).74 | | Y II | 9 | 3608.89 | P | Ti II | 76 | 3617.164 | | Gd II | 89 | |).803
).93 | | Co I
Fe III | 63
36 | 3608.96
3609.04 | | C III
Cr I | 10
49 | 3617.317
3617.32 | | Fe I
Cr II | 147 | |).98 | | 0d II | 59 | 3609.09 | | N II | 26 | 3617.522 | | WI | 8 | | 1.07 | | La II | 44 | 3609.314 | _ | Ni I | 16 | 3617.53 | P | Fe. I | 323 | | 1.16
1.18 | | Ti I
Zr I | 172
13 |
3609.46
3609.479 | P | Fe I
Cr I | 322
49 | 3617.788
3617.97 | P | Fe I
Fe I | 496
181 | | 1.42 | P | Fe I | 127 | 3609.491 | | Sm II | 30 | 3618.910 | | Co I | 36 | | 1.51 | | AII | 4 | 3609.58 | | Pd I | 2 | 3618.30 | P | Fe I | 324 | | 1.623 | | Al IXI | 1 | 3609.61 | | C III | 10 | 3618.392 | | Fe I | 295,571 | | | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |--------------|------|----------------|-----------------------|--|------------|---------------|-----------------------|----------------------|--------|----------------|---------------| | 19 | | K II | 1 | 3629.10 | P | Sc II | 18 | 3637.15 | | La II | -55 | | 32 | P | Fe I | 569 | 3629.12 | | Zr II | 113 | 3637.251 | | Fe I | 180 | | '69 | | Fe I | 23 | 3629.51 | | Gd II | 69 | 3637.319 | | Co I | 117 | | 38 | _ | C1 II | 77 | 3629.741 | | Mn I
Ni I | 8
182 | 3637.73 | | Fe I
Sb I | 229
1 | |)1
)24 | P | Fe I
V II | 130
158 | 3629.906
3629.99 | P | Fe II | 111 | 3637.83
3637.862 | | Fe I | 385 | | 96 | P | Fe I | 77 | 3630.03 | | 2r II | 10 | 3637.89 | | A II | ••• | | 384 | - | Mn I | 8 | 3630.26 | P | Ni I | 180 | 3637.966 | | Ti I | 18 | | 392 | | N1 I | 35 | 3630.353 | _ | Fe I | 323 | 3638.15 | _ | S III | 004 | | 160 | | Cr I | 48 | 3630.67 | P | Fe I | 126 | 3638.16 | P | Fe I | 324 | | 514 | | сь 11 | 4 | 3630.740 | | Sc II | 2 | 3638.296 | | Fe I | 294 | | 36 | P | Fe I | 130 | 3630.748 | | Ca I | 9 | 3638.49 | P | Ti I | 118 | | 76 | | re 1 | 180 | 3630 - 974 | | CaI | 9 | 3638.70 | | 0 111 | 35 | | 00 | P | Fe I | 324
324 | 3631.103
3631.126 | | Fe I
Sm II | 322 | 3638.767
3638.80 | | Sm II
Pt I | 6 | | 23
27 | | Fe I
Fe III | 25 | 3631.126 | | Ce II | 88 | 3639.024 | | V I | 83 | | 122 | | Co I | 116 | 3631.266 | • | Na II | 2 | 3639.14 | P | Mn I | 7 | | 196 | | V II | 181 | 3631.390 | | Co I | . 4 | 3639.19 | | C1 II | 77 | | 32 | _ | A II | 67 | 3631.41 | | P II
Fe I | 22
23 | 3639.443 | | Co I
Pb I | 64 | | 37 | P | Fe I | 611 | 3631.464 | | re 1 | 20 | 3639.568 | | PO 1 | 1 | | 38 | P | Fe I | 323 | 3631.48 | . P | Cr II | 170 | 3639.76 | P | Sc II | 18 | | 95 | | Y I | 8 | 3631.482 | | v II | 76 | 3639.802 | | Cr I | 47 | | 96 | | A II | 4 | 3631.49 | | Cr II | 12 | 3639.85 | | A II | 116 | | 19 | P | Fe I
V II | 574
76 | 3631.72
3631.948 | | Cr II
Co I | 12
133 | 3640.18
3640.388 | | Gd II
Fe I | 23
295 | | 203
22 | | Co II | 1 | 3631.959 | | WI | 3 | 3640.39 | | Cr I | 47 | | 229 | | Sm II | 12 | 3631.999 | | Ti I | | 3640.891 | | F II | 11 | | 273 | | Fe II | 144 | 3632.022 | | S III | 1. | 3641.01 | | Cr I | 47 | | 163 | | Fe I | 294 | 3632-042 | | Fe I
Ce II | 490
114 | 3041.090 | P | V I
Fe II | 115
111 | | 51 | | Cr II | 98 | 3632.106 | | 06 11 | 114 | 3641.22 | r | re 11 | 111 | | 718 | | Fe I | 808 | 3632.126 | | V II | 76 | 3641.330 | | Ti II | 52 | | | P | o vi | 3 | 3632.292 | | Fe II | 112 | 3641.39 | | 64 II | 86 | | 00 | P | Fe I | 233
295 | 3632 . 4 6
3632 . 558 | | Cr I
Fe 1 | 49
437 | 3641.42 | P | W II
Fe I | 1
323 | | 001
145 | | Fe I
Ce II | 71 | 3632.75 | | Ne II | 33 | 3641.45
3641.470 | r | Cr I | 47 | | 15 | | AII | 42 | 3632.839 | | Co I | 147 | 3641.641 | | N1 I | 6 | | 289 | | V II | 144 | 3632.839 | | Cr I | 49 | 3641.66 | | La II | 136 | | 45 | | Cr II | 171 | 3632.979 | P | Fe I
Fe I | 135
390 | 3641.784 | | Co I | 99 | | 504
54 | | Sm II
Eu II | 6
18 | 3633.07
3633.13 | P | Y II | 3 9 0
2 | 3641.830
3641.985 | | Cr I
F II | 47
11 | | 0-2 | | 24 11 | 20 | | | | - | 00111000 | | | | | 69 | | Cl III | 1 | 3633.16 | P | Cr II | 147 | 3642.387 | | N1 I | 75 | | 81 | P | Fe II | 175 | 3633.340 | | Co I
Ti I | 116 | 3642.675 | | Ti I | 19 | | 850
03 | | Mo II
V II | 1
77 | 3633.458
3633.49 | | Zr II | 102 | 3642.785
3642.798 | | Sc II
F II | 2
11 | | 187 | | Fe I | 180 | 3633,64 | P | Fe I | 395 | 3643.181 | | Co I | 99 | | 316 | | Sen II | 12 | 3633.837 | | Fe I | 440 | 3643.22 | | Cr II | 1 . | | 440 | _ | Fe I | 233,438 | 3633.99 | P | Ti II | 116 | 3643.4 | | Y II | 55 | | 51
772 | P | Fe I
Fe I | 393
323 | 3634.04
3634.10 | P Forb | Cr II
He I | 147
29 | 3643.47
3643.627 | | Mo II
Fe I | 1
385 | | 792 | | Mn I | 8 | 8634.13 | | v II | 160 | 3043.710 | | Fe I | 233 | | | | | | | | He I | 28 | | | | | | 837
837 | | Ce II
Ce II | 235 | 3634.235
3634.290 | | Sm II | 19 | 3643.80
3643.82 | P
P | Fe I
Fe I | 670
46 | | 87 | | Zr I | 12 | 3634.326 | | Fe I | 389 | 3643.864 | • | VI | 83 | | .98 | | Lu II | . 6 | 3634.373 | | He I | 28 | 3643.89 | | Ne II | 5 | | -00 | - | Hf II | 18 | 3634.52 | P | Fe I | 323 | 3643.941 | - | N1 I | 174 | | ∍06
∍111 | P | Fe I
Ca I | 570
9 | 3634.698
3634.71 | | Pd I | 1 | 3644.12
3644.19 | P
P | Cr II
Fe II | 98
131 | | 25 | • | Fe III | 93 | 3634.713 | | Co I | 146 | 3644.35 | - | He II | 6 | | , 3 0 | | Fe I | 133 | 3634.757 | | Gd II | 69 | 3644.410 | | Ca I | 9 | | . 337 | | Co I | 41 | 3634.83 | | A II | 29 | 3644.47 | | He II | 5 | | .688 | | Fe II | | 3634.928 | | Sm II | 6 | 3644.58 | p | Fe I | 235 | | .72 | P | Ni I | 121 | 3634.941 | | N1 I | 33 | 3644.699 | - | Ti I | 200 | | .733 | | N1 I | 2 | 3635.08 | P | Fe I | 919 | 3644.70 | | Cr II | 1 | | .826 | | Ti II
Fe II | 52
1 44 | 3635.13
3635.144 | | A II
Mo II | 4
5 | 3644.765 | | Ca I
Fe I | 9 | | .890
.955 | | Co I | 21 | 3635.19 | | Fe I | 490 | 3644.798
3644.86 | | Ne II | 570
41 | | . 140 | | Fe I | 323 | 3635, 202 | | Ti I | 20 | 3644.87 | P | Ť1 II | 116 | | . 26 | | Ga II | 69 | 3635.28 | P | Fe I | 324 | 3644.990 | | Ca I | 9 | | .30 | P | Cr II | 98 | 3635.281 | | Cr I | . 3 | 3645.090 | | Fe I | 323,495 | | .608 | | V II | 76 | 3635.334 | | A 11 | 46 | 3645.190 | | Co I | 61 | | .92 | P | Cr II | 147 | 3635.36 | P | Ti II | 62 | 3645.20 | | 0 111 | 35 | | .020 | | Co I | 41 | 3635.43 | P | Cr II | 98 | 3645.290 | | Sm II | 19 | | .085 | | Ti I | 20 | 3635.462 | _ | Ti I | 19 | 3645.311 | | Sc II | 2 | | . 32 | | 8 III | 69 | 3635.64
3635.67 | P | T1 II
A II | 116
68 | 3645.387
3645.43 | | Sm II
La II | 35
14 | | .53
.014 | | Sa II | 30 | 3635.82 | P | Fe F | 321 | 3645.440 | | Co I | 97 | | .05 | | Fe I | 808 | 3636.186 | | Fe I | 77,568 | 3645.494 | | Fe I | 323,391,441 | | . 168 | | Fe II | 193 | 3636.21 | | Cr I | 47 | 3645.59 | | Cr I | 48 | | . 35 | E, | Fe I | 395
45 | 3636.23
9636.46 | | Fe I
Zr II | 774
9 | 3645.596 | | Od II | 137 | | . 63 | | Mg I | ₩0 | 3636.46 | | 2r 11 | y | 3645.62 | | Gd II | 17 | | .71 | | Ti II | 62 | 3636.49 | P | Fe I | 568 | 3645.78 | P | Fe II | 112 | | .713 | | v ii | 76 | 3636.50 | P | Fe I | 47 | 3645.822 | | Fe I | 496 | | 806 | | Co I | 19
19 | 3636 . 590
3636 . 61 | P | Cr I
Fe II | 47
111 | 3645.905 | | V II | 76 | | .971 | | Sm II
Ne II | 12
41 | 3636.61
3636.650 | | Fe I | 111
493 | 3645.981
3646.10 | P | H
Fe I | 7
324 | | 1.094 | | Fe I | 77 | 3636.713 | | Co I | 64 | 3646.161 | • | Cr I | 48 | | 1.247 | | Ce II | 113 | 3636.90 | P | Fe II | 112 | 3646.19 | | Gd II | 2 | | 1.71 | - | Y II | 9 | 3636.995 | | Fe I | 233 | 3646.198 | | Ti I | 18 | | 1.82 | P | Fe I
La II | 438
13 | 3637.05
3637.05 | P | A II
Fe I | 438 | 3646.75
3646.84 | | Eu II
O III | 13
35 | | 1.83 | | *** ** | ~~ | | - | | | -540.01 | | | | | I A | Туре | Element | Multiplet No. | I A | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |-----------------|------|----------------|---------------|----------------------|--------|-----------------|---------------|----------------------|------|----------------|---------------| | 46.848 | | V II | 180 | 3656.261 | | Cr I | 46 | 3664.69 | _ | Fe I | 390 | | 46.965 | | Ce II | 66 | 3656.319 | _ | Al II | 51 | 3664.86 | P | Ti II | 116 | | 47.081 | | Co I | 118 | 3656.35 | P
P | Fe I
Fe II | 323 | 3664.95 | | Cr II | 156 | | 47.40 | | Cr II
Fe I | 1
46 | 3656.50
3656.61 | P | S III | 111
6 | 3664.98 | | Fe III
V I | 24
115 | | 47.427
47.43 | P | Fe I | 497 | 3656.666 | | н | 7 | 3665.142
3665.180 | | Nd II | 110 | | 17.56 | P | Fe I | 574 | 3656.706 | | V I | 115 | 3665.22 | | La II | | | 47.658 | _ | Co I | 4 | 3656.73 | P | Ti I | 118 | 3665.35 | | Hf II | 18 | | 17.71 | | Ni I | | 3656.77 | P | Fe II | 131 | 3665.43 | | Cr I | 48 | | 17.77 | | Lu I | | 3656.95 | | C1 III | 1 | 3665.48 | P | Cr II | 1 | | | _ | | | 0050 000 | | C - Y | 0.4 | | | | | | 17.84 | P | Fe I | 569 | 3656.962 | | Co I
Fe I | 21
130 | 3665.812 | | Tm II | 10 | | 17.844 | | Fe I
Cl II | 23
77 | 3657.143
3657.269 | | H I | 7 | 3665.924
3665.980 | | Ni I
Cr I | 48 | | 18.07
18.22 | P | Fe I | 978 | 3657.574 | | Ru II | i | 3666.02 | P | Cr II | 145 | | 18.35 | • | Hf II | 39 | 3657.59 | | WII | 2 | 3666.097 | - | н | 5 | | 18.534 | | Cr I | 47 | 3657.698 | | N1 I | 183 | 3666.11 | P | Ti II | 74 | | 18.80 | P | Ti II | 74 | 3657.89 | | Fe I | 395 | 3666.19 | | Cr I | 46 | | 18.86 | | Ti II | 83 | 3657.926 | | н | 7 | 3666.215 | | Rh I | 3 | | 18.066 | | V I | 115 | 3657.94
3657.987 | | Cr II
Rh I | 170 | 3666.34 | P | Fo I
Fe I | 179,389 | | 18.997 | | Cr I | 47 | 3037.967 | | iui I | 1 | 3666.29 | ۲ | re 1 | 672 | | 9.01 | P | Ti II | 14 | 3658.02 | P | Fe I | 438 | 3666.537 | | Sc II | 2 | | 9.184 | Forb | Al II | 12 | 3658.097 | | Ti I | 19 | 3666.592 | | Ti II | 116 | | 9.20 | | 0 111 | 35 | 3658.19 | | Cr II | 98,146 | 3666.642 | | Cr I | 46 | | 9.232 | Forb | VI II | 12 | 3658 - 266 | | v ri | 110 | 3666.85 | P | re I | 393 | | 9.304 | | Fe I | 5 | 3658.3 | | Al III | 20 | 3666.944 | | Fe I | 46 | | 19.329 | | Co I | 146 | 3658.38 | | Cl II
Fe I | 7 |
3667.06 | | Zr II | 8 | | 9.44 | | Gd II
Fe I | 69 | 3658.55
3658.641 | | H I | 231
7 | 3667.252 | | Fe I
Zr II | 570
32 | | 9.527 | | Sm II | 291
47 | 3659.02 | | Hf II | 44 | 3667.40
3667.684 | | ZF 11
H | 32
5 | | 9.70 | P | Fe I | 391 | 3659.227 | | Ce II | 54 | 3667.741 | | v i | 114 | | | | | | | | | | – | | | | | 0.031 | | Fe I | 394 | 3659.423 | | H | 6 | 3667.932 | | Sm II | 30 | | 0.13 | | C1 11 | 7 | 3659.516 | | Fe I | 180 | 3667.981 | | Ce II | 40 | | 0.144 | | Hg I | 3 | 3659.602 | | CP II | ~- | 3667.999 | | Fe I | 438,569 | | 0.188 | | Sm II | 25 | 3659.765 | | Ti II
Cl II | 75
7 | 3668.029 | | Cr I
Cl II | 46
7 | | 0.19
0.19 | | La II
N I | 12 | 3659.84
3659.93 | | Ne II | 33 | 3668.03
3668.088 | | Tm II | 2 | | 0.19 | | Fe I | 180 | 3660.279 | | н | 6 | 3668.214 | | Fe I | 568 | | 0.37 | | Cr II | 156 | 3660.33 | | Fe I | 323 | 3668.216 | | Ni I | 182 | | 0.45 | | Y II | 75 | 3660.404 | | Mn I | | 3668.46 | | Zr II | . 9 | | 0.70 | | 0 111 | 35 | 3660.41 | P | Fe I | 229 | 3668.489 | | Y II | 46 | | | | | | 0000 44 | | | 440 | | _ | | | | 0.73 | | Zr II | 146 | 3660.44
3660.631 | | A II
Ti I | 116
18 | 3668.58 | P | Fe I | 231
38 | | 0.90 | | A II
Gd II | 43
69 | 3660.641 | | Ce II | 42 | 3668.719
3668.830 | | Ce II
Pr II | 35 | | 0.95
D.998 | | Sm II | 51 | 3660.85 | | Fe III | 93 | 3668.893 | | Fe I | 229 | | 1.03 | P | Fe I | 571 | 3660.92 | | Zr II | 32 | 3668.965 | | Ti I | 18 | | 1.065 | Forb | Al II | 12 | 3661.05 | | Hf II | 26 | 3669.049 | | s II | 16 | | 1.096 | | Al II | 12 | 3661.17 | P | Fe II | 111 | 3669.151 | | Fe I | 437 | | 1. 10 | | Fe I | 322,674 | 3661.20 | | Zr I | 12 | 3669.241 | | Ni I | 2 | | 1.182 | | CP II | 4 | 3661.221 | P | H
Fe I | 6
952 | 3669.399 | | Mn I
V II | 7 | | 1.254 | | Co I | 85 | 3661.25 | P | re 1 | 902 | 3669.410 | | V 11 | 116 | | 1.469 | | Fe I | 295 | 3661.33 | | Zr II | 102 | 3669.466 | | н | 5 | | 1.50 | | Zr II | 122 | 3661.353 | | Ru I | 2 | 3669.523 | | Fe I | 29.1 | | 1.67 | P | N1 I | 153 | 3661.36 | | Fe I | 179 | 3669.62 | | A II | 42 | | 1.68 | | Cr II | 1 | 3661.365 | | Sm II
V II | 6 | 3669.68 | P | Fe I | 436 | | 1.798 | | Sc II | 2 | 3661.44 | | Cr II | 191
156 | 3669.838 | P | Cr II
Mn I | 1
7 | | 1.90
1.971 | P | T1 I
He I | 118
27 | 3661.73 | | Hf II | 62 | 3670.035 | | Fe I | 369 | | 2. 119 | | He I | 27 | 3661.951 | | N1 I | 16 | 3670.041 | | Co I | 64 | | 2.26 | P | Fe'I | 494 | 3662.005 | | S III | 6 | 3670.071 | | Fe I | 435 | | 2.541 | | Co I | 4 | 3562.08 | | La II | 12 | 3670.16 | P | Cr II | 6 | | | | | | | | a | | | _ | | 400 | | 2.65 | | Fe III | | 3662.14 | | Zr II | 101 | 3670.23 | P | Fe I | 47 | | 2.748 | | Fe II | 116 | 3662.158
3662.237 | | Co I
Ti II | 115
75 | 3670.28
3670.427 | | Cl III
Ni I | 1
4 | | 2.81
3.00 | P | Ti II
O III | 116
35 | 3662.258 | | н | 6 | 3670.517 | | Mn I | 7 | | 3.108 | | Ce II | . 38 | 3662.26 | | na it | 4 | 3670.668 | | Mn II | 1 | | 3.35 | P | Fe I | 229,324 | 3662.39 | | Cr I | 46 | 3670.677 | | Sm II | | | 3.497 | | Ti I | 19 | 3662.62 | P | Cr II | 1 | 3670.810 | | Fe I | 133 | | 3.614 | | Tm II | 10 | 3662.693 | _ | Sm II | 400 | 3670.840 | | Sm II | 11
115 | | 3.62 | P | Sc II | 18 | 3662.73
3662.840 | P | Fe I
Cr I | 490
46 | 3671.01
3671.12 | P | A II
Cr II | 6 | | 3.670 | | Ce II | 50 | 3002.040 | | 0. 1 | 40 | 3071.12 | - | 0. 11 | ŭ | | 3.763 | | Fe I | 180 | 3662.90 | P | Fe I | 436 | 3671.20 | | Gd II | 2 | | 3.85 | P | Cr II | 156 | 3662.905 | | Sm II | 39 | 3671.205 | | V I | 70 | | 3.912 | | Cr I | 47 | 3663.206 | | Cr I | 46 | 3671.28 | | Zr II | 45 | | 1.441 | | Co I | 63 | 3663.25 | | Fe I | 439 | 3671.478 | | н | 5 | | 1.51 | | SII | 4 | 3663.274 | | Hg I
H | 2
6 | 3671.51 | | Fe I
Ti I | 570
19 | | 1.592 | | Ti I | 18 | 3663.406
3663.458 | | н
Fe I | 0
229,231 | 3671.672
3671.94 | | Cr I | 217 | | 1.62 | | Gd II
Fe I | 4
77 | 3663.47 | | SII | 16 | 3672.14 | | SII | 4 | | 1.66
1.995 | | Al II | 12 | 3663.594 | | VI | 114 | 3672.166 | | Ce II | 49 | | 5.29 | | AII | 82 | 3663.64 | | Zr I | 12 | 3672.363 | | Nd II | | | | | | | | | | | | | | 44- | | 5.35 | P | Fe I | 131 | 3663.95 | | Fe I | 435 | 3672.403 | | V I | 115 | | 5.465 | | Fe I | 369 | 3663.98 | | Fe III
Ne II | 24
1 | 3672.65 | | Zr II
Fe I | 1
180 | | 5.56
. 051 | | Zr II
Ce II | 71
51 | 3664.09
3664.095 | | Ni I | 4 | 3672.69
3672.789 | | Ce II | 233 | | 5.851
5.92 | P | Cr I | 46 | 3664.20 | | PII | 18 | 3673.19 | | Eu II | 28 | | 3.05 | ŕ | A II | 67 | 3664.254 | | Sc II | 10 | 3673.26 | | A II | 117 | | 3.135 | | H | 7 | 3664.537 | | Fe I | 391 | 3673.35 | P | Fe II | 174 | | 3.152 | | Gd II | 1 | 3664.60 | | Gd II | _ | 3673.404 | | V I | 114 | | 3.221 | | Sm II | | 3664.62 | | Y II | 9 | 3673.448 | | Ca I | 28 | | 3. 227 | | Fe I | | 3664.679 | | H | 6 | 3673.542 | | Nd II | | | | Туре | Element | Multiplet No. | I A | Type | Element | Multiplet No. | I A | Type | Element | Multiplet No. | |------------|------|----------------|---------------|--------------------------|------|----------------|---------------|----------------------|------|----------------|-----------------| | | _ | Cr I | 217 | 3683.67 | | Cr I
Ca II | 216
18 | 3693.364 | | Co I
Co I | 64 | | 1 | P | Fe I
H | 978
5 | 3683.71
3683.77 | P | Fe I | 996 | 3693.476
3693.56 | | Cr I | 95
45 | | - | P | Fe II | 131 | 3684.1 | | Li II | 2 | 3693.667 | | Mn I | | | | | C1 11 | 7 | 3684.108 | | Fe I | 292 | 3693.78 | P | Fe I | 46 | | | P | N1 I | 15 | 3684.25 | | Cr II
V I | 145 | 3693.79 | P | Fe I | 490 | | | P | Ni I
Eu II | 32
11 | 3684.332
3684.479 | | Co I | 114
99 | 3693.932
3693.989 | • | N1 I
Sm II | 15
2 | | 4 | | V II | 93 | 3684.903 | | Y II | 62 | 3694.005 | | Fe I | 394 | | • | | Zr II | 9 | 3684.960 | | Co I | 116 | 3694.10 | P | Ti I | 177 | | 6 | • | Fe I | 369 | 3685.049 | | Mn II | 8 | 3694.11 | | Ca II | 18 | | | P. | Ti I
Cr II | 177
1 | 3685.192
9685.212 | | Ti II
Mn I | 14
7 | 3694.115
3094.12 | | Mn I
Cr I | 24
45 | | 5 | 2 | Se II | 10 | 3685.47 | P | Ti I | 177 | 3694.19 | | Yb II | 1 | | 7 | | Ca I | 28 | 3685.548 | | Cr I | 44 | 3694.22 | | Ne II | 1 | | | P | Fe I | 229 | 3685.66 | P | Fe I | 231 | 3694.27 | | La II | 124 | | 7 | | V I | 114 | 3685.804 | | Nd II | | 3694.31 | | Ca II | 18 | | 0 | | Y II
V I | 84
29 | 3685.964
3685.998 | | Ti I
Fe I | 117
385 | 3694.445
3694.622 | | Ti I
V I | 117
114 | | U | P | Fe I | 996 | 3686.18 | | Cr I | 44 | 3694.911 | | Ce II | 63 | | | | P II | 19 | 3686.20 | | Mn II | 8 | 3694.98 | | Cr II | 169 | | 4 | | Fe I | 228 | 3686.260 | | Fe I
V I | 131 | 3695.054 | | Fe I
V II | 229,5348 | | | | Cr I | 89
4 | 3686.262
3686.477 | | V I
Co I | 70
134 | 3695.158
3695.335 | | V II
V I | 116,179
114 | | 5 | P | Cr II | i | 3686.555 | | Cu II | 2 | 3695.37 | | 0 111 | 21 | | 2 | - | Co I | 145 | 3686.67 | | Cr II | 1 18 | 3695.507 | | Fe I | 225,707 | | 4 | | v I | 115 | 3686.71 | | Ti I | 222 | 3695.86 | | Cr I | 217 | | 9 | | Fe I | 389 | 3686.803
3686.833 | | Cr I
H | 44 | 3695.865 | P | V I
N IV | 29
12 | | 9 | | Mn I
Fe I | 773 | 3687.039 | | Pr II | * | 3696
3696.03 | P | Fe I | 128 | | 7 | | Fe I | 125 | 3687 . 100 | | Fe I | 75 | 3696.29 | P | Ni I | 74 | | 0 | | Fe I | 291 | 3687.252 | | Cr I | 44 | 3696.39 | | Ti II | 73 | | 13 | | Cr II
Sm II | 12 | 3687.354
3687.458 | | Ti I
Fe 1 | 19
21 | 3696.568
3696.6 | | Mn I
Y II | 24
74 | | 5 | | Co I | 116 | 3687.473 | | V I | 114 | 3696.65 | P | N1 I | 74 | | i | | Cr II | 12 | 3687.545 | | Cr I | 45 | 3696.78 | | Cr II | 131 | | 1 | | Cr II | 12 | 3687.656 | | Fe I | 291 | 3696.81 | P | Fe I | 434 | | 0 | | Co I
S II | 20 | 3687.74
3687.78 | | Gd II
Eu II | 20 | 3696.885
3696.913 | | Ti I
Ni I | 177
172 | | 0 | | Ca I | 28 | 3687.802 | | Ce II | 143 | 3697.08 | | Ne II | 41 | | 19 | | Eu II | 29 | 3688.01 | P | Cr II | 1 | 3697.154 | | H | 3 | | 1 | | A II | 42 | 3688.069
3688.11 | | V I
Cr I | 29
45 | 3697.426 | | Fe I
Fe III | 389 | | :2 | P | Sc II | 45
7 | 3688.27 | P | TI T | 177 | 3697.45
3697.49 | | 2r II | 35
7 | | 2 | • | Tm II | 12 | 3688.307 | | Mo II | 5 | 3697.510 | | Fe I | 670 | | 13 | | Fe I | 131 | 3688.415 | | N1 I | 5 | 3697.72 | | V II | 204 | | : | | Zr II | 101
124 | 3688.418
3688.42 | | Sm II
Eu II | 11
2 | 3697.73 | | Gd II | 4 | | 0 | | Fe I
Cr I | 45 | 3688.44 | | C1 II | 56 | 3697.850
3697.88 | | Cb I
S III | 3. | | ŗ | P | Ti I | 177 | 3688.457 | | Cr I | 48 | 3698.00 | | Cr II | 118 | | 1 | | Fe I | 228 | 3688.476 | | Fe I | 669 | 3698.03 | P | Fe I | 75 | | 1 | P | Cr II | 118
4 | 3688.71
3688.877 | | Fe III
Fe I | 93
179 | 3698.17 | | Zr II
Ti I | 71
222 | | i5 | | H
Ce II | 257 | 3689 | P | N IV | 12 | 3698.183
3698.39 | | Hr II | 42 | | õ | | Eu II | 201. | 3689.02 | P | Fe I | 178 | 3698.611 | | Fe I | 491 | | 1 | | Fe I | 393,490 | 3689.2 | | Y II | 75 | 3698.650 | | Ce II | 51 | | 1 | | Zr II | 122 | 3689.302 | | Cr I
Ni I | 48 | 3698.70 | | 0 111 | 21 | | '3
1 | | Ti II
Ne II | 75
41 | 3689.305
3689.37 | P | Fe I | 173
391 | 3699.017
3699.147 | | Co I
Fe I | 145
490 | | .9 | | Cr I | 48 | 3689.457 | _ | Fe I | 369,386 | 3699.37 | | S III | 100 | | :5 | | Fe I | 5 | 3689.63 | | Cr I | 216 | 3699.41 | P | Fe I | 996 | | }_ | | AII | 115
114 | 3689.671
3689.897 | | Ti I
Fe I | 222
533 | 3699.476 | - | V I
Fe I | 70 | | .3 | | V I
Cr I | 48 | 3689.916 | | Ti I | 18 | 3699.55
3699.72 | P | Hf II | 436
18 | | 5 | | Fe I | 568 | 3690.032 | | Ru II | 1 | 3699.73 | | Gd II | 20 | | 11 | | Fe I | | 3690.095 | | Fe I | 231 | 3699.90 | P | Fe II | 131 | | 1 | P | Fe II | 111 | 3690.281 |
 V I | 29 | 3699.920 | | Ce II | 223 | | ' 2 | | Ti I
K II | 177
1 | 3690.35
3690.450 | | Pd I
Fe I | 7
497,570 | 3699.952
3700.055 | | Pr II
Ti I | 11 | | ŀ | | Fe I | 390 | 3690.60 | | Fe III | 85 | 3700.126 | | v ii | 102 | | 11 | | Cr I | 89 | 3690.70 | | v II | 190 | 3700.14 | | Fe III | 84 | | 4 | | Fe I | 021 | 3690.715 | | Co I | 86 | 3700.256 | | Tm II | 6 | | , | | Fe I | 951
1 | 3690.730
3690.98 | P | Fe I
Zr II | 807
82 | 3700.337
3700.42 | P | V II
Cr II | 116
1 | | i
)1 | | C1 III
W I | 4 | 3691.18 | P | Fe I | 229 | 3700.42
3700.61 | P | Fe I | 569 | | į | P | Fe I | 386 | 3691.53 | P | Fe I | 707 | 3700,909 | | Rh I | 2 | | , | 9 | Fe I | 385 | 3691.557 | - | H | 4 | 3700.922 | | Sm II | 40.5 | | :6 | | Fe I | 772
1 | 3692
3692 . 17 | P | O V | 8
68 | 3700.96 | p | V II
O V | 102
8 | | 3 | | Hf I
A II | 29 | 3692.221 | | Sm II | 29 | 3701
3701.086 | r | Fe I | 385 | | ı | P | Fe II | 131 | 3692.225 | | v I | 29 | 3701.15 | | Hr II | 61 | | , | | Zr II | 44 | 3692.33 | | A II | 4 | 3701.364 | | Tm II | 2 | | 10 | | H
Co I | 4
99 | 3692.357
3692.44 | | Rh I
O I | 1
6 | 3701.63
3701.730 | P | Ni I
Mn I | 138
7 | | 17 | | Fe I | 99
5 | 3692.60 | | Zr II | 56 | 3701.730 | | La II | 136 | | 36 | | VI | 29 | 3692.645 | | Mo II | 5 | 3701.81 | | Ne II | 40 | | 37 | | Eu II | 11 | 3692.812 | | Mn I | 7 | 3701.90 | _ | Cr II | 168 | | 1 | | C1 III | 12 | 3693.008
3693.09 | | Fe I
Cr I | 439
216 | 3702
3702.033 | P | 9 V
Fe I | 16
369 | | 39
16 | | Pb I
Fe I | 1
130,671 | 3693.106 | | Co I | 97 | 3702.086 | | Al III | 4 | | | | | | | | | | | | | | | I A | Туре | Element | Multiplet No. | IA | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |--------------------|--------|----------------|---------------|----------------------|------------|----------------|---------------|----------------------|------|----------------|---------------| | '02.237 | | Co I | 145 | 3710.46 | | P II | 37 | 3718.21 | | A II | 131 | | 02.291 | | T1 I | 83 | 3710.47 | | Zr II | 122 | 3718.380 | | Ce II | 37 | | 02.500 | | Fe I | 46,75 | 3710.60 | | Cr I | 88 | 3718.407 | | Fe I
Zr II | 292 | | '02.553
'02.75 | | Mo II
O III | 5
14 | 3710.869
3710.870 | | Sm II
Eu II | 19
14 | 3718.86
3718.877 | | Sm II | 9
38 | | 02.75 | | Ti I | 132 | 3711.074 | | Na II | 3 | 3718.92 | | Pd I | 3 | | 03 | P | o v | 8 | 3711.099 | | Pr II | 18 | 3718.930 | | Mn I | - | | 03.217 | | Al II | 18 | 3711.118 | | V II | 102 | 3719.27 | | Hf II | 7 | | 103.323 | | Y II | 62 | 3711.225 | | Fe I | 228 | 3719.45 | | Gd II | | | 03.37 | | 0 111 | 21 | 3711.29 | | Cr II | | 3719.53 | | Gd II | 17 | | 03,43 | P | Fe I | 704 | 3711.30 | P | Fe I | 75 | 3719.74 | | Mo II | 5 | | 03.52 | - | C III | 12 | 3711.32 | | Fe III | 99 | 3719.797 | | Ce II | 52 | | 03.556 | | Fe I | 291,292 | 3711.411 | | Fe I | 494 | 3719.935 | | Fe I | 5 | | '03.584 | | V I | 29 | 3711.543 | | Sm II | 25 | 3720.17 | P | Fe II | 23 | | '03.697 | | Fe I
Fe I | 389 | 3711.648
3711.751 | | Co I
V II | 63 | 3720.29 | P | Zr II
Ti I | 32
177 | | '03.824
'03.832 | | V II | 369
15 | 3711.751 | P | Fe I | 116
178 | 3720.384
3720.43 | | AII | 42 | | 03.855 | | н | 3 | 3711.95 | • | Zr II | 8 | 3720.45 | | ci iii | 5 | | 04.010 | | Fe I | 495 | 3711.973 | | Н | 3 | 3720.69 | P | Rh II | 7 | | 04.060 | | Co I | 35 | 3711.974 | | Fe II | 192 | 3720.86 | | 0 111 | 21 | | 04.295 | | Ti I | 117 | 3712.109 | | Sm II | | 3720.93 | | V I | 98 | | 04.295 | | Fe I | 609 | 3712.109 | | CoI | 84 | 3721.03 | P | Ni I | 181 | | 04.463 | | Fe I | 290 | 3712.39 | . P | Fe II | 15 | 3721.189 | • | Fe I | 491 | | 04.699 | | V I | 29 | 3712.48 | | O III | 21 | 3721.278 | | Fe I | 75,705 | | 04.73 | | 0 111 | 21 | 3712.50 | | Cr I | 269 | 3721.358 | | VI | 11 | | 04.79 | | He I | 26 | 3712.533 | | V II | 157 | 3721.396 | | Fe I | 131 | | '04.80
'04.848 | P | Fe I
Tm II | 950
9 | 3712.70
3712.75 | | Gd II
O II | 20
3 | 3721.398 | | Y II
Fe I | 75
389 | | 05.003 | | He I | 25 | 3712.764 | | Sm II | 25 | 3721.512
3721.606 | | Fe I | 437 | | 05.035 | | A, I | 29 | 3712.97 | | Cr II | 12 | 3721.632 | | Ti II | 13 | | | _ | | | | | | | | | | | | 05.12 | P | Ni I | 30 | 3713.018
3713.03 | | Cb I | 3 | 3721.69 | | Źr II | 44 | | 05.140 | P | He I
Fe I | 25
704 | 3713.03
3713.04 | | A II
Cr II | 114 | 3721.847 | | Sm II | 0~ | | 05.26
05.40 | P | Cr II | 118 | 3713.09 | | Ne II | 12
5 | 3721.86
3721.940 | | Ne II
H | 37
3 | | 05.40 | • | Hr II | 62 | 3713.103 | | Al III | 4 | 3721.95 | | 0 111 | 21 | | 05.45 | | Cl III | 1 | 3713.336 | | N1 I | 74 | 3721.998 | | v I | 91 | | 05.53 | | T1 I | 222 | 3713.45 | | Eu II | 12 | 3722.028 | | Fe I | 291 | | 05.567 | | Fe I | 5 | 3713.54 | | La II | 26 | 3722.068 | | Gd II | 119 | | 05.70 | P
P | Fe I
Fe I | 610
293 | 3713.56 | | V I
Ni I | 98 | 3722.16 | _ | V II
Fe I | 15 | | 05.71 | r | re I | 200 | 3713.696 | | MI I | 74 | 3722.23 | P | Le I | 490 | | 05.81 | | La II | 55 | 3713.734 | | Ti I | 116 | 3722.24 | P | Fe I | 127 | | 05.83 | | V I | 114 | 3713.957 | | V Í | 11 | 3722.484 | | N1 I | 18 | | 06.026 | | Ca II | 3 | 3714 | P | N IV | 12 | 3722.564 | | Fe I | 5 | | 06.035 | | V I
P II | 104 | 3714.03 | | O III
Zr I | 14 | 3722.568 | | Ti I
V I | 17 | | '06.06 | | T1 II | 20
73 | 3714.13
3714.3 | | Y II | 12
61 | 3722.601
3722.750 | | Co II | 91
90 | | 06.752 | | Sm II | 47 | 3714.39 | | Cr I | 269 | 3722.77 | P | Fe I | 707 | | 06.91 | | Mn II | 8 | 3714.74 | | A II | 3 | 3722.79 | | 8b I | 1 | | '06.94 | | AII | 4 | 3714.77 | | Zr II | 18 | 3723.324 | | V I | 98 | | '06.979 | | Sm II | | 3714.808 | | Nd II | 35 | 3723.38 | P | N1 I | 183 | | 07.01 | | Co I | 85 | 3714.87 | | La II | 55 | 3723.40 | | Cr II | 144 | | 07.048 | | Fe I | 385,392 | 3714.904 | | Eu II | 11 | 3723.506 | | Nd II | *** | | 07.13 | | Cr II | 169 | 3715.08 | | O III | 14 | 3723.63 | | P II | 22 | | 07.167 | | Sm II | 35 | 3715.19 | | Cr II | 20 | 3723.631 | | Ti II | 72 | | 07.24 | | 0 111 | 14 | 3715.371 | | Ti I | | 3723.92 | P | Fe II | 14 | | '07.34
'07.465 | | C1 III
Co I | 9
96 | 3715.45
3715.476 | | Cr II
V II | 145
15 | 3724.106
3724.26 | P | Ti II
Ni I | 73
183 | | 07.549 | | Ti I | 177 | 3715.499 | | N1 I | 183 | 3724.380 | • | Fe I | 124 | | 07.828 | | Fe I | -5 | 3715.53 | | La II | 43 | 3724.51 | | A II | 131 | | 07.918 | | Fe I | 76 | 3715.795 | | Ti I | 116 | 3724.570 | | Ti I | 131 | | | | | _ | OM45 00 | | × ** | _ | | | V- ** | • | | 08.06 | P | Mn II
Fe I | 8
228 | 3715.96
3715.911 | | P II
Fe I | 1
124 | 3724.81
3724.827 | | Mn II
Ni I | 8
182 | | 08.410 | - | Sm II | -5 | 3716.36 | | Gd II | 2 | 3724.902 | | Sm II | 5 | | 08.45 | P | Fe I | 436 | 3716.365 | | Ce II | 40 | 3724.94 | | Eu II | 2 | | 08.602 | | Fe I | 178,225 | 3716.442 | | Fe I | 388,705 | 3724.984 | | A II | 102 | | 08.625 | | Ti I | 268 | 3716.531 | | Cr I
K II | 269 | 3725.05 | | La II
Tm II | 13 | | 08.654 | | Sm II
V I | 19
104 | 3716.60
3716.71 | P | Fe I | 2
434 | 3725.061
3725.155 | | Ti I | 83 | | 08.823 | | Co I | 98 | 3716.91 | • | A II | 76. | 3725.29 | | Mn II | 8 | | 09.03 | P | Fe I | 390 | 3716.930 | | Ce II | 242 | 3725.30 | | O III | 14 | | | | | | | | | | | | | | | 09.13 | | Gd II
Fe I | 51 | 3717 | P | 0 V
Zr II | 8 | 3725.304 | | Fe II
Fe I | 130
534 | | '09.246 | P | re I
Cr II | 21
6 | 3717.02
3717.03 | | P IV | 82
3 | 3725.498
3725.65 | P | Fe I | 75 | | 09.25 | • | Zr II | 45 | 3717.03 | | Cb II | U | 3725.675 | • | Ce II | 231 | | 09.286 | | Ce II | 40 | 3717.17 | | AII | 67 | 3725.81 | | O IV | 6 | | 09.335 | | A II | 102 | 3717.19 | P | Fe I | 704 | 3725.901 | | Fe II | | | '09.371 | | 8 111 | 1 | 0717.259 | | Ti I | 116 | 9726 | P | 0 V | 8 | | 09.52 | | O III | 21 | 3717.393 | | Ti I
Mn II | 17 | 3726.06 | P | Fe I
Cb I | 433
3 | | '09.535
'09.64 | | Fe I
Ne II | 435
1 | 3717.53
3717.55 | | NU II | 8
114 | 3726.235
3726.653 | | CoI | 3
40 | | 08.04 | | W- 11 | • | 0.11.00 | | • | *** | 01,000,000 | | | | | '09.665 | | Fe I | 225 | 3717.63 | | P III | 10 | 3726.805 | | Sm II | 19 | | '09.88 | | Mn II | . 8 | 3717.63 | | P IV | 3 | 3726.85 | | Cr I | 73 | | 09.90 | | A II | 67 | 3717.69 | _ | Eu II | 60= | 3726.89 | P | Fe I | 75 | | '09.933 | | Ce II
Ti I | 40
83 | 3717.79
3717.775 | P | Fe I
S III | 997
6 | 3726.926
3726.927 | | Ru I
Fe I | 2
385 | | '09.983
'10.01 | P | Cr II | 83
6 | 3717.775
3717.84 | P | Fe I | 706 | 3726.931 | | Mn I | 24 | | 10.01 | | Ti I | 222 | 3717.915 | • | Tm I | | 3727.03 | P | Fe I | 668 | | '10.22 | P | Cr II | 6 | 3717.94 | | C1 II | 63 | 3727.04 | P | Fe II | 192 | | 110.30 | | Y II | 7 | 3718.159 | | V II | 21 | 3727.08 | | Ne II | 5 | | 110.42 | | 8 111 | 1 | 3718.190 | | Ce II | 53 | 3727.09 | | Y II | 74 | | | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | 1. | А Туре | Element | Multiplet No. | |------------|------|----------------|------------------|----------------------|--------|----------------|-----------------|--------------|-----------------|----------------|-------------------| | 96 | | Fe I | 387 | 3736.017 | | V II | 102 | 3746 | | Fe I | 386 | | 13 | | 0 11 | 3 | 3736.280
3736.41 | | Be I
La II | 6
142 | 3747
3747 | - | O V
Fe I | 8 | | 151 | | V II
Cr II | 21
117 | 3736.45 | | Cr I | 215 | 3747 | | Cr I | 388
289 | | 17
13 | P | Fe I | 705 | 3736.56 | | Cr II | 20 | 3747 | | Fe III | 71 | | 121 | - | Fe I | 21 | 3736.78 | | 0 IV | 6 | 3747 | | Hr II | 27 | | 17 | P | Fe I | 225 | 3736.813
3736.901 | | Ni I
Ca II | 30
3 | 3747 | | Y II
N IV | 8 | | 2 | | Zr II | 112 | 3737.133 | | Fe I | 5 |
3747
3747 | | S III | 8
1 | | 130 | | Fe I
Ru I | 386
2 | 3737.141 | | Sm TT | | 3717 | | La II | - | | 100 | | Nd II | | 3737.55 | | Cr II | 117 | 3747 | .982 | v i | 97,98 | | 130
135 | | V II | 116 | 3737.88 | | Hf II | 75 | 3748 | | Ti II | 107 | | 123 | | Ce II | 47 | 3737.89 | | A II | 131 | | .056 | Ce II | 160 | | 169 | | Sm II | 54 | 3737.992
3738.003 | | V I
Al II | 91
11 | | . 101 | Ti I | 166 | | 19 | | 0 III
Fe I | 30
227 | 3738.08 | | Eu II | ** | 3748 | . 264 | Cr I
Fe I | 88
5 | | 168
17 | | PII | 22 | 3738.13 | | Zr II | 17 | | . 374 | Ca I | 27 | | 17 | | P IV | 3 | 3738.308 | | Fe I
Cr II | 609
20 | 3748 | | C1 II | 6 | | 176
12 | | Ti I
O III | 116
30 | 3738.38
3738.51 | P | Fe I | 918 | | .489
.492 | Fe II
Fe I | 154
805 | | | | | | 3738.757 | | v i | 97 | | | Cr I | | | 140 | | Co I
Mn I | 133
24 | 3738.901 | | T1 I | 166 | 3748 | .614
.68 | Cr II | 43
11 | | 189 | | Mi I | 181 | 3739.117 | | Sm II | | 3748 | | S III | | | 13 | | O IV | 6 | 3739.120 | | Fe I | 75 | 3748 | | C1 III | 5 | |)35 | | V I | 91 | 3739.13
3739.193 | | K II
Pr II | 1 | 3748 | | Ca II
Fe I | 105
289 | | 29 | P | A II
Fe I | 10
530 | 3739.197 | | Sm II | 5 | | .969 | Fe I | 386 | | 34
14 | F | 0 II | 62 | 3739.229 | | Ni I | 2 | | .998 | Cr I | 43 | | 19 | | Mn II | 8 | 3739.317 | | Fe I | 74 | | .045 | N1 I | 1 | | 0' | | 0 111 | 30 | 3739.527 | | Fe I | | 3749 | . 487 | Fe I | 21 | | 14 | | Zr II | 8 | 3739.6 | | Ti II | 107 | 3749 | | 0 II | 3 | | 106 | | Ti I | 17 | 3739.782
3739.80 | | Ni I
Cb I | 180
3 | 3749 | .55 P | Zr II
Co I | 112
95 | | 186
133 | | Fe I
Ru I | 533
2 | 3739.92 | | 0 11 | 31 | 3750 | | C1 II | 8 | | 16 | P | Fe I | 389 | 3739.940 | | РЬ I | 2 | | . 154 | H | 2 | | 176 | | Co I | 62 | 3740.061
3740.241 | | Fe I
V I | 532a, 707
98 | | . 349 | Ca I | 27 | | 14 | | S II
Ni I | 2 | 3740.241 | | Fe I | 667 | 3750
3750 | | A II
Cr II | 3 | | 751
107 | | Cr I | 2 | 3741.059 | | Ti I | 17 | 3750 | | 2r II | 18 | | 110 | | Tm II | 11 | 3741.288 | | Sm II | | 3750 | 677 | Fe I | 225 | | 14 | | Gd II | 20 | 3741.31 | | Eu II | 11 | 3750 | .74 | 8 111 | 1 | | 145 | | Fe I | 228 | 3741.427 | | Nd II
V I | 104 | | .763 | Mn I | 24 | | 15 | P | Fe I | 950 | 3741.504
3741.56 | P | Fe II | 124
15 | 3750 | 1.059 | V II
Fe I | 21
667 | | 158
16 | | Sm II
Zr II | 11
112 | 3741.633 | - | Ti II | 72 | 3751 | | A II | 81 | | 268 | | Co I | 96 | 3741.09 | | 0 11 | 36 | 3751 | L.09 P | Fe I | 74 | | 174 | | Fe I | 225 | 3741.727
3742.07 | | Ce II
Fe I | 241
225 | | . 222 | V II | 100 | | 12
14 | | La II
V: II | 137
101 | 3742.14 | P | Fe I | 978 | 3751
3751 | | Ne II
Cr II | 1
117 | | 132 | | Mn I | 101 | 3742.20 | P | Cr II | 6 | 3751 | | Zr II | 71 | | 150 | | Al II | 11 | 3742.280 | | Ru I | 2 | 3751 | . 625 | Co I | 98 | | 183 | | V II | 92 | 3742.34 | | Mo II | 5 | 3751 | .812 | Tm I | | | 132 | | Cr I | 2 | 3742.393
3742.56 | p | Cb I
Fe I | 3
389 | | 1.820 | Fe I | 287 | | 13 | P | Fe I
O III | 532 | 3742.621 | F | Fe I | 387 | | 2.420
2.524 | Fe I
Os I | 385,392
2 | | 13
180 | | Co I | 14
62 | 3742.937 | | Fe I | 704 | 3752 | | N III | 11 | | 199 | | Fe I | 76 | 3742.968 | | Cr I | 43 | | 2.679 | Nd II | 33 | | 15 | | Gd II | -5 | 3742.99
3743.20 | P
P | Cr II
Cr II | 6
6 | | 2.860 | T1 I
Al II | 17
39 | | '60
 61 | | V II
He I | 15
24 | 3743.364 | • | Fe I | 21 | 3753
3753 | 3. 154 | Fe I | 177 | | 192 | | Re I | 24 | 3743.40 | | Fe III | | 3753 | 1. 18 | ře III | 83 | | 18 | | Gd II | 21 | 3743.468 | | Fe I | 806 | 3753 | | Cr II | 20 | | 10 | P | Fe I | 225 | 3743.47 | | Gd II | 2 | | 3.367 | Ca I | 27 | | 119 | | Fe I | .5 | 3743.556
3743.578 | | Eu II
Cr I | 11
43 | 3753 | | A II
Fe I | 80,128 | | 16
183 | | A II
Co I | 68
98 | 3743.610 | | v II | 21 | | 3.610
3.623 | Ti I | 73
17 | | 107 | | V II | 116 | 3743.78 | P | Fe I | 290 | | 3.83 | Ne II | 38 | | '3 | | Cl II | 63 | 3743.868 | | Sm II | 18,34 | 3754 | | A II | 115 | | '67
)10 | | T1 I
A1 II | 166
11 | 3743.884
3744.066 | | Cr I
Tm I | 43 | 3754
3754 | l.12 P
l.346 | Rh II
Co I | 7
132 | | | | | | 9744 . 105 | | Fe I | 395 | | | | | | .39 | | Tm II
Co I | 6
96 | 3744.22 | | P III | 10 | 3754
3754 | 1.506
1.59 | Fo I
Cr II | 986
20 | | 170 | | H | 3 | 3744.42 | | K II | 3 | 3754 | 1.62 | N III | 4 | | 28 | | V I | 97 | 3744.490 | | Cr I
N1 I | 43 | 3754 | | 0 111 | 2 | | 54 | | Ru II | 1
50 | 3744.562
3744.66 | | N1 I
Ne II | 180
40 | 3754
3755 | | Fe I
Cr II | 949
20 | | i67
'15 | | Al II
Al II | 50
50 | 3744.73 | | O IV | • | | 5. 276 | Sm II | 34 | | 10 | | 0 111 | 21 | 3744.98 | _ | Hf II | 76 | 3755 | .425 | Ce II | 128 | | 105
167 | | Al II
Fe I | 50
21 | 3745.36
3745.491 | P | Fe II
Co I | 131
34 | | 5.447
5.54 | Co I
Mo II | 96
5 | | | | | | 3745.561 | | Fe I | 5 | | | Gd II | | | 14
.58 | | Ne II
V II | 1
102 | 3745.605 | | Sm II | 2 | | 5.56
5.563 | Fe II | 85
154 | | 125 | | Fe I | 388 | 3745.806 | | V II | 15 | | 5.61 | Ca II | 8 | | :9 | | A II | 3 | 3745.83
3745.901 | | N III
Fe I | 4
5 | | 5.701
5.81 | V I
Cr I | 1 24
72 | | 60
1 | P | T1 I
Fe I | 127 | 3745.97 | | Zr II | 112 | | 5.81
5.82 P | 0 IV | 6 | | 15 | r | La II | 29 | 3746.46 | | A II | 190 | 9756 | 3.069 | Fo I | 74 | | 128 | | Co I | 95 | 3746.486 | P | Fe I
Fe II | 73
14 | | 5.10 | He I
Sm I | 66
2 | | 14 | | O II
Sm II | 62
29 | 3746.56
3746.92 | r | A II | 67 | | 3.411
3.411 | Sm II | 44 | | 180 | | Cm II. | 40 | | | | | | - | | | | | IA | Type | Element | Multiplet No. | . I | A | Type | Element | Multiple | t No. | I A | Type | Element | Multiplet No. | |--|---------|------|---------|---------------|------|---------|------|---------|----------|-------|----------|------|---------|---------------| | 50,800 | 56.55 | | Cr II | 144 | 3765 | 5.542 | | | 608 | | 3775.960 | | Fe I | 287 | | | | | | | | | | | | | | | | | | | , | Cr I | 43 | | | | Ne II | 1 | | | | Fe I | | | \$\text{\$P\$.50}\$ \$\text{\$\text{\$\text{\$\text{\$k\$ is \$1\$}}} \$\text{\$\text{\$\text{\$\text{\$k\$ is \$1\$}}} \$\text{\$\text{\$\text{\$\text{\$k\$ is \$1\$}}} \$\text{\$\text{\$\text{\$\text{\$k\$ is \$1\$}}}} \$\text{\$\text{\$\text{\$\text{\$k\$ is \$1\$}}} \$\text{\$\text{\$\text{\$\text{\$k\$ is \$1\$}}} \$\text{\$\text{\$\text{\$\text{\$k\$ is \$1\$}}}} \$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$k\$ is \$1\$}}}}}
\$\$\text{ | | | | - | | | | | | | | | | | | ### P | | | | 668 | | | | | | | | | | | | | 57.529 | | Sm 11 | | 3766 | 0.00 | | CF 11 | 20 | | 3777.43 | | re III | 95 | | 97.64 P N III 11 27 2760.71 Sr I 1 10 3777.64 Co I 1 61 1577.64 | 57.60 | P | N III | 11 | 3766 | 6.665 | | Fe I | 386 | | 3777.448 | | Fe I | 223 | | | | P | | | | | | | 10 | | | | | 96 | | | | | | | | | | | | | | | | | | 5.486 | 69.1 1. P Pe I 704 3797.388 88 II 40 3773.300 8m II 69.29 0 Ce II 20 3797.381 Cr I 42 3773.307 V III 100 69.21 0 64 III 20 3797.781 Cr I 42 3779.577 V III 110 69.20 0 64 III 20 3797.781 P V III 100 3779.500 Fe I 26 84.72 0 Cr I 12 3797.785 P V III 379.600 Cr I 22 84.72 0 Cr I 12 3797.800 Fe II 66 40 84.72 0 Cr I 12 3797.800 Fe II 70 66 84.72 0 Cr I 13 3797.800 Fe II 70 66 61 11 20 66 11 12 3979.800 Fe II 70 66 11 13 3979.800 Fe II 70 60 70 13 30 61 11 | | | | | 3767 | 1.18 | P | Cr II | | | | | | | | 98.22 V II 100 9767.36 N II 2 9773.000 Fe I 307 98.120 S II 20 9767.45 N II 2 9773.000 Fe I 307 98.13 | | _ | | | | | | | | | | | | 15 | | Section Part 21 | | P | | | | | | | | | | | | 967 | | 59.1 04 11 20 3767.77 C1 15 6 3779.77 P F2 11 12 | 00.22 | | , 11 | 100 | 0.0 | • • • • | | | - | | 3770.320 | | re 1 | 307 | | 59.56 | | | | | | | | | | | 3778.357 | | | 21 | | Section Sect | | | | | | | | | | | | P | | | | 58-72 | | | | | | | D | | | | | | | | | 19.9 Y II | | | | | | | • | | 310 | | | | | 28 | | 58.969 Sep II | 58.9 | | | | | | | Zr II | 31 | | | | | 73 | | 199.00 Ga II 2 3768.33 Cl II 6 3779.35 P N III 11 11 11 11 11 11 | | | | | | | | | | | | | | ••• | | 19.0 | | | | 2 | | | | | | | | ъ | | | | 19.155 | | | | | | | | | | | | r | | | | | | | | | | | | _ | | | 0110100 | | | ŭ | | 19.460 Fe II 154 3768.57 P Cr II 6 3779.486 Fe II 74 75 75 75 75 75 75 75 | | | | | | | | | | | | | | | | 99.566 Ci | | | | | | | ъ | | | | | | | | | 39.684 Co I 131 3768.71 P II 1 3779.648 V I 60 | | | | | | | | | | | | р | | | | 19.67 | 59.684 | | | | | | | | | | | • | | | | 190.052 Fe 1 177 | | | | | | | | | | | | | Hf II | 18 | | 30.133 W I 3 | | | | | | | | | | | | | | | | 30.401 Co I 40 3769.37 P Cr II 6 3780.763 Sa II | | | | | | | | | | | | | | | | 30.404 Ce II 109 | | | | | | | | | | | | | | | | 30.404 Ce II 109 | | | | | | | _ | | _ | | | | | | | 10.534 Fe I | | | | | | | Р | | | | | | | | | 10.694 Cc II 92 3769.644 Mi II 67 3780.927 Sm II 38 | | | | | | | | | | | | | | | | 10.71 | | | | | | | | | | | | | | | | 10.02 O. O. II 20 3770.305 F. I 287 3781.379 Cb II O. | | | | | | | | | | | | | | | | 131.06 | | | | | | | | | | | | | | | | 13.1.2 | | P | | | | | P | | | | | | | | | 11.320 | 31.12 | | | 11 | | | | .Fe I | | | | | | | | 13.331 | 31.20 | | V II | 129 | 3770 | .412 | | Ti II | 107 | | 3781.597 | | Mo I | 8 | | 13.331 | 31, 320 | | Tt II | 13 | 3770 | . 517 | | Mo T | я. | | 2791 620 | | Co. II | 169 | | 11.416 | | | | | | | | | | | | | | | | 31.62 | | | | | | | | | 2 | | | | Fe I | 917 | | 11.69 | | | | | | | | | 0.1 | | | | | | | 31.72 | 31.867 Pr II | | | | | | | | | | | | | | | | 31.90 | | | | 107 | | | P | | | | | | | | | 31.913 | 31.807 | | Pr 11 | | 3/// | 1.002 | | 11 1 | 17 | | 3782.524 | | Ce II | 142 | | 30 | 31.90 | | Cr II | 11 | 3771 | L. 98 | | Zr II | 44 | | 3782.6 | | s II | 23 | | 32.205 Fe I 705 3772.854 Pr II 3782.78 Hf II 26 32.41 Si IV 3 3772.962 V II 100 3783.16 S II 41 32.51 Hf II 101 3773.12 La II 141 3783.19 K II 2 32.51 Hf II 101 3773.13 Si IV 3 3783.347 Fe II 14 32.618 Ni I 3773.864 Fe I 531 3783.530 Ni I 30 32.62 P N III 11 3773.68 CI II 6 3783.561 Tm II 11 32.63 O II 31 3773.699 Fe I 386 3784.250 Nd II 32.894 Fe II 192 3773.80 Fe III 34 3784.25 P Fe I 607 33.00 Gd II 1 3773.80 V II 129 3784.81 La II 13 33.13 Cb II 10 3774.00 O III 2 3784.86 He I 64 33.33 Gd II 37 3774.25 CI II 6 3785.01 O II 95 33.36 Mo I 8 3774.3 AI II 33 3785.421 Mn I 45 33.37 Mn I 24 3774.33 Y II 7 3785.78 P Fe I 608 33.475 Nd II 3774.38 P O IV 6 3786.04 T II 177 33.52 A II 54 3774.38 P O IV 6 3786.25 T I 16 33.790 Fe I 21 3774.54 A II 3786.22 Cr I 71 4.09 Fe II 29 3774.59 Co I 96 3786.25 T I 16 4.17 Ce II 41 3774.65 T II 12 3786.37 P Fe II 15 4.370 Sm II 34 3774.85 V I 19 3786.67 Fe I 22 4.811 Pr II 3775.187 V I 97 3786.70 P II 1 5.044 Ce II 208 3775.572 N II 33 3786.676 Fe II 22 4.811 Pr II 208 3775.572 N II 19 3786.676 Fe II 22 4.811 Pr II 208 3775.572 N II 33 3786.94 Fe III 71 3.604 Ce II 208 3775.572 N II 33 3786.94 Fe III 71 3.604 Ce II 208 3775.572 N II 33 3786.94 Fe III 71 3.604 Ce II 208 3775.572 N II 33 3786.94 Fe III 71 3.605 T T T T T T T T 3.606 T T T T T T T 3.606 T T T T T T T T T 3.607 T T T T T T T 3.608 T T T T T T T 3.770 T T T T T T | | | | | | | | | | | | | | | | 12.41 | | P | | | | | | | 15 | | | | | | | 32.51 | | | | | | | | | 100 | | | | | | | 12.618 | | | Hf II | 101 | 3773 | 3.12 | | La II | | | | | | | | | | | | 25 | | | | | | | | | | | | 12.63 O II 31 3773.699 Fe I 386 3784.250 Nd II | | ъ | | -11 | | | | | | | | | | | | | | r | | | | | | | | | | | | . 11 | | | | | | | | | | | | | | | | | | 13.13 | | | | | | | | | | | | P | 13.33 | | | | | | | | | | | | | | | | 13.377 Mn I 24 3774.33 Y II 7 3785.78 P Fe I 704 | | | | | | | | Sm II | | | | | | | | 3.475 | 3.356 | | | | | | | | | | 3785.706 | | | 608 | | | | | | 24 | | | | | | | | P | | | | 3.57 P Fe I 128 3774.52 S III 10 3786.176 Fe I 367 3.790 Fe I 21 3774.54 A II 3786.22 Cr I 71 4.09 Fe II 29 3774.599 Co I 96 3786.253 Ti I 165 4.117 Ce II 41 3774.645 Mn I 45 3786.33 P Ti II 12 4.21 P Fe I 74 3774.678 V II 12 3786.37 P Fe II 15 4.370 Sm II 34 3774.678 V II 129 3786.40 A II 3 4.38 Zr I 10 3774.823 Fe I 73 3786.632 Ce II 51 4.60 Gd II 85 3775.03 P II 19 3786.678 Fe I 22 4.811 Pr II 3775.187 V I 97 3786.70 <td></td> <td></td> <td></td> <td>54</td> <td></td> <td></td> <td>р</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | | | | 54 | | | р | | | | | | | | | 3.790 Fe I 21 3774.54 A II 3786.22 Cr I 71 4.09 Fe II 29 3774.599 Co I 96 3786.253 Ti I 165 4.117 Ce II 41 3774.645 Mn I 45 3786.33 P Ti II 12 4.21 P Fe I 74 3774.650 Ti II 12 3786.37 P Fe II 15 4.370 Sm II 34 3774.678 V II 129 3786.40 A II 3 4.38 Zr I 10 3774.823 Fe I 73 3786.632 Ce II 51 4.60 Gd II 85 3775.03 P II 19 3786.678 Fe I 22 4.811 Pr II 5.044 Ce II 208 3775.572 Ni I 33 3786.94 Fe III 71 | | P | | | | | - | | | | | | | | | 4.09 Fe II 29 3774.599 Co I 96 3786.253 Ti I 165 4.117 Ce II 41 3774.645 Mn I 45 3786.33 P Ti II 12 4.21 P Fe I 74 3774.650 Ti II 12 3786.37 P Fe II 15 4.370 Sm II 34 3774.678 V II 129 3786.40 A II 3 4.38 Zr I 10 3774.823 Fe I 73 3786.632 Ce II 51 4.60 Gd II 85 3775.03 P II 19 3786.678 Fe I 22 4.811 Pr II 3775.187 V I 97 3786.70 P II 1 5.044 Ce II 208 3775.572 Ni I 33 3786.94 Fe III 71 | | | | | | | | | | | | | | | | 4.117 Ce II 41 3774.645 Mn I 45 3786.33 P Ti II 12 4.21 P Fe I 74 3774.650 Ti II 12 3786.37 P Fe II 15 4.370 Sm II 34 3774.678 V II 129 3786.40 A II 3 4.38 Zr I 10 3774.823 Fe I 73 3786.632 Ce II 51 4.60 Gd II 85 3775.03 P II 19 3786.678 Fe I 22 4.811 Pr II
3775.187 V I 97 3786.70 P II 1 5.044 Ce II 208 3775.572 Ni I 33 3786.94 Fe III 71 | | | | | | | | | | | | | | | | 4.21 P Fe I 74 3774.650 Ti II 12 3786.37 P Fe II 15 4.370 Sm II 34 3774.678 V II 129 3786.40 A II 3 4.38 Zr I 10 3774.823 Fe I 73 3786.632 Ce II 51 4.60 Gd II 85 3775.03 P II 19 3786.678 Fe I 22 4.811 Pr II 3775.187 V I 97 3786.70 P II 1 5.044 Ce II 208 3775.572 Ni I 33 3786.94 Fe III 71 | | | | | | | | | | | | P | | | | 4.370 Sm II 34 3774.678 V II 129 3786.40 A II 3 4.38 Zr I 10 3774.823 Fe I 73 3786.632 Ce II 51 4.60 Gd II 85 3775.03 P II 19 3786.678 Fe I 22 4.811 Pr II 3775.187 V I 97 3786.70 P II 1 5.044 Ce II 208 3775.572 Ni I 33 3786.94 Fe III 71 | | P | | | | | | | | | | | | | | 4.60 Gd II 85 3775.03 P II 19 3786.678 Fe I 22 4.811 Pr II 3775.187 V I 97 3786.70 P II 1 5.044 Ce II 208 3775.572 Ni I 33 3786.94 Fe III 71 | 4.370 | | Sm II | 34 | 3774 | 1.678 | | V II | 129 | | 3786.40 | | A II | 3 | | 4.811 Pr II 3775.187 V I 97 3786.70 P II 1 5.044 Ce II 208 3775.572 Ni I 33 3786.94 Fe III 71 | | | | | | | | | | | | | | | | 5.044 Ce II 208 3775.572 Ni I 33 3786.94 Fe III 71 | | | | გე | | | | | | | | | | | | | | | | 208 | Tl I | 1 | | | | | | | | Type | Element | Multiplet No. | I A | Type | Element | Multiplet No. | I A | Type | Element | Multiplet No. | |-----------------|------|----------------|---------------|----------------------|------|-----------------|---------------|----------------------|------|----------------|---------------| | 34 | | Fe I | 916 | 3796.90 | | Fe I | 667 | 3807.505 | | V I | 28 | | 13 | | Sm II | 5 | 3796.99 | | Cr I | 41 | 3807.534 | | Fe I | 73 | | 35 | | V II | 100 | 3797.126 | | Cr I | 139 | 3807.65 | | Gd II | 85 | | 1 | | Gd II | 20
21 | 3797.283 | | Sm II
Fe I | 11 | 3807.926 | | Cr I | 139 | | 13 | P | Fe I
Cr II | 6 | 3797.517
3797.716 | | Cr I | 607
139 | 3808.102
3808.124 | | Co I
Ce II | 17
59 | | :5 | | Sm II | 25 | 3797.730 | | Sm II | 100 | 3808.286 | | Fe I | 489 | | '4 | | Rh I | 6 | 3797.900 | | н | 2 | 3808.521 | | V I | 9 | | 1 | | A II. | 7 | 3797.948 | | Fe I | 222 | 3808.61 | | A II | 3 | | i3 | | Ce II | 47 | 3797.95 | | Hf II | 29 | 3808.7 | | YII | 73 | | 14
14 | | Ti I
Cr I | 16
139 | 3798.127
3798.259 | | Cb I | 3
1 | 3808.731
3808.772 | | Fe I | 222 | | 174 | | Fe III | 102 | 3798.276 | | Ti I | 115 | 3808.79 | | La II | 43 | | '8 | | Fe I | 289 | 3798.36 | P | Fe II | 14 | 3809.043 | | Fe I | 367 | | 13 | | Ti I | 115 | 3798.513 | | Fe I | 21 | 3809.224 | | Ce II | 204 | |) | | Cr I | 41 | 3798.60 | P | Fe II | 23 | 3809.49 | | A II | 42 | | 0 | | Fe I | 226 | 3798.661 | | V I | 80 | 3809.51 | | C1 II | 62 | | 13
! | P | Cr I
Fe I | 24
702 | 3798.752
3798.80 | | Tm II
Cl II | 11
62 | 3809.592
3809.597 | | Mn I
V I | 6
28 | | 15 | • | Fe I | 22 | 3798.901 | | Ru I | 1 | 3809.67 | | s II | 50 | | 18 | | сь і | 3 | 3799.009 | | Eu II | 11 | 3810.10 | | ci ii | 62 | | .5 | | Mn I | 6 | 3799.038 | | Ce II | 136 | 3810.21 | P | Fe II | 143 | | :8 | P | Cr I
Fe I | 139
224 | 3799.17 | | Pd I
Mn I | 1
6 | 3810.59 | | Hf II
Tm II | 96 | | :
: 4 | P | V I | 28 | 3799.259
3799.311 | | Rh I | 8 | 3810.724
3810.759 | | Fe I | 9
665 | | 4 | | Cr I | 139 | 3799.347 | | Ru I | 1 | 3810.90 | P | Fe I | 224 | | 19 | | v I | 69 | 3799.39 | | A II | 54 | 3810.96 | | 0 111 | 2 | | 6 | | Fe I | 387 | 3799.542 | | Sm II | 22 | 3811.05 | | Fe I | 223, 287 | | 6، | | Fe I | 73,127 | 3799.549 | | Fe I | 21 | 3811.065 | | Co I | 31 | | ı | | La II | 12 | 3799.81 | | Ti II | 13 | 3811.073 | | Nd II | 69 | | : | | Ne II
Gd II | 30
85 | 3799.912
3800.02 | | V I
Ne II | 28
39 | 3811.22
3811.32 | | A II
Ni I | 81
15 | | 9 | | Cu I | 2 | 3800.122 | | Ir I | 1 | 3611.35 | | 0 VI | 1 | | | | OIII | 2 | 3800.240 | | Mn II | 14 | 3811.385 | | Ti I | 165 | | :6 | | V I | 10 | 3800.303 | | Pr II | | 3811.774 | _ | Nd II | 31 | | 6 | | Cr I | 139 | 3800.370 | | Sm II | 43 | 3811.80 | P | Fe I
S II | 701 | | | | Zr I
Si III | 8
√5 | 3800.39
3800.43 | | Hf II
Fe III | 18
47 | 3811.80
3811.892 | | Fe I | 287 | | ·
• 4 | | Fe I | 223 | 3800.552 | | Mn I | 45 | 3812.067 | | Sm II | 10 | | 1 | | Gd II | 46 | 3800.73 | | Zr II | 17 | 3812.18 | | Y II | 61 | | 3 | | Fe I | 703 | 3800.883 | | Y II | 61 | 3812.250 | | Cr I | 214 | | :5 | | Sm II | 5 | 3800.887 | | Sm II | 29 | 3812.470 | | Co I
Fe I | 40 | | 6 | | Cr I
Fe I | 139
287 | 3801.022
3801.093 | | Sn I
Ti I | . 2
165 | 3812.964
3813.059 | | re I
Fe I | 22
222 | | : | | Zr II | 81 | 3801.21 | | Cr II | | 3813.07 | P | Fe I | 176 | | 6 | | Ce II | 129 | 3801.29 | | Gd II | | 3813.12 | | v II | 128 | | 17 | | N1 I | 2 | 3801.529 | | Ce II | 172 | 3813.261 | | Ti I | 189 | | : | | Cr I
S II | 71
50 | 3801.633 | | Mn II | 14 | 3813.390 | | Ti II
Be I | 12 | | 4 | | Pr II | 50 | 3801.681
3801.804 | | Fe I
Fe I | 367
367 | 3813.402
3813.45 | P | V I | 5
28 | | | | Y II | 61 | 3801.907 | | Mn I | | 3813.492 | | V I | 9 | | 4 | | Fe I | 74 | 3801.975 | | Fe I | 704 | 3813.50 | | He II | 4 | | | | N III | 11 | 3802.08 | | P III | 10 | 3813.638 | | Fe I | 283 | | .7 | P | Rh I
Fe I | 9
386 | 3802.283 | | re I
S II | 666
50 | 3813.8 | | Y II
Fe I | 72
854 | | 9 | P | Cr I | 139 | 3802.65
3802.883 | | S II
V I | 67 | 3813.891
3813.94 | P | Fe I | 176 | | 4 | | Fe I | 388 | 3802.928 | | Cb I | 3 | 3813.97 | • | Gd II | 2 | | | | Hf II | 1 | 3802.958 | | Mn II | 14 | 3813.98 | | Zr II | 100 | | 8 | | Fe I | 387 | 3803.097 | | Ce II | 37 | 3814.00 | | Cr II | | | : | | Fe III | 71 | 3803.14 | | 0 11 | 34 | 3814.121 | | Fe II | 153 | | 8 | | Ni I | 4 | 3803.19 | _ | A II | 129 | 3814.42 | | Ra II | 1 | | 4 | | P II
V I | 1
9 | 3803.24
3803.474 | P | Fe I
Nd II | 122 | 3814.457
3814.526 | | Co I
Fe I | 62
22 | | ** | | Cl II | 9 | 3803.474 | | V I | 28 | 3814.526
3814.580 | | Ti II | 12 | | 2 | | Fe I | 367 | 3803.784 | | νi | 68 | 3814.622 | | Cr I | 214 | | 9 | | Cr I | 139 | 3803.881 | | Mn II | 14 | 3814.725 | | Nd II | | | 1 | | Sm II | . 11 | 3803.902 | | V I | 10 | 3814.855 | | Ti I | 189 | | .0 | | Fe I | 177 | 3804.013 | | Fe I | 70£ | 3814.97 | | Zr II | 8 | | 6 | | OII | 100
34 | 3804.476
3804.589 | | Mn II
V I | 14
97 | 3815.012
3815.38 | | Rh II
V II | 7
100 | | 8 | | Cr I | 139 | 3804.798 | | Cr I | 139 | 3815.433 | | Cr I | 71 | | 1 | | s III | 10 | 3805.24 | | C1 II | 62 | 3815.495 | | Eu II | | | | | La II | 12 | 3805.345 | | Fe I | 608 | 3815.514 | | V I | 28 | | 4 | | V I | 9,28 | 3805.359 | | Nd II | 19 | 3815.831 | | Ce II
Fe I | 37 | | 4 | | Fe I
P II | 21
1 | 3805.626
3805.765 | | Sm II
He I | 10
63 | 3815.842
3816.166 | | re I
Pr II | 45 | | .9 | | Tm II | 6 | 3806.07 | | Hf II | 75 | 3816.173 | | Cr I | 40 | | 6 | | Ce II | 50 | 3806.203 | | Fe I | 731 | 3816.25 | | La II | 134 | | .9 | | A III
Tm II | 5
6 | 3806.30
3806.55 | | Ne II
Cr I | 30
24 | 3816.318
3816.340 | | Co I
Fe I | 62
73 | | 3 | | Ti I | 115 | | | Si III | 5 | 3816.458 | | Co I | 62 | | 1 | | Fe I | 176 | 3806.56
3806.697 | | Fe I | 607 | 3816.64 | | Gd II | 1 | | | | Si III | 5 | 3806.719 | | Mn I | 6 | 3816.75 | | 0 111 | 18 | | 1 | | He II | 5 | 3806.76 | P | Fe I | 224 | 3816.753 | | Mn I | 6 | | | | Gd II | 2 | 3806.796 | | V I | 68 | 3816.876 | - | Co I | 86 | | | | Zr II | 71
167 | 3806.82 | P | Fe II | 153
214 | 3816.92
3817.20 | P | Fe I
Hf II | 387
62 | | ; | P | V II
Fe II | 167
143 | 3806.829
3807.144 | | Cr I
Ni I | 214
33 | 3817.20
3817.24 | | La II | 168 | | , | | A II | 129 | 3807.144 | | Nd II | 19 | 3817.395 | | Tm II | | | 9 | | Ti II | 12 | 3807.41 | | Zr II | 31 | 3817.455 | | Ce II | 222 | | I A | Type | Element | Multiplet No. | I A | Type | Element | Multiplet No. | IA | Type | Element | Multiplet No. | |--------------------|--------|----------------|---------------|-----------------------|--------|----------------|------------------|----------------------|------|----------------|---------------| | 317.59 | | Zr II | 18 | 3827.079 | | Fe II | 153 | 3836.10 | | C 11 | 13 | | 317.639 | | Ti I | 189 | 3827.27 | | Zr II | | 3836.112 | | Ce II | 60 | | 317.64 | | Fe I | 701 | 3827.46 | | PII | 26 | 3836.332 | | Fe I | 664 | | 317.844
317.844 | | Cr I
V I | 40
10 | 3827.51
3827.572 | | Zr II
Fe I | 121
284 | 3836.541
3836.76 | | Nd II
Zr II | 16 | | 317.940 | | Co I | 131 | 3827.62 | | C1 II | 69 | 3836.763 | | Ti I | 10 | | 318.244 | | v i | 9 | 3827.67 | P | Fe II | 128 | 3836.91 | | Gd II | 20 | | 318.27 | | N I | 11 | 3827.825 | | Fe I | 45 | 3837.132 | | Fe I | 222 | | 318.281 | | Pr II | | 3828.180 | | Ti I | 189 | 3837.210 | | Ce II | 112 | | 318.34 | | Y II | 7 | 3828.44 | | Fe III | 70,95 | 3837.80 | | s III | 5 | | 118.40 | | Cl II | 62 | 3828.510 | | Fe I | 287 | 3838.094 | | He I | 61 | | 118.44 | | Ne II | 39 | 3828:559 | | V I | 9 | 3838.198 | | Tm II | 11 | | 318.481
318.78 | | Cr I
Zr II | 40
111 | 3828.836
3828.883 | | V I
Mo I | 67
8 | 3838.28
3838.2918 | | Zr II
Mg T | 17
3 | | 118.862 | | Cb II | 10 | 3829.125 | | Fe I | 948 | 3838.2943 | | Mg I | 3 | | 319.04 | | A II | 129 | 3829.133 | | WI | 3 | 3838.316 | | s iii | 5 | | | P Forb | He I | 23 | 3829.27 | | C1 II | 9 | 3838.37 | | C1 II | 69 | | 119.50
119.564 | P | Fe I
Cr I | 703
70 | 3829.3549
3829.458 | | Mg I
Fe I | 3
366,663 | 3838.39
3838.542 | | N II
Ce II | 30
114 | | 119.57 | P | Cr I | 88 | | P Forb | He I | 21 | 3838.941 | | Sm II | 34 | | 119.606 | . • | He I | 22 | 3829.53 | | v II | • | 0000 004 | | NA TT | | | 119.62 | P | Fe I | 122 | 3829.655 | | V II | 3
3 | 3838.981
3839.002 | | Nd II
V I | 28
44 | | 119.67 | | Eu II | 1 | 3829.680 | | Mn I | 6 | 3839.259
 | Fe I | 529 | | 119.761 | | He I | 22 | 3829.77 | | Ne II | 39 | 3839.614 | | Fe I | 995 | | 119.84 | | Zr II
Co I | 81 | 3829.771 | | Fe I | 221 | 3839.64 | | Gd II | 20 | | 119.963 | | A. I | 130
28 | 3829.80
3830.032 | | N II
Cr I | 30 | 3839.777
3840.140 | | Mn I
V I | 6
66 | | 19.97 | | Cr Î | 40 | 3830.293 | | Sm II | 10 | 3840.20 | P | Fe I | 120 | | 120.25 | | C1 11 | 69 | 3830.39 | | N I | 11 | 3840.439 | - | Fe I | 20 | | 20.299 | | v i | 44 | 3830.43 | | A II | 3,128 | 3840.44 | P | A I | 44 | | 20.428 | | Fe I | 20 | 3830.45 | | 0 11 | 34 | 3840.70 | | Cr I | 70 | | 20.74 | | Hf I | 5 | 3830.719 | | Pr II | •• | 3840.72 | | La II | 28 | | 20.871 | | Ce II | 208 | 3830.757 | | Fe I | 224 | 3840.752 | | v 1 | 9 | | 20.874 | | Cr I
Fe I | 40
608 | 3830.80 | | C1 II | 69 | 3841.051 | | Fe I | 45 | | 21.487 | | V I | 28 | 3830.850
3831.017 | | Fe I
V II | 264
3 | 3841.082
3841.17 | | Mn I
Lu I | 6
3 | | 21.582 | | Cr I | 40 | 3831.032 | | Cr I | 24 | 3841.277 | | Cr I | 69 | | 21.68 | | 0 11 | 34 | 3831.41 | | SII | | 3841.35 | P | Fe II | 128 | | 21.834 | P | Fe I
Fe II | 222
14 | 3831.501 | | Sm II | 43 | 3841.458 | | Co I | 32 | | | r | | 14 | 3831.690 | | Ni I | 31 | 3841.54 | | A II | 54 | | 22.009 | | V I | 9 | 3831.75 | | Fe III | 109 | 3841.890 | | VI | 8 | | 22.026 | | Ti I
N I | 189
11 | 3831.80
3831.840 | | Gd II
Cb II | 3
10 | 3842.03
3842.037 | | Cr I
Al II | 70
49 | | 22.10 | | Cr I | 40 | 3831.85 | | SIII | 5 | 3842.047 | | Co I | 33 | | 22.17 | | Gd II | 19 | 3832.12 | | CII | 13 | 3842.20 | | Gd TT | | | 122. 262 | | Rh I | 8 | 3832.2996 | | Mg I | 3 | 3842.20 | | N II | 30 | | 22.41 | P | Zr I
O I | 10
36 | 3832.3037
3832.31 | | Mg I
Pd I | 3
1 | 3842.213
3842.317 | | Al II
Al II | 49
49 | | 22.737 | • | Fe II | 00 | 3832.32 | | Cr I | 24 | 3842.82 | | 0 11 | 12 | | 22.888 | | v 1 | 28 | 3832.745 | | Ce II | 115 | 3842.90 | P | Fe I | 222 | | 122.987 | | Mo I | 8 | 3832.835 | | v i | 80 | 3842.975 | | Fe I | 221 | | 23.213 | | v i | 28 | 3832.873 | | Ni I | 1 | 3843.000 | | Sc II | 1 | | 23.41 | | Zr II | 44 | 3832.89 | | YII | 7 | 3843.03 | | Zr II | 7 | | 23.469 | | O I
Mn I | 36
6 | 3832.94 | P | Zr II
Fe II | 7 | 3843.16
3843.259 | P | Sc II
Fe I | 17
528 | | 23.522 | | Cr 1 | 24 | 3833.02
3833.059 | r | Sc II | 23
1 | 3843.26 | | CI II | 49 | | 23.571 | | Pr II | 14 | 3833.10 | | 0 11 | 13 | 3843.500 | | Sm II | 43 | | 123.72 | | Zr II | 31 | 3833.186 | | Ti I | | 3843.58 | | 0 11 | 13 | | 23.893 | | Mn I
Ce II | 6
115 | 3833.226
3833.311 | | V I
.Fe I | 67
221 | 3843.64
3843.692 | | Cr I
Co I | 87
84 | | 1201300 | | | 110 | 0003.011 | | .10 1 | | 3040.032 | | 00 1 | 0% | | 123.990 | _ | V I | 44 | 3833.40 | | C1 II | 69 | 3843.72 | P | Fe I | 703 | | 124 | P | N IV
Fe I | 10
224 | 3833.49
3833.574 | | Cr I
He I | 11
62 | 3843.80
3843.983 | | Gd II
Mn I | 17
6 | | 24. 175 | | Sm II | 18 | 3833.674 | | Ti I | 02 | 3844.276 | | Ni I | 137 | | 24.306 | | Fe I | 607 | 3833.71 | | Cr I | 70 | 3844.438 | | V I | 7 | | 24.425 | | 0 I | 36 | 3833.757 | | Mo I | 8 | 3844.48 | P | V II | 20 | | 124.444 | | Fe I
Cl III | 4
9 | 3833.80 | | He II
Sm II | 4 | 3844.579
3844.58 | | Gd II
Ni I | 2 | | 124.47 | P | Fe I | 221 | 3833.828
3833.862 | | Mn I | 29
6 | 3844.75 | | AII | 181
54 | | 124.78 | | Y II | 72 | 3833.87 | | Zr II | 100 | 3844.892 | | V I | 44 | | 124.882 | | Cb I | 2 | 3833.889 | | Rh I | 9 | 3845.170 | | re I | 124 | | 124.913 | | Fe II | 29 | 3834.22 | P | V I | . 80 | 3845.18 | P | Fe II | 127 | | 25.090 | | 0 I | 36 | 3834.225 | | Fe I | 20 | 3845.21 | P | Fe I | 701 | | 125.249 | | 0 I | 36 | 3834.24 | | N I | 11 | 3845.21 | | SII | 22 | | 125.390
125.404 | | Cr I
Fe I | 70
123 | 3834.24
3834.364 | | O VI
Mn I | 1
6 | 3845.42
3845.42 | | A II
Cl II | 9
25 | | 125.404 | | 0 I | 123
36 | 3834.364 | P | Fe I | .663 | 3845.42 | | Co I | 25
34 | | 125.70 | | A II | 129 | 3834.556 | - | Ce II | 49 | 3845.68 | | Fe III | 35 | | 125.884 | | Fe I | 20 | 3834.735 | | Cr I | 70 | 3845.69 | | C1 11 | 25 | | 126.05 | | Gd II | . 19 | 3834.81 | P | Fe II | 129 | 3845.692 | | Fe I | 771 | | 126.202 | | Sm II | 81 | 3835.058 | | wı | 2 | 9845.84 | | C1 11 | .28 | | 126.292 | | Pr II | | 3835.09 | | La II | 55 | 3845.974 | | V I | ·aa | | 326.416
326.425 | | Nd II
Cr I | 33
70 | 3835.386 | | H
Co I | 2
114 | 3846.00
3846.001 | | La II
Fe I | 26
703 | | 326.63 | P | Fe I | 176 | 3835.497
3835.560 | | V I | 114
44 | 3846.29 | P | Fe I | 947 | | 126.701 | | Mo I | 8 | 3835.725 | | Sm II | 18 | 3846.31 | P | Fe II | 128 | | 326.774 | | V I | 44 | 3835.96 | | Zr I | 8 | 3846.412 | | Fe I | 804 | | 326.83 | | A II | 54 | 3836.054 | | V I | 44 | 3846.438 | | Ti I
Y II | 93 | | 326.836
326.968 | | Fe I
V II | 283
128 | 3836.070
3836.085 | | Cr I
Ti II | 70
12 | 3846.516
3846.605 | | Pr II | 83 | | , | | | | 0000000 | | | . 1~ | | | | | | | Туре | Element | Multiplet No. | · I A | Type | Element | Multiplet No. | I. A | Type | Element ' | Multiplet No. | |--------|------|----------------|---------------|----------------------|------|----------------|---------------|----------------------|------|---------------|-------------------| | 3 | | Fe I | 664 | 3856.16 | | 0 11 | 12 | 3867.839 | | Ru I | 9 | | • | | Fe I | 176 | 3856.281 | | Cr I | 69 | 3867.925 | | Fe I | 221 | | _ | | Zr I | 10 | 3856.373 | | Fe I | 4 | 3867.986 | | WI | 7 | | 3 | | F II
Mo I | 1
8 | 3856.515 | | Rh I | 7 | 3868.243 | | Fe I | 430 | | 3 | | A I | 7 | 3856.796
3857.032 | | Co I
Ce II | 60
158 | 3868.397
3868.53 | | Ti I
A II | 175
90 | | 3 | | V II | 156 | 3857.18 | | 0 II | 13 | 3868.62 | | C1 11 | 84 | | | | N II | 30 | 3857.240 | | Ce II | 127 | 3868.84 | | CII | 18 | | ı. | | WI | 4 | 3857.26 | P | Y II | 16 | 3869.045 | | Nd II | 34 | | L | | Sm II | 34 | 3857.631 | | Cr I | 69 | 3869.085 | | Mo I | 8 | | | | 0 II | 12 | 3857.912 | | Sm II | 28 | 3869.10 | | N I | | | 3 | | Tm II | 2 | 3858.07 | | He II | 4 | 3869.275 | | Ti I | 175 | | k
3 | | Nd II | 72
19 | 3858.133 | | T1 I | 176 | 3869.562 | | Fe I | 284 | | 1 | | Mg II | 5 | 3858.301
3858.32 | | N1 I
A III | 32
5 | 3869.590
3869.61 | | Fe I
A II | 28 4
80 | | | P | Fe I | 224 | 3858.48 | P | Fe I | 565 | 3870.057 | | Al II | 74 | | ŀ | | Nd II | | 3858.90 | | Cr I | 138 | 3870.267 | | Cr I | 11 | | ľ | | Ce II
Sm II | 36 | 3859.21 | | Fe I | 175 | 3870.506 | | CaI | 26 | | 3 | | Cr I | 69 | 3859.24
3859.26 | | Mg I
S II | 21
30 | 3870.534
3871.078 | | Co I
V I | 129
66 | | | | | | 0005,20 | | • •• | 00 | 55.215.5 | | , <u>-</u> | | | | | La II
Zr I | 12
6 | 3859.33 | | Al II | 38 | 3871.54 | | Gd II | . 1 | | L | | V I | · · | 3859.341
3850.36 | P | V I
So II | 44
1 | 3871.60
3871.62 | | N1 I
C II | 181
18 | | 5 | | Cŗ I | 138 | 3859.913 | • | Fe I | 4 | 3871.64 | | La II | 13 | | | | Hf II | 61 | 3860.12 | P | Fe II | 128 | 3871.750 | | Fe I | 429 | | ŀ | | Cr I
Ni II | 24
11 | 3860.13 | | Cr I | 39 | 3871.778 | | Sm II | 18 | | ; | | V II | 33 | 3860.15
3860.46 | | S II
Fe III | 41
109 | 3871.819
3872.15 | | He I
A II | 60
54 | | , | | Fe I | 20 | 3860.64 | | SII | 50 | 3872.308 | | II Y | 61 | | ! | | F II | 1 | 3860.64 | | SIII | 5 | 3872.45 | | 0 11 | 11 | | 5 | | Cr I | 69 | 9000 74 | P | Po T | *** | 0070 504 | | Po Y | 00 | | - | | Mg II | 5 | 3860.74
3860.80 | P | Fe I
Cl II | 701
25 | 3872.504
3872.55 | | Fe I
Hf II | 20
27 | | • | | A II | 11 | 3860.915 | | Fe II | 20 | 3872.552 | | Ca I | 26 | | | | A II
Ga II | 10
2 | 3860.98 | | Cl II | 25 | 3872.62 | | Gd II | 19 | | | | 0 II | 12 | 3861.079
3861.164 | | T1 I
Co. I | 99 | 3872.748
3872.76 | P | V I
Fe II | 43 | | • | | Fe I | 22 | 3861.18 | | Eu II | 33 | 3872.835 | P | W I | 29
4 | | ş | | Pr II | | 3861.341 | | Fe I | 283,663 | 3872.923 | | Fe I | 284 | | i | | S II
Co I | 50.
17 | 3861.40 | | C1 II | 25 | 3872.98 | P | Fe II | 128 | | • | | 00 1 | 11 | 3861.60 | | Fe I | 663 | 3873.120 | | Co I | 18 | | | | C1 II | 25 | 3861.95 | | C1 II | 84 | 3873.203 | | Ti I | 176 | | | | Gd II
O II | 2
12 | 3862.054 | | Sm II | 10 | 3873.74 | | K II | 3 | | ı | | V I | 44 | 3862.17 | P | Cr II
V I | 129 | 3873.763 | | Fe I
Co I | 175 | | | | Cl II | 25 | 0062.220
3862.592 | | Si II | 8
1 | 0870.950
3874.053 | | Fe I | 16
120 | | | | O II | 13 | 3862.823 | | Ti I | 175 | 3874.10 | | O II | 11 | | , | | Fe I
Pr II | | 3863.056 | | CP II | 9 | 3874.37 | _ | Zr II | 89 | | , | | F 11 | 1 | 3863.072
3863.327 | | N1 I
Nd II | 181
27 | 3874.41
3874.570 | P | Cr II
Cr I | 143
138 | | | | C1 II | 25 | 3863.409 | | NG II | 26 | 3874.76 | P | Cr II. | 143 | | , | | Nd II | 35 | | | | | | | | | | i | | Co 1 | 128 | 3863.413 | | Fe II
O II | 152 | 3875.036
3875.075 | | Ce II
V I | 162 | | - | | Sm II | 29 | 3863.50
3863.607 | | CoI | 12
131 | 3875.14 | | Cr I | 7
138 | | | | V II | 3 | 3863.70 | P | Fe I | 565 | 3875.193 | | Sm II | | | , | | Gr I
Gd II | 24. | 3863.745 | | Fe I | 280 | 3875.26 | | AII | 2 | | ŀ | | Fe I | 73 | 3863.81
3863.866 | | A II | 33
86 | 3875.262
3875.426 | | T1 I
V I | 15,175
43 | | | | Cr I | 11 | 3863.88 | | Zr I | 8 | 3875.46 | | Ga II | 50 | | , | | Pr II | 470 | 3863.953 | | Fe II | 127,152 | 3875.545 | | Sm. II | 17 | | ţ | | Ti I | 176 | 3864.115 | | Mo I | . 1 | 3875.67 | | A II | 20 | | | | 2r II | 81 | 3864.13 | | O II | 11 | 3875.807 | | Ca I | 26 | | | | 8 II | 30 | 3864.30 | P | Fe I | 565 | 3875.82 | | O II | 13 | | į. | | Ce II
Cr I | 39
69 | 3864.300 | _ | Δī | 64 | 3875.902 | | V I | 7 | | į | | Fe I | 429 | 3864.31
3864.33 | Þ |
Fe I
Zr I | 221
10 | 3876.043
3876.051 | | Fe I
C II | 22
33 | | 7 | | Si II | 1 | 3864.335 | | WI | 3 | 3876.086 | | A I | 8 | |) | | Ti J | 176 | 3864.45 | | O II | 12 | 3876.188 | | C II | 33 | | , | | Gd II
Ce II | . 50
62 | 3864.49 | | La II | 141 | 3876.409 | | C II | 33 | | à | | Sm II | | 3864.60
3864.68 | | 0 II | 84
12 | 3876.65
3876.670 | | Lu II
C II | 3
33 | | | | 0 | ۰ ۵۰ | 9004100 | | 0 11 | 12 | 00101010 | | | 55 | | 5 | | Cr I
Ce II | 69
61 | 3864.75 | | Hf II | 98 | 3876.671 | | Fe I | 121 | | i | | Fe I | 567 | 3864.862
3865.458 | | V I
Pr II | 7 | 3876.331
3876.974 | | Co I
Ce II | 17,62
82 | | | | C1 11 | 84 | 3865.526 | | Fe I | 20 | 3877.11 | | Hf II | 75 | | i | | Pr II
La II | · 68 | 3865.59 | | Cr II | 167 | 3877.225 | | Pr II | | | | | N II | 55
30 | 3665.72 | | V II | 20 | 3877.591 | | Ti I | 175 | | | | A II | 81 | 3866.01
3866.160 | | Cr II
Al II | 130
17 | 3877.60
3878.021 | | Zr I
Fe. I | 58
20 | | 3 | | Cr I | 69 | 3866.446 | | T1 I | 176 | 3878.180 | | He I | 59 | | • | | Fe I | 283 | 3866.54 | | Cr II | 190 | 3878.19 | P | Fe I | 565 | |) | | AI | 7 . | 3866.744 | | A II | 11 | 3878.22 | | C II | 33 | | | | Zr II | 18 | 3867.219 | | Fe I | 488 | 3878.28 | | Y II | 7 | | , | | Gd II
Cr I | 2
69 | \$867.26 | | Gd II | . 50 | 3878.372 | | Ce II | 48 | | ı | P | Cr I | 138 | 3867.32 | - | nf II | 59 | 3878.575 | | Fe I | 4 | | L | - | A I | 9 | 3867.45
3867.477 | P | Fe I
He I | 221
20 | 3878.58
3878.582 | | Mg I | 20 | | 3 | | Fe I | 567 | 3867.56 | | 8 1 | | 3878.61 | P | T1 I | 164 | | t | | 81 II
N 71 | 1
30 | 3867.602 | | v 1 | 7 | 3878.663 | | Fe I | 175 | | | | AII | 55 | 3867.631 | | He I | 20
178 | 3878.715
3878.726 | | V II
Ve I | 33
654 | | | | | | 3867.739 | | Ti I | 176 | wo.g.(20 | | | | | Î A | Type | Element | Multiplet No. | I A | Type | Element | Multiplet No. | ΙA | Туре | Element | Multiplet No. | |--------------------|------|----------------|---------------|----------------------|--------|---------------|----------------|----------------------|------|----------------|---------------| | 878.750 | | Co I | 62 | 3889.948 | ••• | Ti I | 15 | 3900.546 | | Ti II | 34 | | 879.04 | | Zr I | 6 | 3889.990 | | Ce II | 50 | 3900.63 | | AII | 54 | | 379.222 | | Cr I | 138 | 3890.080 | | Sm II | 17 | 3900.64 | | Hf II | 103 | | 379.60 | | C II | 33 | 3890.184 | | v I | 8 | 3900.680 | | Al II | 1 | | 380.34 | | A II | 54 | 3890.241 | | Mg I | 47 | 3900.790 | | Tm II | 9 | | 380.466 | | Pr II | | 3890.32 | | Zr I | 8 | 3900.958 | | Ti I | 15 | | 380.59 | | c ii | 33 | 3890.39 | | Fe I | 567 | 3901.03 | P | Fe I | 834 | | 380.766 | | Sm II | 10 | 3890.528 | | Tm II | 1 | 3901.152 | | VI | 126 | | 380.779 | | Nd II
Hf II | 32
6 | 3890.580 | | Nd II
Cr I | 262 | 3901.33 | P | VII | 20 | | 36.08 | | HT II | ъ | 9890.88 | | CF I | ಬರಬ | 0901.775 | | Mo I | 8 | | 381.04 | | y II | 143 | 3890.844 | | Fe I | 280 | 3901.850 | | Nd II | | | 381.214 | | Cr I | 138 | 3890.940 | | Nd II | | 3902.09 | P | Sc II | 9 | | 381.383 | | Sm II | 33 | 3891.119 | | V I | | 3902.108 | | Cr I | 238 | | 381.399 | | Ti I | 15 | 3891.210 | | Sm II | 22 | 3902.250 | | A I | 7 | | 381.402 | | WI | 2 | 3891.227 | | V I | 43 | 3902.398 | | Gd II | 19 | | 381.84 | | Gd II | 36 | 3891.25 | | V II | 20 | 3902.558 | | V I | 43 | | 381.856
381.869 | | Cr I
Co I | 138
18 | 3891.39
3891.40 | | Zr I
A II | 11
2 | 3902.915 | | Cr I
Fe I | 23
45 | | 381.92 | | N1 II | 13 | 3891.781 | | Ba II | 4 | 3902.948
3902.968 | | Mo I | 1 | | 381.94 | | Gd II | 50 | 3891.928 | | Fe I | 733 | 3903.164 | | Cr I | 23 | | | | | | 00021000 | | | | 00001202 | | + | | | 381.97 | | Zr II | 134 | 3891.97 | | A II | 2 | 3903.27 | | v II | 11 | | 182.147 | | T1 I | 175 | 3891.976 | | Mg I | 47 | 3903.417 | | Sm II | | | 382.197 | | 0 11 | 12 | 3891.98 | P | V II | 11 | 3903.77 | | Zr II | 7 | | 182.28 | P | Ti II | 34 | 3892.118 | | Co I | 136 | 3903.902 | | Fe I | 429 | | 182.919
382.446 | | Ti I
Ce II | 176
87 | 3892.14 | | S II | 107 | 3904.02 | | Mg I | 19 | | 182.45 | | 0 II | 11 | 3892.321
3892.859 | | V I | 50
7 | 3904.340 | P | Ce II
N1 I | 91 | | 182.892 | | Ti I | 176 | 3892.898 | | Fe I | 283 | 3904.64
3904.785 | P | Ti I | 29
56 | | 183.132 | | Tm I | 210 | 3892.98 | | Fe I | 567 | 3904.79 | | PIII | 9 | | 383.15 | | O II | 12 | 3893.067 | | Co I | 114 | 3904.790 | | CoI | 171 | | | | | | | | | | | | | | | 183.208 | | V II | 11 | 3893.14 | | A II | 91 | 3905.01 | P | Fe I | 703 | | 183: 282 | | Fe I | 663 | 3893.316 | | Fe I | 364 | 3905.18 | P | .Fe I | 564 | | 183.292 | | Cr I | 23 | 3893.376 | | Mg I | 47 | 3905.527 | | Si I | 3 | | 183.43 | | V II | 20 | 3893.391 | | Fe I | 430 | 3905.64 | _ | Cr II | 167 | | 183.437 | | Tm II
Cr I | 5 | 3893.53 | | 0 11 | 11 | 3905.66 | P | Fe I | 153 | | 183.660
183.77 | | Hf II | 138
18 | 3893.924 | | Fe I
Fe I | 175
663 | 3905.88 | P | Cr II
Nd II | 128 | | 383.80 | | C III | 15 | 3894.005
3894.035 | | Cr I | 23 | 3905.886
3906.037 | | Fe II | 173 | | 183.80 | | C1 II | 55 | 3894.073 | | Co I | 34 | 3906.287 | | Co I | 17 | | 384.090 | | T1 I | 175 | 3894.19 | | Pd I | 8 | 3906.482 | | Fe I | 4 | | | | | | | | | | | | | | | 384.359 | | Fe I | 282 | 3894.49 | | Fe I | 566 | 3906.748 | | Fe I | 664 | | 184.465 | | V I | 65 | 3894.627 | | Nd II | 29 | 3906.748 | | V I | 42,43 | | 384.601 | | Co I
Fe I | 32
565 | 3894.696 | | Gd II
Co I | 1 | 3906.95 | _ | 8 II | 3 | | 384.66
384.847 | | VII | 33 | 3894.976
3895.03 | | P III | 18
9 | 3906.97 | P | Fe I
Eu II | 567
5 | | 385.07 | P | Fe I | 732 | 3895.114 | | Ce II | 210 | 3907.10
3907.289 | | Ce II | 253 | | 385.084 | | Cr I | 138 | 3895.12 | | Cr II | 143 | 3907.45 | | 0 11 | 11 | | 385.09 | | La II | 151 | 3895.16 | | Cr II | 106 | 3907.464 | | Fe I | 284 | | 185.154 | | Fe I | 430 | 3895.230 | | Gd II | 50 | 3907.476 | | Sc I | 8 | | 385.190 | | Pr II | 18 | 3895.243 | | Ti I | 176 | 3907.52 | | A II | 178 | | | | | | | | | | | _ | | | | 185.218 | | Cr I
Co I | 23
31 | 3895.26 | ~ | A II
Fe I | 55
565 | 3907.85 | P | Ti II
Cr I | 97 | | 385.275
385.286 | | Sm II | 46 | 3895.44
3895.59 | P
P | Ti I | 164 | 3907.778 | | Fe I | 262
280 | | 385.41 | | Zr I | 7 | 3895.658 | | Fe I | 4 | 3907.937
3908.033 | | Pr II | 11 | | 385.512 | | Fe I | 124 | 3895.662 | | Mg I | 47 | 3908.408 | | Ce II | 65 | | 185.70 | P | Fe I | 567 | 3695.791 | | Cd II | | 3906.431 | | Pr II | 11 | | 385.770 | | v I | 65 | 3896.11 | P | Fe II | 23 | 3908.54 | P | Fe II | 29 | | 185.87 | P | N1 I | 1 | 3896.155 | | V I | 43 | 3908.543 | | Ce II | 127 | | 385.93 | P | Fe I | 946 | 3896.155 | | V II | 10 | 3908.68 | P | Fe I | 153 | | 385.95 | P | Ti I | 164 | 3896.30 | | 0 11 | 11 | 3908.755 | | Cr I | 23 | | 385.99 | | C III | 15 | 3896.53 | | .Zr I | 9 | 3908.90 | P | Fe I | 153 | | 386.284 | | Fe I | 4 | 3896.63 | P | Fe I | 834 | 3908.931 | * | N1 I | 117 | | 386.37 | | La II | 40 | 3896.804 | _ | Ce II | 188 | 3909.25 | P | Cr II | 129 | | 386.587 | | V I | 64 | 3896.804 | | Y II | 86 | 3909.313 | | Ce II | 133 | | 386.789 | | Cr I | 23 | 3896.977 | | Sm II | -5 | 3909.664 | | Fe I | 565 | | 386.825 | | Mo I | 8 | 3897.075 | | V I | 126 | 3909.830 | | Fe I | 364 | | 386.94 | P | Cr I | 86 | 3897,290 | | T1 I | 175 | 3909.894 | | ΔI | 7,63 | | 387.051 | | Fe I | 20 | 3897.449 | | Fe I
Ti I | 429 | 3909.910 | | Ba I | 8 | | 387.157 | | Gd II
Tm I | 3
1 | 3897.581 | | Fe I | 176
280 | 3909.933 | - | Co I
Fe I | 3
562 | | 387.347 | | 101 | | 3897.896 | | re r | 200 | 3910.52 | P | re I | 302 | | 387.365 | | Ti I | 176 | 3887.92 | | R II | 1 | 3910.790 | | A I | 42 | | 387.44 | | He II | .4 | 3898.012 | | Fe I | 20 | 3910.81 | | La II | 43 | | 387.866 | | Nd II | 31 | 3898.019 | | AI | 126 | 3910.345 | | Fe I | 284 | | 387.993 | | D | 1 | 3898.120 | | MgI | 47 | 3911.00 | P | Fe I | 562 | | 388.020 | | T1 I | 175 | 3868.143 | | V I | 63 | 3911.169 | _ | NG II | | | 388.42 | | Fe I | 565 | 3898.273 | | Ce II | 52 | 3911.18 | P | Fe I | 564
175 | | 388.517 | | Fe I | 45
2 | 3898.278 | | V I
Cb II | 9 | 3911.185 | | T1 I
Cr II | 175
129 | | 388.646 | | He I
Fe I | 2
488 | 3898.292
3898.485 | | Co I | 58 | 3911.32
3911.32 | | SII | 160 | | 388.825
389.051 | | H | 2 | 3898.487 | | Ti I | 13 | 3911.362 | | Ti I | 176 | | ,,,,,,,, | | - | | | | | · - | | | | • | | 389.141 | | Ca I | 42 | 3899.037 | | Fe I | 175 | 3911.58 | | A II | 54 | | 389.18 | | C III | 15 | 3899.09 | P | 8 111 | 5 | 3911.699 | | Fe I | 664 | | 389.33 | P | Fe I | 562 | 3899.140 | | V II | 33 | 3911.810 | | Sc I | 8 | | 389.330 | | Pr II | 14 | 3899.27 | | s III | 12 | 3911.95 | | Cr 1 | 4- | | 389.38 | P | Fe I | 660 | 3899.668 | | Ti I
Fe I | 15, 175
4 | 3911.960 | | 0 11 | 17
17 | | 389.65 | P | N1 I
N1 I | 180
15 | 3899.709
3900.175 | | A I | 4
126 | 3912.088
3912.191 | | O II
Ce II | 17 | | 389.671
389.90 | P | Cr II | 129 | 3900.226 | | Nd II | | 3912.207 | | V I | 42,43 | | 889.92 | P | Fe I | 564 | 3900.51 | | Zr I | 6 | 3912.310 | | N1 I | 151 | | 889.929 | | Nd II | | 3900.519 | | Fe I | 565 | 3912.32 | P | Ti II | 97 | | | | | | | | | | | | | | | | Туре | Element | Multiplet | No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |------------|------|----------------|---------------|-----|----------------------|------|----------------|---------------|----------------------|------|----------------|---------------| | 124 | | Ce II | 60 | | 3923.03 | P | Fe I | 661 | 3934.14 | | Zr II | 7 | | 93 | | Ti I | 175 | | 3923.109 | | Ce II | 191 | 3934.228 | | Ti I | 15 | | 186
198 | | V I
Pr II | 42
17 | | 3923.246
3923.39 | P | Gd II
Ti II | 50
97 | 3934.41
3934.46 | P | N III
Ce II | . 8
. 3 | | 179
 | N1 I | 15 | | 3923.48 | | He II | 4 | 3934.80 | | Zr II | 43 | | 64 | | T1 II | 34 | | 3923.483 | | 3 II | 55 | 3934.823 | | Nd II | | | 135 | | Fe I | 120 | | 3923.50 | | Ca I | 7 | 3934.824 | | Gd II | 1 | | 12 | | Cl II | 68 | | 3923.503 | | Sc II | 9 | 3935.141 | ~ | V I | 90 | | 173
133 | | Fe I
V II | 567
33 | | 3923.91
3923.92 | | Hf II
Zr II | 18
100 | 3935.18
3935.31 | P | Cr II
Fe I | 10
362 | | 134 | | T1 I | 15 | | 3924.05 | | s II | 31 | 3935.64 | | Hf II | 43 | | 16 | | Zr II | 134 | | 3924.075 | V . | Mn I | | 3935.717 | | Ba I | 8 | | 2 | P | Fe I | 652 | | 3924.18 | 'P | N1 I
S1 III | 240 | 3935.764 | | Sm II | 28 | | .80
0 | P | Fe II
Fe I | 3
660 | | 3924.44
3924.527 | | T1 I | 13 | 3935.77
3935.815 | | Al I
Fe I | 18
362 | | 3 | • | Fe I | 662 | | 3924.644 | | Ce II | 190 | 3935.86 | P | Fe I | 564 | | '51 | | T1 I | 14 | | 3924.65 | P | Cr II | 129 | 3935.914 | | He I | 57 | | 6 | | A II | 2 | | 3924.658 | | V I
La II | 90 | 3935.942 | | Fe II | 173 | | 49
6 | | Ce II
Cr I | 78
137 | | 3925.09
3925.151 | | Co I | 135
131 | 3935.964
3936 | P | Co I
C IV | 32
2 | | 0 | P | Cr II | 128 | | 3925.201 | | Fe I | 567 | 3936.07 | | Zr II | 42 | | 84 | | Ir I | 6 | | 3925.216 | | Sm I | 2 | 3936.22 | | La II | 13 | | 03
43 | | Co I
Cr I | 113
136 | | 3925.240
3925.456 | | V I
Pr II | 8
11 | 3936.282
3936.79 | P | V I
Fe I | 42
564 | | 79 | | Ti I | 15 | | 3925.55 | P | Fe I | 860 | 3936.95 | • . | Cr II | 128 | | 4 | | Zr II | 17 | | 3925.646 | | Fe I | 364 | 3937.329 | | Fe I | 278 | | 5 | | La II | 42 | | 3925.71 | | A II | 105 | 3937.575 | | Nd II | 19 | | 43 | | Cr I
V II | 23
10 | | 3925.87 | | Cl IXI
Fo I | 4
364 | 3937.870 | | Ba I
Ti I | 8
246 | | 18
76 | | Tm I | 2 | | 9925.946
3926.001 | | Fe I | 562 | 3938.086 | | Ce II | 205 | | D8 | | Gd II | 20 | | 3926.319 | | T1 I | 292 | 3938.289 | | Fe II | 3 | | 1 | P | Gd II | 50 | | 3926.32 | | V II | 165 | 3938.400 | | Mg I | 18 | | 4 | | Zr I
G1 II | 6
66 | | 3926.467
3926.497 | | Mn I
V II | 44
11 | 3938.52
3936.621 | | N III
Al II | 8
73 | | 33 | | Fe I | <i>8</i> 06 | | 3926.530 | | He I | 58 | 3938.76 | P | N1 I | 240 | | 30 | | Cr I | 137 | | 3926.58 | P | 0 11 | 11 | 3938.856 | | Co I | 171 | | 15
35 | | Co I
Fe I | 113
20 | | 3926.649
3927.383 | | Cr I
Ce II | 313
43 | 3938.969
3939.066 | | Fe II
Al II | 190
73 | | 9 | | Eu II | 10 | | 3927.61 | P | Fe I | 282 | 3939.49 | | SII | 45 | | 12 | | Sm II | 9 | | 3927.922 | | Fe I | 4 | 3939.51 | P | Sc II | 9 | | 7 | | ar II | 76 | | 3927.926 | _ | V I | 90 | 3939.85 | | La II | 134 | | 7
96 | | C1 II
Cr I | 68
137 | | 3927.93
3928.085 | P | Fe I
Fe I | 361
565 | 3940.044
3940.32 | P | Fe I
Ti II | 731
97 | |) | | HP II | 7 | | 3928.279 | | Sm II | 17 | 3940.338 | | Ce II | 50 | | • | | SII | 29 | | 3928.615 | | S III | 8 | 3940.882 | | Fe I | 20 | | 36 | | Gd II | 50 | | 3928.62 | | A II | 10 | 3940.887 | | Co I | 18 | | 76
L9 | | Ce II
Fe I | 12,248
124 | | 3928.636
3928.87 | | Cr I
Eu II | 23
10 | 3941.15
3941.283 | | Cr I
Fe I | 213
562 | | 18 | | Fe I | 364 | | 3928.97 | P | Ti I | 175 | 3941.478 | | Mo II | 4 | | L | P | Fe II | 191 | | 3929.114 | | Fe I | 280 | 3941.490 | | Cr I | 23 | | k | P | Cr I | 136 | | 3929.15 | P | Ti II | 97 | 3941.512 | | Nd II | 27 | | 3 | P | Fe I | 362 | | 3929.208 | | Fe I | 659 | 3941.728 | | Co I | 17 | | 14
56 | | Fe I
Pr II | 430
11 | | 3929.22
3929.53 | | La II
Zr I | 27
7 | 3941.86
3941.874 | | Ni I
Sm II | 171
1 | | 17 | | CII | 4 | | 3929.54 | | Zr II | 142 | 3941.92 | | Zr II | 55 | |)5 | | N II | 17 | | 3929.583 | | Tm II | 11 | 3942.006 | | V I | 63 | | 39
5 | P | Fe I
Cr I | 430
136 | | 3929.734 | | V II
Ti I | 10 | 3942.14 | | 0 IV | 10 | | 59 | F | Cr I | 23 | | 3929.875
3030.023 | | VI | 13
63 | 3942.151
3942.443 | | Ce II
Fe I | 37
364 | | 17 | | 0 11 | 17 | | 3930.076 | | Co I | 59 | 3942.746 | | Ce II | 57 | | 13 | | Ce II | 60 | | 3930.299 | _ | Fe I | 4 | 3942.78 | | N III | 8 | | }2
}0 | | Ti I
Fe I | 130
4 | | 3930.31
3930.50 | P | Fe II
Eu II | . 3
5 | 3943.08
3943.141 | | Eu II
Ce II | 22 | | , | | SIII | 8 | | 3930.63 | P | 0 IV | 10 | 3943.21 | | Cr I | 113
135 | | 17 | | v i | 40 | | 3930.66 | - | Y II | 16 | 3940. 289 | | Sm II | 9 | | 14 | | Pr II | 12 | | 3930.88 | P | Cr II | 129 | 3943.339 | _ | Fe I | 72 | | 15
'7 | | Fe I
C II | 153
4 | | 3931.088
3931.122 | | Ce II
Fe I | 49
565 | 3943.48
3943.664 | P | V II | 11
42 | | 19 | | Fe I | 567 | | 3931.24 | | A II | 2 | 3943.888 | | Ce II | 234 | | 15 | | Nd II | 201 | | 3931.340 | | v I | 90 | 3944.009 | | Al I | 1 | | } | P | Zr II | 42 | | 3931.369 | | Ce II | 61 | 3944.126 | | Ni I
Cr I | 151 | | 32 | | Cr I
Fe I | 23
220 | | 3931.938
3931.97 | | S II
Al I | 29
18 | 3944.25
3944.27 | | AII | 135
2 | | :3 | | Ti I | 14 | | 3932.007 | | Ti II | 34 | 3944.748 | | Fe I | 361 | | | | La II | 40 | | 3932.30 | | s II | 30 | 3944.890 | | Fe I | 430 | | 11 | | Ce II | 195 | | 3932.40 | | Hf II | ମୟ | 3945.048 | | 0 11 | 6 | |)5 | | Zr I
V I | 8
42 | | 3932.53
3932.55 | | La II
A II | 123
90 | 3945.06
3945.08 | | S II
Fe III | 33
69 | | 15 | | Ce II | 50 | | 3932.59 | P | Fe I | 153 | 3945.10 | | C II | 32 | | 1 | P | Fe I | 153 | | 3932.629 | | Fe I | 280,652 | 3945.11 | | Cr II | 142 | | 1 | P | Fe I | 564 | | 3933.19 | | A II | 53 | 3945.119 | P | Fe I
Fe II | 280
3 | | 17 | | Zr II
Sm II | 143
38 | | 3933.294
3933.38 | | S II
P III | 55
9 | 3945.21
3945.27 | P | A II | 3
165 | | 11 | | V I | 42 | | 3933.38 | | Sc I | 8 | 3945.29 | P | O IV | 10 | | | | Ą II | 11,53 | | 3933.606 | | Fe I | 488,562 | 3945.326 | | Co I | 29 | | - (| _ | 8 II | 60 | | 3933.65 | | Hf II
Ca II | 6 | 3945.36 | | HP II
Cr I | 109
135 | | ; | P | Fe I
P III | 429
9 | | 3933.664
3933.731 | | Ca II | 1
81 | 3945.495
3945.968 | | Cr I | 135
134 | | 5 | | Co I | 32 | | 3933.918 | | Co I | 17 | 3946.00 | | Hf II | 115 | | 4 | | Fe I | 4 | | 3934.013 | | V I | 42 | 3946.10 | | A II | 105 | | | | | | | | | | | | | | | | 5 | | | | | A 4.18 | 71.10 220 | • | | | | | |--|------|----------------|---------------|-------------------------|--------|------------------|---------------|-----------------------------|--------|-----------------|---------------| | Ì A | Туре | Blement | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | | 946.18 | P | N1 I | 1 | 3956.82 | P | o IV | 10 | 3968.36 | | A II | 2 | | 946.21 | • | Y II | 24 | 3956.901 | | Ce II | 176 | 3968 - 38 | P | Fe I | 219 | | 946.35 | | C II | 31,32 | 3957.027 | | Fe I | 562 | 3968.43 | | He II | 3 | | 946.406 | | Al II | 63 | 3957.053 | | Ca I | 6 | 3968.470 | | Ca II | 1 | | 946.511 | | Sm II
Co I | 17
60 | 3957.62
3957.64 | | Fe I
P III | 564
9 | 3968.63
3968.78 | | C II
Fe III | 37
120 | | 946.633
946.681 | | Ce II | 255 | 3957.66 | P | Fe II | 13 | 3968.995 | | D | 1 | | 946.98 | | 8 11 | 45 | 3957.672 | _ | Gd II | 19 | 3969.061 | | Cr I | 38 | | 947.002 | | Fe I | 561 | 3957.928 | | Co I | 18 | 3969.116 | | Co I | 128 | | 947.10 | | Fe III | 23,69 | 3958.001 | | Nd II | 25 | 3969.261 | | Fe I | 43 | | 947.125
947.301 | | Co I | 58
3 | 3958.08
3958.101 | | Cr I
Tm II | 307
1 | 3969.293
3969.38 | | C II | 20
37 | | 947.393 | | Fe I | 153 | 3958 206 | | Ti I | 13 | 3969.38 | P | Fe. II | 3 | | 947.489
947.5043 | | O I
A I | 3
2 | 3958 • 24
3958 • 266 | | Zr II -
Ce II | 16
160 | 3969.40
3969.43 | P
P | Fe II
Fe III | 3
120 | | 947.533 | | Fe I | 361,426 | 3958.39 | | AII | 65 | 3969.628 | • | Fe I | 657 | | 947.594 | | 0 I | ั้ง | 3958.60 | P | N1 I | 150 | 3969.748 | | Cr I | 38 | | 947.60 | | C II | 31 | 3958.66
3958.865 | | Pd I
Rh I | 8 | 3970.07 | | Cr I | 213 | | 947.633
947.770 | | Pr II
Tí I | 11
14 | 3959.01 | P | Sc II | 49 | 3970.07 4
3970.10 | | H
Ta I | 1
1 | | 947.838 | P | Sm II
Fe I | 33
652 | 3959.436
3959.46 | P | Gd II
Pe I | 49
556 | 3970.15 | | V II
C II | 203
38 | | 948.00
948.105 | P | Fe I | 562 | 3959.523 | • | Gd II | 44 | 3970.20
3970.391 | | Fe I | 488 | | 948.113 | | Sm II | 9 | 3959.527 | | Sm II | | 3970.503 | | N1 I | 151 | | 948.15 | | C II | 32 | 3960.284 | | Fe I | 913 | 3970.528 | | Sm II | 1 | | 948.28 | P | Fe I | 561 | 3960.37 | | V II
Cr I | 189 | 3970.69 | _ | S II | 45,54 | | 948.48
948.670 | ₽ | Fe I
Ti I | 560
13 | 3960.763
3960.895 | | Fe II | 68
212 | 3970.99
3971.062 | P | Fe I
Gd II | 1074
50 | | 948.779 | | Fe I | 894 | 3960.914 | | Ce II | 84 | 3971.164 | | Pr II | 27 | | 948.901 | | Ca I | 6 | 3960.997 | | Co I | 128 | 3971.255 | | Cr I | 67 | | 948.9788 | | A I | 2 | 3961.147 | | Fe I | 361 | 3971.325 | | Fe I | 277 | | 949.10 | | La II | 41 | 3961.503 | | Mo II
Al I | 4 | 3971.397 | | Sm II | 43 | | 949.14
949.23 | P | Fe I
Fe I | 730
153 | 3961.523
3961.55 | | 8 111 | 1
8 | 3971.684
3971.754 | | Ce II
Gd II | 133
49 | | 949.275 | • | Im I | 2 | 3961.59 | | O III | 17 | 3971.82 | | Fe I | 281 | | 949.438 | | Pr II | 16 | 3962.03 | | La II | | 3971.98 | | Eu II | 5 . | | 949.45 | | c ir | 31 | 3962.12 | | N1 I | 199 | 3972.130 | | Ti I | 81 | | 949.64
949.954 | | Cr I
Fe I | 136
72 | 3962.19
3962.353 | | Cr I
Fe I | 68
566 | 3972.164
3972.171 | | Pr II
Ni I | 13
29 | | 949.96 | | Cl II | 36 | 3962.42 | P | Fe I | 560 | 3972.44 | | C II | 37 | | 950.35 | | Y II | 6 | 3962.445 | | Pr II | 28 | 3972.506 | | Co I | 171 | | 950.42 | | 3 11 | 45 | 3962.65 | P | Fe I | 913
| 3972.53 | P | Co I | 173 | | 950.78 | P | Fe I
Cr I | 153 | 3962.851
3962.995 | | Ti I
Sm [I | 12 | 3972.570 | | Ca I
K II | 41 | | 951.097
951.154 | | Nd II | 136
19 | 3963.04 | | La II | | 3972.58
3972.688 | | Cr I | 4
67: | | 951.164 | | Fe I | 661 | 3963.108 | | Fe I | 562 | 3972.920 | | Fe I | 803 | | 951.51 | | P III | 9 | 3963.114 | | Nd II | 39 | 3973.144 | | Co I | 58 | | 951.59 | | A II | 16 | 3963.13 | | 8 II | 43 | 3973.263 | | 0 11 | 8 | | 1951.717
1951.765 | | Co I
Cr I | 171
136 | 3963.13
3963.354 | | T1 I | 45
81 | 3973.269
3973.562 | | Nd II
N1 I | 19
31 | | 951.968 | | v II | 10 | 3963.43 | P | Fe I | 654 | 3973.642 | | V II | 9 | | 951.987 | | 0 I
Gd II | 30 | 3963.626
3963.628 | | V I
Os I | 3 | 3973.650 | | Nd II | 37
769 | | 1952.60
1952.08 | | CII | 1
32 | 3963.690 | | Cr I | 38 | 3973.655
3973.707 | | Fe I
Ca I | 6 | | 1952.195 | | na II | 23 | 3964.09 | P | Fe II | 29 | 3973.84 | | C II | 37 | | 1952.326 | | Co. T | 16 | 3964.11 | | Fe III | | 3973.981 | | Ga II | 50 | | 1952.367
1952.399 | | Cb II
Cr I | 10
136 | 3964,261
3964,269 | | Pr II
Ti I | 33
12 | 3974.160
3974.397 | | Fe II
Fe I | 29
564 | | 1952.573 | | Ce II | 113,177 | 3964.35 | P | Cr II | 10 | 3974.397 | | A II | 9 | | 1952.606 | | Fe I | 278 | 3964.522 | | Fe I | 361 | 3974.65 | P | Fe I | 526 | | 1952.704
1952.74 | | Fo I
A II | 302
89 | 9964.57
3964.64 | P
P | Ec II.
Cr II | 29
10 | 3974.650
3974.66 | P | N1 I | 198 | | 3952.917 | | Co I | 28 | 3964.727 | | He I | 5 | 3974.726 | - | Co I | 18 | | 3952.982 | | 0 I | 30 | 3964.825 | | Pr II | 8 | 3974.76 | | A. II | 8 | | 3953.056 | | 0 I
Fe I | 30
430 | 3964.90
3964.96 | | Bu II
Hf II | 10
54 | 3974.766 | | Fe I | 72 | | 3953.156
3953.163 | | Cr I | 430
136 | 3965.011 | | CoI | 31 | 3975.029
3975.21 | | Fe II
Fe I | 191
153 | | 3953.50 | P | Fe I | 770 | 3965.236 | | Co I | 30 | 3975,69 | Ρ, | T1 I | 186 | | 39 5 3.516
39 5 3.525 | | Pr II
Nd II | 9 | 3965.263
3965.446 | | Pr II
Fe I | 8
658 | 3975.85
3976.01 | | Fe I
Cr I | 977
38 | | 3953.660 | | Ce II | 141 | 2965.511 | | Fe I | 565 | 3976. 270 | | Sm II | 9 | | 3953.76 | P | Fe III | 69 | 3965.83 | P | Fe I | 122 | 3976.30 | | Cr I | 280 | | 3953.863 | | Fe I | 362 | 3966.045 | | Sm II | 24 | 3976.392 | | Fe I | 487 | | 3954.21 | | 0 II | 82 | 3966.066
3968.37 | | Fe I
Pt I | 45
4 | 3976.430 | | Sm II | 33
655 | | 3954.372
3954.38 | | U II
Fe III | 6
120 | 3936.43 | P | Fe II | 3 | 3976.564
3976.615 | | Fe I
Fe I | 655
729 | | 3954.590 | | o x | 30 | 9966.59B | - | Fo I | 562,652,766 | 3970.003 | | Cr I | 38 | | 3954.687 | | 0 I | 30 | 3966.573 | | Pr II | 8 | 3976.836 | | Nd II | 21 | | 3954.715
3955.22 | P | Fe I
Fe I | 606
527 | 3966.630
3966.65 | | Fe I
Zr I | 282,562
8 | 3976.865
3976.88 | | Fe I
Fe III | 431,662
69 | | 3955.352 | | Fe I | 562 | 3966.72 | | K II | 5 | 3977.10 | | O IA | 10 | | 3955.77 | P | Fe I | 219 | 3967.048 | | re I | 659
84 | 3977.184 | | Co I | 113 | | 9955.82
3955.851 | P | Zr II
N II | 17
8 | 3967.048
3967.423 | | Fe I | 804
804 | 3977.231
3977.30 | | Os I
C II | 4
38 | | 3955.956 | | Fe I | 488 | 3967.441 | | 0 11 | 22 | 3977.32 | | Zr I | 46 | | 3956.270 | | Co I | 2 | 3967.69 | | Y II | 82 | 3977.732 | | V II | 10 | | 3956.284
3956.226 | | Ce II | 202 | 3967.964 | | Fe I
V II | 561 | 3977.743 | | Fe I | 72 | | 3956.336
3956.459 | | Ti I
Fe I | 13
804 | 3968.11
3968.25 | | Zr I | 9
7 | 3978.28
3978.43 | | P III
Fe III | 8
120 | | 3956.681 | | Fe I | 278 | 3988.261 | | 04 11 | 3 | 3978.466 | | Fe I | 361 | | | | | | | | | | | | | | | | Туре | Element | Multiplet No. | I A | Туре | El ement | Multiplet No. | I A | Туре | Element | Multiplet No. | |----------|------|----------------|---------------|----------------------|------|----------------|-------------------|----------------------|------|-----------------|---------------| | 50 | | Ce II | 175 | 3987.98 | | Yb I | 2 | 3996.607 | | Sc I | 7 | | 50 | | Co I | 17 | 3988.18 | | A II | 65 | 3996.79 | P | Fe I | 1074 | | 77 | | Cr I | 67 | 3988.51 | | La II | 40 | 3996.968 | | Fe I | 945 | | 34 | | Co I | 173
37 | 3988.68
3988.833 | | Zr I
V I | 46
89 | 3997.054 | | Pr II
V II | 9 | | 7 | | La II | 140 | 3989.06 | | Sc II | 8 | 3997.126
3997.17 | | V II
P III | 9
9 | | ź | P | Fe I | 426 | 3989.24 | P | Fe I | 561 | 3997.394 | | Fe I | 278 | |)0 | | Sm II | 51 | 3989.29 | | Zr I | 6 | 3997.43 | | Y II | 24 | | 3 | | Cr I | 307 | 3989.444 | | Ce II | 240 | 3997.48 | P | Fe I | 563 | | ¼ | | Cr I | 280 | 3989.581 | | Ti I | 81 | 3997.49 | P | Fe I | 556 | | 3 | | A II | 90 | 3989.60 | P | Fe I | 605 | 3997:764 | | Gd II | 67 | | i | | HP II | 97 | 3989.718 | - | Pr II | 12 | 3997.901 | | Co I | 32 | | ; | | Fe III | 120 | 3989.758 | | Ti I | 12 | 3997.97 | | s III | | | ′9 | | Nd II | 57 | 3989.803 | | V II | 32 | 3998.00 | | Si II | | | į. | | Cr II
Co I | 183 | 3989.859
3989.958 | | Fe I
Mn I | 768
33 | 3998.054 | P | Fe I | 276 | | 18
i | | Fe I | 561 | 3989.986 | | Cr I | 268 | 3998.46
3998.51 | P | Fe I
Hf II | 606
'59 | | 18 | | Cr I | 67 | 3990.103 | | Nd II | 19 | 3998.554 | | Co I | 33 | | ì | | 8 II | 59 | 3990.16 | | Cr I | 280 | 2998.635 | | T1 I | 12 | | ř | | Fe III | 120 | 3990.184 | | Ti I | 186 | 3998.69 | | N III | 16 | | i | | C II | 37 | 3990.19 | | C1 II | 76 | 3998.730 | | v i | or | | i | | Al III | 12 | 3990.299 | | Co I | 58 | 3998.79 | | SII | 8£
59 | | i | | re I | 153 | 3990.379 | | Fe I | 527 | 3998.85 | | Cr I | 307 | | 11 | | T1 I | 186 | 3990.55 | P | Fe I | 556 | 3998.98 | | Zr II | 16 | | -5 | | Ce II | 194 | 3990.566 | | V I | 89 | 3999.00 | P | Cr II | 10 | | 6
3 | | Fe I
Cr I | 22
67 | 3990.81
3990.94 | | Fe III
S II | 46
45 | 3999.07 | P | Cr II
V II | 10
202 | | | | La II | 139 | 3991.123 | | Cr I | 38 | 3999.195
3999.242 | | Ce II | 57 | | 6 | | Ti I | 188 | 3991.14 | | Zr II | 30 | 3999.336 | | Ti I | 188 | | | P | Fe II | 3 | 3991.47 | | V II | 10 | 3999.679 | | Cr I | | | | _ | n | 400 | 0004 20 | | | 4 | | | | | | 1 | P | Fe I
Ti I | 428
12 | 3991.50
3991.528 | | C1 111
Co I | 7
173 | 3999.92 | | C III
N I | | | 5 | | Fe I | 278 | 3991.673 | | Cr I | 38 | 3999.98
4000.02 | | Fo I | 360 | | | | C1 II | | 3991.684 | | Co I | 17 | 4000.266 | | Fe I | 556 | | 8 | | T1 II | 11 | 3991.743 | | Nd II | 19 | 4000.468 | | Fe I | 426 | | | | Zr II | 142 | 3991.77 | | Si II
Co I | 100 | 4000.493 | | Nd II | 64 | | 3
5 | | Pr II
Nd II | 28
67 | 3991.831
3991.965 | | V II | 129
202,227 | 4000.59
4001.049 | | Cr I
Ce II | 295
193 | | 8 | | Ti I | 11 | 3992.014 | | Co I | 3 | 4001.17 | | v II | 202 | | 3 | | Mn I | 33 | 3992.06 | | A II | 2 | 4001.24 | | K II | 6 | | | | Y II | • | 0000 44 | | Cr I | •• | | | | | | 9 | | O II | 6
6 | 3992.11
3992.114 | | Ir I | 38
5 | 4001.257
4001.444 | | Od II
Cr I | 49
268 | | 1 | | Ce II | 172 | 3992.386 | | Ce II | 134 | 4001.444 | | CIII | 208 | | 8 | | 6d II | 49 | 3992.395 | | Fe I | 604 | 4001.666 | | Fe I | 72 | | В | | Sm II | 38 | 3992.64 | P | Fe I | 219 | 4002.073 | | Fe II | 29 | | 7. | | Cr I
Fe I | 213 | 3992.801 | | V I
Cr I | 89 | 4002.466 | | Ti I | 188 | | | | Al II | 485
32,48 | 3992.845
3992.913 | | Ce II | 67
226 | 4002.48
4002.549 | | Cr II
Fe II | 166
190 | | | | S III | 8 | 3993.213 | | Gd II | 1 | 4002.55 | | Zr I | 46 | | | P | Fe I | 426 | 3993. 3 08 | | Sm II | 4 | 4002.665 | | Fe I | 320,655 | | _ | | a • | | 0000 404 | | D- T | | | | | | | 7 | | Cr I
Fe I | 38
277 | 3993.401
3993.526 | | Ba I
S II | 8
29 | 4002.940
4002.95 | | V II
Zr II | 9
142 | | • | | Hr II | 19 | 3993.796 | | T1 I | 186 | 4002.95 | | Cr II | 194 | | D | | N1 I | 171 | 3993.822 | | €e II | 12 | 4003.41 | | Fe III | 15 | | 7 | | Mn I | 33 | 3993.952 | | N1 I | 170 | 4003.596 | | Co I | 130 | | 3
5 | | Ti I
V I | 188
89 | 3993.968
3994.00 | P | Cr I
Fe I | 67
560 | 4003.64 | | n III | 16 | | . 3 | | Cr I | 38 | 3994.117 | F | Fe I | 526 | 4003.764
4003.771 | | .Fe I
Ce II | 728
188 | | • | P | Fe .I | 219 | 3994.165 | | Gd II | 49 | 4003.789 | | Ti I | 188 | |) | | AI | 89 | 3994.27 | P | Fe I | 320 | 4003.850 | | Gd II | 104 | | | | Ce II | 050 | 9004 50 | | La II | NO. | 4000 00 | | | 4.5 | | 5 | | Zr II | 252
7 | 3994.50
3994.542 | | Co I | 78
17 | 4003.89
4003.921 | | 8 II
Cr I | 45
268 | | 3 | | Ru I | 9 | 3994.56 | P | Ti I | 186 | 4004.010 | | Nd II | 200 | | | P | Fe I | 561 | 3994.683 | | T1 I | 188 | 4004.15 | P | Fo II | 127 | | 1 | | Mn I | 33 | 3994.684 | | Nd II | | 4004.832 | | Fe I | 601 | | В | P | Ti I
Fe I | 219 | 3994.81
3994.834 | | A II
Pr II | 89,101 | 4004.976 | _ | Fe I | 486,557 | | 3 | . • | Fe I | 661 | 3994.996 | | N II | 11
12 | 4005.04
4005.246 | P | Fe III
Fe I | 45
43 | | - | | 0 11 | 22 | 3995.10 | | K II | 1 | 4005.38 | P | Fe I | 123 | | • | | Ti I | 168 | 0995.17 | | o iv | 10 | 4005.49 | P | Fe I | 219 | | | - | Cr II | 10 | 3995.199 | | Po T | 604 | | - | 7 | 4.77 | | 3 | P | VII | 10
202 | 3995.306 | | Fe I
Co I | 60 <u>4</u>
31 | 4005.64
4005.7 | P | Fe III
Al II | 45
89 | | • | P | Cr II | 10 | 3995.48 | P | Sc II | 49 | 4005.712 | | VII | 32 | | | | 8 111 | 8 | 3995.49 | P | Sc II | 18 | 4005.952 | | Ti I | 187 | | | P | Cr II | 10 | 3995.586 | | Tm [II] | 5 | 4006.136 | _ | Ni I | | | 3 | P | Fe I | 655
560 | 3995.656
3995.74 | | Ba I
La II | 8
27 | 4006.16 | P | Fe I | 564 | | 1 | ~ | Fe I
Mo II | 560
4 | 3995.74
3995.83 | P | Ni I | 238 | 4006.314
4006.631 | | Fe I
Fe I | 603
488 | | • | P | Fe I | 560 | 3995.860
| - | Al II | 47 | 4008.768 | | Fe I | 320 | | 5 | | Mn I | 33 | 3995.996 | | Fe I | 279 | 4007.04 | P | Cr II | 194 | | | | | | | | | 470 | | | | | | 5 | | Sm II | 17 | 3996.075 | | Al II | 47
47 | 4007.195 | | Ti I | 187 | | 33
3 | | Mg I
Mn I | 17
33 | 3996.159
3996.182 | Forb | Al II | 47
47 | 4007.233
4007.277 | | Fe I
Fe I | 119
277 | | ś | | N1 I | 137 | 3996.26 | P | Fe I | 361 | 4007.36 | | Hf II | 88 | | 3 | | un I | 33 | 3996.28 | P | Fe I | 427 | 4007.435 | | Nd II | | | 7 | | Co I | 16 | 3996.320 | | Gd II | 40 | 4007.589 | | Ce II | 221 | | 1 | | Gd II | 19 | 3996.323 | P | Al II
Fe II | 47
199 | 4007.64 | | La II | 65 | | 3 | | Sm II
Mn I | 28
33 | 3996.36
3996.381 | P | Al II | 47 | 4007.66
4007.72 | P | A II
Fe II | 189 | | | P | Ti II | 33
11 | 3996.518 | | Tm II | | 4007.78 | • | 8 II | 29 | | | | | | | | | | | | | | | I A | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |--|----------|--|--|---|-----------|--|---|---|--------|---|---| | 007.81
008.046
008.17
008.41
008.60
008.714
008.769
008.81
008.913 | P Forb P | He I T1 I V II Sc II Hf II Sc II Pr II W I Fe III Gd II | 56
187
32
16
54
16
28
6 | 4020.06
4020.25
4020.399
4020.490
4020.872
4020.898
4021.13
4021.330
4021.622
4021.75 | P | C1 II Hf II Sc I Fe I Nd II Co I C II Nd II Fe I Fe I Fe III | 76
40
7
913
19
16
27
36
120,557 | 4031.456
4031.633
4031.68
4031.73
4031.753
4031.807
4031.968
4032.46
4032.628
4032.656 | P | Fe II Al III La II Fe I Ti I Nd II Fe I Te I Ti I Fe I Ti I | 151
72
40
427
185
655
320
297 | | 008.926
009.270
009.39
009.54
009.58
009.653
009.714
009.90
009.984
010.18 | P | Ti I He I S II Fe I Al II Ti I Fe I C II Ni I Fe I | 12
55
55
556
37
11
72
27
150
915 | 4021.812
4021.869
4021.925
4022.052
4022.263
4022.333
4022.36
4022.36
4022.45
4022.744 | | Ti I Fe I V I Ni I Cr I Gd II Cr II Fe III Fe I | 185
278
96
238,241
268
183
45
173
556,654 | 4032.812
4032.946
4032.975
4033.073
4033.19
4033.263
4033.55
4033.68
4033.83 | P | S II Fe II Ga I Mn I O II Fe I Cr I Sb I P II A II | 59 126 1 2 50 218 36 1 17 52 | | 010.77
011.089
011.23
011.416
011.534
011.69
011.71
011.89
012.10 | P | Fe I Co I A II Fe I Ti I Eu II Fe I Fe I K II Fe I | 219,320
2
53
218
10
22
153
424
2
601 | 4023.002
4023.231
4023.388
4023.399
4023.58
4023.686
4023.739
4023.986
4023.99 | | Nd II Sm II V II Co I La II Sc I Cr I He I Ni I Zr I | 4
32
59
79
7
268
54
170 | 4033.857
4033.883
4033.95
4034.012
4034.490
4034.84
4034.884
4035.087
4035.09 | | Pr II T1 I Cr I Nd II Zr II Mn I Zr II T1 I N II O II | 19 208 36 23 42 2 70 208 39 51 | |)12.250
)12.372
)12.389
)12.467
)12.50
)12.51
)12.704
)12.786
)13.24 | p. | Nd II Ti II Ce II Fe II Cr I Cr II Mo I Nd II Ti I Ti I | 10
11
206
126
268
183
12 | 4024.04
4024.109
4024.45
4024.491
4024.552
4024.773
4024.727
4024.785
4024.785 | | O II Fe I Zr II Ce II Fe II Ti I F II Fe I Nd II Zr I | 99
277
54
49
127
12
2
560
24 | 4035.110
4035.25
4035.47
4035.54
4035.54
4035.631
4035.728
4035.82
4035.82 | P
P | Sm II Fe I A II Fe III Co I V II Mn I Fe III Ti I | 33
831
33
22
119
173
32
5
45 | | 013.587
013.641
013.798
013.798
013.80
013.822
013.87
013.89
013.942 | P | Ti I Fe I Fe I Gd II Mg II Fe I A II Fe I Co I Gd II | 187
557
485
22
486
2
120
58 | 4025.010
4025.012
4025.07
4025.07
4025.114
4025.136
4025.44 | P
Forb | F II Cr I Fe III Ti I Ni I Ti II Cr I Ni I He I F II | 2
37
53
208
240
11
37
117
19 | 4035.96
4035.98
4036.23
4036.37
4036.53
4036.59
4036.779
4036.80
4037.294
4037.332 | P
P | Ni I Fe I P II Fe I Cl II La II V II Cr I Cr I Gd II | 150
426
16
279
76
59
9
36
36 | | 014.28
014.489
014.534
014.668
014.899
015.20
015.377
015.389
015.50
015.877 | ۲ | Fe I Sc II Fe I Cr I Ce II Fe 11 T1 I Pr II N1 II Ce II | 426,427
8
802
268
157
142
185
32
12
256 | 4025.60
4025.67
4025.87
4026.080
4026.166
4026.189
4026.362
4026.40
4026.435
4026.5 | P | He II Fe III La II N II Cr I He I He I O II Mn I Al II | 3
45
42
40
37
18
18
51 | 4037.665
4037.725
4037.897
4038.03
4038.124
4038.27
4038.545
4038.622
4038.82 | P | Ce II Fe I Gd II Cr II Nd II N1 I V II Fe I A II Cr I | 218
118
49
194
31
150
155
600,728
2
2551 | | 016.264
016.432
016.54
016.81
016.82
016.013
017.096
017.156
017.27 | P | Ti I Fe I Fe I V II Ti I Fe I Fe I C II V II | 186
560
277
428
202
908
279
527
27
216 | 4026.539
4027.032
4027.103
4027.20
4027.30
4027.420
4028.332
4028.411
4028.791
4029.16 | | T1 I Co I Cr I Zr I V II T1 I Ce II S II Hf II | 185
3
37
46
201
87
47
45
23 | 4039.12
4039.30
4039.302
4039.357
4039.357
4039.87
4039.83
4039.94
4040.24
4040.310 | | Fe III Cr I Al II Pr II Al II V II Y I Fe I Zr II Ti I | 45
251
62
15
62
90
5
276
54
185 | | 017.56
017.58
017.596
017.771
017.96
018.102
018.282
018.38
018.49 | P | N1 1 Eu II Ce II Ti I Cr II Mn I Fe I Zr II Fe II Cl III | 171
10
163
185
166
5
560
54
13 | 4029.32
4029.64
4029.68
4030.03
4030.194
4030.28
4030.470
4030.499
4030.512 | P
P | Ni I Ti II Fe I Zr II Fe I Cr II Nd II Fe I Ti I | 170
87
556,563
41
46
72
19
32
560 | 4040.650
4040.762
4040.796
4041.288
4041.31
4041.321
4041.361
4041.64
4041.675 | P | Fe I Ce II Nd II Fe I O II N II Mn I Fe II Sm II Cr I | 555
138
30
603,654
50
39
5
172
22
36 | | 018.826
.019.05
.019.05
.019.055
.019.137
.019.288
.019.30
.019.45
.019.982
.020.05 | r
P | Na II Fe I V II N1 I Th II Co I UO 1 P II Sm II Fe I | 10
219
201
72
3
16
18
30
16
556 | 4030.755
4030.867
4030.90
4031.130
4031.135
4031.210
4031.243
4031.339
4031.35 | P | Mn I Al II Fe I Cr I Al II Al II Fe I Ce II Zr II A II | 2
72
943
268
72
72
486
108
42
65 | 4041.84
4041.911
4042.135
4042.20
4042.246
4042.584
4042.732
4042.723 | P
P | Fo II Fe I Ce II A II Cr I Ce II V I Sm II Fe I Sm II | 13
602
252
28
36
140
96
4
556 | | | Type | Element | Multiplet No. | I A | Type | Element | Multiplet No. | I A | Туре | K1 ement | Multiplet No. | |-----------|--------|----------------|---------------|----------------------|------|-----------------|---------------|----------------------|--------|----------------|---------------| | ı | | A II | 33 | 4053.28 | | Fe III | 119 | 4062.90 | | 0 11 | 50 | | 1 | | La II
Cu II | 66
3 | 4053.294 | | Gd II | 40 | 4063.174 | | Co I | 18 | |)2
37 | | N II | 39 | 4053.45
4053.506 | | Cr II
Ce II | 19
36 | 4063.286
4063.390 | | Fe I
Gd II | 698 | | 7 | | Zr I | 32 | 4053.56 | | A II | 53 | 4063.528 | | Mn I | 5 | | 36 | | Nd II | 34 | 4053.59 | | Fe III | 98 | 4063.59 | | Gd II | 48 | |) | P | Fe I
Cr I | 122
306 | 4053.59 | | V II | 215 | 4063.597 | | Fe I
V I | 43 | | 36
75 | | Ti I | 208 | 4053.642
4053.814 | | Gd I
Ti II | 5
87 | 4063.931
4063.94 | P | V I
Cr II | 121
19 | |)1 | | Fe I | 276,557 | 4053.82 | | Fe I | 485 | 4064.07 | P | Fe J | 423 | | 3 | P | Fe I | 559 | 4054.10 | | 0 11 | 50,98 | 4064.16 | | Zr I | 46 | | l
LG | P | Fe II
K I | 172
3 | 4054.11
4054.19 | | Cr II
Fe I | 19
557 | 4064.2
4064.208 | | C I
Ti I | 7
90 | | 182 | | ĀĪ | 4 | 4054.55 | | 0 11 | 98 | 4064.22 | P | Ti I | 254 | | , | P | .Fe I | 1073 | 4054.555 | | Sc I | 6 | 4064.350 | | T1 II | 106 | | 3 | | PII | 30 | 4054.618 | | Co I | 2 | 4064.374 | | N1 I | 179 | | !
14 | | Zr I
Fe I | 46
359 | 4054.833
4054.845 | | Fe I
Pr II | 698
30 | 4064.45
4064.46 | | S III
Fe I | 44 | | i | P | Fe I | 484 | 4054.883 | | Fe I | 698 | 4064.576 | | Sm II | 24,33 | | 5 | | N II | 39 | 4054.991 | | Ce II | 82 | 4064.64 | | P II | 16 | | 18 | | Pr II | 8 | 4055.011 | | Ti I | 80 | 4064.75 | P | Fe II | 39 | | 3 | | 0 II | 51 | 4055.03 | | Zr I | 46 | 4064.99 | | Y II | 24 | | 33
19 | | Mn I
Fe I | 48
125 | 4055.046
4055.214 | | Fe I
Mn I | 218
48 | 4065.070
4065.09 | | V II
Au I | 215
3 | | 18 | | Gd II | 49 | 4055.543 | | Mn I | 5 | 4065.094 | | Ti I | 80 | | | Forb | He I | 17 | 4055.98 | | Fe I | 914 | 4065.1 | | C I | 7 | |)6
36 | | Mn I
Co I | 31 | 4056.027 | | Mo I
C III | 12 | 4065.14 | | A
II
Fe I | 65 | |) | P | Fe I | 559 | 4056.06
4056.07 | | Cr III | 24
182 | 4065.402
4065.595 | | Ti I | 698
207 | | 1 | _ | Zr II | 30 | 4056.212 | | Ti II | 11 | 4065.716 | | Cr I | 279 | | 15 | | Fe I | 43 | 4056.270 | | v II | 14 | 4066.02 | P | Fe I | 695 | | | P | Fe I
O II | 557 | 4056.53 | | Fe I | 320 | 4066.16 | P | Cr II | 182 | | .) | | Cr I | 50
36 | 4056.543
4056.793 | | Pr II
Gr I | 26
306 | 4066.328
4066.365 | | Fe II
Co I | 214
30 | | 39 | | V II | 177 | 4056.8 | | Al II | 88 | 4066.597 | | Fe I | 424 | | 11 | _ | Ce II | 81 | 4057.00 | | N II | 39 | 4066.737 | | Sm II | 28 | | }
57 | P | Fe I
Hg I | 1075
1 | 4057.074
4057.19 | | V I
Cr I | 121 | 4066.938
4066.979 | | Cr I
Fe I | 66
358 | | :9 | | Fe I | 487 | 4057.19 | | Co I | 156
3 | 4067.03 | | V II | 9 | | ю | | Cr I | 36 | 4057.347 | | Ni I | 89 | 4067.05 | P | Cr II | 193 | | 10 | P | Fe II
Sm II | 126
16 | 4057.356 | | Fe I | 277 | 4067.051 | | Ni II
Fe I | 11 | | 14 | | KI | 3 | 4057.39
4057.457 | | P III
Fe II | 1
212 | 4067.275
4067.279 | | re 1
Ce II | 217
22 | | :5 | | Fe I | 117,853 | 4057.5052 | | Ng I | 16 | 4067.39 | | La II | 26 | | ι | | A II | 66 | 4057.51 | | Fe III | 33 | 4067.49 | P | Fe I | 422 | | 12 | | Y I
Sc I | 6
7 | 4057.612
4057.66 | P | Ti I
Fe I | 254
729 | 4067.60
4067.85 | P
P | Fe I
Fe I | 655
1103 | | 1 | P | Y II | 6 | 4057.72 | P | A II | 9 | 4067.87 | F | C III | 16 | | 18 | | W I
Hf II | 4
104 | 4057.80 | | N IV | 3 | 4067.984 | | Fe I | 559 | | | _ | | | 4057.81 | | Cr I | 251 | 4068.003 | | Mn I | 5 | | 1 | P | Cr II
O II | 182
50 | 4057.812
4057.950 | | Pb I
Mn I | 1
29 | 4068.144 | | Ti I
Sm II | 207 | | i | P | Cr I | 251 | 4058.08 | | La II | 29
54 | 4068.334
4068.541 | | Co I | 42
58 | | 1 | | Zr II | 43 | 4058.139 | | Ti I | 254 | 4068.661 | | Ti I | 254 | | 15 | | Mn I
Cr I | 5
054 | 4058.183 | | Co I | 16 | 4068.7 | | Sc III | | | :0
:1 | | Fe II | 251
172 | 4058.219
4058.227 | | Gd I
Fe I | 5
558 | 4068.836
4068.97 | | Ce II
C III | 82
16 | | 19 | | Mn I | 48 | 4058.46 | P | Fe I | 914 | 4068.981 | | Ti I | 299 | | 1 | | V II | 215 | 4058.600 | | Co I | 58 | 4069.08 | | Fe I | 557 | | , | | Cr II | 193 | 4058.7 | | S II | 54 | 4069.267 | | Nd II | 20 | | 16
19 | | Fe I
Ti I | 218 | 4058.766 | | Fe I | 120 | 4069.636 | | 0 11 | 10 | | 19 | | Gd II | 185
50 | 4058.77
4058.772 | | S II
Cr I | 52
251 | 4069.883
4069.897 | | Fe II
O II | 188
10 | | | | Hf II | 53 | 4058.912 | | Ca I | 40 | 4070.03 | P | Fe II | 22 | | | P | N1 I | 169 | 4058.930 | | Mn I | 5 | 4070.094 | | Ce II | | | :3
:8 | | Cr I
Gd II | 251 | 4058.933 | | Cb I | 1 | 4070.279 | | Mn I | 5 | | , | | Cr I | 36 | 4059.07
4059.27 | | Cl III
P III | 7
1 | 4070.288
4070.30 | | Gd II
C III | 49
16 | | į | | La II | 85 | 4059.321 | | Co I | 2 | 4070.390 | | Gd II | 17 | | | | s II | 45 | 4059.370 | | Gď II | 118 | 4070.45 | P | Fe I | 525 | | ŀ | | Zr II | 43 | 4059.392 | | Mn I | 29 | 4070.766 | | Fe I | 558 | | -3 | | Hf II
V I | 59
121 | 4059.726 | | Fe I
Nd II | 767
63 | 4070.90 | ъ | Cr II
Ni II | 193 | | i | | V II | 32 | 4059.961
4060.09 | P | Ti I | 254 | 4071.0
4071.000 | P | Cr I | 11
306 | | | | Fe II | 98 | 4060.263 | | Ti I | 8C | 4071.09 | | Zr II | 54 | | ъ | | Nd II | 66 | 4060.58 | | 0 11 | 97 | 4071.20 | | 0 11 | 49 | | 1 | ₽
P | N1 I
Fe II | 239
172 | 4060.62
4060.98 | | Cr I
O II | 156 | 4071.211
4071.22 | | T1 I
Hf II | 254
74 | | | - | A II | 215 | 4061.085 | | Nd II | 97
10 | 4071.469 | | Ti I | 254 | | 2 | | V I | 121 | 4061.3 | | Sc III | | 4071.52 | | Fe I | 218 | | :3 | | Fe I
Cr II | 700
19 | 4061.742 | P | Mn I | 29 | 4071.541 | | V I
Fe I | 96 | | 1 | | C1 II | 61 | 4061.77
4061.787 | P | Cr II
Fe II | 19
189 | 4071.740
4071.814 | | Ce II | 43
81 | | 2 | | .Fe I | 700,852 | 4062.08 | | PII | 17 | 4072.01 | | A II | 33 | | 6 | | Fe I | 563 | 4062.09 | | Mo I | 12 | 4072.13 | | PII | 16 | | 2 | | Mn I
Fe I | 48
594 | 4062.223 | | Ce II | 34
250 | 4072.164 | | 0 II | 10 | | : | P | Fe I | 524
557 | 4062.446
4062.590 | | Fe I
Gd II | 359 | 4072.40
4072.518 | | A II
Fe I | 41,52
698 | | 0 | | Ti I | 208 | 4062.817 | | Pr II | 26 | 4072.56 | | Cr II | 26 | | : | | A II | 101 | 4062.90 | | Ne II | 53 | 4072.71 | | Zr I | 46 | | I A | Туре | Element | Multiplet No. | 1 A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |----------------------|------|----------------|---------------|----------------------|------|----------------|---------------|----------------------|------|-----------------|--------------------------| | 072.913 | | N1 I | 197 | 4082.40 | | A II | 8 | 4095.975 | | Fe I | 217 | | 072.917 | | Ce II | 109 | 4082.44 | | Fe I
Ti L | 906 | 4096.118 | | Fe I
O II | 911
48 | | 073.195
073.055 | | Gd II
N II | 34
38 | 4082.456
4082.593 | | Co I | 80
16 | 4096.18
4096.21 | P | Fe I | 46
18 | | 073.477 | | Ce II | 4 | 4082.600 | | Sm II | 54 | 4096.47 | _ | AII | 65 | | 073.759 | | Gd II | 44 | 4082.85 | | N II | 38 | 4096.543 | | 0 11 | 21 | | 073.760 | | Fe I
O III | 558
23 | 4082.944
4083.233 | | Mn I
Ce II | 5
60 | 4096.63
4096.822 | | Zr II
Pr II | 15
29 | | 073.90
074.356 | | T1 I | 254
254 | 4083.2554 | | Fe I | 117 | 4096.96 | P | Fe I | 173 | | 074.374 | | WI | 6 | 4083.584 | | Sm II | 24 | 4097.02 | P | Fe I | 700 | | 074.53 | | c II | 36 | 4083,628 | | Mn I | . 5 | 4097.099 | | Fe I | 558 | | 074.70 | P | Fe I | 912 | 4083.67 | P | Mn II | 2 | 4097.12 | | Ca II | 17 | | 074.794
074.89 | | Fe I
C II | 524
36 | 4083.71
4083.71 | P | Fe I
Y I | 1103
6 | 4097.15
4097.21 | | A II
Hf II | 100
17 | | 074.897 | | N1 I | 28 | 4083.780 | | Fe I | 697 | 4097.260 | | 0 11 | 20,48 | | 075.116 | | Nd II | 62 | 4083.907 | | 0 11 | 49 | 4097.31 | | N III | 1 | | 075.272 | | Nd II
Si II | 19 | 4084.17 | P | Fe I
Mo I | 557
12 | 4097.65 | | Cr I
Ru I | 97
9 | | 075.45
075.63 | P | Cr II | 19 | 4084.391
4084.498 | | Fe I | 698 | 4097.791
4097.96 | | Cr I | 97 | | 075.66 | | A II | 14 | 4084.58 | P | Fe II | 151 | 4098.18 | | Cr I | 97 | | 075.714 | | Ce II | 57 | 4084.66 | | 0 11 | 21 | 4098.183 | | Fe I | 558 | | 075.845 | | Sm II | 51 | 4085.011 | | Fe I | 358 | 4098 - 27 | | 0 11 | 46 | | 075.853
075.868 | | Ce II
O II | 206
10 | 4085.124
4085.232 | | O II
Ce II | 10
172 | 4098.44
4098.533 | | Cr II
Ca I | 165
25 | | 075.92 | | Cr I | 66 | 4085.26 | P | Fe I | 276 | 4098.54 | | Fe III | 101 | | 075.95 | P | Fe II | 21 | 4085.312 | | Fe I | 559 | 4098.606 | | Gd II | 49 | | 076.00 | | C II
Cr I | 36 | 4085.38 | | Eu II
Fe I | 10 | 4098.73 | | La II | 138 | | 076.061
076.124 | | Co I | 279
16 | 4085.38
4085.564 | P | Gd II | 486
50 | 4098.77
4098.900 | | Ne II
Gd II | 53
49 | | .076.232 | | Fe I | 486 | 4085.67 | | V 11 | 214 | 4098.981 | | Ce II | 91 | | .076.370 | | Ti I | 9 | 4085-68 | | Zr II | 54 | 4099.016 | | Cr I | 108 | | 076.498 | | Fe I | 218 | 4085.815 | | Nd II | 16 | 4099.08 | | Fe I | 600,651 | | 076.636
076.64 | | Fe I
A II | 558
52 | 4085.98
4086.14 | | Fe I
Cr II | 1073
26 | 4099.166
4099.25 | | T1 I
S III | 207
11 | | 076.71 | | La II | 11 | 4086.300 | | Co I | 58 | 4099.44 | | s III | 11 | | 076.78 | | Si II | | 4086.69 | | Ne II | 54 | 4099.47 | | A II | 79 | | 076.810 | | Fe I | 557 | 4086.72 | | La II | 10 | 4099.54 | | LaII | 78 | | 076.83 | | N II
Cr II | 38
19 | 4087.099
4087.16 | | Fe I
O II | 694
48 | 4099.77
4099.796 | | Mg I
V I | 46
27 | | 076.89 | P | Fe I | 559 | 4087.27 | P | Fe II | 28 | 4099.94 | | ΝĪ | 10 | | 976.96 | | A II | 64 | 4087.297 | | Ce II | 59 | 4099,99 | P | Fe I | 698 | | 1077.05 | | Zr II
Cr I | 54 | 4087.35 | | N II | 37 | 4100.04 | | He II
Fe I | 3 | | 077.089 | | Ti I | 66
207 | 4087.60
4087.63 | | Na II
Cr II | 4
19 | 4100.17
4100.240 | | Nd II | 57 | | 077.35 | | La II | 41 | 4087.79 | P | Fe I | 832 | 4100.30 | | Ne II | 54 | | 1077.38 | | Y I | 7 | 4088.291 | | Co I | 2 | 4100.35 | | Fe I | 320 | | 1077.470
1077.50 | | Ce II
Cr II | 60
19 | 4088.567 | P | Fe I
Fe II | 906
39 | 4100.35 | Þ | .Fe I
Fe III | 1103
107 | | 1077.677 | | Cr I | 279 | 4088.75
4088.863 | P | Si IV | 1 | 4100.52
4100.621 | | D D | 1 | | 1077.714 | | Sr II | 1 | 4088.90 | | Cr II | 19 | 4100.745 | | Fe I | 18 | | 1078.321 | | Ce II | 19 | 4089.225 | | Fe I | 422 | 4100.746 | | Pr II | . 4 | | 1078.365
1078.444 | | Fe I
Gd II | 217 | 4089.295 | | O II
Cr II | 48 | 4100.91 | P | Fe I
Cb I | 173
1 | | 1078.471 | | Ti I | 15
80 | 4089.49
4089.63 | | Cr I | 164
260 | 4100.918
4101.00 | | V II | 176 | | 1078.700 | | Gd I | 5 | 4090.085 | | Fe I | 700 | 4101.163 | | Cr I | 108 | | 1078.862 | | 0 11 | 10 | 4090.305 | _ | Cr I | 66 | 4101.272 | | Fe I | 698 | | 1079.18
1079.241 | P | Fe I
Mn I | 700
5 | 4090.34
4090.52 | P | Fe I
Zr II | 44
29 | 4101.684
4101.737 | | Fe I | 120
1 | | 1079.422 | | Mn I | 5 | 4090.579 | | V I | 41 | 4101.764 | | In I | 1 | | 1079.60 | | A II | 33 | 4090.75 | P | Fe I | 943 | 4101.772 | | Ce II | 5 | | 1079.708 | | Ti I | 207 | 4090.947 | | Ce II | 174 | 4102.158 | | Mo I | 12 | | 1079.726
1079.848 | | Cb I
Fe I | 1
359 | 4090.984 | | Fe I
P II | 695 | 4102.159 | | V I
Y I | 41
7 | | 1079.88 | | C1 II | 61 | 4091.53
4091.561 | | Fe I | 17
357 | 4102.38
4102.713 | | wî | 2 | | 1080.04 | | P III | 1 | 4091.945 | | v I | 52 | 4102.74 | P | N1 I | 255 | | 1000 000 | r | Fe I
Cr I | 944 | 4092.174 | | Cr I | 180 | 4102.926 | | Si I | 9
20 | | 1080.221
1080.226 |
| Fe I | 66
558 | 4092.266
4092.386 | | Sm II
Co I | 1
29 | 4103.017
4103.085 | | F II | 4 | | 1080.227 | | Nd II | 18 | 4092,407 | | V I | 52 | 4103.37 | | N III | 1 | | 1080.435 | | Ce II | 36 | 4092.512 | | Fe I | 18 | 4103.525 | | F II | 4 | | 1080.44 | | Hf II | 6 | 4092.633 | | Ca I | 25 | 4103.61 | P | Fe I | 831
650 | | 1080.44
1080.48 | | V II
Ne II | 214
53 | 4092.694
4092.848 | | V I
Co I | 27
59 | 4103.62
4103.724 | P | Fe I
F II | 4 | | 1080.56 | | Cr I | 156 | 4092.940 | | 0 11 | 10 | 4103.85 | | Cr I | 180 | | 1080.600 | | Ru I | 7 | 4093.06 | | Cr I | 260 | 4103.871 | | F II | 4 | | 1080.87
1080.886 | | A II
Fe I | 557 | 4093.16 | | HP TT | 6
50 | 4103.91 | | A II
Fe I | 52,64
356, 558 | | 1081.018 | | Pr II | 14 | 4093.497
4093.62 | P | V I
Ni I | 52
1 | 4104.132
4104.18 | P | Fe II | 39 | | Ю81.10 | | 0 111 | 23 | 4093.90 | - | Mg II | 29 | 4104.23 | | C1 III | 7 | | 1081.19 | | Fe III | 119 | 4093.955 | | Ce II | 160 | 4104.46 | P | Fe I | 422 | | Ю61.21
Ю81.22 | | or II
Zr I | 105
46 | 4094.18 | | o II
Tm I | 10 | 4104.743
4104.77 | P | o II
Fe I | 20
320 | | 1081.222 | | Ce II | 4 | 4094.188
4094.478 | | Gd II | 48 | 4104.77 | r | V I | 112 | | Ю81.42 | P | Fe II | 188 | 4094.930 | | Ca I | 25 | 4104.867 | | Cr I | 108 | | 1081.737 | | Cr I | 66 | 4095.17 | _ | s III | | 4104.97 | | Fe I | 694 | | 1081.74
1082.125 | | Ca III
Fe I | 4
698 | 4095.27
4095.486 | P | Fe I
V I | 1075
41 | 4104.996
4105.000 | | Ce II
O II | 156
20 | | 1082.280 | | N II | 38 | 4095.63 | P | Fe I | 851 | 4105.06 | P | Fe I | 700 | | 1082.30 | | Cr II | 165 | 4095.63 | | 0 11 | 48 | 4105.167 | | V I | 27
47 | | 1082.396 | | Sc I | 6 | 4095.92 | P | N II | 38 | 4105.365 | | Mn I | 47 | | | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |------------|------|-----------------|---------------|----------------------|------|-----------------|---------------|----------------------|------|----------------|---------------| | 143 | | Tm I | | 4115.376 | | Gd II | 117 | 4124.072 | | V I | 52 | | 13 | | 0 11 | 10 | 4115.89 | P | Fe I | 910 | 4124.081 | | N II | 65 | | 15 | | Cr I | 180 | 4115.982 | | Ni I | 255 | 4124.09 | | A II | 41 | | 134 | | Ce II
Fe I | 160
217 | 4116.104
4116.39 | | S1 IV
A II | 1
124 | 4124.73
4124.793 | | Lu I
Fe II | 3
22 | | 166
137 | | Fe I | 697 | 4116.470 | | v i | 27 | 4124.91 | | YII | 14 | | i82 | | Nd II | 57 | 4116.547 | | F II | 5 | 4125.10 | | Hf II | 94 | | /1 | | Cr I | 260 | 4116.60 | P | v i | 27 | 4125.23 | P | Fe I | 173 | | 13 | | C1 III | 7 | 4116.66 | | Cr II | 181 | 4125.4 | | S III | 11 | | 181 | | Ce II | 139 | 4116.703 | | V I | 27 | 4125.622 | | Fe I | 1103 | | 17 | | o II | 47 | 4116.97 | | Fe I | 558 | 4125.776 | | Ce II | 126 | | 387 | | Sm II | 50 | 4117.013 | | Ce II | 35 | 4125.884 | | Fe I | 354 | | 26 | | Ce II | 138 | 4117.09 | | P II | 17 | 4126.099 | | Cr I | 65 | | 177 | | Mo I | 12 | 4117.288 | | Ce II | 77 | 4126.192 | | Fe I | 695 | | 187 | | V I
Fe I | 52
354 | 4117.32 | | Fe I
Fe I | 484
833 | 4126.521 | | Cr I
Fe I | 35 | | 192
'5 | P | re I
Fe I | 831 | 4117.71
4117.872 | | Fe I | 700,1103 | 4126.88
4126.925 | | Cr I | 354 | | .3 | P | Fe I | 559 | 4118.10 | | Ne II | 54 | 4127.08 | | Cr II | 181 | | 11 | P | Fe I | 833 | 4118.144 | | Ce II | 11 | 4127.09 | | A II | 41 | | 19 | | Zr I | 32 | 4118.182 | | V I | 112 | 4127.09 | P | Ti I | 114 | | 100 | | Cr I | 65 | 4118.45 | P | Cr I | 85 | 4127.302 | | Cr I | 35 | | 101 | | Gd II | 117 | 4118.481 | F | Pr II | 8 | 4127.367 | | Ce II | 4 | | 88 | | Co I | 2 | 4118.549 | | Fe I | 801 | 4127.49 | | P II | 16 | | 54 | | Ca 1 | 39 | 4118.551 | | Sm II | 54 | 4127.531 | | T1 [| 296 | | '5 | | o II | 48 | 4118.643 | | V I | 41 | 4127.54 | | S III | | | 70 | | Fe I
Nd II | 558
17 | 4118.774 | | Co I
Fe I | 28
559 | 4127.57 | | Y II
Fe I | 15
357 | | 173
.73 | | FII | 5 | 4118.904
4119.015 | | Ce II | 89 | 4127.612
4127.643 | | Cr I | 65 | | 19 | | ΡII | 30 | 4119.219 | | F II | . 5 | 4127.721 | | Gd II | 117 | | Ю5 | | Sh II | 28 | 4119.221 | | O II | 20 | 4127.80 | | Hf II | 41 | | | | | | | | | - | 4400 000 | | F- * | *** | | 155 | | Nd II
Mg II | 10
21 | 4119.44
4119.457 | | Cr I
V I | 65
41 | 4127.807
4128.053 | | Fe I
Si II | 558,727
3 | | i4.
i84 | | Cr I | 65 | 4119.53 | P | Fe II | 21 | 4128.067 | | Ce II | 136 | | 06 | | Co I | 1 | 4119.66 | P | Fe I | 920 | 4129.071 | | VI | 27 | | 86 | | v 1 | 27 | 4119.784 | | Ce II | 22 | 4128.14 | | Mn II | 2 | | 08 | _ | Fe I
V I | 357 | 4119.877 | _ | Ce II | 83 | 4128.31 | | YI | 5 | | :1
:3 | P | V I
Ca II | 41
17 | 4120
4120.037 | P | O V
Ti I | 4
253 | 4128.65
4128.735 | | A II
Fe II | 27 | | 15 | | Fe III | | 4120.211 | | Fe I | 423 | 4128.858 | | V I | 112 | | 8 | | Cr I | 260 | 4120.279 | | O II | 20 | 4128.87 | P | Mn II | 2 | | | | N I | 10 | 4100 500 | | V I | 41 | 4100 070 | | Rh I | | | 8
0 | | N II | 44 | 4120.538
4120.554 | | 0 II | 41
20 | 4128.870
4129.166 | | Ti I | 8 | | 15 | | Zr II | 30 | 4120.613 | | Cr I | 65 | 4129.176 | | Ce II | 227 | | D | | 0 11 | 37 | 4120.654 | | Nd II | 57 | 4129.21 | | Cr I | 97 | | 13 | | Ca II | .17 | 4120.78 | | PII | 17 | 4129.22 | | Fe I | 698 | | 81 | | Ce II
Nd II | 29 | 4120.812 | | He I | 16 | 4129.231 | | Sm II
O II | 24 | | .72
32 | | Co I | 15
29 | 4120.829
4120.97 | | Ce II
Fe III | 112
118 | 4129.34
4129.46 | P | Fe I | 19
695 | | 95 | | 0 11 | 20 | 4120.993 | | He I | 16 | 4129.70 | • | AII | 77 | | 7 | | Cr I | 97 | 4121.0 | | s II | 2 | 4129.73 | | Eu II | 1 | | -00 | | Mn I | 37,47 | 4101.01 | | P- 777 | | 4100.00 | P | Cr I | 07 | | 103 | | Cr II | 18,26 | 4121.31
4121.318 | | Fe III
Co I | 28 | 4129.96
4130.035 | r | Fe I | 97
44,486 | | 6 | P | Fe I | 689 | 4121.45 | | Zr I | 32 | 4130.372 | | Gd II | 19,49 | | 16 | | Cr I | 97 | 4121.48 | | 0 11 | 19 | 4130.47 | P | Cr I | 97 | | 94 | | Ce II | | 4121.637 | | Ti I | | 4130.538 | | Co I | 16 | | :38 | | Gd II
S III | | 4121.682 | P | Rh I
O V | 9 | 4130.648 | | Ba II
Ce II | 4 | | 6
7 | | Cr I | 97 | 4121.7
4121.806 | P | Fe I | 11
356 | 4130.706
4130.77 | | PII | 209
17 | | 85 | | v i | 27 | 4121.817 | | Cr I | 108 | 4130.86 | | C1 II | 60 | | 02 | | Fe II | 188 | 4121.95 | | BII | . 2 | 4130.884 | | 81 II | 3 | | 10 | | Os I | 5 | 4122.00 | P | Fe I | 765 | 4191 000 | | Ce II | 110 | | 18
29 | | 0 11 | 21 | 4122.05 | P | C III | 17 | 4131.099
4131.17 | P | Fe II | 112
188 | | 4 | | Eu II | 10 | 4122.06 | | Fe III | 118 | 4131.244 | • | Ti I | 253 | | 9 | P | Fe I | 766 | 4122.143 | | Ti I | 296 | 4131.31 | | Zr II | 54 | | 7 | P | Fe I | 275 | 4122.162 | | Cr I | 65 | 4131.360 | | Cr I | 261 | | 5
9 | | Fe I
Cr II | 695
18 | 4122.522 | | Fe I
Fe II | 356
28 | 4131.430 | | Mn I
A II | 37
32 | | 08 | | Ti I | 9 | 4122.638
4122.757 | | Mn I | 25
47 | 4131.73
4131.74 | | La II | 167 | | 3 | | ĀĪI | 8 | 4122.98 | | Fe III | 118 | 4131.75 | P | Fe I | 1075 | | 72 | | Fe I | 1103 | 4123 | P | 0 V | 4 | 4131.94 | P | Fe I | 695 | | •• | | Zn I | 9 | 4123.069 | | W- TT | ** | 4404 00 | | De T | *** | | 10
3 | | Fe III | 8 | 4123.188 | | Na II
V I | 19
112 | 4131.97
4132.017 | P | Fe I
V I | 558
27 | | 4 | | Cr II | 18 | 4123.23 | | La II | 41 | 4132.060 | | Fe I | 43 | | 8 | | La II | 166 | 4123.230 | | Ce II | 162 | 4132.155 | | Co I | 30 | | 5 | | Fe III | | 4123.279 | | Mn I | 47 | 4132.275 | | Gd II | 49 | | 18 | | V I
Hf II | 52
24 | 4123.287 | | Ti I
Zr II | 302 | 4132.41 | | Cr II | 26
20 | | 8
26 | | Hr II
Ce II | 24
137 | 4123.38
4123.387 | | Zr II
Cr I | 54
108 | 4132.48
4132.50 | | C1 II
La II | 29
150 | | 20 | | 0 11 | 37 | 4123.488 | | Ce II | 22 | 4132.54 | P | Fe I | 1103 | | 26 | | Nd II | 25 | 4123.54 | | Rf II | 95 | 4132.806 | | 0 11 | 19 | | | | , | | | | | | | | ro- * | | | 76
02 | | Min I
Smr II | 47
16 | 4123.543 | | Mn I
Ti I | 37
296 | 4132.903
4132.94 | P | Fe I
Fe I | 357
44 | | 02 | | N I | 10 | 4123.559
4123.566 | | V I | 296
27 | 4133.006 | • | Sc I | 20 | | 49 | | Fe I | 357 | 4123.748 | | Fe I | 217,422 | 4133.33 | | La II | | | 2 | | AII | 124 | 4123.812 | | CP I | 1 | 4133.361 | | Nd Il | 19 | | 5 | | Na II | 20 | 4123.872 | | Ce II | 60 | 4133.65 | | Ne II | 53 | | 57
9 | | Fe I
K II | 695
2 | 4123.881
4123.90 | | Nd II
O V | 65
4 | 4133.66
4133.669 | | C1 II
N II | 60
65 | | 35 | | V I | 27 | 4123.90 | | Sm II | 46 | 4133.800 | | Ce II | 4 | | 74 | | Ce II | 22 | 4124.00 | | C1 II | 60 | 4133.869 | | Fe I | 698 | | | | | | | | | | | | | | | I A | Туре | Element | Multiplet No. | I A | Type | Element | Multiplet No. | I A | Type | Element | Multiplet No. | |----------------------|--------|-----------------|-------------------|----------------------|--------|------------------|---------------|----------------------|--------|------------------|------------------| | 134.19 | P | Fe I | 217 | 4146.20 | | Cr I | 260 | 4158.5906 | | AI | 2 | | 134.343 | | Fe I | 3 | 4146.234 | | Ce II | 203 | 4158.76 | | O V
Fe I | 11 | | 134.433 | | Fe I
V I | 482.697
27 | 4146.47 | | Cr I | 108 | 4158.798
4158.90 | | Hf II | 895
41 | | 134.488
134.681 | | Fe I | 357 | 4146.695
4146.94 | | Cr I
S II | 107
65 | 4159.033 | | Ce II | 246 | | 134.72 | | K II | 1 | 4147.09 | | C1 II | 60 | 4159.407 | | Al II | 71 | | 135.325 | | Nd II | | 4147.26 | P | Fe II | 141 | 4159.450 | | Al II | 71 | | 135.443 | | Ce II | 188 | 4147.34 | P | Fe I | 693 | 1159.634 | | Ti I | 206 | | 135.68
135.77 | P | Zr I
Cr II | 50
163 | 4147.43
4147.49 | P | A II
Fe
I | 9
832 | 4159.686
4159.725 | | V I
Al II | 25
71 | | 135,77 | | Fe I | 1073 | 4147.532 | | Mn I | 37 | 4159.809 | | Al II | 71 | | 135.784 | | Os I | 3 | 4147.673 | | Fe I | 42 | 4160.239 | | Al II | 71 | | 135.9 | P | 0 V | 11 | 4148.27 | P | Fe I | 832 | 4160.263 | P | Al II
Fe II | 71 | | 136.386
136.512 | | V I
Fe I | 26
694 | 4148.52
4148.75 | P | Cr I
Ni I | 241
89 | 4160.28
4160.56 | P | P II | 149
31 | | 136.894 | | Ti I | 221 | 4148.859 | r | V I | 26 | 4160.561 | | Fe I | 419 | | 137.002 | | Fe I | 726 | 4148.901 | | Ce II | 28 | 4160.62 | P | Fe II | 39 | | 137.090 | | СРІ | 1 | 4148.91 | | 8 111 | | 4160.78 | P | Fe I | 1116 | | 137.104
137.257 | | Gd II
Mn I | 37 | 4149.19
4149.22 | | K II
Zr II | 6
41 | 4160.8
4161.05 | | N II
Cr II | 50,51
162 | | 137.284 | | Ti I | 253 | 4140 070 | | Pa T | 004 | 4161.080 | | Fe I | 689 | | 137.42 | P | Fe I | 1103 | 4149.372
4149.445 | | Fe I
Ti I | 694
296 | 4161.175 | | Ce II | 22 | | 137.63 | | N I | 6 | 4149.45 | | Cr I | 261 | 4161.20 | | Zr II | 42 | | 137.646 | | Ce II | 2 | 4149.49 | P | Fe I | 942 | 4161.27 | P | Cr II | 127 | | 137.93 | _ | Fe III | 118 | 4149.76 | P | Fe I | 3 | 4161.34 | P | N1 I | 86 | | :137.97
:138.21 | P
P | Fe I
Fe Il | 320
150 | 4149.831 | | Sm II | 8 | 4161.415
4161.488 | | Cr I
Fe I | 305
422 | | 138.40 | P | Fe II | 39 | 4149.897
4149.917 | | Al III
Al III | 5
5 | 4161.524 | | Ti II | 21 | | 138.52 | | N1 I | 237 | 4149.936 | | Ce II | 158.189 | 4161.56 | P | Cr II | 127 | | :138.84 | | Fe L | 117 | 4150.08 | P | v II | 37 | 4161.796 | | Sr II | 3 | | 139.37 | | Fe III | 118 | 4150.138 | | Al III | 5 | 4161.94 | | La II | | | 139.452
139.48 | | Co I
Ti I | 94
221 | 4150.258 | | Fe I | 695 | 4162.072
4162.39 | | V II
S II | 175
65 | | 139.702 | | Cb I | 1 | 4150.366
4150.429 | | N1 I
Co I | 178
16 | 4162.40 | | Hr II | 60 | | 139.933 | | Fe I | 18 | 4150.557 | | Ti I | 253 | 4162.698 | | SII | 44,65 | | 140.24 | P | Fe I | 418 | 4150.67 | | Ne II | 53 | 4162.732 | | Gd II | 17 | | 140.304 | P | Sc I
Ti I | 20 | 4150.809 | | Ti I | 221 | 4162.80 | _ | CIII | 21 | | 140.42
140.441 | P | Fe I | 221
694,695 | 4150.963
4150.97 | | Ti I
Zr II | 206
42 | 4162.93
4163.092 | P | Fe I | 476a
44 | | 140.450 | | Gd II | 48 | 4151 | P | 0 V | 4 | 4163.16 | P | Cr I | 35 | | 140.51 | | Fe III | 118 | 4151.00 | | Cr II | 163 | 4163.35 | P | F ₉ I | 1073 | | 1140.74 | | 0 11 | 19 | 4151.46 | | N I | 6 | 4163.516 | | Ce II | 35 | | 141.017
1141.25 | Forb | Gd II
Al III | 117
17 | 4151.52 | | Eu II | 10 | 4163.625 | | Cr I
Ti II | 35
105 | | 1141.257 | 10.0 | Pr II | 10 | 4151.60
4151.79 | P
P | Fe II
Fe II | 149
12 | 4163.644
4163.655 | | VII | 175 | | 141.352 | | Fe I | 480 | 4151.957 | • | Fe I | 764 | 4163.658 | | СРІ | 1 | | 1141.73 | | La II | 40 | 4151.970 | | Ce II | 2 | 4163.676 | | Fe I | 274,699 | | 1141.84 | | Hf II | 87 | 4151.98 | | La II | 40 | 4163.94 | | Cr I | 241 | | 1141.862
1141.96 | | Fe I
O II | 422
106 | 4152.07
4152.172 | P | Fe I
Fe I | 1049
18 | 4164.015
4164.134 | | V II
Ti I | 37
163 | | 1142.08 | | 0 11 | 106 | 4152,209 | | Sm II | 16 . | 4164.1800 | | A I | 2 | | 1142.15 | | Al III | 16 | 4152.355 | | Sc I | 20 | 4164.192 | | Pr II | 8 | | 1142.184 | | Ni I | 212 | 4152.43 | | C III | 21 | 4164.24 | P | Fe I | 694 | | 1142.193
1142.24 | | Cr I
O II | 305
106 | 4152.575 | | СРІ | 1 | 1164.54 | | Pt I
Ni I | 6
28 | | 1142.291 | | s II | 44 | 4152.775
4152.78 | | Cr I
La II | 261
78 | 4164.636
4164.661 | | CP I | 1 | | 1142.320 | | N1 I | * | 4152.98 | p | Fe II | 45 | 4164.79 | | Fe III | 118 | | 1142.398 | | Ce II | 10 | 4153.067 | | Cr I | 35 | 4164.80 | | Fe I | 418 | | 1142.47
1142.480 | | Cr I
Ti I | 179
296 | 4153.098 | | 8 11 | 44 | 4164.96
4165.11 | | S III
S II | 64 | | | | | | 4153.302 | | 0 11 | 19 | | | | •• | | 1142.628
1142.66 | | Fe I
V I | 1103
26 | 4153.328 | | V I | 26 | 4165.184 | | Sc I
Cr I | <i>20</i>
305 | | 1142.86 | | ΥÏ | 5 | 4153,332
4153,510 | | Sm II
Gd II | 54
117 | 4165.519
4165.606 | | Ce II | 10 | | 1142.90 | | v II | 226 | 4153.67 | P | Ce II | 159 | 4166.003 | | Ba II | 4 | | 1143.048 | | Ti I | 253 | 4153.816 | | Cr I | 35 | 4166.311 | | T1 I | 163 | | 1143.07 | P | Fe II | 188 | 4153.906 | | Fe I | 695 | 4166.37 | | Zr I
P II | 40 | | 1143.136
1143.280 | | Pr II
Ti I | 4
253 | 4154.109 | | Fe I
Fe I | 694 | 4166.73
4166.86 | | Fe III | 16
118 | | 1143.418 | | Fe I | 523 | 4154.502
4154.812 | | Fe I | 355
694 | 4167.159 | | Gd II | 18 | | 1143.42 | P | N I | 6 | 4154.862 | | Gd II | .67 | 4167.2604 | | Mg I | 15 | | 1143.50 | P | Fe I | 697 | 4154.865 | | T1 I | 221 | 4167.2712 | | Mg I | 15 | | 1143.52 | | 0 11 | 106 | 4154.98 | | Fe III | | 4167.52 | _ | Y I | 7 | | 1143.759
1143.77 | | He I
La II | 53
54 | 4155.217 | | Sm II | 8,50 | 4167.67
4167.69 | P
P | Ti II
Fe II | 21
149 | | 1143.77 | | 0 11 | 106 | 4155.525
4155.532 | | Mn I
Ce II | 37
29 | 4167.80 | F | Cr I | 107 | | 1143.83 | P | Fe I | 354 | 4156.088 | | Nd II | 10 | 4167.804 | | Co II | 20 | | 4143.87 | | Fe III | | 4156.11 | | A II | 52 | 4167.862 | | Fe I | 599 | | 4143.871 | | Fe I | 43 | 4156.24 | | Zr II | 29 | 4168.122 | | Cb I | 1 | | 4144.164
4144.492 | | Ru I
Ce II | 7
3 | 4156.265
4156.3 | | Nd II
Li II | 14
3 | 4168.31
4168.409 | | Cr I
S II | 261
44 | | 4144.553 | | na II | 61 | 4156.460 | | Fe I | 693 | 4168.41 | | Fe III | 118 | | 4144.995 | | Ce II | 9 | 4156.50 | | C III | 21 | 4168.424 | | Al II | 61 | | 4145.100 | | S II
Fe I | 44 | 4156.54 | | 0 11 | 19 | 4168.511 | | Al II | 61 | | 4145.209
4145.74 | | Fe III | 274 | 4156.670 | | Fe I | 419
50 51 | 4168.625
4168.66 | P | Fe I
Fe II | 689
22 | | 4145.764 | | N II | 65 | 4156.8
4156.803 | | N II
Fe I | 50,51
354 | 4168,942 | • | Fe I | 694 | | 4145.77 | | Cr II | 162 | 4157.788 | | Fe I | 695 | 4168.971 | | He I | 52 | | 4145.90 | | O II | 106 | 4157.82 | | C1 II | | 4168.98 | ~ | A II | 4. | | 4146.071
4146.09 | | Fe I
O II | 422
106 | 4158.420 | _ | Co I | 144 | 4169.09 | P | Fe I
O II | 18
19 | | 2720.00 | | V 11 | 100 | 4158.45 | P | Fe II | 12 | 4169.230 | | | 19 | | A | Туре | Element | Multiplet No. | I A | Type | Element | Multiplet No. | I A | Type | Element | Multiplet No. | |----------------|--------|----------------|----------------|-----------------------|--------|----------------|------------------|----------------------|------|----------------|---------------| | 3.330 | | Ti I | 163 | 4179.419 | | v i | 25 | 4190.738 | | Si II | | | 1.478 | | Sm II | 24 | 4179.422 | | Pr II | 4 | 4190.89 | | V II | 37 | | 3.773 | | Ce II | 161 | 4179.43 | | Cr II | 26 | 4191.0296 | | A I | 7 | | 3.777 | | Fe I | 693 | 4179.55 | | Hf II | 114
19 | 4191.067
4191.271 | | Gd II
Cr I | 34
35 | |).838
).878 | | Cr I
Ce II | 278
173 | 4179.585
4179.667 | | Nd II
N II | 50 | 4191.436 | | Fe I | 152 | |).98 | P · | Fe II | 12 | 4179.81 | | Zr II | 99 | 4191.50 | | Zr I | 108 | | 1.108 | | Gd II | 35 | 4179.860 | | TH T | 206 | 4191.558 | | V I | 24 | |).202 | _ | Cr I | 278 | 4179.90 | P | Co I | 1 | 4191.59 | | C1 II
Pr II | 43
12 | |).58 | P | Cr II | 18 | 4179.92 | P | Cr II | 127 | 4191.615 | | F1 11 | 14 | |).86 | | Cr II | 181 | 4180.41 | P | Fe I | 274 | 4191.685 | | Fe I | 355 | |).906 | | Fe I | 482 | 4180.498 | | Ti I | 206 | 4191.750 | | Cr I | 35 | | 1.018 | | T1 I | 206 | 4180.68 | | Pr II | 23 | 4192.07 | | N1 II | 10 | | 1.608 | | N II | 43
261 | 4180.7 | | S II
V II | 6 4
19 | 4192.103
4192.35 | | Cr I
La II | 273
78 | | 1.675
1.696 | | Cr I
. Fe I | 941 | 4180.86
4180.97 | P | Fe II | 148 | 4192.50 | | 0 II | 42 | | 824 | | Pr II | 16 | 4180.97 | _ | La II | 133 | 4192.856 | | Co I | 94 | | 1.897 | | Ti II | 105 | 4181.17 | | N II | 49 | 4193.094 | | Ce II | 79 | | .904 | | Fe I | 650 | 4181.17 | P
P | Ti II
Fe I | 96 | 4193.34
4193.37 | P | La II
La II | 133 | | 1.92 | | Cr II | 18 | 4181.20 | P | re 1 | 908 | 4193.37 | • | да 11 | 100 | | 2.048 | | Ga I | 1 | 4181.50 | | Cr II | 181 | 4193.44 | | Mg II | 28 | | 2.126 | | Fe I | 649 | 4181.55 | P | Fe I | 763 | 4193.51 | | s II | 10 | | :. 20 | P | Fo II | 148 | 4181.758 | | Fe I | 954 | 4193.662 | | Cr I
Ce II | 248
85 | | 2.273
2.60 | | Pr II
Cr II | 13
18 | 4181.8838
4182.384 | | A I
Fe I | 7
476a | 4193.874
4193.89 | | Cr I | 248 | | 2.609 | | T1 I | 163 | 4182.591 | | νī | 24 | 4194.36 | | La II | 160 | | 3.641 | | Fe I | 689 | 4182.69 | P | Fe II | 149 | 4194.50 | P | Fe I | 274 | | 1.749 | _ | Fe I | 19 | 4182.790 | | Fe I | 694 | 4194.951 | | Cr I
C1 11 | 248
43 | | 1.97 | P
P | Fe-I
T1 II | 909,1073
96 | 4182.98
4183 | P | A II
N IV | 36
14 | 4195.11
4195.337 | | Fe I | 693 | | 1.05 | F | ** ** | , 30 | 4100 | - | N 17 | ** | 2200.00. | | | 300 | | 1.18 | P | Fe I | 698 | 4183.025 | | Fe I | 697 | 4195.41 | | Cr II | 161 | | 1.234 | | Os I | 4 | 4183.20 | P | Fe II | 21 | 4195.531 | | N1 I | 239 | | 1.322 | | Fe I | 355 | 4183.294 | | Ti I | 220 | 4195.615 | | Fe I
N III | 478
6 | | 1.379
1.450 | | Nd II
Fe II | 16
27 | 4183.31
4183.435 | | Zr I
V II | 51
37 | 4195.70
4195.83 | | V II | 19 | | 1.51 | | N II | 50 | 4183.764 | | Sm II | 4 | 4196.218 | | Fe I | 693 | | 1.537 | | Ti II | 21 | 4184.09 | | Fe III | 22 | 4196.26 | | 0 II | 42 | | 1.556 | | Gd II | 117
50 | 4184.22 | | Fe I | 274 | 4196.335 | | Ce II
Fe I | 123
418 | | 1.75 | | N II
Y II | 23 | 4184.252
4184.26 | | Ga II
Lu II | 15
6 | 4196.533
4196.55 | | La II | 41 | | | | | | 1101110 | | | • | 1200100 | | | | | 1.77 | | A
II | 78 | 4184.329 | | T1 II | 21 | 4196.64 | P | T1 II | 21 | | .926 | _ | Fe I | 19 | 4184.475 | | N1 I | 89 | 4196.69 | | Fe III | 22 | | :-042 | P | N IV
S II | 14
04 | 4184.895
4164.695 | | Cr I
Fe I | 155
355 | 4196.72 | | od II | 42
117 | | 088 | | Ti I | 55 | 4185.334 | | Ce II | 124 | 4197.10 | P | Fe I | 18 | | :• 088 | | Ti II | 105 | 4185.345 | | Cr I | 106 | 4197.234 | | Cr I | 249 | | - 14 | | Y I | 6 | 4185.456 | _ | 0 11 | 36 | 4197.38 | P | Fe I | 976 | | . 15 | | Cr I
Fe III | 305 | 4185.50
4185.61 | P | Cr II
Cl II | 163
43 | 4197.47
4197.668 | | Cr I
Ce II | 249
136 | | 300 | | SII | | 4185.66 | P | Fe I | 1104 | 4197.681 | | Gd II | 100 | | | | | | | | | | | | | | | 31 | P | Mn II | 2 | 4185.95 | _ | S II | | 4197.95 | P | Ti II | 96 | | . 33 | | Hf I
Fe I | 3
799 | 4186.01
4186.033 | P | Ti I
Nd II | 220
24 | 4197.998
4198.174 | | Ce II
Si II | 209 | | .472 | | Ti I | 220 | 4186.08 | P | Cr II | 127 | 4198.268 | | Fe I | 693 | | .795 | | Cr I | 241 | 4186.119 | | Ti I | 129 | 4198.310 | | .Fe I | 152 | | .917 | | Fe I | 19 | 4186.24 | | KII | 1 | 4198.3170 |) | A I | 4 | | .941 | | Cr I
Cr I | 278
261 | 4186.359
4186.599 | | Cr I
Ce II | 249
1 | 4198.425
4198.431 | | Co I
Ce II | 2
207 | | .538 | | Gd I | 5 | 4186.70 | | Zr II | 97 | 4198.525 | | Cr I | 249 | | - 606 | | Nd II | 89 | 4187.044 | | Fe I | 152 | 4198.011 | | v I | 24 | | 640 | | Es T | 054 | | | | | | | | | | .640
.89 | P | Fe I
Fe I | 354
694 | 4187.05
4187.246 | | C III
Co I | 18
93 | 4198.645 | | Fe I
Ce II | 693
7 | | .945 | - | Cr I | 106 | 4187.31 | | La I | 5 | 4198.669
4198.724 | | Ce II | 3 | | .080 | | Ce II | 135 | 4187.323 | | Ce II | 86 | 4199.02 | P | Cr II | 180 | | .164 | | N II | 42 | 4187.56 | | Zr I | 45 | 4199.09 | P | Fe II | 141 | | .44
.57 | P
P | Fe II
Fe I | 149
689 | 4187.59 | | Fe I
Tm I | 694 | 4199.098 | | Fe I
Nd II | 522 | | .571 | | Fe I | 695 | 4187.616
4187.68 | | Hf II | 73 | 4199.099
4199.27 | | Y II | 15
5 | | .793 | | v i | 6 | 4187.802 | | Fe I | 152 | 4199.37 | P | Fe I | 416 | | .07 | P | Fe I | 690 | 4188.099 | | Gd II | 17 | 4199.83 | | He II | 3 | | . 17 | | Cr I | 133 | 4100 100 | | Sm II | 50 | 4400 000 | | Ru I | • | | .321 | | Nd II | 10 | 4188.128
4188.694 | | Ti I | 220 | 4199.902
4199.918 | | Tm II | 8
1 | | .357 | | Ti I | 163 | 4188.82 | | C1 II | 43 | 4199.93 | | A II | 124 | | . 50 | | Hf II | 51 | 4188.88 | | Al III | 15 | 4199.97 | | Fe I | 3 | | . 52 | P | Fo I
Y II | 178
14 | 4189.10 | | Fe III | • | 4200.02 | | N III | 6 | | .54
.59 | | Co I | 2 | 4189.50
4189.518 | | Co I
Pr II | 2
8 | 4200.06
4200.09 | P | Fe III
Fe I | 993 | | .597 | | Fe I | 18 | 4189.564 | | Fe I | 940 | 4200.03 | | Cr I | 550 | | .70 | P | Fe II | 21 | 4189.67 | | A II | | 4200.38 | | Fe III | | | .019 | | Sm II | 16,50 | 4189.71 | | S II | 44,64 | 4200.40 | P | Ti II | 96 | | . 39 | | A II | 7 | 4100 800 | | 0 11 | 36 | 4000 401 | | W4 T | 00 | | . 390 | | V II | 25 | 4189.788
4189.841 | | V I | 36
24 | 4200.464
4200.675 | | N1 I
A I | 89
2 | | .855 | | Fe II | 28 | 4189.96 | | Cr I | 106 | 4200.752 | | Ti I | 220 | | | P | 0 V | 4 | 4190.16 | | Cr I | 84 | 4200.78 | P | Fe I | 44 | | .05
.062 | | Cr I
V II | 250
19 | 4190.29
4190.40 | | T1 II
V II | 21
25 | 4200.89 | | V I | 6 | | .226 | | Co I | 144 | 4190.40
4190.626 | | Ce II | 25
169 | 4200.930
4201.45 | | Fe I
Zr I | 689
45 | | . 25 | | Fe III | | 4190.66 | | Cr I | 35 | 4201.43 | | La II | 10 | | . 257 | | Cr I | 179,250 | 4190.712 | | Co I | 1 | 4201.58 | | A II | 52 | | . 31 | | A II | 52 | 4190.712 | 7 | AI | 2 | 4201.723 | 1 | Ni I | 238 | | A | Type | Element | Multiplet No. | I A | Type | Element | Multiplet No. | I A | Type | Element | Multiplet No. | |-----------------|------|----------------|---------------|----------------------|------|----------------|---------------|----------------------|------|----------------|----------------| | 1.73 | | Fe I | 799 | 4213.86 | | Zr I | 45 | 4225.956 | | Fe I | 521 | | 1.851 | | Rb I | 2 | 4214.041 | | Ce II | 203 | 4226.14 | | Fe III | 44 | | 1.99
2.031 | | A II
Fe I | 8,124
42 | 4214.73
4215.023 | | N I
Gd II | 5
32 | 4226.426 | | Fe I | 352 | | 2.154 | | N1 I | 179 | 4215.430 | | Fe I | 274,419 | 4226.44
4226.570 | | CI I
Ge I | . 9
4 | | 2.350 | | V II | 25 | 4215.524 | | Sr II | 1 | 4226.65 | | A II | 113 | | 2.4 | | Al II | 87 | 4215.556 | | Rb I | 2 | 4226.728 | | Ca I | 2 | | 2.755 | | Fe I | 476a,521 | 4215.69 | | N III | 6 | 4226.76 | P | Cr I | 105 | | 2.944
3.051 | | Ce II
Sm II | 186
42 | 4215.76 | | Zr II | 68 | 4226.827 | | Al II | 46 | | 3.031 | | Sii 11 | 42 | 4215.77 | | Cr 11 | 18 | 4226.918 | Forb | Al II | 46 | | 3.30 | | Fe I | 418 | 4215.92 | | N I | 5 | 4227.02 | | A II | 113 | | 3.43 | | A II | | 4215.975 | | Fe I | 273 | 4227.14 | P | Fe II | 45 | | 3.465 | | Ti I | 220 | 4216.04 | | Ba II | 17 | 4227.140 | | Gd II | 43 | | 3.570
3.590 | | Fe I
Cr I | 19
35 | 4216.186
4216.365 | | Fe I
Cr I | 3 | 4227.34 | P | Ti II | 33 | | 3.67 | P | Fe I | 1245 | 4210.365 | P | C IV | 132
11 | 4227.42
4227.420 | P | Fe I
Al II | 689
46 | | 3.730 | - | Tm I | 1010 | 4217.07 | • | Cr II | 18 | 4227.434 | | Fe I | 693 | | 3.953 | | Fe I | 850 . | 4217.09 | | 0 I | 33 | 4227.509 | | Al II | 46 | | 3.987 | | Fe I | 355 | 4217.15 | | Ne II | 52 | 4227.545 | Forb | Al II | 46 | | 4.03 | | La II | 53 | 4217.195 | | Gd II | 49 | 4227.654 | | Ti I | 278 | | 4.19 | | Cr I | 35 | 4217.23 | | s II | 44 | 4227.719 | | Nd II | 19 | | 4.20 | | v 11 | 25 | 4217.282 | | Nd II | 57 | 4227.73 | | Cr II | 155 | | 4.471 | | Cr I | 272 | 4217.34 | P | Ti II | 96 | 4227.746 | | Ce II | 8 | | 4.54 | | Cl II | 43 | 4217.45 | | A II | 1.1 | 4227.749 | | N II | 33 | | 4.66 | P | Cr II
Y II | 127
1 | 4217.551
4217.56 | | Fe I
La II | 693
78 | 4227.76 | | Zr I | 45 | | 4.83 | P | Cr II | 180 | 4217.591 | | Ce II | 19 | 4227.875
4227.945 | | Al II
Al II | 46
46 | | 4.857 | | Gd II | 46 | 4217.626 | | Cr I | 132 | 4227.999 | | Al II | 46 | | 5.05 | | Eu II | 1 | 4218.12 | P | Fe I | 19 | 4228.18 | | AII | 8 | | 5.05 | P | V II | 25 | 4218.18 | P | Ti II | 33 | 4228.200 | | Nd II | 36 | | 5.07 | | Cl II | 67 | 4218.21 | P | Fe I | 170 | 4000 71 | ъ | Fo T | 200 | | 5.080 | | V II | 37 | 4218.21
4218.69 | F | A II | 172
64 | 4228.71
4229.516 | P | Fe I
Fe I | 690
416,649 | | 5.19 | | AII | 111 | 4218.710 | | v I | 24 | 4229.704 | | Sm II | 4 | | 5.37 | P | Mn II | 2 | 4219.364 | | Fe I | 800 | 4229.760 | | Fe I | 41 | | 5.48 | P | Fe II | 22 | 4219.383 | _ | WI | 3 | 4229.803 | | Gd II | 117 | | 5.546
5.595 | | Fe I
Nd II | 689
19 | 4219.41
4219.51 | P | Fe I
V I | 419 | 4229.81 | | Cr II | 26 | | 5.91 | | Zr II | 133 | 4219.51 | P | Fe I | 24
763 | 4229.89
4229.955 | | A II
Co I | 1 | | 5.92 | | Fe IÍI | 22 | 4219.74 | P | Fe I | 832 | 4230.29 | | Cr I | 106 | | 5.92 | P | Ti II | 33 | 4219.76 | | Ne II | 52 | 4230.35 | | NI | 5 | | .C 100 | | Sm II | 00 | 4000 040 | | | | | _ | | | | 6.128
6.21 | | Ca II | 38
16 | 4220.047
4220.05 | P | V II
Fe I | 25
994 | 4230.39 | P | Ni I
Cr I | 150 | | 6.375 | | Mn II | 7 | 4220.13 | | Ca II | 16 | 4230.481
4230.584 | | Fe I | 132
478 | | 6.43 | | Ne II | 53 | 4220.258 | | Nd II | 32 | 4230.95 | | La II | 83 | | 6.59 | | Hf II | 74 | 4220.32 | | Fe III | | 4230.98 | | S II | 67 | | 16.702 | | Fe I | 3 | 4220.347 | | Fe I | 482 | 4231.040 | | N1 I | 136 | | 6.739
6.899 | | Pr II
Cr I | 8 | 4220.45
4220.659 | | Cr I
Sm II | 106 | 4231.165 | | V II | 25 | | 7.130 | | Fe I | 352 | 4220.059 | | Ne II | 15,50
52 | 4231.35
4231.525 | | C I
Fe I | 17
647 | | 17.23 | P | Mn II | 2 | 4221.572 | | Cr I | 155,248 | 4231.60 | | Ne II | 52 | | | | | | | | | , | | | | | | 17.35 | | Cr II
Cr I | 26 | 4221.696 | | Ni I | 86 | 4231.64 | | Zr II | 99 | | 17.51
17.61 | | La II | 133
133 | 4222.00
4222.15 | | Cr II
P III | 180
3 | 4231.745 | | Ce II
V II | 005 | | 18.03 | | CI II | 43 | 4222.219 | | Fe I | 3
152 | 4232.065
4232.222 | | Cr I | 225
294 | | 18.357 | | Cr I | 249 | 4222.39 | | Fe III | 202 | 4232.378 | | Nd II | 8 | | 18.610 | | Fe T | 689,696 | 4222.41 | | Zr II | 80 | 1399.13 | | Hf II | 72 | | 18.99 | | Zr II | 41 | 4222.599 | | Ce II | 36 | 4232.460 | | V I | 111 | | 19.02
19.368 | | Cr II
Cr I | 162
248 | 4222.67
4222.732 | | A II
Cr I | 77 | 4232.724 | | Fe I
Cr I | 3 | | 19.409 | | Ce II | 3 | 4222.732 | | 0 I | 132
33 | 4232.866
4232.952 | | VI | 132
111 | | | | | · · | 1020110 | | • • | 00 | 1001000 | | | *** | | 19.049 | | Mo II | а | 4222.97 | | KII | 7 | 4232.96 | P | Gr II | 180 | | 19.74 | | V II | 25 | 4222.98 | | Pr II | 4 | 4233.167 | | Fe II | 27 | | 19.756 | P | Cr I
Cr II | 155 | 4223.020 | | Gd II | 141 | 4233.25 | | Cr II | 31 | |)9.84
)9.857 | P | VI | 180
24 | 4223.04
4223.47 | | N I
Cr I | 5
132 | 4233.32 | | O I
Fe I | 33
152 | | 10.00 | | A II | 78 | 4223.73 | P | Fe I | 417 | 4233.608
4233.996 | | Co I | 1 | | 10.22 | | La II | | 4224.09 | P | Cr II | 31 | 4234.000 | | νí | 6,111 | | 10.352 | | Fe I | 152 | 4224.176 | | Fe I | 689 | 4234.09 | | C1 II | 24 | | 10.352 | n | Sm II | 8 | 4224.27 | | Zr II | 29 | 4234.196 | | Nd II | 20 | | 10.39 | P | Fe I | 482 | 4224.30 | P | Fe I | 1104 | 4234.251 | | V II | 24 | | 10.62 | | Zr II | 97 | 4224.43 | | P II | 16 | 1994.515 | | Cr I | 178 | | 10.77 | | Cr I | 106 | 4224.509 | | Fe I | 689 | 4234.524 | | v i | 6 | | 10.87 | | Fe III | | 4224.51 | | V II | 25 | 4234.55 | | A 11 | 200 | | 11 | P | 0 V | 4 | 4224.514 | | Cr I | 155 | 4234.573 | | Sm II | 42 | | 11.286 | | Nd II | 57 | 4224.57 | r | Ne II | 52 | 4234.727 | | Ce II | 170 |
| 11.349
11.51 | | Cr I
Fe III | 133
104 | 42.1.63
4224.74 | P | Fe I
N I | 274
5 | 4235.140
4235.290 | | Mn I
Mn I | 23
23 | | 11.729 | | Ti I | 279 | 4224.795 | | Ti I | 301 | 4235.49 | | C1 II | 71,83 | | 11.80 | P | Fe II | 21 | 4224.85 | | Cr II | 162 | 4235.54 | | Fe III | | | 11.88 | | Zr II | 15 | 4224.92 | | C1 II | 83 | 4235.54 | P | Ni I | 256 | | 10.004 | | C4 TY | 15 | 4007.00 | | W4 T | 400 | 4000 00 | ~ | P. + | 015 | | 12.001
12.06 | P | Gd II
Fe I | 15
697 | 4225.02
4225.148 | P | N1 I
Gd II | 169
14 | 4235.65
4235.73 | P | Fe I
Y II | 215
5 | | 12.063 | - | Ru I | 6 | 4225.228 | | V II | 37 | 4235.756 | | v i | 111 | | 12.44 | | Si IV | 5 | 4225.327 | | Pr II | 8 | 4235.84 | P | Fe I | 172 | | 12.95 | | Pd I | 7 | 4225.328 | | Sm II | 22 | 4235.94 | | ΥÍ | 5 | | 13.036 | | Ce II
Cr I | 169 | 4225.460 | | Fe I
K II | 693 | 4235.942 | ~ | Fe I | 152 | | 13.170
13.42 | P | Fe I | 155
274 | 4225.71 | P | Fe I | 4
1102 | 4235.98 | P | Fo I
Cr I | 602
132 | | 13.5 | - | s II | 44 | 4225.79 | P | Fe I | 118 | 4236.33 | P | Cr II | 17 | | 13.650 | | Fe I | 355 | 4225.850 | | Gd I | 4 | 4236.372 | | N1 I | 237 | | A | Туре | Klement | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Type | Element | Multiplet No. | |--------------|------|----------------|----------------------|----------------------|------------|----------------|--------------------------|----------------------|------|----------------|---------------| | .56 | | Zr II | 110 | 4247.31 | P | Fe I | 172 | 4259.988 | | Fe I | 689 | | .66 | P | Fe I | 907 | 4247.367 | | Nd II | 8 | 4260.135 | | Fe I | 476a | | .745 | | Sm II | 53 | 4247.43 | P | Fe II | 125 | 4260.19 | _ | Cr I | 240 | | .76 | | Fe I | 906 | 4247.432 | | Fe I
C III | 693 | 4260.47
4260.479 | P | Mn II
Fe I | 2
152 | | .82
.930 | | V II
N II | 18
48 | 4247.56
4248.228 | | C III
Fe I | 11
482 | 4260.73 | P | Fe I | 351 | | .049 | | N II | 48 | 4248.344 | | Cr I | 131 | 4260.738 | | Ti I | 251 | | .085 | | Fe I | 19 | 4248.40 | P | Fe I | 19 | 4260.75 | | V II | 18,24 | | .162 | | Fe I | | 4248.676 | | Ce II | 1 | 4260.854 | | 0s I | 1 | | .21 | | Fe III | 104 | 4248.72 | P | Fe I | 939 | 4261.164 | | Ce II | 19 | | . 23 | | A II | 32 | 4248.73 | | Cr I
V II | 105 | 4261.22
4261.354 | | C1 II
Cr I | 66
96 | | . 27
. 57 | P | Cr I
Al II | 106
23 | 4248.820
4249.114 | | V II
Ti I | 24
252 | 4261.609 | | Ti I | 252 | | .663 | | Sm II | 8 | 4249.32 | P | Fe I | 117 | 4261.615 | | Cr I | | | .67 | P | Fe I | 418 | 4249.33 | _ | Hf II | 39 | 4261.796 | | Pr II | 23 | | .710 | | Cr I | 132 | 4249.57 | | P IV | 2 | 4261.80 | P | Cr II | 17 | | .786 | | Ti I | 252 | 4249.81 | P | Cr I | 155 | 4261.92 | | Cr II | 31 | | .889 | | T1 I
Fe I | 284 | 4249.92 | | S II
Fe III | 66 | 4262.092
4262.133 | | Gd II
Cr I | 44
84,178 | | .027
.38 | | La II | 689,696
41 | 4249.95
4249.99 | | La II | 79 | 4262.38 | | Cr I | 154 | | ,61 | P | Fe I | 849 | 4250.125 | | Fe I | 152 | 4262.677 | | Sm II | 37 | | ,69 | P | Cr II | 17 | 4250.68 | | Ne II | 52 | 4262.72 | | Hf II | 15 | | .78 | | Fe III | 104 | 4250.689 | | Mo II | 3 | 4263.134 | | Ti I | 162 | | .782 | | Gd II | _ | 4250.790 | _ | Fe I | 42 | 4263.141 | | Cr I | 247 | | ,79 | P | Mn II | 2 | 4250.90 | P | Fe I | 478 | 4263.40 | | K II | 2 | | 957 | | Fe I
Cr I | 693
131 | 4251.1852
4251.49 | p . | A I
Fe II | 2
12 | 4263.427
4263.49 | P. | Ce II
Cr II | 254
17 | | .01 | p | Fe I | 274 | 4251.49 | F | Ti I | 162 | 4263.59 | | La II | 84 | | ,31 | - | Zr I | 45 | 4251.733 | | Gd II | 15 | 4263.836 | | V II | 24 | | , 36 | P | Fe I | 907 | 4251.769 | | Ti I | 251 | 4263.895 | | Fe II | | | ,5 | | 0 111 | . 1 | 4251.88 | P | Fe I | 216 | 4264.19 | P | Cr II | 17 | | 725 | | MnI | 23 | 4252.05 | P | Ti II | 95 | 4264.209 | | Fe I | 692 | | .735
.847 | | Fe I
Fe I | 416
18,273 | 4252.107
4252.243 | | Ni I
Cr I | 130
131 | 4264.070
4264.50 | | Ce II | 209
24 | | .912 | | Ce II | 2 | 4252.302 | | Co I | 1 | 4264.743 | | Fe I | 993 | | 95 | P | Fe I | 476a | 4252.62 | | Cr II | 31 | 4264.88 | | Y II | 71 | | .95 | | Ne II | 52 | 4253.02 | | Mn II | 7 | 4264.91 | | Zr II | 98 | | .35 | | Zr I | 45 | 4253.28 | | N I | 4 | 4265.075 | | Sm II | 15 | | .372
.456 | | Fe I
Ca I | 764
38 | 4253.356
4253.366 | | Ce II
Gd II | 77
46 | 4265.170
4265.260 | | V I
Fe I | 993,994 | | .705 | | Cr I | 105,178 | 4253.51 | | C1 II | 24 | 4265.273 | | Ti I | 252 | | 75 | | Al II | 36 | 4253.52 | P | Fe I | 690 | 4265.723 | | Ti I | 162 | | 019 | | Pr II | 9 | 4253.55 | P | Fe I | 1245 | 4265.924 | | Mn I | 23 | | .112 | | Fe I | 351 | 4253.593 | | S III | 4 | 4266.227 | _ | Ti I | 252 | | .20 | | La II | 163 | 4253.612 | | Gd II | | 4266.23 | P | Cr II | 37 | | .20 | | Zr I
Gd II | 45
117 | 4253.74
4253.93 | P | O II
Fe I | 101
905 | 4266.2867
4266.44 | | A I
Cr I | 4
199 | | 38 | | C1 II | 24 | 4253.98 | r | 0 11 | 101 | 4266.53 | | A II | 7 | | .68 | | Zr I
N II | 45 | 4254.346 | | Cr I | 1 | 4266.716 | | Nd II | 58 | | 787 | | | 47,48 | 4254.41 | | VII | 18 | 4266.72 | | Zr II | 80 | | 93 | | Hr II | 108 | 4254.420 | | Pr II | 27 | 4266.82 | | Cr I | 105 | | 153
20 | | Tm II
Ne II | 5
52 | 4254.7 | | N I | 4 | 4266.88 | | Fe III
Fe I | 070 | | 38 | | Cr II | 31 | 4254.938
4255.01 | | Fe I
S II | 419,477
44 | 4266.968
4267.02 | | CII | 273
6 | | 47 | | Mg II | 20 | 4255.20 | | Fe III | ** | 4267.27 | | Č II | 6 | | 588 | | Fe I | 273 | 4255.499 | | Fe I | 416 | 4267.30 | P | Zr II | 132 | | 723 | | Ce II | 58 | 4255.502 | | Cr I | 105 | 4267.47 | | A II | 52 | | 730
82 | | Fe I
Cr I | 649
131 | 4255.62 | | A II
Ce II | 63 | 4267.802 | | 8 11 | 49 | | 894 | | V II | 200 | 4255.784
4256.025 | | Ce II
Ti I | 81
252 | 4267.830
4267.95 | | Fe I
Ba II | 482
11 | | 368 | | Fe I | 906 | 4256.156 | | Ce II | 172 | 4268.01 | | Zr I | 45 | | 528 | | Pr II | 33 | 4256.16 | | Cr II | 192 | 4268.032 | | Co I | 1 | | 60 | | B- 111 | 1 | 4256.212 | | Fe I | 690 | 4268.096 | | Ir I | 4 | | 71 | | A II | 63,78 | 4256.239 | _ | NA II | 59 | 4268.10 | | Hf II | 86 | | 786 | | Fe I
Fe III | 994 | 4256.32 | P | Fe I | 172 | 4268.446 | | Co I | 127 | | 85
17 | | Ne II | 62 | 4256.393
4256.620 | | Sm II
Cr I | 37
131 | 4268.643
4268.731 | | V I
Gd. II | · 88
68 | | 26 | | Mn II | 7 | 4256.79 | | Fe I | 1102 | 4268.744 | | Fe I | 649 | | 33 | | Cr I | 240 | 4257.02 | | V II | 200 | 4268.788 | | Cr I | 271 | | 374 | | W .I | 1 | 4207.121 | | Ce II | 123 | 4268.928 | | T1 I | 252 | | 53 | P | Fe II | 12 | 4257.368 | | Cr I | 131 | 4268.93 | | Cr II | 192 | | 55 | | P II
Sm II | 30 | 4257.42 | | 8 11 | 66 | 4268.99 | | C 1 | 16 | | 702
80 | | Sm II
Ni II | 27 [*] | 4257.659
4257.82 | | Min I
Ne II | 23
52 | 4269.02
4269.28 | | Cr I
Cr II | 240
31 | | 258 | | Fe I | 352 | 4258.05 | | Zr II | 15 | 4269.50 | | La II | 76 | | 358 | | Fe I | 691 | 4258.155 | | Fe II | 28 | 4269.67 | | HP II | 26 | | 84 | | Hf II | 72 | 4258.320 | | Fe I | 3 | 4269.76 | | 8 11 | 49 | | 976 | | Ce II | 158 | 4258.35 | P | Fe II | 21 | 4269.87 | P | Fe I | 690 | | 02
090 | P | Fe I
Fe I | 649
906 | 4258.523
4258.619 | | Ti I
Fe I | 252
351 | 4269.951
4270.139 | | Cr I
Ti I | 154
251 | | 16 | | F II | 9 | 4258.956 | | Fe I | 419 | 4270.189 | | Ce II | 204 | | 41 | | Cr 11 | 31 | 4259-15 | | Cr I | 131 | 4270.189 | P | Fe I | 215 | | 568 | | 0d II | 67 | 4259.18 | | 8 11 | 66 | 4270.39 | P | Fe II | 125 | | 59 | P | Fe I | 689 | 4259.203 | | Mn II | 7 | 4270.427 | | Co I | 29 | | 68
711 | | P III
Ce II | 3
77 | 4259.312 | ъ | V I
Fe I | 6
418 | 4270.565 | | Nd II
Cl II | 12
66 | | 711
79 | P | Fe I | 216 | 4259.34
4259.3618 | P | V I | 416
9 | 4270.61
4270.64 | | VII | 23 | | 829 | - | Sc II | 7 | 4259.52 | | Cl II | 42,52 | 4270.716 | | Ce II | 21 | | 879 | | Nd II | 14 | 4259.748 | | Ce II | 176 | 4271.061 | | Cr I | 154 | | 29 | P | Fe I | 905 | 4259.95 | P | Fe I | 70 | 4271.159 | | Fe I | 152 | | | Type | Element | Multiplet No. | I A | Type | Element | Multiplet No. | I A | Type | Element | Multiplet No. | |---------------|------|----------------|---------------|----------------------|------|----------------|---------------|-----------------------|------|----------------|---------------| | 47 | | Fe III | | 4283.010 | | Ca I | 5 | 4294.432 | | s II | 49 | | 554 | | V I | 88 | 4283.13 | | 0 11 | 67 | 4294.623 | | WI | 6 | | . 65 | P | Fe I | 70 | 4283.40 | P | Fe I | 215 | 4294.76 | | N III | | | .764 | P | Fe I
Ti II | 42 | 4283.70 | | S III | | 4294.767 | | Sc II | 15 | | ,94
,95 | P | Fe I | 95
171 | 4283.75
4283.772 | | 0 II
Mn II | 67
6 | 4294.78 | | Zr I | 45 | | 1690 | r | A I | 4 | 4283.87 | P | Fe I | 19 | 4294.82
4294.939 | | O II
Fe I | 54
598 | | .871 | | Pr II | 15 | 1281.055 | - | v i | 88 | 4295.37 | P | Cr II | 37 | | .440 | | . T1 I | 44 | 4284.084 | | Mn I | 23 | 4295.751 | _ | Ti I | 44 | | ,789 | | Nd II | 11 | 4284.21 | | Cr II | 31 | 4295.757 | | Cr I | 64 | | .85 | | Hf II | 14 | 4284.415 | | Fe I | 417 | 4295.888 | | Ni I | 178 | | ,910 | | Cr I
O II | 96
98 | 4284.425
4284.51 | | Mn II
N III | 6 | 4296.05
4296.069 | | La II | 53 | | .312 | | Ti I | 251 | 4284.518 | | Nd II | 10 | 4296.076 | | Ce II
Gd II | 172
46 | | .317 | | Fe II | 27 | 4284.683 | | N1 I | 86 | 4296.107 | | V I | 120 | | .42 | | Fe III | 121 | 4284.725 | | Cr I | 96 | 4296.11 | | C II | 42 | | .52 | | Zr II | 28 | 4284.988 | | Ti I | 148 | 4296.30 | | Cr I | 176 | | .87 | | Fe I
O II | 478
68 | 4284.991 | P | S III
Ni I | 4 | 4296.30 | | Gd II | 117 | | .13
.408 | | Ti I | 252 | 4285.19
4285.366 | | Ce II
 86
11 | 4296.567
4296.680 | | Fe II
Ce II | 28
2 | | .584 | | Ti I | 44,162 | 4285.445 | | Fe I | 597 | 4296.74 | | Zr II | 98 | | .803 | | Cr I | 1 | 4285.496 | | Sm II | 27 | 4296.743 | | Sm I | 3 | | . 19 | | A II | 77 | 4285.70 | | 0 11 | 78 | 4296.786 | | Ce II | 57 | | .52 | | 0 11 | 67 | 4285.782 | | Co I | 1 | 4296.86 | | Fe III | 121 | | .561 | | Ce II | 206 | 4285.832 | | Fe I | 904 | 4297.050 | | Cr I | 64 | | .57
.64 | | Cr II
La II | 31
40 | 4285.96
4286.006 | | C II
Ti I | 42 | 4297.173 | | Gd II | | | .72 | | Fe I | 215 | 4286.006 | | Fe III | 44
121 | 4297.60 | | Ba II
V I | 7 | | .90 | | 0 11 | 06 | 4286.13 | | V II | 23 | 4297.681
4297.711 | | Ru I | 120
5 | | .973 | | Cr I | 240 | 4286.311 | | Fe II | | 4297.738 | | Cr I | 247 | | .21 | | 0 11 | 68 | 4286.440 | | Fe I | 414 | 4297.764 | | Pr II | . 7 | | .441 | | Ti I | 148 | 4286.51 | | Zr II | 69 | 4297.99 | | A II | | | .51
.657 | | C1 II
Ti I | 66
252 | 4286.640
4286.97 | | Sm II
La II | 42 | 4298.029 | | V I | 120 | | .684 | | Fe I | 976 | 4286.976 | | Fe I | 75
976 | 4298.040 | | Fe I
Fe I | 520 | | .71 | | 0 11 | 54,67 | 4287.405 | | Ti I | 44 | 4298.21
4298.515 | P | N1 I | 476a
178 | | .958 | | v i | 88 | 4287.71 | P | Ti I | 45 | 4298.664 | | Ti I | 44 | | . 246 | | Mo I | 7 | 4287.80 | | Ba II | 16 | 4298.767 | | N1 I | 28 | | .279 | | Nd II | 17 | 4287.893 | | Ti II | 20 | 4298.986 | | Ca I | 5 | | .322 | | Th II | 2 | 4288.005 | | Ni I | 178 | 4299.17 | P | Ti I | 45 | | .37 | | Zr II | 40 | 4288.148 | | Fe I | 273 | 4299.177 | | F II | 7 | | .40
.41 | P | O II
Fe I | 67,68
214 | 4288.161 | | Ti I | 43,79 | 4299.229 | | Ti I | 148 | | .55 | F | A II | 32 | 4288.21
4288.53 | | N III
P II | 33 | 4299.242
4299.25 | P | Fe I
Fe I | 152
597 | | .68 | | Fe I | 172 | 4288.65 | | Mo I | 7 | 4299.362 | • | Ce II | 47 | | . 90 | | O II | 67 | 4288.72 | | N III | | 4299.49 | P | Fe I | 648 | | .01 | P | Fe I | 1102 | 4288.78 | P | Ti I | 45 | 4299.636 | | T1 I | 43 | | .10 | | Cr II | 161 | 4288.78 | | V II | 17 | 4299.65 | | Fe I | 416 | | .128
.231 | | Fe II
T1 I | 32
291 | 4288.83
4288.962 | | O II
Fe L | 54
214 | 4299.718
4300.052 | | Cr I
Ti II | 96
41 | | .234 | | Fe I | 691 | 4289.068 | | Ti I | 44 | 4900 1011 | | A I | 4 | | . 38 | P | Fe I | 351 | 4289.18 | | Zr II | 117 | 4300.1011
4300.197 | | Mn II | 6 | | .54 | | SII | 49 | 4289.29 | P | Fe I | 117 | 4300.21 | P | Fe I | 975 | | .829 | | Ti I | 252 | 4289.364 | | Ca I | 5 | 4300.331 | | Ce II | 134 | | 866 | | Ce II | 111 | 4289.454 | | Ce II | 135 | 4300.44 | | La II | 9 . | | .893
.94 | P | V II
Cr II | 225
17 | 4289.721
4289.919 | | Cr I
T1 I | 1
205 | 4300.52 | P | Ti I
Ti I | 205 | | .023 | | Mo II | 3 | 4289.938 | | Ce II | 205
111 | 4300.566
4300.66 | | AII | 44
36,76 | | 1.3 | | YII | 70 | 4290.222 | | Ti II | 41 | 4300.828 | | Fe I | 976 | | .480 | | Fe I | 993 | 4290.382 | | Fe I | 416 | 4301.089 | | Ti I | 44 | | 1.678 | | Sm II | 27 | 4290.40 | | Ne II | 57 | 4301.130 | | v II | 225 | | .864 | | Fe I | 351 | 4290.55 | | N III | | 4301.178 | | Cr I | | | 1.927 | | Sc II | 15 | 4290.80 | | N III | | 4301.81 | | Zr II | 109 | | .069 | | Ti I
Ce II | 252
225 | 4290.870
4290.933 | | Fe I
Ti I | 351 | 4301.928
4302.100 | | Ti II
Pr II | 41 | | 1.27 | | La I | 5 | 4291.214 | | Ti I | 44
45,147 | 4302.100 | P | Ni I | 32
102 | | 1.33 | P | Cr II | 17 | 4291.25 | | 0 11 | 55 | 4302.123 | • | WI | 7 | | 405 | | Cr I . | 247 | 4291.44 | P | Fe I | 273 | 4302.191 | | Fe I | 520 | | 1.490 | | Gd II | 15 | 4291.45 | | 8 11 | 49 | 4302.527 | | Ca I | 5 | | 1.53 | | Fe I | 598 | 4291.466 | | Fe I | 3,41 | 4302.81 | | 0 11 | 100 | | .63 | P | Fe I | 416 | 4291.76 | | Cl II | 19 | 4302.88 | | Zr I | 45 | | 1.789 | | Sm II | 46 | 4291.816 | | v r | 120 | 4302.979 | | Ti I | 79 | | 009 | P | Sm II
Cr II | 17 | 4291.88
4291.964 | | Ti I
Cr I | 251
240 | 4303.06
4303.166 | | 0 II
Fe II | 100
27 | | 1.03 | | Mn I | 23 | 4291.964 | | C II | 240
41 | 4303.166
4303.235 | | Co I | 27
1 | | 371 | | Ti I | 44 | 4292.13 | P | Fe I | 70 | 4303.573 | • | Nd II | 10 | | 1.40 | | 0 11 | 54 | 4292.182 | | Sm II | 32 | 4303.82 | | 0 11 | 54 | | . 60 | P | Fe I | 171 | 4292.23 | | 0 11 | 78 | 4304.07 | | C1 II | 19 | | 2.20
2.21 | | Zr I
Zr II | 45
132 | 4292.246
4292.293 | | Mn II
Fe I | 6
70 | 4304.087
4304.11 | | Gd II
La II | 128
165 | | 3.406 | | Fe I | 71 | 4292.676 | | Ti I | 79 | | ъ | | | | 3.406 | | Pr II | 71
19 | 4292.747 | | Gd II | 79
128 | 4304.15
4304.15 | P | Fe I
V II | 647
213 | | 2.443 | | Nd II | | 4292.767 | | Ce II | 205 | 4304.552 | | Fe I | 414 | | 2.570 | | Nd II | 13 | 4292.885 | | Zn I | 3 | 4304.81 | | Fe III | 121 | | 3.63
3.702 | | S II
Ti I | 49
162 | 4293.14
4293.228 | | Zr II
Mo I | 110
7 | 4304.87
4304.895 | P | Fe I
Gd II | 598,756 | | 3.82 | | 0 11 | 54 | 4293.565 | | Cr I | 96 | 4305.00 | | KII | 5 | | 3.90 | | A II | 7 | 4294.04 | P | Fe I | 214 | 4305.13 | P | Fe I | 272 | | 2.96 | | 0 11 | 67 | 4294.101 | | Ti II | 20 | 4305.20 | | Fe I | 760 | | 2.97 | | Al II | 86 | 4294.128 | | Fe I | 41 | 4305.447 | | Sr II | 3 | | A | Туре | Element | Multiplet No. | ' I A | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No | |----------------|--------|----------------|---------------|----------------------|--------|----------------|-----------------------|-----------------------|------|-----------------|------------------| | 5.453 | | Cr I | 96 | 4319.45 | P | ře I | 214 | 4331.13 | | 0 11 | 66,75 | | 5.455 | | Fe I
N I | 476 | 4319.51
4319.631 | | Hf II
J II | 52
· 2 | 4331.231
4331.25 | | Co I
A II | 168
7 | | 5.46
5.474 | | Ti I | 147 | 4319.641 | | Cr I | 96 | 4331.47 | | 0 II | 41 | | 5.53 | | 0 11 | 55 | 4319.69 | | A II | 87 | 4331.529 | | Fe II | | | 5.715 | | Sc II | 15 | 4319.717 | | Fe II | 220 | 4331.55 | | V II | 36 | | 5.763 | | Pr II
Ti I | 8 | 4319.93 | | O II
Fe I | 61
1170 | 4331.645 | | Ni I
V II | 52 | | 5.910
6.214 | | V I | . 44
5 | 4320.13
4320.36 | P
P | Fe I | 691 | 4331.79
4331.89 | | O II | 23
41 | | 6.340 | | Gd I | 4 | 4320.52 | • | Fe I | 691 | 4331.93 | | Mg II | 27 | | 8.58 | P. | Fe I | 691 | 4320.592 | | Cr I | 96 | 4332.0 | | Al II | 31 | | 8.724 | | Ce II | 1 | 4320.69 | | Hf II | 40 | 4332.06 | | AII | 1 | | 8.945 | p | Ti I
Fe I | 43
690 | 4320.723 | | Ce II
Sc II | 125
'15 | 4332.569 | | Cr I
S III | 176
4 | | 7.08
7.184 | r | V I | 5 | 4320.745
4320.965 | | T1 II | 41 | 4332.71
4332.76 | | 0 11 | 65 | | 7.20 | | Al II | 85 | 4321.110 | | Gd II | 46 | 4332.823 | | V I | 5 | | 7.31 | | 0 11 | 53 | 4321.238 | | Cr I | 83 | 4332.88 | P | Fe II | 33 | | 7.42 | | Cl II
Ca I | 19
5 | 4321.341
4321.36 | | Fe II
Hf II | 220
86 | 4333.06 | P | Fe I
Zr II | 1135
132 | | 7.741
7.778 | | Nd II | 63 | 1321.37 | | N III | 10 | 4333.28
4333.5612 | | AI | 9 | | 7.900 | | Ti II | 41 | 4321.617 | | Cr I | 177 | 4333.76 | | La II | 24 | | 7.906 | | Fe I | 42 | 4321.655 | | Ti I | 235 | 4333.84 | | 8 11 | 49 | | 3.233 | • | Gd II | 47 | 4321.95 | | C II | 28 | 4333.913 | | Pr II | 8 | | 3.514 | P | Ti I
Fe I | 79
70 | 4322.02
4322.195 | | V II
Gd II | 17 ⁻
15 | 4334.153 | | Sm II
O II | 27 | | 3.54
3.94 | P | Zr II | 70
88 | 4322.51 | | La II | 25 | 1334.29
4334.65 | | O II
Hf II | 63,64
69 | | 3.96 | | 0 11 | 64 | 4322.66 | | Ne II | 63 | 4334.77 | P | VII | 36 | | 9.012 | | Sm II | . 15 | 4322.70 | P | Fe I | 215 | 4334.840 | | Ti I | 43 | | 3.036 | | Fe I
Cl II | 849
52 | 4323.284
4323.35 | | Sm II
Cl I | * 8
9 | 4334.96 | P | La II
N V | 77
3 | | 9.06 | | | | | | | - | 4335 | P | | | | 3.071 | | T1 I
K II | 235
7 | 4323.37
4323.440 | P | Fe I
Ti I | 171
79 | 4335.15 | | Hf II
Gd II | 6
12 8 | | 3.10
3.11 | | A II | 36 | 4323.523 | | Cr I | 18 | 4335.290
4335.3380 | | A I | 9 | | 9.25 | | 4 II | 99 | 4323.551 | | Pr II | 23 | 4335.46 | P | Fe I | 477 | | 3.32 | | Ba II | 11 | 4323.62 | | Zr II | 141 | 4335.53 | | N III | 10 | | 3.382 | _ | Fe I | 414 | 4323.81 | | Fe III | 32 | 4335.89 | | Fe I | 991 | | 3.46
3.62 | P | Fe I
Y II | 478
5 | 4323.93
4324.064 | | Gd II
N III | 10
68 | 4336.255
4336.26 | | Ce II
Cl II | 89
19 | | 3.739 | | Ce II | 126 | 4324.36 | P | Fe II | 147 | 4336.36 | | Zr II | 119 | | 9.795 | | v i | 5 | 4324.961 | | Fe I | 70 | 4336.48 | | N I | | |).37 | P | Fe I | 994 | 4325.010 | | Sc II | 15 | 4336.51 | | A II | | |).37
).373 | | Fe III
Ti I | 121
79 | 4325.075
4325.1 | P | Cr I
Mn II | 104
6 | 4336.60 | P | Fe I
Hf II | 990
74 | |).699 | | Ce II | 133 | 4325.134 | • | Ti I | 235 | 4336.66
4336.86 | P | Fe I | 692 | |).72 | P | V II | 36 | 4325.22 | | V II | 233 | 4336.865 | - | 0 11 | 2 | | 1.981 | | Gd II | 15 | 4325.361 | | N1 I | 116 | 4337.049 | | Fe I | 41: | | 1.654 | | Ti I
O II | 205
79 | 4325.566
4325.607 | | Gd II
Ni I | 103
86 | 4337.10 | | A II | 113 | | 2.10
2.23 | | Zr II | 99 | 4325.64 | | Zr II | 108 | 4337.33
4337.510 | | Ti II
Gd II | . 94
128 | | 2.469 | | Cr I | 177 | 4325.65 | | Cr I | 176 | 4337.52 | P | Fe I | 214 | | 2.550 | | Mn I | 23 | 4325.7 | | Li II | 5 | 4337.566 | | Cr I | 22 | | 3.861 | | Ti I | 41 | 4325.70 | | C 111 | 7 | 4337.63 | | Zr II | 119 | | 3.034
3.04 | P | Fe Il
Fe I | 220
273 | 4325.73
4325.74 | P | Ba II
Fe I | 17
2 | 4337.777 | | Ce II
La II | 82
138 | | 3.11 | F | N I | 213 | 4325.765 | P | Fe I | 42 | 4337.78
4337.916 | | Ti II | 138
20 | | 3.30 | | Ÿ I1 | 23 | 4325.766 | | Nd II | 10 | 4338 . 24 | | A II | 88 | | 3.43 | | 0 11 | 78 | 4325.77 | | 0 11 | 2 | 4338.260 | | Fe I | 70 | |
3.50 | | C II
Gd I | 28
4 | 4325.88
4325.95 | P | C II
Fe I | <i>28</i>
598 | 4338.476 | | Ti I | 204 | | 3.845
1.084 | | Sc II | 15 | 4326.359 | F | Ti I | 43 | 4338.52
4338.67 | | S1 III
He II | 3,
3 | | l. 18 | | Si IV | 4 | 4326.445 | | Sr I | 6 | 4338.694 | | Pr II | 31 | | 1.289 | | Fe II | 32 | 4326.74 | | Ba II | 7 | 4338.697 | | Nd II | 68 | | 1.356 | | T1 I | 45 | 4326.756
4328.762 | | Mn II | 6 | 1338.70 | P | Fe II | 32 | | 1.511
1.74 | P | Nd II
Ti I | 9
43 | 4326.762 | | Fe I
Ce II | 413
224 | 4338.799
4338.84 | P | Cr I
Fe I | 198
117 | | 1.801 | - | Ti I | 43 | 4326.986 | | Ti I | 43 | 4339.13 | P | Co I | 1 | | 1.979 | | T1 II | 41 | 4327.04 | P | Fe II | 20 | 4339.287 | | D | 1 | | 5.087 | | Fe I | 71 | 4327.100 | | Fe I | 761 | 4839.317 | | Ce II | 34 | | 5.35
5.80 | | 0 II
0 II . | 64,79
78 | 4327.125
4327.48 | | Od II | 15
41 | 4339.450
4339.52 | | Cr I
N III | 22
10 | | 5.90 | | La II | 41 | 4327.89 | | o II | 41 | 4339.56 | | Zr II | 41 | | 5.95 | P | re I | 171 | 4327.92 | | Fe I | 597 | 4339.30
4339.718 | | Cr I | 22 | | 3.052 | | Gd II | 43 | 4328.15 | | N III | 10 | 4339.78 | | Ne II | 62 | | 3.258 | | V II | 23 | 4328.22 | | Si IV | 4 | 4340.018 | | Ti I | 174 | | 8.266 | | Gd II
Ti II | 67,68
94 | 4328.62
4328.91 | P | O II
Cr II | 61
37 | 4340.03 | | K II
Cr I | 4
64 | | 3.807
7.04 | P | Fe I | 762 | 4329.016 | r | Sm II | 15 | 4340.130
4340.30 | | SIII | 4 | | 7.139 | - | 0 11 | 3 | 4329.415 | | Pr II | 27 | 4340.36 | | 0 11 | 77 | | 7.32 | | Zr II | 40 | 4329.54 | P | Fe I | 70 | 4340.468 | | н | 1 | | 7.42 | | CII | 28 | 4329.62 | | Ba II | 17 | 4340.49 | P | Fe I | 272 | | 7.65 | | 0 11 | 53 | 4330.024 | | V I | 5 | 4340.51 | P | Fe I | 691 | | 7.70
3.216 | | N I
Fe II | 220 | 4330.14
4330.264 | | N III
Ti II | 10
9 4 | 4341.013
4341.09 | | V I
Cr II | 5
179 | | 3.631 | | Ti I | 235 | 4330.44 | | N III | 10 | 4341.13 | | Zr I | 61 | | 3.652 | | Ca I | 5 | 4330.445 | | Ce II | 82 | 4341.23 | P | Fe I | 691 | | 8.68 | _ | SII | 49 | 4330.606 | | Gd II | 46 | 4341.282 | | Gd II | 14 | | 8.77 | P
P | Cr II
re I | 37
215 | 4330.708
4330.720 | | Ti II
Ni I | 41
149 | 4341.369
4341.42 | | Ti II
Ne II | 32
59 | | 3.81
3.92 | r | C II | 28 | 4330.720 | P | Fe I | 475 | 4341.48 | | Cr I | 64 | | 8.936 | | Sm II | 27 | 4930.962 | | Fe I | 597 | 4341.57 | P | Fe I | 644 | | | | | | | | | | | | | | | A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Type | Element | Multiplet No. | |---------------|------|----------------|---------------|----------------------|------|------------------|---------------|-----------------------|------|----------------|---------------| | 3.00 | | 0 11 | 77 | 4355.308 | | T1 I | 174 | 4368.14 | | c II | 45 | | 2.071 | | Nd II | 8 | 4355.911 | | N1 I | 149 | 4368.14 | _ | C III | | | 1.179 | | Gd II | 15 | 4355.943 | | VΙ | . 5 | 4368.20 | P | Cr II | 37 | | 2.23 | | Zr II | 98 | 4356.711 | | Al II | 60 | 4368.234 | | Ce II | 227 | | 3.83 | | 0 11 | 103 | 4356.760 | | Cr I | 130 | 4368.252 | | Cr I | 130 | | 1.832 | | V I | 103 | 4356.807 | _ | Al II | 60 | 4368.262 | | Fe II | _ | | 2.84 | | S II | 43 | 4357.24 | P | Al III | 9 | 4368.30 | | 0 I | 5 | | 1.163 | _ | Cr I | 64
644 | 4357.25 | _ | 0 11 | 18,63,64 | 4368.312 | | Ni I | 102 | | 1.22 | P | Fe I
Fe I | 645 | 4357.50 | P | Fe I | 1170 | 4368.327 | | Pr II
Nd II | 5 | | 1.257 | | 1 91 | . 040 | 4357.525 | | Cr I | 198 | 4368.632 | | 40 II | 11 | | 1.36 | | o II | 75,103 | 4357.53 | P | Fe I | 994 | 4368.66 | P | Fe I | 644 | | 1.62 | | C1 II | 19 | 4357.574 | r | Fe II | 00% | 4368.67 | P | v II | 188 | | 1.699 | | Fe I | 517 | 4357.85 | P | Ni I | 256 | 4368.89 | • | Cr I | 198 | | 1.798 | | Ti I | 204 | 4358.169 | - | Nd II | 10 | 4368.941 | | Ti I | 245 | | 1.86 | P | Fe I | 756 | 4358.27 | | NI | | 4369.28 | | 0 11 | 26 | | 1.987 | | Mn II | 6 | 4358.343 | | Hg I | 1 | 4369.29 | P | Fe I | 1244 | | 1.291 | | Ti II | 20 | 4358.40 | | Ò II | 64 | 4369.404 | | Fe II | 28 | | 1.300 | | Gd II | 44 | 4358.505 | | Fe I | 412 | 4369.52 | _ | C1 I | 8 | | .42 | | O II | 65 | 4358.53 | | A II | 87 | 4369.61 | P | Fe II | 148 | | 487 | | Gd II | 31 | 4358.66 | | Cr I | 176 | 4369.682 | | T1 I | 290 | | .507 | | Cr I | 22 | 4358.699 | | Nd II | 57 | 4369.73 | P | Fe I | 976 | | i.085 | | Cr I | 198 | 4358.73 | | Y II | 5 | 4369.77 | • | Ne II | 56 | | .1682 | | AI | 9 | 4358.95 | P | Fe I | 987 | 4369.771 | | 6d 11 | 15 | | .562 | | OII | 2 | 4359.12 | P | Fe II | 202 | 4369.774 | | Fe I | 518 | | 6 | P | Mn II | 6 | 4359.152 | - | Gd II | 47,68 | 4370.041 | | N1 I | 149 | | .858 | | Sm II | .7 | 4359.38 | | 0 11 | 26 | 4370.27 | | V II | 31 | | .963 | | Ce II | 251 | 4359.585 | | N1 I | 86 | 4370.76 | | A II | 39 | | · 104 | | Ti I | 234 | 4359.631 | | Cr I | 22 | 4370.875 | | Mn I | 17 | | -458 | _ | . Gd I | 4 | 4359.636 | | (nl II | 67 | 4370.95 | | Hr II | 26 | | .50 | P | Fe II | 202 | 4359.74 | | Zr II | 79 | 4370.96 | | Zr II | 79 | | .558 | | Fe I | 598 | 4050 | | D ** | 00 | 4004 00 | r | Po 7 | ec | | 610 | | re I
Ti I | 598
204 | 4359 795
4359 929 | | Pr II
Tm I | 26
1 | 4371.00
4371.069 | P | Fe I
Nd II | 69
57 | | .833 | | Cr I | 104 | 4359.929 | | Cr I | 198 | 4371.10 | | Fe III | 4 | | .866 | | Al II | 70 | 4360.03 | P | Fe II | 148 | 4371.130 | | Co I | 93 | | .89 | | V II | 17 | 4360.16 | • | Ce II | 245 | 4371.17 | P | A II | 36 | | .918 | | Al II | 70 | 4360.487 | | T1 I | 204 | 4371.279 | - | Cr I | 22 | | .223 | | Al II | 70 | 4360.49 | | 8 11 | | 4371.28 | P | Cr I | 304 | | . 239 | | Fe I | 2 | 4360.690 | | Be II | 4 | 4371.33 | | CI | 14 | | .310 | | Gd II | 103 | 4360.720 | | Sm II | 23 | 4371.36 | | A II | 1 | | .316 | | Al II | 70 | 4360.80 | | Zr I | 31 | 4371.59 | | c II | 45 | | .425 | | 0 II | 16 | 4000 040 | | D ₂ T | 000 | 4071 05 | | 0 II | 76 | | .490 | | Pr II | 30 | 4360.813
4360.917 | | Fe I
Gd II | 903
16 | 4371.65
4372.09 | | AII | 86 | | .785 | | Al II | 70 | 4361.025 | | Be II | 4 | 4372.208 | | Ru I | 13 | | .801 | | Sm II | 37 | 4361.031 | | Co I | 1 | 4372.22 | P | Fe II | 33 | | .802 | | Al II | 70 | 4361.249 | | Fe II | | 4372.383 | | Ti I | 277 | | .854 | | Fe I | 828 | 4361.53 | | 8 III | 4 | 4372.4 | | Fe III | 122 | | .11 | | A II | 7 | 4361.661 | | Ce II | 157 | 4372.401 | | Ce II | 169 | | .36 | | N. III | 10 | 4361.710 | | Sr I | 6 | 4372.49 | | CII | 45 | | .64 | P | Zr II | 132 | 4361.85 | | C III | | 4372.50 | _ | AII | 63 | | . 939 | | Fe I | 414 | 4361.913 | | Co I | 1 | 4372.88 | P | V II | 13 | | 1.28 | P | Fe II | 202 | 4362.040 | | 8m II | 45 | 4372.91 | | Cl II | 52 | | .426 | | 0 11 | 2 | 4362.07 | | A II | 39 | 4372.994 | | Fe I | 473 | | 1.789 | | Ce II | 59 | 4362.10 | | N1 II | 9 | 4373.230 | | A I | 140 | | .97 | | V II | 36 | 4362.93 | | Cr II | 179 | 4373.254 | | Cr I | 22 | | 465 | | Sm II | 46 | 4362.95 | | Cr I | 82 | 4373.462 | | Sm II | 42 | | 1.52 | | HP II | 72 | 4363.05 | | La II | 133 | 4373.563 | | Fe I | 214,413 | | .834 | | T1 II | 94 | 4363.134 | | Cr I | 103 | 4373.656 | | Cr I | 304 | | 051 | | Cr I
O II | 22
16 | 4363.30 | | C1 I | 8 | 4373.818 | P | Ce II
Fe I | 202
904 | | . 269 | | Nd II | 10 | 4363.525
4363.644 | | V I
Mo II | 23
3 | . 4373.90
4374.158 | - | Cr I | 104 | | | | | | 4000.044 | | MO II | v | 4014.100 | | V. 2 | 202 | | . 37 | P | Fe I | 691 | 4364.01 | | Y II | 70 | 1374.243 | | Gd II | 83 | | 549 | | Fe I | 413 | 4364.14 | | Cr I | 130 | 1374.28 | | C II | 45 | | 764 | | Re II
Cr I | 27
22 | 4364.140 | | GG II | 33 | 1374.455 | | Sc II
Fe I | 14
648 | | 770 | | | 23 | 4364.17 | | YII | 70 | 374.495 | P | Cr II | | | 849
8941 | | Pr II
Mg I | 23
14 | 4364.59 | | Al III
Ce II | 9 | :374.61
4374.825 | r | Ti II | 179
93 | | 9056 | | MgI | 14 | 4364.658
4364.66 | | La II | 135
53 | 4374.87 | | AII | 77 | | 1.1 | • | Ĉ I | 15 | 4364.73 | | 8 111 | 7 | 4374.918 | | Co I | 150 | | 1.101 | | Sm II | | 4364.87 | | Cr I | 158 | 4374.923 | | Nd II | 15 | | 1. 23 | | A II | 1 | 4364.89 | P | Fe II | 202 | 4374.94 | | A II | 13 | | , | | Ac TT | 7 | 400 | | n | | 40== 00 | | u ** | 10 | | 25
68 | P | As II
Cr II | 7
37 | 4365.56 | | Fe III | 4 | 4375.00
4375.039 | | N II
Nd II | 16
8 | | 2.70 | * | Fe III | 4 | 4365.72
4365.745 | | Ne II
V I | 57
79 | 4375.039 | | V I | 140 | | 1.733 | | Ce II | 220 | 4365.902 | | Fe I | 415 | 4375.333 | | Çr Î | 103 | | 1.737 | | Fe I | 71 | 4366.165 | | Fe II | 216 | 4375.35 | P | T1 II | 104 | | 1.872 | | V I | 5 | 4366.315 | | Nd II | 12 | 4375.425 | | Ti I | 219 | | 1.60 | | 0 11 | 76 | 4366.33 | | Cr I | 153 | 4375.48 | P | Fe I | 797 | | 1.66 | | N III | 10 | 4366.45 | | Zr I | 61 | 4375.540 | | Co I | 143 | | 1.983 | | Cr I | 198 | 4966.806 | |) II | 2 | 4375.918 | | Ce II | 134 | | 1.064 | | Ti I | 204 | 4366.91 | | A II | 36 | 4375.932 | | Fe I | 2 | | 1.28 | P | Fe I | 975 | 4367.07 | P | Fe I | 1170 | 4375.96 | | A II | 17 | | 1.358 | • | Fe II | 213 | 4367.36 | p. | N1 I | 88 | 4376.78 | | C II | 46 | | 1.40 | | La II | 58 | 4367.581 | - | Fe I | 414 | 4376.782 | | Fe I | 471,904 | | 1.540 | | MgI | 13 | 4367.657 | | T1 II | 104 | 4370.798 | | Or I | 304 | | 1.56 | | S III | 7 | 4367.87 | | A II | 98 | 4377.330 | | Fe I | 990 | | 1.609 | | Sc II | 14 | 4367.90 | | Hf II | 15 | 4377.549 | | Cr I | 83 | | 1.979 | _ | V I | 103 | 4367.906 | | Fe I | 41 | 4377.765 | | Mo II | 3 | | 5.03 | P | Fe II | 202
22 | 4367.966 | | Cb II | 8 | 4377.796 | | Fe I
Ne II | 645
65 | | 5.09
5.096 | | Eu II
Ca I | 22
37 | 4368.031
4368.042 | | Sm II
V I | 37
5 | 4377.95
1378.01 | | 0 II | 102 | | | | | | 2000.042 | | | • | | | | | | A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element |
Multiplet No. | |-----------------|------|-----------------|---------------|----------------------|------|----------------|-------------------|--|------|----------------|---------------| | 1.10 | | La II | 77 | 4391.84 | | S II | 43 | 4406.67 | | Gd II | 103 | | 3.236 | | Sm II | 53 | 4391.87 | P | Fe I | 992 | 4407.278 | | Ce II | 64 | | 1.41 | P | O II
Fe I | 102
759 | 4391.94 | | Ne II
V I | 57
23 | 4407.637 | | V I
Ti II | 22
51 | | 1.73
3.09 | P | N III | 17 | 4392.074
4392.26 | | Cr I | 130 | 4407.678
4407.714 | | Fe I | 68 | | 1.238 | | V I | 22 | 4392.31 | P | Fe I | 757 | 4407.72 | | Cr I | 129 | | 3.25 | | A II | 63 | 4392.58 | | Fe I | 973 | 4407.911 | | Be I | 4 | | 1.50 | | Ne II | 56 | 4393.03 | P | Fe I | 473 | 4408.204 | | V I | 22 | |).74 | | A II
Zr II | 7
88 | 4393.45 | | Na I | 17 | 4408.248 | | Gd II | 44 | |).78 | | Zr 11 | 88 | 4393.534 | | Cr I | 102 | 4408.419 | | Fe I | 68 | | 1.782 | | Cr I | 130 | 4393.70 | P | Fe I | 899 | 4408.511 | | v 1 | 22 | | 3.90 | | C1 I | 7 | 4393.835 | | VI | 40 | 4408.844 | | Pr 14 | 4 | | 1.97 | | C III | 14 | 4393.925 | | T1 T | 244 | 4408.92 | | V II | 224 | |).060 | | Ce II
Mg I | 155
12 | 4394.057 | P | Ti II
Fe I | 51
975 | 4409.123
4409.22 | | Fe I
Ti II | 645
61 | |).38
).55 | | Cr I | 130 | 4394.31
4394.65 | r | A II | 87 | 4409.30 | | Ne II | 57 | |).642 | | Gd II | 68 | 4394.719 | | Gd II | 44 | 4409.519 | | Ti II | 61 | | 1.04 | | V I | 23 | 4394.779 | | Ce II | 259 | 4409.84 | | Mg I | 48 | | 1.112 | | Cr I | 64 | 4394.83 | | Cr I | 130 | 4410.026 | | Ru I | 5 | | 1.290 | | Nd II | 56 | 4394.855 | | Ti I | 78 | 4410.06 | | CII | 40 | | 1.79 | P | Fe II | 9 | 4394.94 | | Zr I | 61 | 4410.304 | | Cr I | 129 | | 2.02 | P | Fe I | 938 | 4395.031 | | Ti II | 19 | 4410.516 | | N1 I | 88 | | 2.061 | | Gd II | 46 | 4395.228 | | V I | 22 | 4410.641 | | Ce II | 33 | | 2.167 | | Ce II
Fe III | 2
4 | 4395.288 | | Fe I | 828 | 4410.967 | | Cr I | 102 | | 2.31
2.33 | P | V II | 36 | 4395.417
4395.514 | | Cr I
Fe I | 129
991,992 | 4411.052
4411.080 | | Nd II
Ti II | 8
115 | | 2.777 | | Fe I | 799a | 4395.78 | | Fe III | 4 | 4411.093 | | Cr I | 129 | | 2.853 | | Cr. I | 64 | 4395.788 | | Pr II | 29 | 4411.20 | | CII | 39 | | 2.95 | | Zr II | 109 | 4395.848 | | T1 II | 61 | 4411.21 | | La II | 138 | | 3.10 | | Zr II | 97 | 4395.95 | | 0 11 | 26 | 4411.34 | | S I | 5 | | 3.119 | | Gd II | 67 | 4397.251 | | Cr I | 129 | 4411.52 | | C II | 39 | | 3.119 | | Eu II | 27 | 4397.251 | P | Fe II | 33 | 4411.786 | | CoI | 27 | | 3.24 | | C III | 14 | 4397.37 | • | Ti IV | •• | 4411.878 | | Mn I | | | 3.44 | | La II | 76 | 4907.51 | | Gd II | | 4411.036 | | T1 II | 61 | | 3.547 | | Fe I | 41 | 4397.94 | | Ne II | 56 | 4412.155 | | Pr II | 8 | | 3.79
4.08 | | A II
Ne II | 16
60 | 4398.02
4398.314 | | Y II
Ti II | 5
61 | 4412.250
4412.265 | | Cr I
Nd II | 22
9 | | 4.13 | P | Fe I | 1101 | 4398.52 | | V II | 187 | 4412.43 | P | Fe I | 69 | | 4.33 | P | Fe II | 32 | 4398.625 | | N1 I | 102 | 4412.436 | | T1 I | 54 | | 4.543 | | Ni I | 86 | 4398.787 | | Ce II | 81 | 4412.54 | | Ne II | 55 | | 4.0 | P | W4 TT | 10 | **** | | | | | | | | | 4.6
4.643 | P | Ni II
Mg II | 10 | 4399.14
4399.203 | | C1 II
Ce II | 46
81 | 4413.04
4413.20 | | Zr I
Ne II | 61
57,65 | | 4.682 | | Fe I | 474 | 4399.44 | | Zr II | 67 | 4413.40 | P | Fe I | 1046 | | 4.722 | | v I | 5,22 | 4399.607 | | N1 I | 196 | 4413.600 | | Fe II | 32 | | 4.813 | | Sc II | 14 | 4399.767 | | Ti II | 51 | 4413.765 | | Pr II | 26 | | 4.977
5.00 | | Cr I
Ne II | 22
56 | 4399.823
4399.86 | P | Cr I
Fe II | 129
20 | 4413.784 | | Nd II
Cr I | 22
234 | | 5.08 | | A II | 98 | 4400.09 | P | A Il | 20
1 | 4413.866
4414.03 | P | Fe I | 825 | | 5.20 | | La II | 75 | 4400.18 | | Gd II | 67 | 4414.17 | P | V II | 13 | | 5.260 | | Fe I | 415 | 4400.26 | | N1 I | 146 | 4414.20 | P | Ni I | 88 | | F 001 | | Fe II | 27 | 4400 077 | | | 4. | | | | | | 5.381
5.45 | P | V II | 30 | 4400.355
4400.575 | | Sc II
V I | . 14
22 | 4414.23
4414.29 | P | Fe I
P II | 475
25 | | 5.663 | - | Nd II | 50 | 4400.63 | P | Ti Îl | 93 | 4414.37 | | 0 11 | 60 | | 6.434 | | Tm I | 1 | 4400.828 | _ | Nd II | 10 | 4414.432 | | Nd II | 3 | | 6.461 | | N1 I | 169 | 4400.870 | | N1 I | 148 | 4414.47 | P | Fe I | 643 | | 6.57
6.6 | P | Fe II
Fe I | 26
899 | 4401.02
4401.293 | | A II
Fe I | J
900 | 4414.54 | | Zr II
Mn I | 79
22 | | 6.835 | | Ce II | 57 | 4401.35 | | Zr II | 828
68 | 4414.879
4414.909 | | O II | 5 | | 6.858 | | Ti II | 104 | 4401.447 | | Fe I | 350 | 4415.125 | | Fe I | 41 | | 7.213 | | AI | 40 | 4401.547 | | N1 I | 86 | 4415.37 | | 8 11 | 53 | | 7 200 | | Cr I | 0.4 | **** | | | | | | | | | 7.380
7.496 | | Cr I | 84
103 | 4401.74
4401.97 | | A II
P II | 76
24 | 4415.559
4416.474 | | Sc II
V I | 14
22 | | 7.674 | | Gd II | 15 | 4402.86 | | SII | 43 | 4416.535 | | Ti I | 161 | | 7.897 | | Fe I | 476 | 4402.875 | | Fe IĮ | | 4416.77 | | Ne II | 61 | | 7.928 | | He I | 51 | 4403.03 | | C1 I | 6 | 4416.817 | | Fe II | 27 | | 8.007
8.077 | | Ce II
Ti I | 5
219 | 4403.35 | | Zr II
Sm II | 79 | 4416.975 | | 0 11 | 5 | | 8.16 | | K II | 7 | 4403.360
4403.372 | | Cr I | 22
128 | 4417.274
4417.31 | | Ti I
P II | 161
24 | | 8.24 | | CIII | 14 | 4403.498 | | Cr I | 120 | 4417.37 | | Hf II | 51 | | 8.412 | | Fe I | 830 | 4403.54 | | T1 IV | | 4417.398 | | Co I | 150 | | 8.50 | | Zr II | 140 | 4400 000 | | | | | | m | | | 9.12 | P | V 11 | 13 | 4403.605
4404.10 | P | Pr II
Fe I | 3 4
987 | 4417.718 | | Ti II
Ti II | 40
51 | | 9.244 | - | Fe I | 2 | 4404.276 | F | Ti I | 218,219 | 4418.340
4418.432 | | Fe I | 412 | | 9.76 | | C1 I | 7 | 4404.397 | | Ti I | 78 | 4418.60 | P | Fe Î | 899 | | 9.870 | | Ni I | 87 | 4404.68 | | V II | 30 | 4418.784 | | Ce II | 2 | | 9.974 | | V I | 22 | 4404,752 | | Fe I | 41 | 4418.84 | | S III | 4 | | 0.14
0.322 | | Na I
Ni I | 17
136 | 4404.81 | | Zr II | 118 | 4419.032 | | Gd II | 15 | | 0.322 | | Fe I | 136
413 | 4404.911
4404.932 | | Ti I
Co I | 161 | 4419.10 | | Cr I
La II | 128
89 | | 0.585 | | Mg II | 10 | 4404.932 | | V I | 127
23 | 4419.16
4419.30 | P | Fe I | 893 | | | | | | | | | | • | - | | | | 0.858 | | Sm II | 15 | 4405.02 | P | Fe I | 2 | 4419.59 | _ | Fe III | 4 | | 0.953
(0.954 | | Gd II
Fe I | 32
414 | 4405.23 | | Ba II | 16 | 4419.78 | P | Fe I | 644 | | 0.977 | | Ti II | 61 | 4405.40
4405.694 | P | Fe I
T1 I | 991
78 | 4419.935
4419.94 | | V I
Na I | 21
16 | | 1.110 | | Nd II | 24 | 4405.849 | | Pr II | 4 | 4420.45 | | Zr I | 61 | | 1.114 | | Th II | 6 | 4406.02 | | 0 11 | 26 | 4420.468 | | Os I | 1 | | 11.26 | | Fe III | 42 | 4406.147 | | V I | 40 | 4420.526 | | Sm II | 32 | | 11.568 | | Co I
Ce II | 150
81 | 4406.22 | P | V II | 30 ' | 4420.665 | - | Se II | 14 | | 11.661 | | Cr I | 22 | 4406.26
4406.641 | | Cr I
V I | 152 | 4420.75
4420.90 | P | Fe II | 9
1 | | 2.100 | | | | 3200.041 | | , , | 22. | ************************************** | | | 4 | | A. | Type | Element | Multiplet No. | I A | Type | Element | Multiplet No. | IA | Туре | Element | Multiplet No. | |----------------|------|----------------|---------------|----------------------|------|----------------|---------------|----------------------|------|----------------|---------------------| | , 138 | | Sm II | 37 | 4431.922 | | Mn I | 40 | 4444.207 | | V I | 21 | | . 231 | | Pr II
Gd II | 13
103 | 4432.089 | | Ti II
Cr I | 51
81 | 4444.259
4444.267 | | Sm II
Ti I | 218 | | . 24
. 337 | | CoI | 150 | 4432.175
4432.26 | | Ne II | 74 | 4444.393 | | Ce II | 19 | | . 38 | | Ne II | 66 | 4432.41 | | S II | 43 | 4444.559 | | Ti II | 31 | | .573 | | V I | 22 | 4432.572 | | Fe I | 797 | 4444.563 | | Fe II
Ce II | 201 | | .754
.949 | | Ti I
Ti II | 218
93 | 4432.739
4432.80 | P | N II
Fe I | 55
471 | 4444.704
4445.26 | P | Fe II | 9 | | .477 | | v I | 79 | 4432.82 | - | Al II | 84 | 4445.48 | | Fe I | 2 | | ,570 | | Fe I | 350 | 4432.90 | P | Fe I | 271 | 4445.711 | | Co I | 150 | | .59 | | Y II | 5 | 4432.95 | | La II | 11 | 4445.77 | P | V II | 13 | | .697 | | Cr I | 234 | 4433.223 | | Fe I | 830 | 4445.88 | | Zr II | 96 | | .76 | | Hf II
T1 I | 103
78 | 4433.39 | P | Fe I | 412 | 4446.248
4446.387 | | Fe II
Nd II | 187
49 | | . 823
. 882 | | Fe I | 646 | 4433.48
4433.501 | | N II
Mo II | 55
3 | 4446.46 | | Ne II | 56 | | ,000 | | N1 I | 168 | 4433.578 | | Ti I | 267 | 4446.487 | | Gd II | 14 | | , 145 | | Fe I
V I | 412
40 | 4433.635 | | Gd II | 82 | 4446.71 | | F II
Fe I | 10 | | , 212
, 22 | P | Ti II | 61 | 4433.793
4433.83 | | Fe I
A II | 825
123 | 4446.842
4446.90 | P | Fe I | 828
596 | | .31 | | Na I | 16 | 4433.885 | | Sm II | 41 | 4447.033 | | N II | 15 | | .318 | | Cr I | 128 | 4433.968 | | Cr I | 128 | 4447.134 | | Fe I | 69 | | .678 | | Ce II | 21 | 4433.991 | | Mg II | 9 | 4447.18 | | F 11 | 10 | | ,73 | | K II | 5 | 4434.003 | | Ti I | 113,161 | 4447.722 | | Fe I | 68 | | .858 | | Fe I
P II | 830
31 | 4434.323 | | Sm II
Cr I | 36 | 4447.8 | P | Al II
O III | 83
33 | | .075 | | Cr I | 82 | 4434.75
4434.960 | | Ca I | 128
4 | 4447.82
4448.21 | P | 0 111 | 35 | | 102 | | Gd II | 67 | 4435.151 | | Fe I | 2 | 4448.47 | | A II | 127 | | .194 | | Fe I
Cr I | 757
129 | 4435.58 | | Eu II | 4 | 4448.88 | | A II | 127 | | . 281
. 339 | | Sm II | 45 | 4435.688
4435.84 | | Ca I
La II | 4
8 | 4448.97
4449.143 | P | Fe I
T1 I | 891
160 | | | | | | | | | | | | | | | .401 | P | Ti I
V II | 243
30 | 4436.025 | | Mn I
V I | 40 | 4449.336 | | Ce II
V I | 202
62 | | .62
.84 | F |
N1 I | 262 | 4436.138
4436.225 | | Gd II | 21
117 | 4449.573
4449.663 | | Fe II | 222 | | .129 | | Cr I | 152 | 4436.352 | | Mn I | 22 | 4449.867 | | Pr II | 4 | | .441 | | Ca I | 4 | 4436.48 | | Mg II | 19 | 4449.985 | * | Ti I | 159 | | . 662
. 75 | P | Fe I | 798
555 | 4496.566
4436.64 | | Ti I
Ti I | 160
267 | 4450.13
4450.301 | | N1 I
N1 I | 178
2 3 6 | | .79 | P | Fe I | 899 | 4436.931 | | Fe I | 516 | 4450.320 | | Fe I | 476 | | ,840 | | Ti I | 78 | 4436.981 | | Ni I | 86 | 4450.487 | | Ti II | 19 | | .95 | | P II | 24 | 4437.549 | | He I | 50 | 4450.732 | | Ce II | 3 | | .005 | | `v ı | 22 | 4437.570 | | N1 I | 168 | 4450.77 | P | Fe I | 972 | | .01 | | A II | 7 | 4437.612 | | Ce II | 169 | 4450.896 | | Ti I | 160 | | , 054
, 151 | | Ti I
Gd II | 161
14 | 4437.837
4438.044 | | V I
Sr I | 21
6 | 4451.545
4451.566 | | Fe II
Nd II | 50 | | . 18 | | Hf II | 87 | 4438.12 | | A II | 123 | 4451.586 | | Mn I | 22 | | ,098 | _ | Ti I | 128 | 4438.13 | | Gd II | 67 | 4451.61 | P | V II | 30
6 | | . 12
. 21 | P | T1 I
N II | 78
56 | 4438.232
4438.266 | | T1 I
Gd II | 218
44 | 4451.978
4452.008 | | Nd II
V I | 87 | | .30 | P | Fe I | 828 | 4438.353 | | Fe I | 828 | 4452.32 | P | Fe I | 898 | | .312 | | Fe I | 2 | 4438.48 | | C1 I | 6 | 4452.377 | | 0 11 | 5 | | .52 | | La II | 76 | 4438.53 | P | Fe I | 969 | 4452.45 | | PII | 31 | | ,606 | | Gd II | 66 | 4439.13 | P | Fe II | 32 | 4452.62 | P | Fe I | 969 | | .71 | P | Cr Ï
Ti II | 129
61 | 4439.30 | | Ne II
V II | 65
46 | 4452.70
4452.727 | | Hf II
Sm II | 94
26 | | ,90
,917 | P | Ce II | 171 | 4439.42
4439.45 | | V II
A II | 127 | 4453.005 | | Mn I | 22 | | 97 | | N II | - 55 | 4439.643 | | Fe I | 515 | 4453.312 | | Ti I | 113 | | 995
501 | | Mg II
Cr I | 9
129 | 4439.87 | | 8 III | 7 | 4453.35 | | V II
Ti I | 199
160 | | 515 | | V I | 21 | 4439.883
4439.95 | | Fe I
Ne II | 116
61 | 4453.708
4453.931 | | Gd II | 64 | | 54 | | Ne II | 57,61 | 4440.09 | | A II | 76,127 | 4454.382 | | Pr II | 5 | | .57 | P | Fe I | 973 | 4440.1 | | 0 III | 33 | 4454.383 | | Fe I | 350 | | 74 | P | Fe I | 899 | 4440.345 | | Ti I | 159 | 4454.629 | | Sm II | 49 | | 11 | P | V II | 13 | 4440.41 | | V II | 224 | 4454.655 | | Fe I | 902 | | 20
238 | P | Fe I
Pr II | 987
2,4 | 4440.45 | | Zr II
Fe I | 79
829 | 4454.781
4454.80 | | Ca I
Zr II | 4
40 | | 270 | | Ce II | 19 | 4440.479
4440.840 | | Fe I | 992 | 4455.012 | | Mn I | 28 | | 92 | | Fe I | 972 | 4440.863 | | Co II | 236 | 4455.032 | | Fe I | 974 | | 34
60 | | Zr II
Ne II | 118
74 | 4440.972 | | Fe I
T1 I | 645
160 | 4455.258
4455.318 | | Fe II
Mn I | 28 | | 796 | | V I | 22 | 4441.272
4441.56 | P | Fe I | 987 | 4455.321 | | Ti I | 113 | | | | | | | | | | | | | | | 90
938 | | La II
Cr I | 38
234 | 4441.683
4441.73 | P | V I
Ti II | 21
40 | 4455.45
4455.79 | | Cr I
La II | 127
53 | | 023 | | Ti I | 267 | 4441.81 | • | C IV | 4 | 4455.821 | | Mn I | 28 | | 18 | | A II | 7 | 4441.99 | | N II | 55 | 4455.85 | P | Fe II | 140 | | 197
366 | | Fe I
Ti I | 472
113 | 4442.268
4442.343 | | Cr I
Fe I | 102
68 | 4455.887
4456.331 | | Ca I
Fe I | 4
516 | | 486 | | Cr I | 234 | 4442.441 | | Ni I | 87 | 4456.394 | | Nd II | 50 | | 51 | P | Cr I | 128 | 4442.50 | | Zr II | 53 | 4456.43 | | SII | 43 | | 618
90 | | Fe I
Ne II | 68
56 | 4442.67
4442.72 | P | Ne II
Ce II | 56
19 | 4456.53
4456.612 | | V II
Ca I | 199
4 | | 00 | | | 00 | 1112.12 | • | 06 11 | 10 | 11001012 | | | | | 95 | | Fe III | 4 | 4442.835 | | Fe I | 69 | 4456.63 | P | Fe I | 973 | | 02
02 | | A II
S II | 1
32 | 4442.99
4443.05 | | Zr II
O II | 88
35 | 4456.650
4456.84 | P | T1 II
Cr II | 115
16 | | 284 | | Ti I | 218 | 4443.07 | | Hf II | | 4456.95 | - | Ne II | 61 | | 369 | | Sc II | 14 | 4443.197 | | Fe I | 350 | 4457.045 | | Mn I | 28 | | 48
608 | | Zr I
Co I | 61
143 | 4443.707
4443.743 | | Cr I
Ce II | 234
171 | 4457.179
4457.42 | | Nd II
Zr II | 18
79 | | 626 | | Fe II | 222 | 4443.743 | | Ti II | 19 | 4457.428 | | Ti I | 113 | | 67 | | Ne II | 74 | 4443.94 | | La II | 133 | 4457.479 | | V I | 21 | | 82 | | N II | 55 | 4444.20 | P | V II | 30 | 4457.549 | | Mn I | 28 | | | | | | | | | | | | | | | | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Type | Element | Multiplet No. | |--------------|------|----------------|-----------------------|----------------------|--------|----------------|----------------------|-------------------------------------|------|----------------|--------------------| | 759 | | v I | 101 | 4467.98 | | P II | 25 | 4481.056 | | Gd II | 44 | | 101 | | Fe I | 992 | 4468.010 | | A I | 87 | 4481.129 | | Mg II | 4 | | 362 | | Mn I | 28 | 4468.38 | | Cr I | 127 | 4481.21 | | La II | 146 | | 336
517 | | Pr II
Sm II | 8
7 | 4468.493
4468.712 | | Ti II
Pr II | 31
20 | 4481.23
4481.261 | | N1 I
T1 I | 168 | | 538 | | Cr I | 127 | 4468.759 | | VI | 102 | 4481.273 | | Tm II | 146
1 | |)37 | | Ni I | 86 | 4468.91 | | Ne II | 61 | 4481.327 | | Mg II | 4 | | 121 | | Fe I | 68 | 4469.160 | | Ti II | 18 | 4481.44 | | Cr I | 270 | | 34 | | Cr I | 63 | 4469.32 | | O II | 59,94 | 4481.621 | | Fe I | 827 | | 738 | | Cr I | 127 | 4469.37 | | OI I | 15 | 4481.83 | | A II | 39 | | 760 | | v 1 | 21 | 4469.381 | | Fe I | 830 | 4482.02 | | CI II | 85 | | 96 | | N II | 21 | 4469.547 | | Co I | 150 | 4482.04 | | Zr II | 131 | | 12 | P | Fe I | 271 | 4469.710 | | V I | 87 | 4482.171 | | Fe I | 2 | | L6 | P | V I
Ce II | 62
2 | 4469.850
4469.92 | P Forb | Ce II
He I | 230
15 | 4482.257
4482.40 | p | Fe I
Ti II | 68
30 | | 213
292 | | V I | 21 | 4470.138 | 1 10.0 | Mn I | 22 | 4482.688 | F | Ti I | 113 | | 377 | | Mn I | 28 | 4470.39 | P | A II | 30 | 4482.750 | | Fe I | 828 | | 55 | P | Fe I | 1100 | 4470.483 | | Ni I | 86 | 4482.878 | | Cr I | 197 | | 56
769 | | A II
Cr I | 1
63 | 4470.864
4471.238 | | Ti II
Ti I | 40
146 | 4483.328
4483.424 | | Gd II
S II | 62
43 | | 109 | | 01 1 | 00 | 17/1.200 | | | 140 | 4400.424 | | 3 11 | 40 | |)85 | | Mn I | 28 | 4471.240 | | Ce II | 8 | 4483.50 | | V II | 224 | | 138 | | Ce II | 10 | 4471.29 | | Gd II | 82 | 4483.67 | | PII | 25 | | 205 | | Fe I
Zr II | 471
67 | 4471.477
4471.52 | | He I
Ne II | 1 4
65 | 4483.78 | P | Fe I
Ce II | 898
3 | | 22
37 | | Fe I | 725 | 4471.550 | | Co I | 150 | 4483.900
4483.918 | | Co I | 150 | | 13 | P | Fe II | 26 | 4471.68 | P | Fe I | 2 | 4484.227 | | Fe I | 828 | | 56 | | 0 111 | 33 | 4471.688 | | He I | 14 | 4484.513 | | Co I | 27 | | 354 | _ | Fe I | 2 | 4471.81 | P | Fe I | 972 | 4484.54 | | Ni I | 102 | | 30
989 | P | Fe I
Fe I | 412
471,825,902 | 4472.09
4472.52 | P | Ca II
Fe I | 6
39 | 4484.68
4484.93 | P | Cr I
Fe II | 151
9 | | 908 | | 10 1 | 411,020,002 | 41.2.02 | • | 10 1 | 03 | 4404.55 | r | re 11 | • | |)22 | | Mn I | 28 | 4472.57 | P | Fe I | 411 | 4485.013 | | Ti I | 184 | | 999 | _ | Ti I | 8 | 4472.721 | | Fe I | 595,900 | 4485.15 | | Eu II | 26 | | 20 | P | Fe I
V I | 82 4
87 | 4472.792
4472.921 | | Mn I
Fe II | 22
37 | 4485.44 | | Zr II
Fe I | 79
8 3 0 | | 363
107 | | Nd II | 54 | 4473.015 | | Sm II | 26 | 4485.679
4485.97 | P | Fe I | 825 | | 160 | | N1 I | 86 | 4473.782 | | Cr I | 63 | 4486.14 | - | Hf II | 23 | | 76 | P | A II | 13 | 4474.03 | | La II | 133 | 4486.352 | | Gd II | 135 | | 774 | | Cr I | 127 | 4474.045 | | V I
Fe II | 110 | 4486.65 | | Hf II | 107 | | 90
95 | | Fe III
P II | 106
25 | 4474.194
4474.714 | | V I | 171
101 | 4486.66
4486.909 | | S II
Ce II | 43
57 | | ,,, | | | | | | | *** | ************ | | 00 11 | • | | 385 | | Nd II | 50 | 4474.77 | | A II | 38 | 4487.01 | P | Fe I | 988 | | 14 | p | Fe I
Fe I | 471
901 | 4474.852
4474.95 | | T1 I
O III | 113,184
37 | 4487.28 | P | Y I
Fe I | 14
824 | | 16
247 | P | Gd II | 83 | 4475.19 | P | Ti I | 184 | 4487.36
4487.46 | P | B III | 2 | | 391 | | T1 I | 160 | 4475.20 | P | Cr I | 63 | 4487.46 | | Cr I | 63 | | \$10 | | Ce II | 20 | 4475.22 | | Ne II | 65 | 4487.47 | | Y I | 14 | | 127 | | N1 I | 102 | 4475.24 | | V II | 198 | 4487.72 | _ | 0 11 | 104 | | 589
582 | | Ti I
S II | 160
43 | 4475.27
4475.28 | | P II
Cl II | 24
41,85 | 4487.74 | P | Fe I
Pr II | 594
3 | | 32 | | V 11 | 199 | 4475.91 | | C1 I | 7 | 4487.821
4488.031 | | Cr I | 298 | | | | | | | | | | | | | | | 425 | | S II | 40 | 4475.345 | | Cr I
Ti I | 95 | 4488.09 | | 0 11 | 104 | | 158
869 | | Ti II
Cr I | 40
127 | 4475.518
4475.70 | | VII | 184
199 | 4488.140
4488.15 | | Fe I
N II | 819
21 | | 577 | | Mn I | 22 | 4475.72 | | YI | 14 | 4488.27 | P | Ti I | 184 | | 59 | P | re I | 555 | 4475.99 | ₽ | re I | 899 | 4488.319 | | T1 II | 115 | | 747 | | V I | 110 | 4476.021 | | Fe I | 350 | 4488.401 | | Gd II | 82 | | 773
907 | | Fe I
Cr I | 472
127 | 4476.08
4476.082 | | 0 II
Fe I | 87
830 | 4488.898
4488.917 | | V I
Fe I | 86,110
213,827 | | 97 | | Bu II | 27 | 4476.61 | P | Ti I | 184 | 4489.089 | | Ti I | 146 | | 075 | | Nd II | 5 | 4477.02 | | Cr I | 63 | 4489.185 | | Fe II | 37 | | | | O 7 | 000 | 4477 45 | | v . | | | | | | | 15
33 | P | Cr I
Fe I | 267
1099 | 4477.45
4477.74 | | Y I
N II | 14
21 | 4489.471
4489.48 | | Cr I
O II | 86 | | 357 | • | Cr I | 127 | 4477.88 | | o II | 88 | 4489.741 | | Fe I | 2 | | 4 | | Y II | 81 | 4478.03 | P | A II | 13 | 4489.87 | | Al II | 107 | | 40 | | O II
N II | 01 | 4478.040 | | Fo I | 60 | 4490.00 | | C1 11 | 41 | | 54
601 | | Nd II | 21
13 | 4478.319
4478.48 | | Co I
S III | 150
7 |
4490.081
4490.084 | | Mn I
Fe I | 22
469 | | 78 | | Cr II | 191 | 4478.657 | | Sm II | · | 4490.24 | P | Fe I | 319 | | 807 | | T1 I | 146 | 4478.795 | | Gd II | 15 | 4490.541 | | Ni I | 134,235 | | 11 | | P II | 24 | 4479 | P | N IV | 6 | 4490.56 | | Cr I | 267 | | 13 | P | Cr I | 34 | 4479.00 | P | Fe I | 987 | 4490.60 | | Hf II | 74 | | 465 | | Cr I | 127 | 4479.01 | P | Fe I | 899 | 4490.63 | P | Fe I | 891 | | 183 | | Fe I | 901 | 4479.29 | | Ca II | 6 | 4490.773 | | Fe I | 974,974 | | 32 | | 0 11 | 87 | 4479.359 | | Ce II | 203 | 4490.815 | | V I | 86 | | 394 | | Ni I | 168
72 | 4479.432
4479.612 | | Ce II
Fe I | 124
828,848 | 4490.90 | Forb | Al III
A II | 7
39 | | 41
547 | | Gd II | 72
44 | 4479.612
4479.724 | | Ti I | 146 | 4490.99
4491.10 | р | Ce II | 19 | | 554 | | Fe I | 350 | 4479.891 | | Al III | 8 | 4491.164 | - | V I | 62 | | 57 | P | Fe I | 2 | 4479.968 | | Al III | 8 | 4491.25 | | 0 11 | 86 | | 65 | | K II | 6 | 4479.97 | P | Fe I | 974 | 4491.401 | | Fe II | 37 | | 881 | | Co I | 150 | 4480.142 | | Fe I | 515 | 4491.678 | | Cr I | 95 | | 939 | | Fe I | 992 | 4480.263 | | Cr I | 197 | 4491.858 | | Cr I | 83 | | 227 | | Gd II | 82 | 4480.27 | P | Fe I | 823 | 4492.312 | | Cr I | 197 | | 342 | | Sm II | 53 | 4480.350 | | Cu I | 8 | 4492.3 | | S II | 58 | | .36
.446 | | Fe III
Fe I | 106
1048 | 4480.46
4480.570 | P | Fe II
N1 I | 20
211 | 4492.4 0
4492.42 7 | | N I
Pr II | 23 | | .446
.537 | | Ce II | 17 | 4480.600 | | Ti I | 146 | 4492.540 | | Ti I | 184 | | 561 | | Cr I | 127 | 4480.687 | | Fe II | | 4492.693 | | Fe I | 969 | | .83 | | S III | 7 | 4480.85 | ~ | A II | 104 | 4492.98 | P | Fe I | 639
79 6 | | .88 | | 0 11 | 94 | 4481.04 | P | Fe I | 893 | 4493.37 | P | Fe I | . 50 | | | | | | | | | | | | | | | I A | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |------------------|--------|----------------|---------------------|----------------------|--------|----------------|----------------|----------------------|------|----------------|----------------| | 93.53 | | Ti II | 18 | 4507.854 | | Ca I | 24 | 4521.924 | | Ni I | 116 | | 99.579 | - | Fe II | 203 | 4507.95 | | Cr I
Ce II | 267 | 4521.94 | | Gd II | 105 | | 94.05
94.180 | P | Fe I
Na I | 973
15 | 4508.083
4508.21 | | Ne II | 153
68 | 4522
4522.00 | P | O V
Cr I | 15
173 | | 94.41 | | Zr II | 130 | 4508.26 | P | Fe II | 222 | 4522.3238 | | A I | 7 | | 94.47 | P | Fe I | 411 | 4508.283 | | Fe II | 38 | 4522.37 | | La II | 8,74 | | 94.568 | | Fe I | 68 | 4508.48 | | La II
S II | 52 |
4522.59 | | Eu II | 4 | | 94.67
94.71 | | N I
La I | 11 | 4509.0
4509.082 | | S II
Gd II | 48
84 | 4522.634 | | Fe II
Ne II | 38
68 | | 94.746 | | Co I | 168 | 4509.13 | P | Fe I | 213 | 4522.66
4522.798 | | Ti I | 42 | | 94.853 | | Gd II | 14 | 4509.287 | | v i | 110 | | | Gd II | 103 | | 95 | P | N IV | 6 | 4509.306 | | Fe I | 514,937 | 4522.82
4523.037 | | Sm II | 3 | | 35.006 | | Ti I | | 4509.440 | | Ca I | Q-t | 4523.077 | | Ce II | 2 | | 35.04 | | Cr I
Cr I | 101
275 | 4510.160 | | Pr II
Mn II | 20
17 | 4523.403 | | Fe I | 829 | | 95.275
95.386 | | Fe I | 319,970 | 4510.210
4510.380 | | Gd II | 30 | 4523.60
4523.74 | p | N III
Ni I | 3
99 | | 95.389 | | Ce II | 154 | 4510.7333 | | AI | 9 | 4523.912 | • | Sm II | 41 | | 95.44 | | Zr II | 79 | 4510.82 | P | Fe I | 823 | 4524.218 | | V 1 | 99 | | 95.46
95.52 | P
P | T1 II
Fe II | 40
147 | 4510.92
4511.04 | P | N III
Fe I | 3
970 | 4524.344
4524.68 | | Mo I
S II | 6
40 | | | | | | | | | | | | | | | 35.566
35.9 | | Fe I
S II | 827
48 | 4511.176 | | Ti I
Ne II | 70 | 4524.732 | | Ti II | 60 | | 95.986 | | Fe I | 825 | 4511.29
4511.310 | | In I | 1 | 4524.74
4524.744 | | Hf II
Sn I | 104
5 | |)6.062 | | v ı | 110 | 4511.07 | | No II | 70 | 4524.81 | P | v 11 | 212 | |)6.146 | | Ti I | 146 | 4511.82 | P | Cr 11 | 191 | 4524.841 | | Cr I | 276 | |)6.245
)6.429 | | Ti I
Pr II | 8
4,25 | 4511.829
4511.903 | | Sm II
Cr I | 14
150 | 4524.928 | | Ba II
S II | 3
40 | | 16.75 | P | Ti I | 184 | 4512.282 | | Ca I | 24 | 4524.946
4525.142 | | Fe I | 826 | | 36.862 | | Cr I | 10 | 4512.535 | | Al III | 3 | 4525.15 | P | Fe I | 819 | | 16.864 | | v I | 86 | 4512.72 | | v II | 212 | 4525.168 | | V I | 110 | | 16.96 | | Zr Il | 40 | 4512.734 | | Ti I | 42 | 4525.21 | P | Ti II | 18 | | 16.989 | | Mn II | 17 | 4512.995 | | N1 I | 163 | 4525.31 | | La II | 76 | | 17.30
17.58 | | CI II
B III | 41,85
3 | 4513.21
4513.58 | | Cr I
Y I | 150
15 | 4525.75 | P | Fe II
Fe I | 9
319 | | 17.657 | | No. I | 15 | 4610.715 | | I I | 118 | 4525.875
4520.108 | | Or I | 190 | | 17.709 | | Ti I | 184 | 4513.72 | P | Fe I | 213 | 4526.12 | | La II | 50 | | 17.849 | | Ce II | 19 | 4513.89 | _ | Cr I | 175 | 4526.20 | | C1 I | 15 | | 17.88
18.276 | | S II
Gd II | 53
31 | 4513.90
4514.189 | P | Ni I
Fe I | 131
514 | 4526.374
4526.40 | Р | Ti I
Fe I | 127,184
969 | | 8.54 | P | Fe I | 988 | 4514.191 | | V I | 110 | 4526.466 | • | Cr I | 33 | | 18.55 | | A II | 136 | 4514.373 | | Cr I | 287 | 4526.563 | | Fe I | 471 | | 18.730 | | Cr I | 81 | 4514.505 | | Gd II | 103 | 4526.565 | | Tm II | 1 | | 8.76 | | La II | 94 | 4514.531 | | Cr I | 95 | 4526.58 | P | Fe II | 171 | | 8.897 | | Mn I
Ne II | 22
64 | 4514.80
4514.89 | | Ne II
N III | 55
3 | 4526.794 | | Co I
Ca I | 177
36 | | 9.18 | | PII | 11 | 4515.094 | | Sm II | • | 4526.935
4527.25 | | Y I | 14 | | 9.29 | | s III | 7 | 4515.17 | P | Fe I | 319 | 4527.305 | | Ti I | 42 | | 9.475 | | Sm II | 23 | 4515.19 | P | Fe II | 20 | 4527.339 | | Cr I | 33,82 | | 0.295
0.32 | P | Cr I
Ti II | 150
18 | 4515.337
4515.440 | | Fe II
Cr I | 37
126 | 4527.348
4527.455 | | Ce II
Ti I | 108
7 | | 0.86 | р | v II | 30 | 1515.559 | | v r | 100 | 4507.471 | | Cr I | 174 | | 1.112 | • | Cr I | 81 | 4515.610 | | Til | 184 | 4527.648 | | СР 11 | 8 | | 1.256 | | V I | 86 | 4516.02 | | C 111 | 9 | 4527.796 | | Fe I | 641 | | 1.270 | | Ti II | 31 | 4516.08 | P | Fe I | 639 | 4527.80 | | ΥI | 14 | | 1.692 | | Ni I
Cr I | 115
81 | 4516.27
4516.38 | P | Fe I
La II | 819 | 4527.86
4527.90 | P | N III
Fe I | 13
897 | | 1.808 | | Nd II | 53 | 4516.45 | P | Fe I | 825 | 4527.90 | r | Co I | 156 | | 1.972 | | V I | 62 | 4516.56 | P | Cr II | 191 | 4527.96 | | s III | 7 | | 2.16 | | La II | 154 | 4516.93 | | C III | 9 | 4527.990 | _ | V I | | | 2.220 | | Mn I | 22 | 4517.094 | | Co I | 150 | 4528 | P | N IV | 6 | | 2.52
2.592 | | Ne II
Fo I | 56
796 | 4517.10
4517.35 | | eg II | 135
211 | 4528,472
4528,51 | | Ce II | 1
56 | | 2,95 | | AII | 63 | 4517.43 | P Forb | | 13 | 4528.619 | | Fe I | 68 | | 3.05 | | Cr I | 310 | 4517.530 | | Fe I | 472 | 4528.76 | P | Fe I | 595 | | 3.13 | P | A II | 13 | 4517.595 | • | Pr II | 2 | 4528.82 | P | Fe I | 468 | | 3.762
4.23 | р | Ti I
Fe I | 184
988 | 4517.60
4517.79 | P | Fe I
Ne II | 992
55 | 4528,911
4529.08 | | Al III
V II | 3
198 | | 4.27 | • | CI II | 41 | 4517.81 | | N1 I | 103 | 4529.176 | | Al III | 3 | | 4.52 | P | Cr II | 16 | 4518.022 | | Ti I | 42 | 4529.301 | | v r | 95 | | 4.838 | | Fe I | 555 | 4518.18 | | N III | 3 | 4529.376 | | Tm II | 5 | | 5.00 | | Ca I | 24 | 4518.30 | P | Ti II | 18 | 4529,465 | _ | Ti II | 82 | | 5.22
5.23 | | Cr I
K II | 151
1 | 4518.38
4518.46 | | V II
Fo I | 212
599 | 4529.56
4529.502 | P | Fe II | 171
987 | | 5.715 | | Ti I | 184 | 4518.58 | P | Fe I | 69 | 4529.589 | | νī | 99 | | 5.75 | | NG II | 3 | 4518.58 | | Lu I | | 4529.7 | | 0 111 | 32 | | 5.95 | | YI | 14 | 4518.63
4518.700 | | Cr I
Ti I | 34,100
112 | 4529.851 | | Cr I | 33
17 | | 5.997
6.302 | | Cu II
Ni I | 1
1 33 | 4518.700
4518.9 | | 8 11 | 47 | 4530.034
4530.12 | Р | Mn II
Cr I | 126 | | 6.333 | | 6d 11 | 44 | 4519.02 | | Hf II | • | 4530.403 | | N II | 59 | | 6.50 | | 0 11 | | 4519.19 | | C1 II | 41 | 4530.54 | | La II | 73 | | 6.582 | | Nd II | 7 | 4519.633 | | Sm II | 49 | 4530.57 | | A II | 35 | | 6.624 | | Ca I | 24 | 4519.83 | | Cr I
Ni I | 126
51 | 4530.688 | | Cr I | 33
33 | | 6.74
6.858 | P | Ti II
Or I | . 3 0
ຂອດ | 4519.986
4520.070 | | GG II | 92
31 | 4530.755
4530.76 | | Cr I
P II | 25,35 | | 6.931 | | Gd II | 13 | 4520.225 | | Fe II | 37 | 4530.785 | | Cu I | 8 | | 7.11 | _ | Zr I | 31 | 4520.24 | P | Fe I | 471 | 4530.84 | | N III | 3 | | 7.19
7.195 | P | Cr II
Fe II | 16
213 | 4520.37 | P | Ti II
Cr I | 30
277, 287 | 4530.949 | | Co I
Fe I | 150
39 | | 7.417 | | Ca I | 213
24 | 4521.141
4521.296 | | Gd II | 44 | 4531.152
4531.60 | P | Ti I | 112 | | 7.559 | | N II | 21 | 4521.65 | Þ | Fe I | 641 | 4531.633 | | Fe I | 555,847,992 | | | | | | | | | | | | | | | | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No | |--------------|------|----------------|---------------|----------------------|--------|-----------------|---------------|----------------------|------|----------------|--------------| | 82 | | Cr I | 275 | 4545.335 | | Cr I | 33 | 4561.03 | | A II | 51 | | 188 | | V II | 212 | 4545.394 | _ | A I | 109 | 4561.20 | | Cr I | 34 | | 75 | | Cr I | 212 | 4545.49
4545.54 | p
p | Cr II
Fe I | 16
894 | 4561.461
4561.54 | | Pr II
Cr I | 23
277 | | 143 | | Fe I
Hf II | 641
25 | 4545.54
4545.956 | r. | Cr I | 10 | 4561.88 | | S II | | | 18
238 | | Ti I | 42 | 4545.985 | | Co I | 142 | 4562.05 | | Ne II | 64 | | 3 | | s II | 47 | 4546.36 | | N III | 13 | 4562.360 | | Ce II | 1 | | 81 | | PII | 25 | 4546.47 | P | Fe I | 1047 | 4562.5 | | La II |
161 | | 960 | | Ti II | 50 | 4546.68 | q. | Fo I | 989 | 4562.637 | | Ti I | 7 | | 985 | | Co I | 150 | 4546.930 | | N1 I | 261 | 4563.245 | | Cr I | 246 | | 154 | | Pr II | 20 | 4547.022 | | Fe I
Ni I | 39 | 4563.427 | | Ti I
Cr I | 266
172 | | 166 | | Fe II | 37
26 | 4547.234
4547.34 | | N III | 146
3 | 4563.657
4563.761 | | Ti II | 50 | | 26
57 | | Mg II
N III | 3 | 4547.78 | | A II | 76 | 4563.78 | | A II | • | | 62 | P | Fe I | 1169 | 4547.850 | | Ti I | 270 | 4564.166 | | Cr I | 312 | | 66 | | Ne II | 58 | 4547.851 | | Fe I | 755 | 1564.216 | | Ti I | 112 | | 782 | | Ti I | 42 | 4548.094 | | Ti I | 270 | 4564.43 | | A II | 85 | | 11 | | N III | 13 | 4548.764 | | Ti I | 42 | 4564.592 | | V II | 56 | | 146
215 | | Cr I
V II | 33
210 | 4549.214
4549.467 | | Fe II
Fe II | 186
38 | 4564.715
4564.78 | | Fe I
N II | 823
14 | | 38 | | Hf II | 72 | 4549.50 | | LaI | 11 | 4564.832 | | fе I | 472 | | 47 | | Ne II | 55 | 4549.547 | | SII | | 4565.13 | P | N1 I | 88 | | 50 | | Fe III | | 4549.622 | | T1 II | 82 | 4565.22 | | P II | 36 | | 51 | | A II | 86 | 4549.644 | | A I | | 4565.324 | | Fe I | 641 | | 574 | | T1 I | 42 | 4549.658 | | Co I | 150 | 4565.43 | _ | Zr 11 | 116 | | 721 | | Cr I | 33,276 | 4549.82 | P | Ti II | 39 | 4565.45 | P | Ni I | 99 | | 75 | _ | Zr I | 30 | 4550,954 | | Gd II | 44 | 4565.49 | | Ne II
Cr I | 55
21 | | 87 | P | Ti I
Ti I | 112 | 4551.236
4551.297 | | Ni I
Ce II | 236
229 | 4565.512
4565.578 | | Co I | 150 | | 920
921 | | Pr II | 42
1 | 4551.455 | | Gd II | 62 | 4565.684 | | Fe I | 554 | | 051 | | Ti I | 42 | 4551.667 | | Fe I | 972 | 4565.73 | | Mn I | 52 | | 509 | | Fe I | 896 | 4551.860 | | V I | 82 | 4565.78 | | Cr II | 39 | | 55 | | Cr I | 190 | 4552.25 | P | Ti II | 30 | 4565.842 | | Ce II | 21 | | 78 | | C1 II | 41 | 4552.37 | | As II | 4 | 4566.03 | P | Fe I | 1169 | | 663 | | v I | 82 | 4552.378 | | S II | 40,48 | 4566.206 | | Sm II | 32 | | 67 | | A II | 123 | 4552.453 | | Ti I
N II | 42
58 | 4566.520 | | Fe I
Cr I | 641
125 | | 677
751 | | Fe I
Ne I | 594
11 | 4552.536
4552.544 | | Fe I | 38 | 4566.602
4566.68 | P | Fe I | 212 | | 952 | | Sm II | 45 | 4552.654 | | 8 111 | 2 | 4566.990 | - | Fe I | 723 | | 20 | P | Fe I | 1071 | 4552.659 | | Sm II | 23 | 4567.415 | | N1 I | 102 | | 58 | P | Fe I | 972 | 4553.01 | | Zr I | 31 | 4567.606 | | Nd II | 49 | | 64 | | V II | 212 | 4553.056 | | A I | 133 | 4567.872 | | Si III | 2 | | 73 | | AII | 104 | 4553.16 | | Ne II | 55 | 4567.90 | _ | LaI | 11 | | 764 | | Fe I | 115 | 4553.175 | | Ni I
Fe I | 135
472 | 4568 | P | O IV
Ti II | 15
60 | | 84
87 | | Fe I
La II | 969
149 | 4553.48
4553.949 | P | Cr I | 472
276 | 4568.312
4568.545 | | Pr II | 33 | | 95 | P | Fe I | 1048 | 4553.96 | | Zr II | 130 | 4568 62 | P | Fe I | 989 | | 096 | - | Ti I | | 4554.033 | | Ba II | 1 | 4568.789 | | Fe I | 554 | | 62 | | Cr II
Ce II | 39
108 | 4554.28
4554.467 | | O V
Fe I | 7
319 | 4568.842
4569.01 | | Fe I
Ne II | 894
69 | | 755 | | | | | | | | | | | | | 788
014 | | Cr T
V I | 93
100 | 4554.509
4554.81 | | Ru I
P II | 5
28 | 4569.06
4569.42 | P | Fe I
Cl II | 593
35 | | 016 | | Ga ÎI | 135 | 4554.830 | | Cr I | 173 | 4569.50 | | 0 111 | 36 | | 376 | | Ne I | 17 | 4554.989 | | Gd II | 82 | 4569.530 | | Cr I | 173 | | 483 | | Ti I | 8 | 4555.02 | | Cr II | 44 | 4569.644 | | Cr I | 173 | | 502 | | Cr I | 33 | 4555.069 | | Ti I | 266 | 4569.82 | | Fe III | 82 | | 71 | | La II | 81 | 4555.09 | | Cr I | 149 | 4569.849 | | Nd II | 5
11 | | 719
873 | | Cr I
Ti I | 150
112 | 4555.30
4555.30 | | Cr I
0 III | 212
34 | 4570.02
4570.024 | | La I
Co I | 178 | | 071 | | Cr 1 | 33 | 4555.421 | | Cs I | 2 | 4570.30 | | Cr I | 125,190 | | 269 | | Nd II | 58 | 4555.486 | | Ti I | 42 | 4570.34 | | Fe III | 66 | | 31 | | Hr II | 36 | 4555.75 | P | Fe I | 640 | 4570.425 | | V I | 109 | | 513 | | Cr I | 149 | 4555.890 | | Fe II | 37 | 4570.70 | | Hf II | 86 | | 523 | | Fe II | 38 | 4555.922 | | Cu II | 1 | 4570 . 906 | | Ti I | 266 | | 59 | | He II | 2 | 4556.129 | | Fe I | 410,820,974 | 4570.97 | | La II | 38 | | 671 | | Na I | 14 | 4556.136 | | Nd II | 6 | 4570.977
4570.98 | | Gd II | 84
173 | | 953
22 | | Fe I
Zr I | 593
48 | 4556.169
4556.735 | | Cr I | 173
12 | 4570.98
4571.0950 | | Cr I
Mg I | 1/3 | | 422 | | Fe I | 894 | 4556.765 | | V II | 198 | 4571.105 | | Cr I | 125 | | 603 | | Nd II | | 4556.939 | | Fe I | 638 | 4571.24 | P | Cr II | 16 | | 621 | | Cr I | 149,275 | 4557.237 | | Sc I | | 4571.44 | P | Fe I | 319 | | 720 | | Fe I | 827 | 4557.857 | | Ti I | 270 | 4571.676 | | Cr I | 32 | | 77 | P | Gr 11 | 16 | 4558.04 | | P. II | 29 | 4571.783 | | V I | 109 | | 22 | P | Fe I | 893 | 4558.080 | | Gd II | 44 | 4571.83 | | Cr I | 246
82 | | .74 | | Cr I
Co I | 100
142 | 4558.092 | | Ti I
Fe I | 262,263 | 4571.971
4572.13 | | T1 II
C1 II | 82
35 | | 810
91 | | A II | 142
95 | 4558.108
4558.46 | | La II | 894,974
39 | 4572.16 | | Cr I | 190,246 | | 948 | | Sm II | 32 | 4558.46 | | V II | 212 | 4572.277 | | Ce II | 1 | | .009 | | Ti II | 60 | 4558.58 | P | Fe II | 20 | 4572.671 | - | Be I | 3 | | . 11 | | Ne II | 64 | 4558.659 | | Cr II | 44 | 4572.83 | P | Cr II | 16 | | 48 | | C1 II | 48 | 4558.83 | | Cr II | 44 | 4572.86 | P | Fe I | 819 | | .50 | P | Fe I
Cr I | 970
33 | 4559.09
4559.28 | | Fe III
La II | 53 | 4572.92
4573.14 | | A II
Fe III | 94 | | .619
.688 | | Ti I | 33
42 | 4559.28
4559.920 | | Ti I | 112 | 4573.14 | | Cr I | 246 | | .70 | P | Cr II | 16 | 4559.945 | | Ni I | 115 | 4573.63 | P | Cr II | 16 | | .80 | - | N III | 12 | 4560.096 | | Fe I | 823 | 4573.81 | | Hf II | 40 | | .961 | | Ce II | 123 | 4560.26 | | Cr I | 211 | 4573.993 | | Sc I | | | ,08 | | A II | 15 | 4560.280 | | Ce II | 8 | 4574.03 | | N1 I | 87 | | 144 | | Ti II
Na I | 90
14 | 4560.710 | | V I
Ce II | 109
2 | 4574.240
4574.32 | | Fe I
Ta I | 554
1 | | , 218 | | nd 1 | 14 | 4560.959 | | 04 11 | ~ | 3017104 | | | - | | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |--------------------|--------|---------------|-------------------------|----------------------|------|---------------|-----------------|----------------------|------|----------------|---------------| | 574.45 | | Cr I | 148 | 4588.217 | | Cr II | 44 | 4602.005 | | Fe I | . 39 | | 574.49 | | Ne II | 64 | 4588.40 | P | Cr II | 16 | 4602.11 | | 0 11 | 93 | | 574.49 | | Zr II | 139 | 4588.730 | | Co I | 15 | 4602.51 | | Cr I | 210 | | 574.724 | | Fe I | 115 | 4589.689 | | Al II | 45 | 4602.75 | P | Fe II | 19 | | 574.777 | | Si III | 2 | 4589.750 | | Al II | 45 | 4602.944 | | Fe I | 39 | | 574.87 | | La II | 23 | 4589.76 | | Pr II | 23 | 4602.99 | | Li I | 6 | | 575.121 | | Cr I | 196 | 4589.79 | | PII | 24,36 | 4603.2 | P | N V | 1 | | 575.52 | | Zr I
Fe I | 5 | 4589.89 | | Cr II | 44 | 4603.34 | P | Fe I | 348 | | 575.80
576.331 | | Fe II | 593,970
38 | 4589.93
4589.961 | | A II
Ti II | 31
50 | 4603.956
4604.23 | P | Fe I
Fe I | 410
348 | | ,,,,,,,, | | | •• | *000.001 | | | 30 | 1001.00 | • | | | | 576.500 | | Mo I | 6 | 4590.00 | P | Cr II | 16 | 4604.42 | | Zr I | 29 | | 576.551 | | Ti I | 262 | 4590.505 | | V II | 210 | 4604.58 | | Cr I | 190 | | 376.76 | | Cr I | 148 | 4590.68 | | Fe III | . 52 | 4604.85 | P | Fe I | 846 | | 577.13 | P | V II | 56 | 4590.69 | | Cr I | 125 | 4604.994 | - | N1 I | 98 | | 577.173
577.600 | | V I
Sm II | 4
23 | 4590.8
4590.971 | | S II
O II | 47 | 4605.10
4605.352 | P | Fe I
V II | 348 | | 177.690 | P | Fe II | 23
54 | 4591.05 | | SII | 15 | 4605.363 | | Mn I | 56 | | 78.139 | - | Pr II | 10 | 4591.220 | | v i | 133 | 4605.78 | | La II | 52 | | 78.334 | | Cr I | 246 | 4591.26 | P | Fe II | 17 | 4605.79 | | Hf II | 22 | | 78.558 | | Ca I | 23 | 4591.394 | | Cr I | 21 | 4605.99 | P | Fe I | 893 | | | | | | | | | | | | | | | 78.728 | | V I | 109 | 4591.818 | | Sm II | 14 | 4606.146 | | V I | 4 | | i79.05
i79.07 | P
P | Fe I
Fe I | 988
6 4 0 | 4591.991
4592.09 | | V I
Cr II | 95
44 | 4606.231 | | Ni I
Cr I | 100
303 | | 79.198 | r | V I | 109 | 4592.529 | | N1 I | 98 | 4606.375
4606.402 | | Ce II | 6 | | 79.344 | | Fe I | 319,936 | 4592.54 | | Cr I | 303 | 4606.514 | | Sm II | 1 | | 179.39 | | A II | 17 | 4502.655 | | Fe I | 99 | 1606.50 | P | v II | 45 | | i79.446 | | CP II | 8 | 4593.195 | | Cs I | 2 | 4607.08 | P | Fe I | 724 | | i79.523 | | Fe II | | 4593.44 | | A II | 51 | 4607.153 | | N II | 5 | | 79.59 | - | Cr I | 246 | 4593.47 | | C III | | 4607.331 | | Sr I | 2 | | 79.68 | P | Fe I | 894 | 4593.544 | | Fe I | 971 | 4607.655 | | Fe I | 554,969 | | 179.825 | | Fe I | 469 | 4593.544 | | Sm II | 36 | 4607.94 | | Y II | 80 | | 80.05 | | La II | 53 | 4593.84 | | Cr I | 190 | 4608.030 | | Gd II | 144 | | i80 . 055 | | Fe II | 26 | 4593.932 | | Ce II | 6 | 4608.21 | | Cl III | 13 | | 80.056 | | Cr I | 10 | 4594.03 | | Eu I | 1 | 4608.45 | | K II | 7 | | 80.139 | | Co I | 27 | 4594.103 | | V I | 4 | 4608.908 | | Co I | 57 | | 80.35 | | Ne II
V I | 72
4 | 4594.403 | | Cr I
Nd II | 52 | 4609.148 | - | Nd II
T1 II | 3 | | 80.394
80.458 | | Ti II | 60 | 4594.447
4594.51 | P | Ti I | 262 | 4609.26
4609.42 | P | 0 II | 39
93 | | 80.46 | P | Fe I | 348 | 4594.633 | • | Co I | 176 | 4609.60 | | A II | 31 | | 80.600 | | Fe I | 827 | 4594.908 | | N1 I | | 4609.646 | | V I | 61 | | | | | | | | | | | | | | | 80.619 | | N1 I | 146 | 4594.959 | | Fe I | 638 | 4609.7 | | Al II
Cr I | 44 | | 81.063
81.086 | | Cr I
Gd II | 148
44 | 4595.05
4595.160 | | Cr I
Mo I | 190,211
6 | 4609.894
4610.14 | | 0 II | 303
92 | | 81.32 | | Y I | 15 | 4595.21 | P | Fe I | 846 | 4610.59 |
P | Fe II | 170 | | 81.380 | | Co I | 156 | 4595.291 | - | Sm II | 45 | 4610.925 | | v I | 39 | | 81.402 | | Ca I | 23 | 4595.363 | | Fe I | 594 | 4611.05 | P | Fe I | 641 | | 81.517 | | Fe I | 555 | 4595.590 | | Cr I | 286 | 4611.19 | P | Fe I | 319 | | 81.596 | | Co I | 150 | 4595.68 | P | Fe II | 38 | 4611.25 | | A II | | | 81.77
82.12 | P | P II
Fe II | 9
1 9 | 4595.951
4596.059 | | Ni I
Fe I | 101
820 | 4611.285
4611.29 | P | Fe I
Fe I | 826
819 | | 02.12 | - | 10 11 | 10 | 4090.009 | | 10 1 | 020 | 4011.25 | F | | 013 | | 82.38 | | Gd II | 82 | 4596.09 | | Fe III | | 4611.35 | P | Fe I | 17 | | 82.502 | | Ce II | 7 | 4596.0970 | | AI | 9 | 4611.968 | | Cr I | _ | | 82.53 | | Gd II | 65 | 4596.174 | | 0 11 | 15 | 4612.473 | | NA II | 3
349 | | 82.835
82.941 | | Fe II
Fe I | 37
348 | 4596.37
4596.38 | | V II
Cr I | 210
210 | 4612.64
4612.84 | | Fe I
P II | 9 | | 83.443 | | Ti II | 39 | 4596.433 | | Fe I | 823 | 4612.89 | | Ne II | 64 | | 83.72 | P | Fe I | 472 | 4596.90 | | Cr I | 171 | 4613.11 | | O II | 93 | | 83.783 | | v r | 109 | 4596.903 | | Co I | 177 | 4613.210 | | Fe I | 554 | | 83.829 | | Fe II | 38 | 4596.978 | | Gd II | 44 | 4613.373 | | Cr I | 21 | | 83.89 | | Cr I | 125 | 4597.013 | | Nd II | 51 | 4613.38 | | La II | 50 . | | 00.00 | P | Fe II | 26 | 4507 00 | P | Fe I | 17 | 4613.47 | | s III | 10 | | 83.99
64.095 | ~ | Cr I | 26
172 | 4597.06
4597.91 | • | GT II | 17
44 | 4013.07 | | 0 11 | 92 | | 84.28 | | C1 II | | 4598.122 | | Fe I | 554 | 4613.74 | | Hf II | 103 | | 84.445 | | Ru I | 6 | 4598.33 | P | Fe I | 17 | 4613.868 | | N II | 5 | | 84.732 | | Fe I | 820 | 4598.37 | P | Fe I | 970 | 4613.95 | | Zr II | 67 | | 84.75 | | Cr I | 125 | 4598.441 | | Cr I | 172 | 4614.15 | | Cr I
Fe I | 148
638 | | 84.824
84.934 | | Fe I
Cr I | 822
196 | 4598.528
4598.74 | P | Fe II
Fe I | 219
819 | 4614.216
4614.523 | | Cr I | 245 | | 85.03 | | C1 II | 34 | 4598.77 | • | A II | 38 | 4614.58 | | N1 I | 99 | | 85.088 | | Cr I | 212 | 4598.99 | P | T1 I | 262 | 4614.73 | | Cr I | | | | | | | | | | | | | | | | 85.59 | P | Fe I | 468 | 4599.00 | | Cr I | 171 | 4615.441 | | Sm II | 49 | | 85.72 | | Cr I | 211 | 4599.226 | | Ti I
Cr I | 484 | 4615.690
4615.98 | | Sm II
Ne II | 22
64,67 | | 85.820
85.871 | | Al II
Ca I | 45
23 | 4599.25
4599.46 | | Hr II | 171
92 | 4616.137 | | Cr I | 21 | | 85.923 | | CaI | 23 | 4600.104 | | Cr I | 32 | 4616.64 | | Cr II | 44 | | 85.94 | | VI | 61 | 4600.11 | | Ne II | 64 | 4616.95 | | Fe III | 108 | | 86.138 | | Cr I | 172 | 4600.19 | | VII | 56 | 4617.269 | | Ti I | 145 | | 86.25 | | Hf II | 23 | 4600.28 | P | Ti II | 60 | 4617.94 | _ | Ni I | 115 | | 86.364 | _ | V I | 4 | 4600.372 | | N1 I | 98 | 4618.12 | P | V II | 56
25.9 | | 86.95 | P | T1 I | 266 | 4600.59 | | La II | 148 | 4618.52 | | A 11 | 252 | | 86.99 | | Cr I | | 4600.752 | | Cr I | 21 | 4618.568 | | Fe I | 1151 | | 87.132 | | Fe I | 795 | 4600.702 | | Fe I | 591 | 4618.765 | | Fe I | 409 | | 37.72 | P | Fe I | 971 | 4601.00 | | C1 I | 15 | 4618.800 | | V I | 39 | | 87.86 | | Cr I | 125 | 4601.021 | | Cr I | 32 | 4618.83 | | Cr II | 44 | | 37.90 | | A II | 16 | 4601.05 | | Gd II
Cr I | 44 | 4618.85 | | C II
Fe I | 50
821 | | 87.91 | | P II
P III | 15,35
7 | 4601.15
4601.34 | P | Cr I
Fe II | 172
43 | 4619.294
4619.329 | | Co I | 821
27 | | 97.91
98.082 | | Al II | 45 | 4601.478 | * | N II | 5 | 4619.4 | P | N V | 1 | | 98.13 | | Ne II | 68 | 4601.97 | | PII | 15 | 4619.525 | | Ti I | 261 | | 38.194 | | Al II | 45 | 4601.97 | | Zr II | 138 | 4619.551 | | Cr I | 81 | | | | | | | | | | | | | | | A | Туре | Element | Multiplet No. | I A | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |-------------------|------|----------------|---------------|----------------------|-----------|----------------|---------------|----------------------|--------|----------------|---------------| | .648 | | V I | | 4634.16 | | N III | 2 | 4649.54 | P | Cr I | 233 | | .771 | | V I
La II | 4 | 4634.21
4634.59 | | V II
Cr I | 210
171 | 4649.828 | | Fe I | 592 | | .87
.13 | P | Fe I | 76
468 | 4634.60 | P | Fe II | 25 | 4650.016
4650.04 | P | Ti I
Fe II | 145
146 | | .38 | • | N1 I | 163 | 4634.73 | | Ne II | 67 | 4650.16 | • | CIII | 1 | | .513 | | Fe II | 38 | 4634.95 | | La II | 133 | 4650.544 | | Al II | 59 | | •00 | | Cr I | 32 | 4635.176 | | V I | 4 | 4650.646 | | Al II | 59 | | . 28
. 39 | | O II
Fe III | 92
108 | 4635.328
4635.539 | | Fe II
Ti I | 186
261 | 4650.841
4651.285 | | O II
Cr I | 1
21 | | .392 | | N II | 5 | 4635.62 | P | Fe I | 319 | 4651.35 | | C III | 1 | | | | | | | | | | | | | _ | | .41 | P | Cr II | 25 | 4635.7 | | Al II | 97 | 4651.42 | P | v II | 45 | | .63
.893 | P | Fe I
Cr I | 989
32 | 4635.846
4636.345 | | Fe I
Ti II | 349
36 | 4651.517
4652.158 | | Pr II
Cr I | 6
21 | | .963 | | Cr I | 32,244 | 4636.42 | | La II | 101 | 4652.280 | | Fe II | 219 | | .40 | P | Fe II | 17 | 4636.66 | P | Fe I | 513 | 4652.816 | | Mn II | 18 | | .491 | | Cr I | 233 | 4637.182 | | Cr I | 32 | 4653.0 | | Al II | 81 | | .71 | | Hf II
P II | 70
36 | 4637.209
4637.25 | | Ti I
A II | 261
31 | 4653.49
4654.14 | P | Fe I
Si IV | 17 | | .71
.761 | | Cr I | 81 | 4637.512 | | Fe I | 554 | 4654.23 | | 0 I | . 7
18 | | 020 | | Co I | 156 | 4637.772 | | Cr I | 32 | 4654.286 | | Ce II | 154 | | | | m. ~ · | | 4607 007 | | T1 I | 224 | | | | | | .098
.11 | | Ti I
S II | 145 | 4637.887
4638.016 | | Fe I | 261
822 | 4654.501
4654.56 | | Fe I
O I | 38
18 | | 404 | | v î | 39 | 4638.12 | | Si III | 13 | 4654.57 | | N II | 11 | | .42 | | Fe III | 108 | 4638.854 | | 0 11 | 1 | 4654.628 | | Fe I | 554,821 | | .561 | | Co I | 141 | 4639.001 | | Gd II | 64,102 | 4654.736 | | Cr I | 186 | | .657
.86 | | V I
Zr II | 94
116 | 4639.150
4639.326 | | Mn II
Al II | 18
69 | 4654.986
4655.05 | | Gd II
Al II | 65
106 | | .899 | | Ce II | 27 | 4639.369 | | Ti I | 145 | 4655.36 | | 0 I | 18 | | .052 | | Fe I | 554 | 4639.384 | | Al II | 69 | 4655.49 | | La II | 75 | | . 30 | | Cr I | 171 | 4639.538 | | Cr I | 186 | 4655.661 | | N1 I | 115 | | .44 | P | Fe I | 974 | 4639.669 | | Ti I | 145 | 4655.712 | | T1 I | 261 | | .549 | - | Fe II | 219 | 4639.725 | | Al II | 69 | 4655.75 | P | Ti II | 38 | | .65 | | Cr I | 244 | 4639.833 | | Al II | 69 | 4656.048 | | Ti I | 145 | | .71 | | C II | 49 | 4639.944
4640.062 | | Ti I
V I | 145
39 | 4656.189 | | Cr I | 147 | | .767
.911 | | Co I
Fe II | 176
186 | 4640.14 | | Hf II | 74 | 4656.468
4656.74 | | Ti I
S II | 6
9 | | 925 | | Cr I | 244 | 4640.309 | | v r | 94 | 4656.80 | | Si II | J | | . 188 | | Cr I | 21 | 4640.362 | | Al II | 69 | 4656.837 | | Cr I | 311 | | .36 | P | Fe I
Mo I | 636
6 | 4640.384
4640.431 | | Al II
Ti I | 69
261 | 4656.974 | | Fe II | 43 | | · 46 7 | | AU I | | *040.401 | | | 201 | 4657.210 | | Ti II | 59 | | 480 | | V I | 39 | 4640.55 | | Cr I | 171 | 4657.38 | | N1 I | 254 | | .53 | | Fe III | 108 | 4640.64
4640.67 | | N III | 2 | 4657.390 | | Co I | 156 | | , 544
, 565 | | Mn I
Tm II | | 4640.735 | | Cr I
V I | 244
39 | 4657.598
4657.64 | | Fe I
Zr I | 346
64 | | .61 | | PII | 15 | 4641.22 | P | Fe I | 347 | 4657.94 | | A II | 15 | | .758 | | Fe I | 410 | 4641.77 | Forb | Kİ | 2 | 4658.03 | P | Fe II | 170 | | .78 | P | Fe II | 170 | 4641.811 | | O II | 1 | 4658.03 | | Lu I | 2 | | .81
.02 | P | Cr I
Fe I | 209
637 | 4641.90
4642.011 | | N III
Cr I | 2
244 | 4658.12
4658.29 | | P II
Fe I | 15
591 | | .22 | - | Bu I | 1 | 4642.235 | | Sm II | 36 | 4658.64 | | CIV | 8 | | | | | | | | | | | | | | | .48
.66 | | V II
Gd II | 210
43 | 4642.27
4642.58 | Forb
P | K I
Fe I | 2
688 | 4659.38
4660 | P | K II | 5
9 | | .85 | | Ne II | 73 | 4643.086 | _ | N II | 5 | 4660.93 | P | Fe II | 146 | | .86 | P | Fe II | 54 | 4643.20 | , P | Fe I | 38 | 4661.19 | P | Fe II | 170 | | .160 | | Ce II | 1 | 4643.468 | | Fe I
Y I | 820 | 4661.22 | _ | C1 I | 15 | | .4410
.473 | | Cr I | 9
180 | 4643.69
4644.09 | P | Fe II | 4
31 | 4661.33
4001.338 | P | Fe I
Fe I | 347
1207 | | .69 | P | Fe I | 819 | 4644.82 | | Zr I | 64 | 4661.635 | | 0 11 | 1 | | .71 | | PII | 28 | 4645.193 | | Ti I | 145 | 4661.78 | | Zr II | 129 | | .751 | | Pr II | 1 | 4645.28 | | La II | 8 | 4661.88 | | Eu I | 1 | | .821 | | Fe II | 219 | 4645.971 | | v 1 | 4 | 4661.933 | | Mo I | 6 | | .908 | | Co I | 15 | 4646.059 | | Pr II | 22 | 4661.975 | | Fe I | 409 | | .07 | P | Zr II | 139 | 4646.174
4646.326 | | Cr I
Gd II | 21 | 4662.0 | P Forb | Na I | 13 | | . 29
. 336 | - | Ti II
Fe II | 38
37 | 4646.396 | | VI | 82
39 | 4662.51
4662.71 | P | La II
Ti II | 8
38 | | . 336 | | T1 I | 145 | 4646.495 | | Cr I | 147 | 4662.74 | P | Ti II | 38 | | . 359 | | Co I | 156 | 4646.684 | | Sm II | 26 | 4882.787 | | Mn T | 6 | | .7 | | Al II
Zn I | 35 | 4646.808
4646.94 | P | Cr I
Ni I | 186 | 4663.054 | | Al II | 2 | | .814
.90 | P | Fe II | 8
170 | 4647 | P | CIV | 145
6 | 4663.183
4663.328 | | Fe I
Cr I | 754
186 | | | | | | | | | - | | | | 250 | | .98 | P | N1 I | 223 | 4647.34 | | Ne II
C III | 72 | 4663.403 | | Co I | 156 | | . 125
. 52 | | Fo I
C II | 115
49 | 4647.40
4647.40 | | Ti IV | 1 | 4003.53
4663.700 | | C III
Fe II | 5
44 | | .537 | | N II | 5 | 4647.42 | P | N1 I | 148 | 4663.76 | | La II | 82 | | .785 | | Fe I | 969 | 4647.437 | | Fe I | 409 | 4663.78 | | Fe III | 52 | | .03 | P | Fe I | 1071 | 4647.50 | | La II
Mn II | 77 | 4663.832 | | Cr I | 186 | | .38
.49 | | Si IV
Fe I | 6
1152 | 4647.585
4647.72 | P | Mn II
Fe I | 18
722 | 4664.14
4664.272 | | Hf
II
Gd II | 14
127 | | .5 | | Al II | 97 | 4647.759 | - | Nd II | 46 | 4664.32 | P | Ni I | 147 | | .895 | | Fe II | 219 | 4648.126 | | Cr I | 32 | 4664.647 | | Pr II | 27 | | | ъ | F. * | 754 | 4840 100 | | Sm TT | • | 400 | - | m | 0.47 | | . 14
. 180 | P | Fe I
Cr I | 754
171 | 4648.160
4648.17 | | Sm II
S II | 1
36 | 4664.71
4664.79 | P
P | Fe I
Fe II | 347
17 | | .83 | P | Fe I | 820 | 4648.23 | P | Fe II | 38 | 4664.798 | • | Cr I | 186 | | .915 | _ | Fe I | 39 | 4648.62 | | Al II | 82 | 4664.811 | _ | Na I | 12 | | .05 | P | Fe I | 17 | 4648.659
4648.868 | | Ni I
Cr I | 98 | 4665
4665 24 | P | C IV | 7 | | .2
.286 | | Al II
Cr I | 97
186 | 4648.868
4648.933 | | Fe II | 32
25 | 4665.24
4665.56 | P
P | Fe I
Fe I | 1115
1044 | | .704 | | Fe I | 410 | 4649.06 | | A II | 51 | 4005.8 | P Forb | No. I | 13 | | .99 | | Zr I | 5 | 4649.139 | | 0 11 | 1 | 4665.80 | P | Fe II | 26 | | .11 | | Cr II | 44 | 4649.461 | | Cr I | 32 | 4665.87 | | Si III | 13 | | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |-----------------|--------|----------------|---------------|----------------------|------|---------------|----------------|----------------------|------|----------------|---------------| | 65.90 | | C III | 5 | 4681.908 | | Ti I | 6 | 4700.42 | P | Fe I | 67 | | 65.902 | | Cr I | 233 | 4681.990 | | Cu II | 4 | 4700.608 | | Cr I | 62 | | 66.149 | | V I | 94 | 4682.12 | | La II | 37 | 4700.80 | | PII | 14 | | 66.215
66.28 | | Cr I
A II | 99
51 | 4682.28
4682.29 | | Ra II
A II | 1 | 4701.052 | | Fe I | 820 | | 56.448 | | Gd II | 101 | 4682.32 | | Y II | 12 | 4701.159
4701.23 | | Mn I
O II | 21
58 | | 56.512 | | Cr I | 186 | 4682.361 | | Co I | 156 | 4701.336 | | Ni I | 101 | | 56.750 | | Fe II | 37 | 4682.58 | | Fe I | 384 | 4701.536 | | N1 I | 235 | | 36.8 | | Al II | 105 | 4682.68 | | Hf II | 102 | 4701.65 | | Al III | 6 | | 56.994 | | Ni I | 146 | 4683.018 | | Si III | 13 | 4701.76 | | 0 11 | 58 | | 57.181 | | Cr I | 99 | 4683.43 | | Zr I | 63 | 4701.90 | P | Fe I | 688 | | 57.28 | | N II | 11 | 4683.565 | | Fe I | 346 | 4701.90 | r | Cr I | 170 | | 37.459 | | Fe I | 822 | 4683.774 | | Si III | 13 | 4702.3164 | | A I | 9 | | 37.53 | P | Ti I | 77 | 4684.457 | | v i | 94 | 4702.57 | | N II | 68 | | 37.585 | | Ti I | 6 | 4684.484 | | Ti I | 203 | 4702.9758 | | Mg I | 11 | | 37.766
38.07 | P | Ni I
Fe I | 163
826 | 4684.605
4684.605 | | Ce II
Cr I | 228
146 | 4702.9831 | | Mg I | 11 | | 38.142 | r | Fe I | 554 | 4684.77 | | Cr II | 178 | 4702.9909
4703.03 | | Mg I
Zr II | 11
138 | | 38.357 | | Ti I | 77 | 4685.03 | P | Fe I | 347 | 4703.03 | | 0 11 | 40 | | 38.560 | | Na I | 12 | 4685.19 | | Zr II | 129 | 4703.27 | | La II | 76 | | | | | | | | | | | | | | | 38.58
38.91 | | S II
La II | 36
76 | 4685.265
4685.682 | | Ca I
He II | 51 | 4703.36 | | A II | | | 39.174 | | Fe I | 76
821 | 4685.837 | | Ge I | 1
3 | 4703.576 | | Nd II
Hf II | 55 | | 19.273 | | VI | 4 | 4685.95 | P | Fe II | 50 | 4703.62
4703.808 | | Ni I | 72
133 | | 39.33 | | 0 11 | 90 | 4686.218 | | Ni I | 98 | 4704.33 | | N II | 68 | | 19.336 | | Cr I | 186 | 4686.921 | | Ti I | 203 | 4704.386 | | Co I | 178 | | 19.396 | | Sm II
Ce II | 7 | 4686.926 | | V I
Sm II | 93 | 4704.395 | | Ne I | 11 | | 19.53 | | 0 II | 89 | 4687.183
4687.30 | P | Fe I | 3
17 | 4704.397 | | Sm II | 1 | | 19.650 | | Sm II | 26 | 4687.387 | • | Fe I | 347 | 4704.958
4705.099 | | Fe I
V I | 821
136 | | | | | | | | | | 2.00.000 | | | 100 | | 19.67 | | Cr I | 170 | 4687.67 | P | Fe I | 347 | 4705.955 | | 0 11 | 25 | | 9.977 | | Ru I
Fe II | 11
25 | 4687.80
4687.82 | P | Zr I
Ti I | 43 | 4705.464 | | Fe I | 752 | | 0.404 | | Sc II | 25
24 | 4688.38 | P | Fe I | 111
1071 | 4705.50 | | N1 I | 101 | | 0.483 | | V I | 39 | 4688.392 | r | Ti I | 306 | 4705.93
4706.102 | | N1 I
Cr I | 128
170 | | 1.25 | | Fe III | 58 | 4688.45 | P | v II | 45 | 4706.178 | | V I | 94 | | 1.36 | P | Cr II | 176 | 4088.45 | | Zr I | 5 | 4706.31 | P | Fe I | 890 | | 1.686 | | Cu II | 4 | 4688.65 | | La II | 92 | 4706.41 | | N II | 68 | | 1.688
1.82 | | Mn I
La II | 21
80 | 4689.374
4689.46 | P | Cr I
Ti II | 186
38 | 4706.542 | | Nd II
V I | 3 | | 1.02 | | 10. 11 | ю, | 4009.40 | | 11 11 | 30 | 4706.574 | | ٧ 1 | 119 | | 1.94 | P | Sc II | 48 | 4690.146 | | Fe I | 820 | 4706.967 | | Sc I | 22 | | 2.02 | P | Fe I | 1045 | 4690.38 | P | Fe I | 17 | 4707.281 | | Fe I | 554 | | 2.081 | | Pr II
O I | 21 | 4690.827 | | Ti I | 76 | 4707.487 | | Fe I | 346 | | 2.75
2.83 | P | Fe I | 17
40 | 4690.97
4691.17 | | O II
La II | 58
23 | 4707.541
4707.754 | | Pr II
Cr I | 5
195 | | 3.169 | • | Fe I | 820 | 4691.336 | | Ti I | 75 | 4707.78 | | Zr I | 63 | | 3.28 | P | Fe I | 822 | 4691.414 | | Fe I | 409 | 4707.80 | | 0 11 | 89 | | 3.462 | | Be II | 6 | 4691.47 | | 0 11 | 58 | 4708.040 | | Cr I | 186 | | 3.555 | | Cu II | 4 | 4691.55 | P | Fe II | 17 | 4708.663 | | Ti II | 49 | | 3.70 | | 0 I | 17 | 4692.45 | P | Ti I | 77 | 4708.854 | | Ne I | 11 | | 3.75 | | 0 11 | 1 | 4692.50 | | La II | 75 | 4708.94 | | Ba II | 15 | | 3.91 | | c III | 5 | 4692.97 | | Cr I | 99 | 4708.972 | | Fe I | 889 | | 4.41 | | Zr II | 139 | 4693.190 | | Co I | 156 | 4708.976 | | Ti I | 203 | | 4.599 | _ | Sm II | 14 | 4693.628 | | Sm II
Ti I | 14
6 | 4709.092 | | Fe I | 821 | | 4.65
4.84 | P | Fe I
Y I | 40
4 | 4693.670
4693.949 | | Cr I | 99 | 4709.336
4709.45 | | Sc I
N II | 22
25,68 | | 4.98 | | N II | 11 . | 4694.13 | | SI | 2 | 4709.484 | | Ru I | 14 | | 5.118 | | Ti I | 77 | 4694.55 | | N II | 61 | 4709.714 | | Nd II | 7 | | 5.45 | | Hf II | 92 | 4695.153 | | Cr I | 99 | 4709.715 | | Mn I | 21 | | 5.639 | | Ni I | 115 | 4695.45 | | S I | 2 | 4710.04 | | Ne II | 73 | | 5.234 | | 0 11 | 1 | 4695.91 | | N II | 68 | 4710.04 | | 0 II | 24 | | 6.911 | | Sm TT | 3 | 4696.12 | P | Ce II | 153 | 4710.058 | | Ne I | 11 | | 7.00 | | 0 11 | 91 | 4696.25 | | S I | . 2 | 4710.08 | | Zr I | 43 | | 7.528 | D | Co I | 15 | 4696.36 | ~ | 0 II
Sc II | 1 | 4710.186 | | Ti I | 75,203 | | 7.59
7.67 | P | Fe I
S III | 1072
10 | 4696.71
4696.923 | Р | Sc II | 48
203 | 4710.24 | | Cr I
Fe I | 145
409 | | 7.858 | | Tm II | 5 | 4697.062 | | Cr I | 62 | 4710.286
4710.566 | | V I | 119 | | 7.93 | | N II | 62 | 4097.395 | | Cr I | 195 | 4711.68 | P | Ti I | 111 | | 3.160 | | Cd I | 2 | 4697.62 | | Cr II | 177 | 4711.732 | | Sc I | 22 | | 3.41 | P | Fe I | 688 | 4698.276 | | Sc II | 13 | 4711.91 | | Zr I | 64 | | 3.852 | | Fe I | 821 | 4698.389 | | Co I | 156 | 4711.975 | | Gd II | 64 | | 3.852 | P | Ce II | 153 | 4698.408 | | N1 I | 235 | 4711.975 | | Ne I | 16 | | 3.95 | | PII | 28 | 4698.456 | | Cr I | 186 | 4712.069 | | Ni I | 131 | | 3.229 | _ | Fe I | 688 | 4698.48 | | 0 11 | 40 | 4712.104 | | Fe I | 467 | |).73 | P | Ti I | 77 | 4698.615
4698.62 | | Cr I
N II | 62,146
68 | 4712.13 | | N II
Le II | 68
38 | | 9.87
9.96 | P
P | Cr II
Fe I | 25
1071 | 4698.62
4698.64 | P | Or II | 68
25 | 4712.92
4713.057 | | Sm II | 38
49 | |).127 | • | Ce II | 18 | 4698.67 | P | Ti II | 59 | 4713.143 | | He I | 12 | |).138 | | Zn I | 2 | 4698.766 | | Ti I | 75 | 4713.18 | P | Fe II | 26 | |).297 | | Fe I | 39 | 4698.86 | P | Ti I | 203 | 4713.26 | | Y II | 22 | | \ 4=0 | | Ce II | 2 | 4698.947 | | Cr I | 146 | 4710 070 | | He I | 12 | |).458
).475 | | Fe I | 2
346 | 4698.947 | | Co I | 27 | 4713.373
4713.84 | P | ne I
Ni I | 128 | |).49 | | Cr I | 186 | 4699.21 | | 0 11 | 25,40 | 4713.996 | - | Ce II | 250 | |).539 | | WI | 1 | 4699.589 | | Cr I | 292 | 4714.074 | | Fe I | 1206 | | 1.734 | | Nd II | 4 | 4699.62 | | La II | 39 | 4714.113 | | V I | 119 | |).870 | - | Cr I | 170 | 4699.72 | | Hf II | 71
67 | 4714.182 | | Fe I
Ni I | 591 | | 1.05 | P | Ni I
S II | 143
8 | 4700.1
4700.12 | | Ne II
N II | 67
68 | 4714.421
4714.53 | | N1 I
Fe III | 98
57 | | l.32
l.52 | | A II | 76 | 4700.12 | | Fe I | 935 | 4714.83 | | Ce II | 17 | | 1.786 | | Ru I | 6 | 4700.21 | | S II | 52 | 4715.12 | | Cr II | 178 | | | | | | | | | | | | | | | | Туре | Element | / Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |-------------|------|----------------|-----------------|----------------------|--------|----------------|---------------|----------------------|------|----------------|---------------| | 295 | | Ti I | 6 | 4730.711 | | Cr I | 145 | 4748.525 | | A I | 113 | | 344 | | Ne I | 16 | 4730.92 | | As II | 3 | 4748.67 | | C1 II | 75 | | 589 | | Nd II | 49 | 4731.172 | | Ti I | 202 | 4748.73 | | La II | 65 | | 778 | | N1 I
V I | 98
136 | 4731.36
4731.439 | | Hf II
Fe II | 38
43 | 4749,25
4749,25 | P | Cr I
Fe I | 195 | | 900
13 | P | Sc II | 13 | 4731.77 | P | Fe I | 67 | 4749.68 | r | Co I | 1098
156 | | 226 | - | SII | 9 | 4731.809 | | N1 I | 163 | 4749,93 | | Fe I | 1206 | | 44 | | La II | 52 | 4732.051 | | Co I | 15 | 4750.49 | P | Fe II | 206 | | 576 | | Gd II | 102 | 4732.08 | | A II | 38 | 4750.990 | | V I | 113 | | 644 | | v I | 51 | 4732.34 | | Zr I | 48 | 4751 | P | N V | 5 | | 658 | | Si III | | 4732.465 | | N1 I | 235 | 4751 | P | o vi | 10 | | 85 | P | Fe I | 634 | 4732.53 | | Ne II | 67 | 4751.04 | • | Cr I | 290 | | 031 | | Sc I | 14 | 4732.00 | | Gd II | 65 | 4751.34 | | 0 11 | 24 | | 58 | | La II | 87 | 4732.96 | P | Ti II | 29 | 4751.574 | | v i | 94 | | 688 | | Cr I | 170 | 4733
4733.426 | P | N IV
Ti I | 11
202 | 4751.822 | _ | Na I | 11 | | 692
718 | | V I
Sm II | 119
41 | 4733.426 | | Fe I | 38 | 4752
4752.084 | P | N IV
Cr I | 11 | | 16 | | Ca II | 7 | 4734.094 | | Sc I | 14 | 4752.124 | | N1 I | 165 | | 329 | | Sm II | 53 |
4734.100 | | Fe I | 1133 | 4752.426 | | N1 I | 132 | | 429 | | Cr I | 186 | 4734.177 | | Pr II | 4 | 4752.70 | | 0 11 | 24 | | 49 | | N II | 68 | 4734.427 | | Gd II | 43 | 4750 7919 | | No. 7 | 0.4 | | 43
040 | | Gd II | 43 | 4734.52 | | YII | *0 | 4752.7313
4752.87 | | Ne I
Cr I | 21
194 | | 10 | | Hf II | 15 | 4734.682 | | Ti I | 233 | 4753.06 | | Zr I | 66 | | 12 | | Zr I | 66 | 4734.75 | | C II | 48 | 4753.152 | | Sc I | 5 | | 37 | | Ne II | 67 | 4734.828 | | Co I | 156 | 4753.957 | | V I | 113 | | 515 | | Ti II | 59 | 4734.94
4735.67 | | Zr II
Hf II | 138
25 | 4754.042 | | Mn I | 16 | | 80
838 | | Zr II
Sm II | 116
3 | 4735.75 | | Hr II | 25
59 | 4754.358
4754.38 | | Co I
Ti I | 156
-202 | | 93 | | La II | 81 | 4735.846 | | Fe I | 1042 | 4754.635 | | Pr II | 4 | | 15 | P | Fe II | 54 | 4735.93 | | A II | 6 | 4754.743 | | Cr I | 168 | | | | | _ | 4700 40 | | a | | | | | | | 26
56 | P | P II
Fe I | 8
1114 | 4736.13
4736.50 | | Cr I
Ni I | 195
99 | 4754.768 | | Ni I | 141 | | 830 | r | Sc I | 14 | 4736.780 | | Fe I | 554 | 4755.12
4755.137 | | S II
Cr I | 35
124 | | 997 | | Fe I | 1071,409 | 4737 | P | C IA | 12 | 4755.347 | | Gd II | 134 | | 14 | | Cr I | 232 | 4737.282 | | Ce II | | 4755.64 | | C1 II | 13 | | 273 | | Gd II | 83 | 4737.350
4737.59 | | Cr I
V II | 145 | 4755.728 | | Mn II | 5 | | 43
524 | | C1 II
V I | 75
108 | 4737.633 | | Fe I | 16
590 | 4756.113
4756.519 | | Cr I
Ni I | 145
98 | | 59 | | N II | 68 | 4737.642 | | Sc I | 14 | 4756.722 | | Co I | 180 | | 62 | | A II | 85 | 4737.769 | | Co I | 57 | 4757.326 | | Cr I | 290 | | 159 | | Zn I | 2 | 4738.11 | | C II | 1 | 4000 00 | | v i | 440 | | 278 | | Sr I | 5 | 4738.29 | | Mn II | 5 | 4757.37
4757.50 | | V I
V I | 113
113 | | 333 | | Bi I | 2 | 4738.41 | | CI II | 75 | 4757.565 | | wi | 7 | | 58 | | Ca II | 7 | 4738.52 | P | Fe II | 170 | 4757.582 | | Fe I | 634,1115 | | 603 | | Ti I | 75 | 4739.108 | | Mn I | 21 | 4757.591 | | Cr I | 231 | | 652 | | Bi I
Cr I | 2 | 4739.42
4739.48 | | C1 II
Zr I | 13
43 | 4757.791 | | Gd II | 45 | | 741
.877 | | V I | 195
108 | 4739.49 | | Ce II | 157 | 4757.841
4757.842 | | Ru I
Ce II | 12 | | | P | N IV | 11 | 4739.49 | | P II | 14 | 4758.120 | | Ti I | 233 | | .06 | | Cr I | 145 | 4739.59 | | Mg II | 18 | 4758.42 | | N1 I | 193 | | .171 | | Ti I | 75 | 4739.80 | | La II | 64 | 4750 401 | | Cu TT | | | 18 | | Cr I | 292 | 4740 | P | N IV | 11 | 4758.421
4758.742 | | Cu II
V I | 1
51 | | 37 | P | N1 I | 162 | 4740.165 | | Ni I | 99 | 4758.913 | | Ti Î | 41 | | .88 | P | N1 I | 167 | 4740.27 | | La II | . 8 | 4759.272 | | Ti I | 233 | | ,07 | P | Fe II
Cr I | 17 | 4740.343
4740.40 | | Fe I
Cl II | 409
51 | 4759.74 | | Cr I | 124 | | 416 | | La II | 145
50 | 4741.018 | | Sc I | 14 | 4759.74
4759.907 | | Ti I
Cr I | 202
169 | | 679 | | Ti I | 203 | 4741.081 | | Fe I | 688 | 4760.07 | P | Fe I | 384 | | .090 | | Ce II | 153 | 4741.089 | | Cr I | 292 | 4760.15 | P | Fe II | 169 | | . 67 | | Cr I | 195 | 4741.34 | P | N1 I | 166 | 4760.23 | Þ | N1 I | 114 | | .94 | | Fe I | 1134 | 4741.533 | | Fe I | 346 | 4760.59 | | He II | 08 | | .95 | | Cr I | 99 | 4741.71 | | 0 11 | 25 | 4760.98 | | YI | 85
4 | | . 165 | | Fe I | 384 | 4741.922 | | Sr I | 5 | 4761.242 | | Cr I | 169 | | .725 | | 6d II | 148 | 4742.00 | | Ge II | 2 | 4761.42 | | Cr II | 176 | | .91 | P | A II
Fe I | 14 | 4742.129
4742.32 | P | Ti I
Ti I | 202 | 4761.526 | | Mn I | 21 | | .01
.153 | - | Cr I | 635
99 | 4742.4 | r | 8 11 | 111
8 | 4761.67
4761.73 | | Zr II
Cr I | 107
194 | | . 21 | | C II | 48 | 4742.631 | | VI | 128 | 4762 | P | N IV | 11 | | .405 | | Fe I | 821 | 4742.791 | | T1 I | 233 | 4762.376 | | Mn I | 21 | | .476 | | Mn I | 21 | 4742.93 | P | Fe I | 1072 | 4762.41 | | c i | 6 | | .851 | | Ni I | 146 | 4743.08 | | La II | 75 | 4762.627 | | Ni I | 71 | | .9 | P | Mn II | 5 | 4743.112 | | Cr I | 290 | 4762.727 | | Pr II | 26 | | .936 | | Co I | 15 | 4743.28 | P | Fe II | 31 | 4762.77 | | Ti II | 17 | | .41 | | La II | 22 | 4743.814 | | Sc I | 14 | 4762.78 | | Zr I | 66 | | .42
.468 | | Ni I
Gd II | 115
85 | 4744.13
4744.84 | P
P | Fe I
Fe I | 1168
17 | 4763.38 | | SII | 35
54 | | .555 | | Fe I | 65
-822 | 4744.04 | | C II | 17 | 4763.624
4763.79 | P | Nd II
Fe II | 54
50 | | .769 | | Sc I | 14 | 4744.925 | | Pr II | 3 | 4763.84 | P | Ti II | 48 | | .028 | | Fe I | 1043a | 4745.129 | | Fe I | 67 | 4763.865 | - | Nd II | 6 | | .226 | | Sc I | 14 | 4745.308 | | Cr I | 61 | 4763.950 | | N1 I | 146 | | .291 | | N1 I | 235 | 4745.680 | | Sm II | 7 | 4764 904 | | Cr I | 231 | | .45 | | 8 II | 46 | 4745.806 | | Fe I | 821,1068 | 4764.294
4764.535 | | Ti II | 231
48 | | .544 | | v I | 93 | 4746.115 | | Co I | 182 | 4764.643 | | Cr I | 124 | | .699 | | Fe I | 688 | 4746.638 | | V I | 113 | 4764.7 | P | Mn II | 5 | | 1.723 | | Cr I | 169 | 4747.00 | | Cr I | 168 | 4764.89 | | A II | 15 | | .0285 | | Mg I
Ne II | 10
72 | 4747.143
4747.256 | | Ce II
Ti I | 75 | 4765.30
4765.485 | | Cl II
Fe I | 13
40 | | . 361 | | Mn II | 5 | 4747.680 | | Ti I | 293 | 4765.78 | | Hr II | 84 | | . 394 | | V I | 108 | 4747.941 | | Na I | 11 | 4765.859 | | Mn I | 21 | | 1.69 | | A II | 94 | 4748.12 | P | Sc II | 48 | 4766.330 | | Ti I | 233 | | · A | Type | Element | Multiplet No. | I A | Type | Element | Multiplet No. | I A . | Туре | Element | Multiplet No. | |----------------|------|----------------|-----------------|---------------------|------|---------------|---------------|----------------------|------|---------------|-----------------| | 6.430 | | Mn I | 21 | 4786.908 | | Gd II | 65 | 4804.12 | | S II | 8 | | i6.62 | | CI | 6 | 4787.50 | P | Fe I | 408 | 4804.529 | | Fe I | 794 | | 6.63 | | Cr I | 231 | 4787.64 | P | Ti I | 40 | 4804.59 | P | Fe I | 721 | | 6.635 | P | V I
Cr I | 113
124 | 4787.74 | | Cr I | 168 | 4804.64 | | Cr I | 61 | | 16.66
16.87 | P | Fe I | 688 | 4787.84
4788.126 | | Fe I
N II | 384
20 | 4805.105 | P | Ti II | 92 | | 7.142 | • | Co I | 182 | 4788.69 | | Zr I | 43 | 4805.18
4805.24 | P | Cr II
Cr I | 25
283 | | 7.280 | | Cr I | 231 | 4788.757 | | Fe I | 588 | 4805.416 | | Ti I | 260
260 | | 7.30 | P | Ti II | 29 | 4788.9258 | | Ne I | 15 | 1805.817 | | Gd II | 60 | | 7.860 | | Cr I | 231 | 4789 | P | c in | 5 | 4805.88 | | Zr I | 43 | | 8.072 | | Co I
Fe I | 156 | 4789.354 | | Cr I | 31 | 4806.07 | | A II | 6 | | 8.334
8.397 | | re 1
Fe I | 821
384 | 4789.654 | P | Fe I
Ce II | 753 | 4806.165 | | Gd II | 116 | | 8.68 | | C1 II | 40 | 4789.68
4789.803 | P | Ti I | 228
41 | 4806.255 | P | Cr I
Ti II | 61
17 | | 9.775 | | Ti I | 233 | 4790.218 | | Ne I | 32 | 4806.33
4806.75 | P | Ti I | 40 | | 9.80 | | Cr I | 283 | 4790.337 | | Cr I | 31 | 4806.996 | - | N1 I | 163 | | 0.00 | | CI | 6 | 4790.56 | P | Fe I | 1068 | 4807.14 | | Hf II | 57 | | 0.670 | | Cr I | 124 | 4790.72 | _ | Hf II | 60 | 4807.243 | | Fe I | 634,1098 | | 1.09
1.103 | | C1 II.
Ti I | 40
41 | 4790.75
4791.00 | P | Fe I
Ni I | 632
71 | 4807.537
4807.725 | | V I
Fe I | 113
688 | | 1.108 | | Co Ì | 156 | 4791.150 | | Gd II | 65 | 4808.155 | | Fe I | 633 | | 1.57 | | Cr I | 124 | 4791.250 | | Fe I | 633 | 4808.52 | | N1 I | 114 | | 1.66 | | C1 II | 45 | 4791.500 | | Sc I | 5 | 4808.531 | | Ti I | 305 | | 1.702 | | Fe I | 67 | 4791.584 | | Sm II | 7 | 4808.864 | | Ni I | 160 | | 1.72 | | C I | 6 | 4792.02 | | 8 11 | 46 | 4809.00 | | La II | 37 | | 2.32
2.54 | | Zr I
O I | 43
16 | 4792.04
4792.06 | | C1 II
P II | 18 | 4809.14 | | Fe I | 933 | | 2.57 | | 0 14 | 9 | 4792.00 | | A II | 36
62 | 4809.18 | P | Hf II
Fe I | 59 | | 2.728 | | Gd II | 133 | 4792.24 | P | Ti I | 40 | 4809.26
4809.32 | P | Cr I | 1039
230 | | 2.77 | P | Fe II | 31 | 4792.39 | P | Ti II | 48 | 4809.94 | | Fe I | 793 | | 2.817 | | Fe I | 38,467 | 4792.482 | | Ti I | 260 | 4810.06 | | C1 II | 1 | | 2.89 | | N1 I | 162 | 4792.513 | | Cr I | 168 | 4810.17 | | A II | 35 | | 2.89
3.412 | | O I
Ni I | 16
167 | 4792.63 | | Au I | 3 | 4810.286 | | N II | 20 | | 3.52 | P | Fe I | 408 | 4792.855
4793.47 | | Co I
N1 I | 158
158 | 4810.534 | | Zn I
Cr I | 2 | | 3.76 | • | o I | 16 | 4793.656 | | N II | 20 | 4810.733
4810.760 | | Fe II | 144
169 | | 3.942 | | Ce II | 17 | 4793.96 | P | Fe I | 512 | 4811.04 | | Fe I | 467 | | l. 222 | | N II | 20 | 4794.22 | | O IV | 9 | 4811.074 | | T1 I | 158 | | 1.557
5.141 | | Cr I
Cr I | 124
230 | 4794.36
4794.54 | P | Fe I
Cl II | 115
1 | 4811.14
4811.343 | | V II | 197
3 | | 5.53 | | Cr I | 283 | 4794.84 | P | Ti II | | | | | | | 5.87 | | C I | 6 | 4795.62 | P | Ne II | 29
71 | 4811.57
4811.61 | | Cl II
Au I | 7 4
3 | | 5.87 | P | Fe I | 1115 | 4795.84 | | N1 I | 128 | 4811.881 | | Sr I | 5 | | 3.075 | | Fe I | 635 | 4795.853 | | Co I | 185 | 4811.999 | | N1 I | 130 | | 3.311 | | Co I | 158 | 4796.169 | | Cr I | 283 | 4812.240 | | Ti I | 260 | | 3.34 | | Fe I | 1206 | 4796.210 | | Ti I | 260 | 4812.35 | | Cr II | 30 | | 3.364
3.519 | | V I
V I | 113
128 | 4796.378 | | Co I
La II | 14 | 4812.84 | | C I
Ti I | 5 | | 7.57 | | Cr Î | 124 | 4796.67
4796.84 | | Cr I | 63
283 | 4812.906
4812.940 | | Cu II | 41
8 | | · 78 | P | Cr II | 25 | 4796.930 | | v i | 113 | 4813.00 | | A II | 248 | | '.846 | | Sm II | 3 | 4797.157 | | Nd II | 60 | 4813.07 | | o IV | 9 | | 1.233 | | Co I | 186 | 4797.69 | | Cr I | 230 | 4813.11 | | Fę I | 630 | | 1.259 | | Ti I | 232 | 4797.973 | | V I | 93 | 4813.290 | | Si III | 9 | | 1.50 | | Cr I
Cl II | 124
40 | 4797.983
4798.25 | | Ti I
O IV | 260
9 | 4813.45 | P | Co I
Co I | 142
158 | | 1.09 | | 0 IV | 9 | 4798.269 | | Fe I | 1042 | 4813.476
4813.72 | P | Fe I | 1243
| |). 11 | | SII | 8 | 4798.40 | | C1 II | 13 | 4813.952 | - | V II | 197 | | . 347 | | Sc I | 5 | 4798.535 | | T1 II | 17 | 4813.966 | | Co I | 158 | | 1.444 | | Fe I | 720 | 4798.736 | | Fe I | 38 | 4814.265 | | Cr I | 144 | | 1.710 | | N II | 20 | 4799.06 | P | Fe I | 1098 | 4814.617 | | N1 I | 98 | | 1.87
1.979 | | Cr I
Co I | 124
158 | 4799.30
4799.412 | | Y I
Fe I | 13
888 | 4814.80
4815.05 | | Ge II
Zr I | •2
44 | | 1.986 | | Ti II | 92 | 4799.423 | | Nd II | 2 | 4815.22 | P | Fe I | 720 | | 1.60 | P | Fe II | 50 | 4799.786 | | V I | 3 | 4815.515 | | 8 11 | 9 | | 1.81 | P | Fe I | 633 | 4799.797 | | T1 I | 242 | 4815.62 | | Zr I | 43 | | 04 | | ΥI | 13 | 4799.83 | | N1 I | 161 | 4815,808 | | Sm II | 14 | | 168 | | N II
Cl II | 20 | 4799.859 | | Gd II
Cd I | 126 | 4815.900 | | Co.I
Ni I | 142 | | 32 | | Co I | 40
57 | 4799.918
4799.94 | P | V II | 2
29 | 4815.92
4816.012 | | Sm II | 131
41 | | 718 | | Ti I | 41 | 4800.100 | • | Gd II | 133 | 4816.41 | | Cr I | 283 | | 82 | | cı II | 13 | 4800.14 | | Fe I | 384 | 4816.47 | P | Ti I | 40 | | . 95 | _ | Ne II | 71 | 4800.55 | P | Fe I | 590 | 4816.47 | | Zr II | 66 | | 1.79 | P | Fe I | 588 | 4800.652 | ъ | Fe I | 1042 | 4816.67 | P | Fe I | 588 | | 1.06
1.306 | | Cr I
Ti I | 283
41 | 4800.77
4801.030 | P | O IV
Cr I | 9
168 | 4817.22
4817.33 | | HP II
C I | 69
5 | | 1.420 | | Mn I | 16 | 4801.030 | | Gd II | 65 | 4817.33
4817.773 | | Fe I | 67 | | 1.43 | | 0 IV | 9 | 4801.150 | | Pr II | 36 | 4817.847 | | Ni I | 254 | | 320 | | Sr I | 5 | 4801.63 | P | Fe I | 1115 | 4818.26 | P | Fe II | 11 | | 480
70 | P | V I
Cr I | 3
168 | 4801.80
4801.90 | P | O I
Ti I | 15
40 | 4818.66
4819.46 | P | Fe I
Cl II | 719
1 | | .94 | - | Zr I | 44 | 4801.93 | P | Ti I | 40 | 4819.60 | | S II | 46,52 | | .94 | | Co I | 186 | 4802.20 | • | 0 I | 15 | 4819.64 | | Y I | 13 | | .42 | | Lu II | 5 | 4802.53 | P | Fe I | 1206 | 4819.740 | | Si III | 9 | | .44 | | C1 II | 40 | 4802.575 | | Gd II | 43 | 4819.79 | | C1 II | 13 | | .963 | | Fe I | 1044 | 4802.81 | | 8 111 | | 4820.336 | | Nd II | 47 | | . 293 | | Ni I | 50 | 4802.883 | | Fe I | 888,934 | 4820.410 | | Ti I
Ti II | 126
29 | | .515
.541 | | V I
N1 I | 113
98 | 4803.00
4803.272 | | O I
N II | 15
20 | 4821.01
4821.143 | P | N1 I | 29
254 | | -58 | | Y II | 22 | 4803.536 | | Gd II | 102 | 4821.143 | | Ti I | 201 | | -810 | | Fe I | 467 | 4804.04 | | La II | 37 | 4821.955 | | Gd II | 133 | | | | | | | | | | | | | | | | Type | Element | Multiplet No. | I A | Type | Element | Multiplet No. | I A | Type | Element | Multiplet No. | |----------|--------|----------------|---------------|----------------------|--------|---------------|----------------------|----------------------|--------|----------------|---------------| | | | čr I | 144 | 4840.329 | | Fe I | 1068 | 4858.24 | P | Fe I | 1069 | | | P | T1 II | 110 | 4840.874
4840.89 | P | Ti I
Fe I | 53
1070 | 4858.27
4858.74 | P | Fe I
N III | 1098
9 | | | P | Fe I
Y II | 633
22 | 4841.52 | P | Cr I | 266 | 4858.88 | | N III | 9 | | 6 | | V II | 223 | 4841.65 | P | Fe I | 633 | 4859.030 | | Nd II | 3 | | 6 | | Mn I | 16 | 4841.67 | Ė | Ni I | 164 | 4859.038 | | Pr II | 25 | | • | | P II | 13 | 4841.701 | | Sm I | 2 | 4859.12 | | Fe I | 1068 | | | P | O IV | 9 | 4841.73 | | Cr I | 266 | 4859.18 | | La II | 86 | | | | La II
S II | 50
52 | 4841.80
4841.98 | | Fe I
Zr II | 1070
138 | 4859.28
4859.31 | P | Si II
Fe I | 632 | | | | Cr II | 30 | 4842.01 | | Ni I | 260 | 4859.323 | | He II | 2 | | 2 | | Fe I | 888 | 4842.19 | P | Fe I | 511 | 4859.748 | | Fe I | 318 | | | | Ge II | 2 | 4842.50 | P | V II
Fe I | 248 | 4859.84 | | Y I
D | 13 | | | _ | Zr I | 43 | 4842.71
4842.78 | P | Fe I | 1098
1069 | 4860.029
4860.20 | | Cr II | 1
30 | | _ | P | Cr II
Ti I | 25
250 | 4843.155 | | Fe I | 687 | 4860.35 | | N II | 67 | | 5
2 | | Nd II | 3 | 4843.165 | | N1 I | 50 | 4860.37 | | Cr I | 31 | | ~ | | Cr I | 144 | 4843.19 | | Mn I | 43 | 4860.90 | | La II | 8 | | 3 | | Mn I | 43 | 4843.26 | | 0 11 | 105 | 4860.98 | P | Fe I | 688 | | | P | Fe II | 30 | 4843.29 | | La II | 98 | 4861.03 | | 0 11 | 57 | | | | Ra I | 1 | 4843.39 | P | Fe I | 794 | 4861.205 | | Cr I | 31 | | 9 | | Pr II | 20 | 4843.454
4843.46 | | Co I
Ba II | 158
15 | 4861.33 | | N III
H | 9
1 | | | | C I
La II | 5
22 | 4843.53 | P | Ni I | 235 | 4861.332
4861.842 | | Cr I | 31 | | 6 | | Mn I | 43 | 4843.829 | • | WI | 1 | 4862.054 | | Mn I | 43 | | 8 | | Ne. I | 10 | 4843.989 | | Ti I | 217 | 4862.54 | P. | Fe I | 1070 | | 8 | | V I | 3 | 4844.00 | | Hf II | 16 | 4862.60 | P | Fe I | 1069 | | 7 | | Ti I | 250 | 4844.016 | | Fe I | 750 | 4863.653 | _ | Fe I | 687 | | | | Zr I
Cr I | 44
31 | 4844.208
4844.31 | P | Sm II
V II | 26
29 | 4863.75
4863.78 | P
P | Ti I
Fe I | 217
384 | | :3 | | Si III | 9 | 4844.315 | | Mn I | 43 | 4863.931 | | Ni I | 113 | | 8 | | N1 I | 131 | 4844.87 | P | Ce II | 8 | 4864.187 | | Ti I | 201 | | | | KII | 1 | 4845.01 | | O II
Ni I | 30
115 | 4864.282 | | Ni I | 128 | | 6 | | Cr I
Sm II | 31
36 | 4845.17
4845.656 | | Fe I | 588,888 | 4864.32
4864.38 | | Cr II
P II | 30
13 | | -8 | P | Fe I | 1038 | 4845.67 | | ΥÏ | 13 | 4864.741 | | VI | 3 | | | P | Fe II | 206 | 4846.29 | | Cr I | 208 | 4864.83 | P | v i | 50 | | | | La II | 51 | 4846.47 | P | Fe II | 25 | 4864.95 | | O II | 29 | | | P
P | Fe II | 54 | 4846.574
4847.09 | P | Ce II | 17
67 | 4865.02 | | Gd II
Hf II | 65
93 | | | P | Ni I | 100 | | • | | | 4865.43 | | | | | 3 | | N1 I | 111 | 4847.14 | | Ba II
Cr I | 14
144 | 4865.620 | | Ti II | 29 | | :7 | | Cr I
V I | 208
3 | 4847.177
4847.296 | | CaI | 50 | 4865.96
4866.07 | | A II
Zr I | 85
44 | | .2
.5 | | Ti I | 250 | 4847.61 | P | Fe II | 30 | 4866 . 267 | | Ni I | 111 | | 5 | | Sr I | 4,5 | 4847.760 | | Sm II | 53 | 4866.77 | P | Fe I | 1093 | | 16 | | Cu II | 1 | 4847.90 | | AII | 6 | 4867.18 | | N III | 9 | | 6 | | Nd II | | 4848.24 | P | Cr II | 30 | 4867.53 | P | Fe I | 38 | | 77 | P | V Í
Cr I | 3
266 | 4848.41
4848.46 | P | Ti I
Hf II | 217
83 | 4867.59
4867.64 | P | A II
Fe I | 62
587 | | 1
14 | r | Ni I | 146 | 4848.497 | | Tt I | 201 | 1867.73 | P | Fo II | 30 | | 14 | | Fe I | 888,1098 | 4848.821 | | V I | 78 | 4867.79 | P | v II | 29 | | , | P | Cr II | 176 | 4848.898 | _ | Fe I | 114 | 4867.839 | | Nd II | 46 | | 27 | _ | V I | 78 | 4849.12
-4849.18 | P
P | Ni I
Ti II | 112
29 | 4867.870 | | CoI | 158 | | 12 | P | Fe II
Ga II | 80
30 | 4849.4 | r | Ne II | 71 | 4868.264
4868.38 | P | Ti I
Fe I | 231
38 | | 19 | | Co I | 57 | 4849.67 | P | Fe I | 793 | 4868.700 | • | Sr I | . 10 | | 11 | | Fe I | 115 | 4850.58 | | La II | 51,88 | 4868.82 | P | Fe II | 30 | | .8 | | Sm II | 45 | 4850.84 | | Ba II | 15 | 4869.153 | | Ru I | 11 | | } | P | N1 I | 158 | 4851.10
4851.36 | | Mg II
Zr I | 25
43 | 4869.45 | P | Fe I | 751 | | 1 | | Cr I | 229 | | | | | 4869.8 | | Ne II | 71 | | i | | SII | 46 | 4851.465 | | Cr I | 208 | 4870.05 | P | Fe I | 985 | | 32
12 | | Fe I
Nd II | 1068
1 | 4851.483
4852.560 | | V I
Ni I | 3
130 | 4870.129
4870.71 | P | Ti I
Fe II | 231
30 | | 25 | | Ti I | 241 | 4852.69 | | YI | 13 | 4870.796 | - | Cr I | 143 | | 3 | P | Cr I | 266 | 4853.30 | P | N1 I | 207 | 4870.845 | | Ni I | 191 | | 3 | | Cr II | 30 | 4853.52 | P | Cr I | 61 | 4871.27 | P | Fe II | 25 | | 7 | | N1 I | 114 | 4853.74 | - | N1 I | 99 | 4871.323 | | Fe I | 318 | |) | | C1 II | 13 | 4854.18
4854.365 | P | Fe I
Sm II | 1243
36 | 4871.58 | | 0 11 | 57 | | 57
2 | P | Cr I
Ti I | 144
250 | 4854.604 | | Mn I | 43 | 4871.94
4872.02 | P | Fe I
Cr I | 630
30 | | 5 | P | Fe I | 1243 | 4854.65 | | Zr II | 78 | 4872.144 | | Fe I | 318 | | 5 | P | N1 I | 85 | 4854.727 | | Ti I | 217 | 4872.493 | | Sr I | . 4 | | 18 | | Co I | 15 | 4854.87 | | Y II | 22 | 4872.69 | P | Fe I | 1115 | |) | P | Fe I | 630 | 4854.89 | | Fe I | 1043 | 4872.91 | P | Fe I | 1097 | | 14
19 | | Mn I
Fe I | 43
687 | 4855.045
4855.146 | | Sr I
Cr I | 10
61 | 4873.27 | P | Ni I
Gd II | 112
65 | | 51 | | Ni I | 260 | 4855.235 | | Co I | 14 | 4873.339
4873.437 | | N1 I | 111 | | Ĺ | P | Fe I | 1167 | 4855.414 | | N1 I | 130 | 4873.58 | | N III | 9 | | 3
51 | | V II
Ti I | 223
217 | 4855.54
4855.683 | P | Fe II
Fe I | 25
687 | 4873.74
4874.025 | P | Fe I
Ti II | 633
114 | | | | | | | P | | | | | | | | 51
49 | | Ti II
Fe I | 110
588 | 4855.95
4856.012 | P | Ti II
Ti I | 114
231 | 4874.35
4874.651 | P | Fe I
Cr I | 467
167 | | 16 | | Gd II | 126 | 4856.19 | | Cr II | 30 | 4874.805 | | v II | 197 | | 2 | | Lu II | 2 | 4856.49 | | 0 II | 29 | 4874.809 | | Ni I | 98 | | 7 | P | Fe I | 1206 | 4856.76 | | 0 11 | 29 | 4875.32 | P | Fe I | 1038 | | 7 | P | T I
Fe II | 13
30 | 4857.04
4857.34 | | 01 II
Cr I | 7 4
61 | 4875.462
4875.49. | P | V II | ა
248 | | 2 | • | La II | 37 | 4857.382 | | N1 I | 111 | 4875.72 | P | Fe I | 1243 | | 2 | | Cr I | 266 | 4857.60 | | Cr II | 200 | 4875.89 | | Fe I | 687 | | 53 | | Co I | 158 | 4857.938 | | Co I | 15 | 4875.966 | | Gd II | 126 | | I A | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | IA | Туре | Element | Multiplet No. | |----------------------|--------|---------------|---------------|----------------------------|--------|----------------|---------------|----------------------|--------|----------------|------------------| | 4876.06 | | Sr I | .4 | 4896.71 | | N III | 9 | 4919.867 | | Ti I | 200 | | 4876.19 | P | Fe I | 631 | 4896.77 | | C1 II
A1 II | 17 | 4920.272
4920.28 | P | Co I
Cr II | 57
36 | | 4876.325
4876.41
| | Sr I
Cr II | 5
30 | 4898.52
4898.76 | | Al II | 96
104 | 4920.35 | P Forb | He I | 49 | | 4876.48 | P | Cr II | 30 | 4899.520 | | Co I | 92 | 4920.509 | | Fe I | 318 | | 4877.08 | | A IĮ | 112 | 4899.64 | | Al II | 96 | 4920.692 | | Nd II | 2 | | 4877.61 | P | Fe I | 384 | 4899.90 | P | Fe II
Ti I | 30
157 | 4920.945
4920.98 | | Cr I
La II | 143
7 | | 4878.049
4878.132 | | Gd II
Ca I | 64
35 | 4899.910
4899.92 | | La II | 7 | 4921.074 | | Ru I | 11 | | 4878.218 | | Fe I | 318 | 4899.934 | | Ba II | 3 | 4921.18 | P | Ni I | 100 | | 4879.121 | | Pr II | 20 | 4900.03 | P | Ti I | 295 | 4921.29 | | Ta I | 5 | | 4879.90 | | AII | 14 | 4900.13 | | YII | 22 | 4921.69 | | Si II | | | 4880.06 | | Cr I
La II | 167
153 | 4900.47
4900.50 | P | S II
Cr I | 46
202 | 4921.768
4921.80 | | Ti I
La II | 200
7 | | 4880.20
4880.25 | | CoI | 15 | 4900.624 | | v i | 118 | 4921.929 | | He I | 48 | | 4880.30 | P | V II | 29 | 4900.625 | | Ti I | 295 | 4922.14 | | C1 II | 17 | | 4880.560 | | V I | 50 | 4900.83 | P | Cr I | 202 | 4922.18
4922.267 | P | Fe I
Cr I | 1110
143 | | 4880.922
4881.25 | | Ti I
Zr I | 201
44 | 4900.97 | | Ni I
S II | 98
46 | 4922.207 | | Ne II | 71 | | 1881.3 | | Li II | 4 | 4901.65 | | Cr II | 190 | 4923.578 | | Gd II | 126 | | 4881.44 | | YII | 12 | 4902.77 | | Al II | 96 | 4923.921 | | Fe II | 42 | | 1881.554 | | V I
Fe I | 3 | 4902.89 | P
P | V II
Fe I | 29
589 | 4924.043
4924.08 | | Zn II
S II | 3
7 | | 1881.726
1881.81 | | N III | 588,1041
9 | 4903.10
4903.239 | F | Cr I | 31 | 4924.28 | | C1 II | 12 | | 1881.925 | | Gd II | 113,133 | 4903.317 | | Fe I | 318 | 4924.60 | | 0 11 | 28 | | 4882.151 | | Fe I | 687 | 4903.71 | | Al III | 11 | 4924.776 | | Fe I | 114 | | 1882.183
1882.25 | | V I
A II | 50 | 4903.85
4904.172 | P | Fe II
Co I | 30
141 | 4924.83
4925 | P | C1 II
O V | 39
10 | | 1882.326 | | Ti I | 231 | 4904.285 | | V I | 50 | 4925.17 | • | či ii | 12 | | 1882.462 | | Ce II | | 4904.350 | | V I | 118 | 4925.28 | | Fe I | 1065 | | 1882.704 | | Co I | 158
209 | 4904.413 | | N1 I
V I | 129 | 4925.32
4925.396 | | S II
Ti I | 7
157 | | 1883.415
1883.61 | | Zr I | 209
44 | 4904.447
4904.51 | | Hf II | 118
83 | 4925.578 | | Ni I | 141 | | 1883.69 | | YII | 22 | 4904.75 | | A II | 34 | 4925.657 | | V I | 50 | | 1883.73 | | s II | 46 | 4904.76 | | C1 II | 17 | 4925.90 | | Zr II | 107 | | 1884.06
1884.14 | | V II
N III | 197
9 | 4905.09
4905.15 | | Zr I
Fe I | 43
986 | 4920.02
4926.148 | | Ta I
Ti I | 6
39 | | 1884.57 | | Cr 11 | 30 | 4906.11 | | ΥÏ | 13 | 4926.82 | P | Fe I | 844 | | 1884.915 | | Ne I | 20,35 | 4906.80 | P | Fe I | 1096 | 4926.94 | P | VII | 29 | | 1884.949 | | Cr I | | 4906.88 | | 0 11 | 28 | 4926.99 | | Hf II | 13 | | 1885.082 | | Ti I | 157 | 4906.88 | | S1 II | | 4927.17 | | P II
Fe I | 13
792 | | 1885.435
1885.63 | | Fe I
S II | 966
15 | 4907.125
4907.17 | | Co I
Cl II | 14
39 | 4927.42
4927.56 | | Fe III | 43 | | 1885.776 | | Cr I | 30 | 4907.7.43 | | Fe I | 687 | 4928.290 | | Co I | 158 | | 1885.957 | | Cr I | 143 | 4907.888 | | Ru I | 11 | 4928.342 | _ | Ti I | 200 | | 1886 . 17 | P | Fe I
Fe I | 467 | 4908.46 | P | Ti I | 295 | 4928.62
4928.895 | P | V II
Ti I | 29
39 | | 1886.335
1886.725 | | Ni I | 1066
158 | 4908.61
4908.67 | P | Fe I
Zr II | 115
145 | 4930.04 | P | Fe I | 631 | | 1886.821 | | v r | 50 | 4908.74 | | Fe III | 111 | 4930.183 | | Cr I | 259 | | 1886.92 | P | Fe II | 54 | 4909.105 | | Ti I | 39 | 4930.331 | | Fe I | 985 | | 1886.992 | | Ni I | 141 | 4909.387 | | Fe I | 985 | 4930.821
4931.653 | | Ni I
Cu II | 193
5 | | 887.013
887.189 | | Cr I
Fe I | 143
1065 | 4909.726
4909.87 | | Cu II
Cr I | 5
61 | 4932.00 | | C I | 13 | | 1887.37 | P | Fe I | 1037 | 4910.027 | | Fe I | 687 | 4932.029 | | v i | 50 | | 1887.72 | | Zr I | 43 | 4910.328 | | Fe I | 1068 | 4933 | P
P | N V
Fe I | 7 | | 887.73 | | Cr I
A II | 31
135 | 4910.570
4910.838 | | Fe I
Gd II | 1068
64 | 4933.19
4933.24 | P | Fe I
A II | 1070
6 | | 1888.29
1888.530 | | Cr I | 31 | 4911.205 | | Ti II | 114 | 4933.348 | | Fe I | 1065 | | 888.542 | | Gd II | 126 | 4911.34 | | La II | 87 | 4933.878 | | Fe I | 968 | | 888.651 | | Fe I | 1066 | 4911.52 | P | Fe I | 1098 | 4934.023 | | Fe I | 1068 | | .889.06 | | Fe I
A II | 67,749
15 | 4911.590
4911.664 | | Ru I
Zn II | 11
3 | 4934.096
4934.46 | | Ra II
Hf II | 1
16 | | 889.113 | | Fe I | 985 | 4911.786 | | Fe I | 984 | 4934.83 | | La II | 72 | | 889.15 | | Re I | 1 | 4912.030 | | N1 I | 111 | 4934.89 | | Cr I | 259 | | 889.690 | | Cu II | 1 | 4912.38 | | V II | 222 | 4935.03
4935.42 | P | N I
Fe I | 9
886 | | 889.73
890.45 | P | Cr I
Ni I | 61
114 | 4912.399
4912.49 | | Co I
Cr II | 14
190 | 4935.61 | • | La II | 50 | | 890.762 | - | Fe I | 318 | 4912.52 | P | Fe I | 1040 | 4935.830 | | Ni I | 177 | | 890.93 | | 0 11 | 28 | 4913.248 | | Sm II | 53 | 4936.13 | | A II
Gd II | 34 | | 891.43 | | La II | 95 | 4913.366 | | Fe II | 218 | 4936.155 | | | 116 | | 891.496 | - | Fe I | 318 | 4913.616 | | Ti I
Ni I | 157 | 4936.334
4936.41 | | Cr I
Ta I | 166
11 | | 891.55
891.828 | P | Cr II
Ti I | 36
201 | 4913.970
4914.32 | | AII | 132
112 | 4936.99 | | CI II | 12 | | 891.97 | | Cr I | 61 | 4914.32 | | C1 II | 17 | 4937.196 | | Cu II | . 6 | | 891.980 | | Sr I | 10 | 4914.385 | | Nd II | 52 | 4937.337 | | Ni I
Ti I | 114 | | 892.11 | | Gd II
Fe I | 116
1070 | 4914.90 | | N I
Ti I | 9
157 | 4937.719
4938.04 | | Ti I | 39
173 | | 892.86
893.065 | | Ti I | 231 | 4915.236
4916.67 | P | Fe I | 986 | 4938.100 | | Sm II | 23 | | 893.12 | | Zr I | 43 | 4916.78 | · | Gd II | 125 | 4938.183 | | Fe I
Ti I | 966
289 | | 893.44 | | Y I | 13 | 4917.15 | | S II | 15 | 4938.283 | | | | | 893.59
893.70 | P
P | Fe I
Fe I | 1096
1113 | 4917.25
4917.72 | | Fe I
Cl II | 1066
17 | 4938.820
4939.244 | | Fe I
Fe I | 318
1065,1070 | | 893.780 | • | Fe II | 36 | 4918.00 | | Fe I | 1070 | 4939.46 | P | Fe I | 1043 | | 893.90 | | Ti I | 201 | 4918.363 | | Ni I | 177 | 4939.690
4940 | P | Fe I
O V | 16
10 | | 893.968
894.218 | • | Ce II
V I | 31
118 | 4918.373
4918.712 | | Cu II
Ni I | 5
113 | 4941.015 | - | Ti I | 173 | | 894.218 | | Gd II | 65 | 4918.98 | | Al II | 103 | 4941.03 | P | Cr II | 3 6 | | 894.43 | | Zr II | 107 | 4918.999 | _ | Fe I | 318 | 4941.12 | | O II
Ti I | 33
39 | | 895.20
896.437 | | N II
Fe I | 1
984 | 4919.73
4919.814 | P | Fe I
Th II | 631
7 | 4941.322
4941.562 | | Ti I | 200 | | 0001401 | | 1 | JU # | 20201022 | | | • | | | | | | | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Type | Element | Multiplet No. | |----------|--------|---------------|---------------|----------------------|--------|---------------|---------------|----------------------|------|----------------|------------------| | 30 | | Ni I | 114 | 4967.944 | | Sr I | 4 | 4997.099 | | Ti I | 5 | | 18 | | Mn I | 20 | 4968.50 | | V II | 68 | 4997.23 | | NII | 64 | | 7_ | | s II | 7 | 4968.566 | | Ti I | 173 | 4997.81 | | Ba II
Ni I | 14 | |)5 | | Cr I
Fe I | 9
1097 | 4968.575
4968.709 | | Gd II
Fe I | 124
887 | 4998.233
4998.373 | | Gd II | 111
133 | | 3 | P | A II | 75 | 4968.76 | | 0 I | 14 | 4998.43 | P | Al II | 30 | | • | P | N V | 9 | 4969.65 | | PII | 13 | 4998.55 | | Cr I | 123 | | 3 | | 0 11 | 33 | 4969.927 | | Fe I | 1066 | 4999.114 | | Fe I | 1040 | | 14 | | Ti I | 52 | 4970.12 | | C1 II | 12 | 4999.46 | | La II | 37 | | ŀ | | C1 II | 47 | 4970.39 | | La II | 37 | 4999.504 | | T1 I | 38 | | l. | | K II | 7 | 4970.496 | | Fe I | 883 | 4999.69 | | Hf II | 35 | | 3 | | P II | 13 | 4970.66 | P | Fe I | 985 | 5000.335 | | Ni I | 145 | | 18 | | Ti I | 173 | 4971.354 | | N1 I | 274 | 5000.73 | P | Fe II | 25 | | , | - | Cr I | 259 | 4971.475 | | Ce II
Sr I | 4 | 5000.91
5000.97 | | Zr II
Al II | 95
70 | |) | P
P | N V
Fe I | 10
466 | 4971.668
4971.92 | | Li I | 5 | 5000.991 | | Ti I | 79
173 | | ; | • | Hf II | 15 | 4971.935 | | Co I | 158 | 5001.128 | | N II | 19 | | 58 | | N1 I | 145 | 4972.16 | | A II | 6 | 5001.15 | | Lu I | | | 5 | | Fe I | 1113 | 4972.39 | P | Fe I | 1096 | 5001.469 | | N II | 19 | | 37 | | Ni I | 148 | 4972.90 | P | Fe I | 631 | 5001.489 | | Ca II | 15 | | 34 | | Fe I | 687 | 4973.051 | | Ti I | 173 | 5001.871 | | Fe I | 965 | | 7 | | La II | 36 | 4973.108 | | Fe I | 984 | 5002.02 | | Fe III | *** | | 3 | | V II | 197 | 4973,16 | | A II | 209 | 5002.12 | | La II | 92 | | L | P | Cr I | 202 | 4973.4 | P Forb | Na I | 10 | 5002.320 | | V I | 132 | | 34 | | Ti I
Ti I | 39
200 | 4973.896
4974.47 | | Gd II
Co I | 64
92 | 5002.692
5002.800 | | N II
Fe I | 4 | | 33
L | | Fe III | 200 | 4975.344 | | Ti I | 283 | 5002.800 | | Ni I | 687
50 | | 27 | | Sm II | 49 | 4975.415 | | Fe I | 586 | 5003.85 | P | Fe I | 211 | | Ł | P | Cr I | 202 | 4976.155 | | N1 I | 112 | 5004.034 | | Fe I | 1112 | | 7 | | Zr I | 28 | 4976.345 | | Ni I | 49 | 5004.187 | | Co I | 141 | | 10 | | Fe II | | 4976.71 | P | Ni I | 254 | 5004.264 | | Fe II | | | 18
5 | | A II | 62 | 4977.6 | P Forb | Na I | 10 | 5004.264 | | Cr I | 122 | | 3 | | Cr I | 259 | 4977.653 | | Fe I | 985 | 5004.907 | | Mn I | 20 | | 3 | | La I | 4 | 4977.731 | | Ti I | 173 | 5005.140 | | N II | 19,6 | | 12 | _ | Fe I
V II | 687 | 4978.11 | P | Fe I | 986 | 5005.160 | _ | Ne I | 29 | | 3 | P
P | V II
N V | 29
8 | 4978.191
4978.541 | | Ti I
Na I | 173
9 | 5005.18
5005.60 | P | T1 II
K II | 71
2 | | 3 | • | La II | 92 | 4978.606 | | Fe I | 966 | 5005.720 | | Fe I | 984 | | 34 | | Ni I | 113 |
4978.70 | P | Fe I | 1035 | 5006.126 | | Fe I | 318 | | 71 | | Sm II | 32 | 4979.58 | | Fe I | 883 | 5006.169 | | WI | 1 | | 16 | | Fe I | 1068,1111 | 4979.84 | P | Fe I | 465 | 5006.71 | | s II | 57 | | 3 | | Cr II | • | 4980.161 | | N1 I | 112 | 5006.72 | P | Fe I | 211 | | 79 | | Co I | 14 | 4980.30 | P | Cr I | 123 | 5006.787 | | Cu II | 10 | |)4 | P | Ni I
Ti I | 111 | 4981.30 | P | Cr I | 123 | 5007.209 | | T1 I | 38 | | 7
14 | P | Cr I | 39
166 | 4981.38
4981.732 | P | Ti II
Ti I | 71
38 | 5007.286
5007.289 | | Co I
Fe I | 14 | | 33 | | Cu II | 9 | 4982.13 | | Y II | 20 | 5007.235 | | N II | 966, 1065
24 | | 79 | | Fe II | 168 | 4982.507 | | Fe I | 1067 | 5009.35 | | A II | 6 | | 25 | | Gd II | 114 | 4982.813 | | Na I | 9 | 5009,54 | | s II | 7 | | 5 | | c II | 25 | 4983.258 | | Fe I | 1067 | 5009,652 | | Ti I | 5 | |) | P | Fo I | 1003 | 4983.68 | P | Cr I | 202 | 5010.045 | | N1 I | 111 | | 3 | | P II | 13 | 4983.855 | | Fe I | 1066 | 5010.202 | | Ti II | 113 | | 11 | | Cr I | 166 | 4984.126 | | Ni I | 143 | 5010.30 | P | Fe I | 211 | | 8 | | O II | 33 | 4984.905 | | Gd II | 64 | 5010.620 | | N II | 4 | | 334
5 | | Ne I
Ba II | 25
10 | 4985.261
4985.46 | P | Fe I
Cr II | 984
36 | 5010.821
5010.961 | | Gd II | 59 | | 02 | | Fe I | 318 | 4985.503 | | Cu II | 6 | 5011.24 | P | N1 I
Fe I | 144
1066 | | 03 | | Fe I | 318 | 4985.553 | | Fe I | 318 | 5011.24 | | N II | 64 | | 8 | P | Fe I | 1066 | 4985.60 | _ | As II | 3 | 5012.026 | | N II | 64 | | В | P | Ti I | 52 | 4985.98 | P | Fe I | 1094 | 5012.071 | | Fe I | 16 | | 88 | | Gd II | 64 | 4986.24 | | Fe I | 1070 | 5012.16 | P | Fe I | 1070 | | 30 | | Nd II | 1 | 4986.82 | | La II | 22 | 5012.464 | • . | Ni I | 111 | | 2 | | C II | 25 | 4986.90 | P | Fe I | 1092 | 5012.611 | | Cu II | 7 | | 82
96 | | Co I
Nd II | 14
22 | 4987.377 | P | N II | 24 | 5012.68 | P | Fe I | 1093 | | 98 | | Fe I | 845 | 4987.62
4987.83 | P | Fe I
Fe I | 1094
966 | 5013.00
5013.284 | | Ba II
Ti I | 10 | | 36 | | Sm II | 41 | 4987.853 | • | Co I | 11 | 5013.216 | | Cr I | 173
<i>00</i> | | 0 | | Al II | 80 | 4988.963 | | Fe I | 1066 | 5013.38 | P | T1 II | 113 | | 63 | | Sr I | 4 | 4989.140 | | Tí I | 173 | 5013.712 | | Ti II | 71 | | 64 | | Fe I | 1097 | 4991.067 | | Ti I | 38 | 5014.03 | | 8 11 | 15 | | 5 | | A II | 221 | 4991.11 | P | Fe II | 25 | 5014.185 | | Ti I | 5 | | 4 | P | Cr II | 36 | 4991.22 | | N 11- | 64 | 5014.277 | | Ti I | 38 | | 13 | | Ti I | 173 | 4991.27 | | La II | 57 | 5014.45 | | La II | 159 | | 0
28 | | C II
Cr I | 25
9 | 4991.277 | P | Fe I
Fe I | 1065 | 5014.620 | | V I | 132 | | 47 | | Gd II | 143 | 4991.86
4991.94 | • | SII | 1094
7 | 5014.950
5015.04 | | Fe I
Gd I | 965
6 | | 2 | | A II | 14 | 4992.80 | P | Fe I | 1110 | 5015.30 | P | Fe I | 968 | | 4 | | N1 I | 147 | 4993.355 | | Fe II | 36 | 5015.675 | | He I | 4 | | 0 | | V II | 209 | 4993.51 | | S I | | 5016.162 | | Ti I | 38 | | 81 | | Mn I | 20 | 4993.687 | | Fe I | 1111 | 5016.387 | | N II | 19 | | 8 | P | v II | 29 | 4994.133 | | Fe I | 16 | 5016.48 | P | Fe I | 1089 | | 96 | _ | Fe I | 687 | 4994.14 | | Lu II | ສ | 5016.60 | | v II | 251 | | 0 | P | Fe I | 986 | 4994.358 | | N II | 24,64 | 5017.16 | | A II | 37 | | 81
0 | | Co I
Cr I | 14
259 | 4995.062
4995.41 | P | Ti I
Fe I | 216
1113 | 5017.591
5017.63 | | Ni I
A II | 111 | | ŏ | | Ti I | 5 | 4995.52 | • | C1 II | 1113 | 5017.63 | P | A II
Fe I | 13
884 | | ō | | 0 I | 14 | 4995.65 | P | Ni I | 145 | 5018.294 | - | Ni I | 162 | | 21 | | N1 I | 141 | 4995.89 | P | T1 II | 71 | 5018.43 | P | re I | 585 | | 6
99 | | O I
Fe I | 14
1067 | 4996.82
4996.850 | | La II
Ni I | 93 | 5018.434
5018.78 | | Fe II
O I | 42 | | | | 1 | | *000.000 | | | 144 | 3010.70 | | U 1 | 13 | | 52 | | | | | FIND | TWO TIST | | | | | | |---------------------|--------|---------------|---------------|----------------------|------|---------------|--------------|----------------------|------|----------------|---------------| | I A | Type | Element | Multiplet No. | I A | Type | Element | Multiplet No | I A | Type | Element | Multiplet No. | | 5019.18 | P | Fe I | 1242 | 5040.902 | | Fe I | 1092,1094 | 5070.249 | | Sc I | 13 | | 5019.20 | • | Cr I | 20 | 5041.063 | | Si II | 5 | 5070.957 | | Fe II | | | 5019.34 | | 0 I | 13 | 5041.074 | | Fe I | 16 | 5071.023 | | Gd II | 114 | | 5019.361 | | Gd II | 81 | 5041.077 | | N1 I | 158 | 5071.23 | | Hf II | 23 | | 5019.478 | | Fe II | 168 | 5041.32 | P | Fe I | 1328 | 5071.40 | P | Co I | 14 | | 5019.74 | P | Fe I | 966 | 5041.33 | P | Fe I | 1110 | 5071.475 | | Ti I | 110 | | 5019.855 | | V II | 232 | 5041.620 | | Ca I | 34 | 5072.077 | | Fe I | 1089 | | 5019.979 | | Ca II | 15 | 5041.66 | | CI | 4 | 5072.30 | | Ti II | 113 | | 5020.028 | | Ti I | 38 | 5041.759 | | Fe I | 36 | 5072.690 | | Fe I | 1095 | | 5020.13 | | 0 I | 13 | 5042.195 | | Ni I | 131 | 5072.920 | | Cr I | . 8 | | 5020.368 | | Gd II | 64 | 5042.589 | | Mn I | 20 | 5073 | P | N IV | 17 | | 5020.67 | P | Fe I | 629 | 5043.578 | | Ti I | 38 | 5073.60 | | N II | 10 | | 5020.819 | _ | Fe I | 748 | 5044.008 | | Ce II | 16 | 5073.78 | | Fe III | 5 | | 5021 | P | C IV | 3 | 5044.221 | | Fe I | 318 | 5074.063 | | Fe II | 205 | | 5021.141 | _ | Ca II | 15 | 5044.8
5045.098 | | C II
N II | 35
4 | 5074.757 | _ | Fe I | 1094 | | 5021.60 | P
P | Fe I
Fe I | 1093
1067 | 5045.400 | | Ti I | 38 | 5075.17
5075.304 | P | Fe I
Ce II | 1089
14 | | 5021.68
5021.894 | | Fe I | 629 | 5046.61 | | Zr I | 62 | 5075.814 | | Sc I | 13 | | 5021.903 | | Cr I | 8 | 5047.14 | P | Fe I | 1242 | 5075.829 | | Fe II | 10 | | 5022.244 | | Fe I | 965 | 5047.2 | | C II | 35 | 5075.92 | | Hf II | 16 | | 5022.82 | P | Ti II | 71 | 5047 99 | | s II | 15 | 5076.15 | | Cr II | 201 | | 5022.82 | | Ce II | 16 | 5047.28
5047.308 | | V II | 127 | 5076.288 | | Fe I | 1089 | | 5022.871 | | Ti I | 38 | 5047.736 | | He I | 47 | 5076.321 | | Ni I | 143 | | 1022.874 | | Fe II | | 5048.04 | | La II | 90 | 5077.410 | | Co I | 184 | | 5023 | P | CIV | 3 | 5048.082 | | Ni I | 161 | 5078.25 | | C1 II | 16 | | 5023.11 | | N II | 64 | 5048.208 | | Ti I | 199 | 5078.28 | | Zr I | 62 | | 5023.133 | | Gd II | 64 | 5048.454 | | Fe I | 984 | 5078.53 | P | Fe I | 744 | | 5023.226 | | Fe I | 1095 | 5048.752 | | Cr I | 20 | 5078.711 | | Cr I | | | 1023.39 | | T1 I | 199 | 5048.851 | | Ni I | 195 | 5079.002 | | Fe I | 1092 | | 5023.476 | | Fe I | 1150 | 5048.91 | | A II | 209 | 5079.226 | | Fe I | 66 | | 1024.842 | | Ti I | 38 | 5049.825 | | Fe I | 114 | 5079.65 | | Hf II | 71 | | 1025.08 | P | Fe I | 1110 | 5050.13 | P | Fe I | 963 | 5079.681 | | Ce II | 15 | | 1025.54 | | Cr I | 20 | 5050.878 | _ | Gd II | 114 | 5079.742 | | Fe I | 16 | | 1025.570 | | Ti I | 173 | 5051.29 | P | Fe I | 1089 | 5079.961 | | Ni I | 60 | | 1025.665 | n | N II | 19 | 5051.527 | | N1 I | 144 | 5080.21 | | La II | 80 | | 1025.73 | P | Fe I
N1 I | 466 | 5051.636 | | Fe I
Cu II | 16 | 5080.44 | | Hf II | 83 | | 1026.50
1027.106 | | Fe I | 158
1065 | 5051.778
5051.900 | | Cr I | . 7
9 | 5080.523
5080.95 | P | N1 I
Fe I | 143
565 | | 1027.19 | | SII | 1 | 5052.122 | | C I | 12 | 5081.111 | • | Ni I | 194 | | 1027.212 | | Fe I | 883 | 5052.879 | | T1 I | 199 | 5081.39 | P | Ti I | 109 | | 100T 04 | P | Fe I | 968 | E0E0 07 | P | Fe I | 585 | E004 554 | | Sc I | 40 | | i027.34 | P | Fe I | 960 | 5052.97
5053.300 | | M I | 1 | 5081.554
5081.86 | P | Fe I | 13
962 | | 1027.66 | P | Cr I | 202 | 5054.070 | | Ti I | 171,294 | 5081.920 | • | Fe II | 221 | | 027.785 | | Fe I | 1110 | 5054.647 | | Fe I | 884 | 5082.354 | | Ni I | 130 | | 1028.00 | | Cr I | 122 | 5056.00 | | Fe I | 1149 | 5082.68 | P | Fe I | 466 | | 1028.129 | | Fe I | 791 | 5056.020 | | Si II | 5 | 5083.342 | | Fe I | 16 | | 1029.623 | | Fe I | 718 | 5056.27 | | K II | 3 | 5083.713 | | Sc I | 13 | | 029.812 | | Mn I | 20 | 5056.353 | | Si II | 5 | 5084.081 | | N1 I | 162 | | i030.740 | | Fe II | | 5056.856 | | Fe I | 1111 | 5084.55 | P | Fe I | 932 | | 030.75 | | Fe III | | 5057.03 | | HP II | 71 | 5085.02 | | Al II | 43 | | 030.784 | | Fe I | 585 | 5057.49 | | Fe I | 1087,1150 | 5085.333 | | Ti I | 109 | | 031.019 | | Sc II | 23 | 5057.83 | P | Fe I | 1185 | 5085.479 | | N1 I | 130 | | 031.030 | | Fe I | 746,883 | 5058.00 | | Fe I | 967 | 5085.547 | _ | Sc I | 13 | | 031.290 | | Gd II | 114 | 5058.03 | | Ni I | 141 | 5085.68 | P | Fe I | 1093 | | 031.562 | | Gd II
Fe I | 64
1150 | 5058.18
5058.50 | | Hf II
Fe I | 37
884 | 5085.695
5085.824 | | Co I | · 14
2 | | 032.41 | | S II | 7 | 5060.079 | | Fe I | 1,1095 | 5085.93 | P | Fe I | 963 | | 032.748 | | N1 I | 207 | 5060.635 | | Cu II | 1 | 5086.69 | • | Fe III | 5 | | 032.794 | | Fe II | | 5061.794 | | Fe II | _ | 5086.77 | P | Fe I | 1067 | | 033.2 | | CII | 17 | 5062.07 | | A II | 6 | 5086.951 | | Sc I | 13 | | 034.06 | | Co I | 91 | 5062.112 | | Ti I | 199 | 5087.055 | | Ti I | 109 | | 034.33 | | Hf II | 26 | 5062.862 | | Gd II | 64 | 5087.25 | | Fe II | | | 034.415 | | Pr II | 37 | 5062.91 | | La II | 50 | 5087.42 | | Y II | 20 | | 035.025 | | Fe I | 885 | 5063.296 | | Fe I | 1066 | 5088.16 | P | Fe I | 1066 | | 035.374 | | Ni I | 143 | 5063.30 | | Fe III | 5 | 5088.260 | | Gu II | 6 | | 035.773 | | Fe II | | 5064.068 | | Ti I | 294 | 5088.534 | | N1 I | 190 | | 035.908 | | Ti I | 110 | 5064.321 | | Sc I | 13 | 5088.956 | | N1 I | 162 | | 035.961 | | Ni I
Fe I | 145 | 5064.654
5064.69 | | Ti I
Au I | 5 | 5089.278 | | Fe II | 40 | | 036.294
036.468 | | Ti I | 110 | 5064.92 | | Zr I | 1
62 | 5088.837
5090.55 | | A II | 122 | | | | | •• | #004 A# | | 91- ¥ | 400 | #000 #0 | | | 400 | | 036.92 | | Fe II | 36 | 5064.95 | P | Fe I | 1095 | 5090.56 | | La II | 100 | | 036.931 | | Fe I | 465 | 5065.020 | | Fe I | 1094 | 5090.787 | | Fe I | 1090 | | 037.0
037.33 | | C II
Ta I
 17
12 | 5065.201
5065.448 | | Fe I
Cu II | 883
11 | 5091.14
5091.282 | | Cr II
Co I | 201
14 | | 037.65 | | Ta I | 2 | 5065.910 | | Cr I | 60 | 5091.72 | P | Fe I | 745 | | 037.7505 | 5 | Ne I | 14 | 5065.985 | | Ti I | 110 | 5091.73 | P | Fe I | 717 | | 037.81 | P | Ti II | 71 | 5066.28 | P | Fe I | 882 | 5091.890 | - | Cr I | 20 | | 038.400 | | Ti I | 110 | 5066.99 | | La II | 162 | 5092.251 | | Gd II | 114 | | 038.599 | _ | N1 I | 166 | 5067 | P | N V | 6 | 5092.797 | | Nd II | 48 | | 038.81 | P | Fe I | 510 | 5067.082 | | Cu II | 7 | 5093.41 | | Cr I | 20 | | 038.87 | P | Cr I | 20 | 5067.162 | | Fe I | 1092 | 5093.470 | | Fe II | 205 | | 039.05 | | CI | 4 | 5067.714 | | Cr I
Ni I | 60 | 5093.646 | | Fe II
Al II | 43 | | 039.259 | | N1 I
Fe I | 142
687 | 5067.82
5068.10 | | C1 II | 141
16 | 5093.65
5094.416 | | Ni I | 164 | | 039.266 | | re I
Ti I | 587 | 5068.290 | | Cr I | 20 | 5094.415 | | Co I | 92 | | 039.959
040.25 | P | Fe I | 1093 | 5068.290 | | Ti I | 294 | 5096.063 | | GG II | 59 | | 040.23 | | Ti I | 38 | 5068.774 | | Fe I | 383 | 5096.17 | P | Fe I | 1242 | | 040.744 | | Ru I | 11 | 5069.12 | | Ti II | 113 | 5096.716 | | Sc I | 13 | | 040.76 | | N II | 19 | 5069.351 | | T1 I | 199 | 5096.874 | | Ni I | 111 | | 040.82 | | Hf II | 14 | 5069.60 | P | Fe I | 211 | 5096.998 | | Fe I | 1092 | | | Туре | Element | Multiplet No. | ı A | Type | Element | Multiplet No. | I A | Type | Element | Multiplet No. | |--------|------|---------------|---------------|----------------------|------|---------------|------------------|----------------------|------|------------------|---------------| | | | Cr II | 24 | 5123.723 | | Fe I | 16 | 5146.06 | | 0 1 | 28,39 | | 5 | | Fe II | | 5124.05 | P | Fe II | 1.67 | 5146.12 | P | Fe II | 35 | | | | C1 II | 16 | 5124.17 | P | Fe I | 1035 | 5146.30 | P | Fe I | 1150 | | | | Gd II | 114 | 5124.60 | P | Fe I
Co I | 585
197 | 5146.478 | | N1 I
Co I | 162
170 | | 3 | | Fe I
Fe I | 984
66 | 5124.718
5124.98 | | Zr II | 87 | 5146.753
5147.09 | | Fe II | 110 | | i | | Fe I | 965 | 5125.130 | | Fe I | 1090 | 5147.483 | | Ti I | 4 | | 3 | | Sc I | 13 | 5125.211 | | Ni I | 160 | 5148.061 | | Fe I | 1090 | | | | C1 II | 16 | 5125.56 | | Gd II | 99 | 5148.19 | P | Fe II | 52 | | 2 | | Ni I | 141 | 5125.715 | | Co I | 181 | 5148.234 | | Fe I | 1095 | | _ | | | 404 | 2405 04 | | A II | 122 | F440 6F | | N1 I | 150 | | 5 | | Ni I
Al II | 161
43 | 5125.84
5126.13 | | SII | 57 | 5148.65
5148.724 | | VI | 158
123 | | | P | Fe II | 35 | 5126.19 | P | Fe II | 53 | 5148.838 | | Na I | 8 | | ŧ | • | Fe II | ** | 5126.201 | | Co I | 170 | 5149.13 | | Mn I | 32 | | 5 | | Fe III | | 5126.218 | | Fe I | 1089 | 5149.33 | | Fe III | | |) | | Fe II | 185 | 5126.598 | | Fe I | 961 | 5149.538 | | Fe II | | | 7 | | Gd II | 114 | 5127.32 | | Fe III | 5 | 5149.796 | | Co I
Gd II | 39 | | 1 | | Fe II
Sc I | 13 | 5127.363
5127.367 | | Fe I
Ti I | 16
230 | 5149.841
5150.19 | P | Fe I | 115
789 | | • | | Fe II | 10 | 5127.68 | P | Fe I | 1 | 5150.843 | - | Fe I | 16 | | | | | | | | | | | | | | | | P | Fe I | 65 | 5127.866 | | Te II | 167 | 5150.86 | | Al III | 14 | | 1 | | Ni I | 49 | 5128.03 | | Ni I | 113 | 5150.890 | _ | Mn I | 32 | | | | C1 II
S II | 16
7 | 5128.53
5128.530 | | Hf II
V I | 58
123 | 5150.93 | P | Fe II
C II | 35
16 | | | | Gd I | € | 5129.143 | | Ti II | 86 | 5151.08
5151.83 | | Cr I | 19 | | | P | Cr II | 38 | 5129.383 | | N1 I | 159 | 5151.87 | | VII | 196 | | 3 | | Fe I | 465 | 5129.520 | | Pr II | 38 | 5151.915 | | Fe I | 16 | | | | C1 II | 16 | 5129.658 | | Fe I | 965 | 5152.185 | | Ti I | 4 | | | | Fe I | 1092 | 5130.28 | | Gd II | 115 | 5152.20 | | PII | 7 | | | | N II | 34 | 5130.389 | | Ni I | 177 | 5153.235 | | Cu I | 7 | | | P | Fe I | 1090 | 5130.53 | | 0 I | 29,39 | 5153.402 | | Na. I | 8 | | 1 | _ | Cu I | 2 | 5130.596 | | Nd II | 75 | 5153.49 | | Cr II | 24 | | | | As II | 4 | 5130.91 | P | Fe I | 1149 | 5154.061 | | Ti II | 70 | | | | La I | 9 | 5131.28 | P | Ti II | 86 | 5154.40 | P | Fe II | 35 | | 3 | | V II
Gd II | 127 | 5131.475 | | Fe I
Ni I | 66
114 | 5155.136 | | Ru I
Ni I | 10
206 | | 5
2 | | Fe I | 81
16 | 5131.770
5132.19 | | V II | 127 | 5155.140
5155.764 | | Ni I | 210 | | • | | La II | 164 | 5132.67 | P | Fe II | 35 | 5155.845 | | Gd I | 6 | | 5 | | Fe I | 36 | 5132.931 | | Ti I | 230 | 5156.0 | | Fe III | 5 | | | | Cr I | 19 | 5132.96 | | C II | 16 | 5156.040 | | Sr I | 11 | | | | As II | 6 | 5133.22 | Р | Fe I | 818 | 5158.06 | | Hf II | 83 | | 3 | | Co I | 181 | 5133.29 | • | C II | 16 | 5156.10 | | Fe II | 00 | | | | Gd II | 114 | 5133.42 | | Zr I | 27 | 5156.366 | | Co I | 180 | | | | Cr I | 60 | 5133.467 | | Co I | 180 | 5156.74 | | La II | 7 | | 7 | | T1 I | 109 | 5133.692 | | Fe I | 1092 | 5156.76 | | Gd II | 114 | | 5 | P | Fe I
Fe I | 1089
790 | 5135.10
5135.125 | | Lu I
Pr II | . 2
37 | 5157.28 | | V II
La II | 127
97 | | 2 | | Pr II | 38 | 5136.09 | | Fe I | 1036 | 5157.43
5157.993 | | Ni I | 111 | | 4 | | Pe I | 1 | 5130.47 | | Ta I | 5 | 5158.187 | | A1 II | 58 | | | | Cr II | 199 | 5136.788 | | Fe II | 35 | 5158.854 | | Co I | 188 | | | | Hf II | 106 | 5137.075 | | Ni I | 40 | · · · · | | Fe I | 4004 | | 1 | | Cr I | 60 | 5137.075 | | Cr II | 48
201 | 5159.066
5159.350 | | V I | 1091
123 | | 8 | | Pr II | 35 | 5137.26 | | C II | 16 | 5159.93 | | Fe II | 100 | | 0 | | Gd 11 | 114 | 5137.388 | | Fe I | 1090 | 5159.95 | P | Fe I | 1095 | | | P | 0 VI | 12 | 5137.94 | | Cr I | 207 | 5160.02 | | 0 11 | 32 | | 0 | | Zr II
Cr I | 95 | 5138.431 | | V I | 123 | 5160.105 | | Gd II | 115 | | 0 | | Cr I | 19
60 | 5138.71
5139.21 | | Cr I
C II | 19
16 | 5160.824
5160.896 | | Fe II
Gd II | 167
115 | | 2 | | Co I | 91 | 5139.255 | | Ni I | 129 | 5161.18 | P | Fe II | 35 | | | | C1 II | 16 | 5139.260 | | Fe I | 383 | 5161.765 | | Cr I | 60 | | | | | | | | | | | | | | | В | P | Ti I
O V | 109 | 5139.468 | | Fe I | 383 | 5162.288 | | Fe I | 1089 | | | F | CII | 1
51 | 5139.654
5140.839 | | Cr I
Gd II | 207 | 5162.34 | P | C1 II | 33 | | | | Fe III | 5 | 5141.55 | P | Fe I | 115
990 | 5162.38
5102.47 | r | Fe I
Ga II | 210
140 | | | P | Fe I | 1242 | 5141.63 | | Ta I | 6 | 5162.80 | | A II | 126 | | | | La II | 36 | 5141.750 | | Fe I | 114 | 5162.93 | P | Ni I | 159 | | 7 | | N1 I | 177 | 5141.84 | | A II | 37 | 5163.61 | | La II | 7 | | 8 | | Fe I
Cr II | 789
24 | 5142.263
5142.33 | | Cr I
S II | 60
1 | 5163.74 | | Fe III
Al III | 2 | | U | | Sm II | 56 . | 5142.541 | | Fe I | 1090,1092 | 5163.90
5164.542 | | Gd II | 19
97 | | | | | | | | | , | | | | | | 7 | | Fe II | | 5142.763 | | Ru I | 11 | 5164.56 | | Fe I | 1166 | | 5
7 | | Ce II
Mn I | 23 | 5142.771 | | Ni I | 161 | 5164.56 | _ | Hf II | 83 | | ' | | Y II | 32
20 | 5142.932
5142.98 | P | Fe I
Ni I | 16
113 | 5164.69
5164.70 | P | Fe II
Fe I | 167
210 | | | | Ĉ II | 51 | 5143.49 | - | C II | 16 | 5164.922 | | Fe I | 1033 | | | P | Fe I | 960 | 5143.73 | P | Fe I | 65 | 5165.140 | | Nd II | 77 | | _ | P | Fe II | 35 | 5144.413 | _ | Al II | 68 | 5165.156 | | Co I | 39 | | 0 | ъ | Ti I | 288 | 5144.47 | P | Cr II | 38 | 5165.422 | | Fe I | 1089 | | 0 | P | Fe I
Ni I | 1150
177 | 5144.672
5144.675 | | Cr I | 60
66 | 5165.82
5166.227 | | A II
Or I | 75
207 | | - | | | | 34.4.013 | | 44 | 30 | 0,000,227 | | J. 1 | 201 | | 6 | | Fe I | 1095 | 5144.9376 | | Ne I | 34 | 5166.286 | | Fe I | 1 | | | _ | CII | 12 | 5144.998 | | Al II | 68 | 5167.28 | _ | Le II | 95 | | , | P | Fe I
Ti I | 745 | 5145.011 | | Ne I | 34 | 5167.321 | | Mg I | 2 | | 2 | | Cr 1 | 230
19 | 5145.105
5145.16 | | Fe I
C II | 66
16 | 5167.491
5167.70 | P | Fe I
Fe I | 37
717 | | 7 | | Co I | 170 | 5145.36 | | A II | 13 | 5167.96 | • | Cr I | 207 | | | | La II | 36 | 5145.42 | | La I | 9 | 5168.18 | P | Fe I | 964 | | | _ | Y II | 21 , | 5145.465 | | Ti I | 109 | 5168.19 | P | Fe I | 960 | | = | P | Fe I | 1150 | 5145.654 | n | Al II | 68 | 5168.24 | | N II | 70 | | 5 | | Cr I | 20 | 5145.73 | P | Fe I | 931 | 5168.63 | | Cr I | 19 | | IA | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Type | Element | Multiplet No. | |----------------------|------|----------------|---------------|----------------------|--------|----------------|---------------|----------------------|------|----------------|------------------------| | 1168.660 | | Ni I | 112 | 5191.60 | | Zr II | 95 | 5214.64 | | Cr I | 189 | | 168.901 | | Fe I
Fe II | 1
42 | 5192.000
5192.350 | | Cr I
Fe I | 201
383 | 5215.185 | | Fe I
Cr I | 553 | | 169.030
169.30 | P | Fe I | 1032 | 5192.524 | | Ni I | 111 | 5215.29
5215.928 | | V. 11 | 206
55 | | 5169.733 | • | Fe II | 2002 | 5192.621 | | Nd II | 75 | 5216.17 | | Cr I | 189 | | 1170.08 | P | Fe I | 1241 | 5192.75 | | Si II | | 5216.278 | | Fe I | 36 | | 170.08 | | N II | 70 | 5192.971 | | Ti I | 4 | 5216.512 | | Ni I | 113 | | 3171.028 | P | Ru I
V II | 11
115 | 5193.004
5193.03 | | V I
Cl II | 125
33 | 5216.84 | | A II | 126 | | 3171.13
3171.46 | Ρ. | N II | 70 | 5193.43 | P | V II | 115 | 5216.99
5217.36 | P | Fe III
V II | 115 | | 5171.599 | | Fe I | 36 | 5193.488 | | Cr I | 206 | 5217.395 | | Fe I | 553 | | 171.62 | P | Fe II | 35 | 5193.89 | | Fe III | 5 | 5217.69 | P | Fe I | 965 | | 5172.21 | P | Fe I | 210 | 5194.043 | | Ti I
Fe III | 183
5 | 5217.83 | | La II | 200 | | 5172.32
5172.6 | | N II
Al III | 66
18 | 5194.43
5194.57 | | Hf II | 69 | 5217.927
5217.93 | | Fe I
Cl II | 880
3 | | 3172.6843 | | Mg I | 2 | 5194.824 | | v I | 125 | 5218.202 | | Cu I | 7 | | 172.89 | | La II | 100 | 5194.943 | | Fe I | 36 | 5218.51 | P | Fe I | 1240 | | 3173.002
3173.15 | | Fe II
Cl II |
185
33 | 5195.110
5195.307 | | Pr II
Pr II | 38
38 | 5219.008
5219.053 | | Co I
Pr II | 170
37 | | 3173.37 | | N II | 66 | 5195.394 | | v i | 125 | 5219.40 | | Gd I | 6 | | 173.742 | | T1 I | 1 . | 5195.471 | | Fe I | 1092 | 5219.697 | | Ti I | 4 | | 173.83 | | La II | 158 | 5196.100 | _ | Fe I | 1091 | 5220.070 | | Cu I | 7 | | 1173.898 | | Pr II
N II | 35
70 | 5196.24
5196.43 | P | Fe I
Y II | 406 | 5220.113 | | Pr II | 35 | | 1174.46
1175.71 | P | Fe I | 10 | 5196.443 | | Cr I | 28
207 | 5220.297
5220.307 | | Gd II
Ni I | 80
114 | | 175.78 | P | N1 I | 188 | 5196.57 | | Cr I | 207 | 5220.912 | | Cr I | 201 | | 3175.889 | | Gd II | 114 | 5196.591 | | Mn I | 32 | 5221.34 | | C1 II | 3 | | 175.85 | | C1 II | 50,81 | 5197.165 | | N1 I
Mn I | 204 | 5221.43 | P | Fe I | 1 | | 175.89 | | O II | 66
32 | 5197.216
5197.569 | | Fo II | 32
19 | 5221.75
5001.758 | P | Fe I
Cr 1 | 628
196 | | 1176.085 | | Co I | 92 | 5197.768 | | Gd I | 6 | 5222.39 | | Cr I | 206 | | 176.26 | P | Cr II | 38 | 5197.93 | P | Fe I | 1091 | 5222.40 | P | Fe I | 112 | | 176.28 | | AII | 37 | 5198.714 | | Fe I | 66 | 5222.676 | | Cr I | 59 | | 1176.285 | | Gd II
Ni I | 60
209 | 5198.843
5198.89 | | Fe I
S II | 743
57 | 5222.685 | | Ti I
Fe I | 183 | | 1176.565
1177.230 | | Fe I | 930 | 5199.211 | | Gd II | 115 | 5223.191
5223.623 | | Ti I | 880
183 | | 177.30 | | La I | 9 | 5199.50 | | N II | 66 | 5224.082 | | Cr I | 201 | | 177.430 | | Cr I | 201 | 5199.68 | | V II | 55 | 5224.14 | P | Ti I | 37 | | 1177.73
1177.83 | | Fe III
Cr I | 206 | 5200.188
5200.42 | | Cr I
Y II | 201
20 | 5224.30
5224.301 | P | Fe I
Ti I | 65
183 | | 178.104 | | Gd II | 114 | 5200.549 | | Gd II | 147 | 5224.541 | | Cr I | 59,193 | | 178.71 | P | Fe II | 35 | 5201.00 | | s II | 39 | 5224.558 | | Ti I | 183 | | 1178.798 | | Fe I | 1166 | 5201.096 | | Ti I
S II | 183 | 5224.680 | | W I | 1 | | 1178.843
1178.95 | P | Gd II
Fe II | 147
05 | 5201.32
5303.37 | | Fo I | 39
1000 | 5224.928
5224.94 | | Ti I
Zr I | 183
27 | | 179.136 | | N1 I | 202 | 5202.339 | | Fe I | 66 | 5224.941 | | Cr I | 201 | | 179.50 | | N II | 66,70 | 5202.51 | | Si II | | 5225.032 | | Cr I | 201 | | 179.919 | | Gd II
Fe I | 100 | 5202.94
5203.86 | | V II
P III | 142
5 | 5225.533 | | Fe I
Cr I | 1 | | 180.065
180.34 | | N II | 1166
66 | 5204.14 | | La II | 96 | 5225.821
5226.06 | | Fe İ | 58
716 | | 180.53 | P | Fe II | 35 | 5204.46 | | A II | 126 | 5226.20 | | La II | 96 | | 181.77 | | Si II | | 5204.518 | | Cr I | 7 | 5226.42 | P | Fe I | 406 | | 181.86 | P | Hf I
Fe II | 1
53 | 5204.582
5204.95 | P | Fe I
Fe I | 1
407 | 5226.534
5226.868 | | Ti II
Fe I | 70
383 | | 1181.97
1181.995 | r | Zn I | 7 | 5205.31 | P | Fe I | 1112 | 5226.891 | | Cr I | 193 | | 183.21 | | N II | 70 | 5205.73 | | YII | 20 | 5227.10 | | Cr I | 59 | | 183.41 | | Cr I | 19 | 5206.039 | | Cr I
Ti I | 7 | 5227.15 | P | Fe I | 114 | | 183.42
183.6042 | | La II
Mg I | 36
2 | 5206.059
5206.15 | P | Cr I | 276
59 | 5227.192
5227.53 | | Fe I
Fe III | 37 | | 183.72 | | Ti II | 86 | 5206.52 | P | Cr I | 206 | 5227.70 | | V II | 115 | | 184.17 | P | Fe I | 1147 | 5206.562 | | Pr II | 38 | 5227.75 | _ | Cr I | 58 | | 184.292 | | Fe I
Ni I | 1089
159 | 5206.73
5206.80 | P | O II
Fe I | 32
1095 | 5227.87
5228.082 | P | Ti II
Cr I | 103
193 | | 184.590 | | Cr I | 201 | 5207.852 | • | Ti I | 183 | 5228.408 | | Fe I | 1091 | | 184.97 | | N II | 66 | 5207.95 | P | Fe I | 880 | 5228.427 | | Nd II | 46 | | 185.09 | | Si II | | 5208.07 | P | Cr I | 59 | 5229.57 | | Fe III | 113 | | 185.90 | | T1 II | 86 | 5208.436 | | Cr I
Fe I | 7
553 | 5229.857 | | Fe I
Co I | 553,10 90
39 | | 186.17
186.329 | | N II
Ti I | 70
183 | 5208.601
5209.90 | P | Fe I | 584 | 5230.210
5230.228 | | Cr I | 58 | | 186.592 | | N1 I | 205 | 5210.042 | - | Co I | 167 | 5230.363 | | Co I | 187 | | 186.915 | | Gd II | 114 | 5210.386 | | Ti I | 4 | 5230.967 | | Ti I | 215 | | 187.237 | | Gd II
Ce II | 114 | 5210.488 | | Gd II
Co I | 115 | 5231.41
5232.50 | | Fe I
Cr II | 787 | | 187.452
187.75 | | Hf II | 15
23 | 5210.834
5210.87 | | Cr II | 187
24 | 5232.50
5232.946 | | Fe I | 43
383 | | 187.75 | | N1 I | 159 | 5210.88 | P | Cr II | 38 | 5233.817 | | Ti I | 37 | | 187.922 | | re 1 | 1032 | 5211.22 | P | T1 I | 37 | 5234.088 | | v i | 131 | | 188.21 | | La II | . 95 | 5211.544 | | Ti II
Co I | 103 | 5234.195 | | Nd II
La I | 74 - | | 188.700 | | Ti II
Ca I | 70
49 | 5211.832
5211.85 | | La I | 184
9 | 5234.27
5234.28 | P | La 1
V II | 10
55 | | 188.848
189.61 | P | Ti I | 215 | 5212.27 | | Cr I | 189 | 5234.620 | • | Fe II | 49 | | 189.70 | | C1 II | 33 | 5212.271 | | Ti I | 215 | 5235.188 | | Co I | 83 | | 190.42 | | N II | 66 | 5212.365 | | Nd II | 44 | 5235.3 | | Fe III | 113 | | 190.56 | | O II | 32
115 | 5212.61
5212.699 | | S II
Co I | 39
170 | 5235.392
5235.45 | | Fe I
Ni I | 210, 1031
208 | | 191.081
191.41 | | P II | 115
7 | 5212.75 | | Ta I | 1 | 5236 | P | N IV | 5 | | 191.446 | | Nd II | 45 | 5212.007 | | T1 I | 215 | 5236.189 | | Fe I | 1034 | | 191.46 | | Cr II | 24 | 5213.08 | P | V II | 55
1165 | 5236.38 | P | Fe I
Cr I | 1146 | | 191.460
191.58 | P | Fe I
Fe II | 383
52 | 5213.35
5213.80 | P
P | Fe I
Fe I | 1165
962 | 5236.63
5237.34 | | Cr II | 205
43 | | 191.58 | | V II | 208 | 5214.127 | • | Cr I | 193 | 5237.35 | | Cr I | 206 | | | | | | | | | | | | | | | | Type | Element | Multiplet No. | I A | Type | Element | Multiplet No. | I A | Type | Element | Multiplet No. | |----------|--------|-----------------|-----------------|----------------------|------|----------------|-----------------------|----------------------|------|----------------|---------------| | | P | Fe I | 962 | 5261.754 | | Cr I | 237 | 5278.955 | | Fe. II | 184 | | 0 | _ | Ti I | 37,183 | 5262.104 | | Ti II
Ca I | 70
22 | 5278.99 | P | S I
O VI | 4
14 | | 1 | P | Fe II
Cr I | ∌1
59 | 5262.244
5262.48 | P | Fe II | 52 | 5279
5279.11 | P | La II | 90 | | 3 | | Sc II | 26 | 5262.61 | P | Fe I | 1149 | 5279.65 | P | Fe I | 584 | | 2 | | Ti I | 37 | 5262.89 | P | Fe I | 628 | 5279.92 | | Cr II | 43 | | | P | Fe I | 584 | 5263.314 | | Fe I | 553 | 5280.00 | | V II | 195 | | 8 | | Cr I | 237 | 5263.483 | | Ti I
Cr I | 183
309 | 5280.08 | | Cr II | 43 | | 8 | | V I
Cr I | 131
193 | 5263.750
5263.874 | | Fe I | 788 | 5280.21
5280.289 | | Al II
Cr I | 95
192 | | | p | v II | 55 | 5263.99 | | V II | 115 | 5280.364 | | Fe I | 880 | | 1 | - | V II | 241 | 5264.14 | | Mg II | 17 | 5280.62 | P | V II | 55 | | 6 | P | Cr I
Fe I | 50
1150 | 5264.159
5264.239 | | Cr I
Ca I | 18
22 | 5280.691
5280.91 | P | Co I
Fe I | 172
210 | | 5 | P | Fe I | 843 | 5264.49 | P | V II | 55 | 5281 | P | N IV | 5 | | Ŭ | | Fe III | 113 | 5264.801 | | Fe II | 48 | 5281.18 | P | Fe I | 1240 | | 5 | | Cr I | 201 | 5264.95 | | Hf II | 70 | 5281.18 | | N I | 14 | | _ | P | Cr II
Fe I | 38
1089 | 5265.160
5265.25 | P | Cr I
Fe I | 201
407 | 5281.692
5281.796 | | N1 I
Fe I | 231
383 | | 8 | | C III | 4 | 5265.42 | P | Fe I | 1145 | 5282.1 | | Fe III | 113 | | | P | N IV | 5 | 5265.523 | | Ço I | 38 | 5282.378 | | Ti I | 74 | | | | A II | 40 | 5265.557 | | Ca I | 22 | 5282.52 | | N III | 15 | | 1 | P | Fe I | 1149 | 5265.710 | | Ce II
Cr I | 23 | 5283.076 | | Gd I
Ti I | 6
156 | | : | P
P | Fe I
Fe I | 715
628 | 5265.722
5265.748 | | N1 I | 18
141 | 5283.441
5283.628 | | Fe I | 553 | | 3 | . • | Ti I | 282 | 5265.786 | | Co I | 170 | 5283.77 | | Al II | 95 | | 4 | | T1 I | 37 | 5265.94 | P | Fe I | 210 | 5284.092 | | Fe II | 41 | | 1 | | Cr II | 23 | 5265.967 | | Ti I | 156 | 5284.27 | P | Fe I | 875 | | 2 | | Fe I | 1 | 5266.118 | | V I
Co I | 139
172 | 5284.380 | | Ti I
Fe I | 74
842 | | ' | | Hf II | 92 | 5266.302 | | | | 5284.416 | | | | | 13
14 | | Ti I
Cr I | 183
18 | 5266.49
5266.506 | P | T1 I
Co I | 36
83 | 5284.62
5284.85 | P | Fe I
Fe III | 1032 | | :1 | | Co I | 39 | 5266.562 | | Fe I | 383 | 5285.12 | P | Fe I | 1166 | | 18 | | Fe II | | 5207.10 | | Cr II | 96 | 5265.34 | | Ca II | 14 | | 12 | | Ti I | 37,156 | 5267.28 | P | Fe I | 1146 | 5285.38 | | Cr I
Cl II | 285
32 | | 19
! | | Fe I
V II | 1166
220 | 5267.322
5268.06 | | O III | 60
19 | 5285.48
5285.60 | P | Fe I | 961 | | , | | Cr II | 23 | 5268.348 | | Ni I | 273 | 5285.63 | - | Cr I | 192 | | 1 | | C II | 30 | 5268.498 | | Co I | 172 | 5285.752 | | Sc I | 23 | | 15 | | Nd II | 75 | 5268.62 | | Ti II | 103 | 5285.85 | | Al II | 102 | | _ | | C III | 23 | 5269.15 | | Fe III | 112 | 5286.42 | P | V II | 54 | | .3
.2 | | Co I
Fe I | 190
1 | 5269.541
5269.93 | | Fe I
Ti I | 15
156 | 5286.74
5286.92 | | Fe III
A II | 110
13 | | 0 | | Fe I | 66 | 5270.06 | P | Fe I | 877 | 5287.188 | | Cr I | 225 | | .6 | | Nd II | 80 | 5270.270 | | Ca I | 22 | 5287.574 | | Co I | 175 | | i | | Ti I | 37 | 5270.322 | | Be II | 3 | 5287.62 | | Cr I | 309 | | 10 | | Gd I
Ti I | 6
37 | 5270.360
5270.59 | | Fe I
N III | 37
15 | 5287.785
5288.21 | P | Co I
Ni I | 187
202 | | 18 | | Pr II | 42 0 | 5270.843 | | Be II | 3 | 5288.24 | P | Fe I | 818 | | , | P | Ti II | 103 | 5271.18 | | La I | 4 | 5288.31 | | v II | 195 | | 15 | | Ti I | 4 | 5271.26 | P | v II | 55 | 5288.38 | P | Fe I | 406 | | ŧ | _ | Gd II | 99 | 5272.0 | | Fe III | 113 | 5288.533 | _ | Fe I | 929 | | ! | P
P | Fe I
Fe I | 113
875 | 5272.010 | | Cr I
Fe II | 225 ·
185 | 5289 | P | O VI
Cr I | 16
192 | | i
79 | P | re 1
Fe I | 553 | 5272.413
5272.56 | |
C 111 | 4 | 5289.27
5289.28 | | T1 I | 36 | |) | | P II | 10 | 5272.60 | | N III | 15 | 5289.82 | | Y II | 20 | | i | | CII | 30 | 5272.86 | _ | Fe III | | 5289.98 | | Hf II | 100 | | i
:n | | C III
Co I | 4
187 | 5273 | P | N V
Fe I | 4
553 | 5290.74 | p | V II
Fe I | 207
1147 | | 18 | | Cr I | 201 | 5273.176
5273.379 | | Fe I | 114 | 5290.79
5290.83 | r | La II | 6 | | 3 | P | Fe II | 49 | 5273.431 | • | Nd II | 75 | 5291 | P | O VI | 18 | | i6 | | Fe I | 1 | 5273.439 | | Cr I | 201 | 5291.78 | | Fe III | | | 12 | | Cr I | 225 | 5273.62 | P | Fe I | 1147 | 5292 | P | 0 VI | 17 | | 25
10 | | Mn I
Nd II | 32
43 | 5274.244
5274.99 | | Ce II
Cr II | 15
43 | 5292.10
5292.630 | | Pr II
Pr II | 24
37 | | 3 | P | Fe I | 1089 | 5275.00 | | Fe I | 1029 | 5292.861 | | Mn I | 36 | | 3 | P | Fe I | 1091 | 5275.08 | | 0 I | 27 | 5292.865 | | Cr I | 205 | |)5 | | Gd I | 6 | 5275.11 | P | Cr I | 192 | 5293.03 | P | Fe I | 1165 | | 11
30 | | Ti I
Gd II | 183
114 | 5275.171
5275.30 | P | Cr I
Fe I | 9 4
742 | 5293.168
5293.383 | | Nd II
Cr I | 75
192 | | | n | | | | . = | Re I | 1 | | | Fe I | 1031 | |)
7 | P | Fe II
Cr I | 41
205 | 5275.54
5275.65 | | V II | 1
195 | 5293.973
5294.216 | | re 1
Mn II | 1031 | | 3 | | CII | 30 | 5275.689 | | Cr I | 94 | 5294.555 | | Fe I | 875 | | L | P | V II | 55 | 5275.994 | | Fe II | 49 | 5294.97 | | Si II | | | 31 | _ | Co I | 188 | 5276.03 | | Cr I
Co I | 94
190 | 5295.292 | P | Mn II
Sc II | 11
22 | | 5
33 | P | Fe I
Sc I | 788
23 | 5276.183
5276.2 | | Fe III | 113 | 5295.30
5295.316 | | Fe I | 1146 | |) | P | Fe I | 1149 | 5276.42 | | Al II | 67 | 5295.781 | | Ti I | 74 | | 3 | | La II
C II | 21
30 | 5276.81
5276.879 | | Al II
Nd II | 67
81 | 5296.09
5296.48 | | P II
A II | 7
110 | | 3 | | | | | P | Fe I | 1149 | | | Cr I | 18 | | 13
76 | | Pr II
Ti I | 35
298 | 5277.31
5277.32 | P | Fe I | 1149
584 | 5296.686
5296.968 | | Mn II | 11 | | 5 | | Fe III | | 5277.40 | | Zr I | 27 | 5297.236 | | Ti I | 156 | | 75 | | Ca I | 22 | 5277.59 | P | Fe I | 983 | 5297.360 |) | Cr I | 94 | | į. | | Hf II | 36 | 5277.68 | | Al II
S I | 67
4 | 5297.86 | | N III
Cr I | 15
94 | | 71 | | Mn I | 32
13 | 5278.10
5278.262 | | S I
Cr I | 4
309 | 5297.976
5298 | P | O VI | 94
15 | | 1 | | Al III
N III | 13
15 | 5278.265 | | Fe II | 225 | 5298.06 | • | Hf II | 49 | | 9 | P | Fe I | 406 | 5278.62 | | Al II | 95 | 5298.26 | | Cr I | 18 | | 06 | | Ca I | 22 | 5278.70 | | S I | 4 | 5298.42 | 9 | Ti I | 281 | | I A . | Туро | Element | Multiplet No. | I A | Туре | Element. | Multiplet No. | I A | Type | Element | Multiplet No. | |----------------------|------|-----------------|---------------|----------------------|------|----------------|---------------|----------------------------------|--------|-----------------|----------------| | 5298.44 | P | Cr I | 94 | 5322.78 | P | Cr II | 24 | 5346.56 | P | Fe II | 49 | | 5298.789 | | Fe I | 875 | 5322.81 | _ | V II | 240 | 5347.499 | | Co I | 196 | | 5298.93 | | N III
O I | 15
26 | 5323.51
5323.958 | P | Fe I
Ti I | 113
36 | 5347.71
5347.806 | P | N1 I
Ce II | 145
227 | | 5299.00
5299.278 | | Mn II | 11 | 5324.185 | | Fe I | 553 | 5348.069 | | Mn I | 36 | | 5299.85 | | Hf II | 14 | 5324.26 | | Hf II | 36 | 5348.319 | | Cr I | 18 | | 5299.9 | | Fe III | 113 | 5324.61 | | Al II | 101 | 5348.40 | | Hf II | 22 | | 5300.012 | _ | Ti I | 74 | 5325.276 | | Co I | 192 | 5348.67 | | 3d I | 6 | | 5300.41 | P | Fe I
Cr I | 1240 | 5325.559
5325.71 | P | Fe II
V II | 49
54 | 5349.08 | | Ta I
Sc I | 5 | | 5300.749 | | OF I | 18 | 0323.71 | Ε. | V 11 | 04 | 5349.294 | | SC 1 | 17 | | 5301.042 | | Co I | 39 | 5325.949 | | Co I | 194 | 5349.472 | | Ca I | 33 | | 5301.33 | P | Fe I | 1162 | 5326.154 | | Fe I | 407,785 | 5349.702 | | Sc I | 4 | | 5301.67 | | Gd I | 6 | 5326.247 | | CoI | 175 | 5349.742 | | Fe I | 1163 | | 5301.936
5301.97 | | Sc I
La II | 4
36 | 5326.793
5327.25 | Þ | Fe I | 1147
875 | 5349.75
5350.10 | | V II
Zr II | 54
115 | | 5302.279 | | Nd II | 80 | 5327.45 | P | N II | 69 | 5350.36 | | Zr II | 115 | | 5302.307 | | Fe I | 553 | 5327.86 | P | Fe I | 1145 | 5350.37 | | V II | 54 | | 5302.320 | | Mn II | 11 | 5328.042 | | Fe I | 15 | 5350.38 | | Gd I | 7 | | 5302.5
5302.62 | | Fe III
La II | 113
86 | 5328.339
5328.38 | | Cr I
Ta I | 94
2 | 5350.527 | | Tl I
Ti I | 1 | | 3302.02 | | Da 11 | 60 | 0020.00 | | | ~ | 5351.072 | | 11 1 | 300 | | 5302.76. | | Gd I | 6 | 5328.534 | | Fe I | 37 | 5351.21 | | N II | 69 | | 5303.26 | | V II | 54 | 5328.70 | | N I | 13 | 5351.85 | P | Ni I | 177 | | 5303.419 | | Fe II
Gd II | 225
80 | 5328.70 | P | Ni I
O I | 129 | 5352 | P | 0 V | 13 | | 5303.43
5303.54 | | La II | 36 | 5328.98
5329.12 | | Cr I | 12
94 | 5352.046
5353.26 | | Co I
Gd I | 172
7 | | 5304.11 | P | Fe I | 983 | 5329.59 | | o i | 12 | 5353.386 | | Fe I | 1062 | | 5304.211 | | Cr I | 225 | 5329.719 | | Cr I | 94 | 5353.415 | | N1 I | 70 | | 5304.26 | P | Fe II | 184 | 5329.994 | | Fe I | 1028 | 5353.500 | | Co I | 198 | | 5304.923
5305.3 | P | O IV | 62
11 | 5330.582
5330.66 | | Ce II
O I | 13
12 | 5353.534 | | Ce II
Fe III | 15 | | 3303.0 | • | 0 1, | ** | 0000.00 | | 0 1 | 14 | 5353.78 | | te III | | | 5305.41 | P | Fe I | 877 | 5330.779 | | Ne I | 9 | 5354.01 | P | Co I | 91 | | 5305.77 | | A II | 93 | 5331.20 | P | Fe I | 817 | 5354.66 | P | Cr II | 29 | | 5305.85
5306.6 | | Cr II
Fe III | 24
113 | 5331.456
5331.48 | P | Co I
Fe I | 39
210 | 5354.67 | | Ta I | 6 | | 5307.121 | | Tm I | 113 | 5331.54 | r | As II | 3 | 5355.752
5356.100 | | Sc I
Sc I | 19
17 | | 5307.281 | | Cr I | 237 | 5332.65 | | v II | 54 | 5356.14 | | 61 11 | | | 5307.30 | | Ca II | 14 | 5332.652 | | Co I | 170 | 5356.77 | | NI | 13 | | 5307.30 | | Gd I
Fe I | 6 | 5332.673 | | Fe I
Fe I | 1031 | 5356.976 | | Nd II | 80 | | 5307.365
5307.53 | P | Mn I | 36
36 | 5332.903
5333.15 | P | re I
Fe I | 36
1023 | 5357.195
5357. 35 | | Sc II
V II | 30
54 | | 5001100 | - | | •• | 3000.20 | - | | 1020 | 0001100 | | • •• | 01 | | 5308.44 | | Cr II | 43 | 5333.30 | | Gd I | 7 | 5357.790 | | Gd II | 62 | | 5308.71 | P | Fe I
Ru I | 1091 | 5333.647 | | Co. I | 190 | 5358.10 | P | Fe I | 628 | | 5309.267
5309.47 | | Cr I | 10
285 | 5333.70
5333.77 | P | Cl II
Fe I | 15
464 | 5359.200
5361.174 | | Co I
Nd II | 194
46 | | 5310.219 | | Co I | 196 | 5334.228 | • | Sc II | 30 | 5361.35 | | Ba II | 6 | | 5310.70 | | Cr 11 | 43 | 5334.32 | P | Fe I | 1064 | 5361.474 | | Nd TT | 74 | | 5310.76 | | Al II | 94 | 5334.804 | | Mn I | 36 | 5361.637 | | Fe I | 1143 | | 5311.42
5311.461 | | Zr I
Nd II | 27
80 | 5334.821
5334.88 | | Co I
Cr II | 191
43 | 5361.724
5362.4 | P | Ti I
O IV | 35
11 | | 5311.60 | | Hf II | 37 | 5336.163 | | Co I | 191 | 5362.56 | | Zr I | 27 | | | | | | | | | | | | | | | 5311.78 | | Zr II | 95 | 5336.7 | | CII | 11 | 5362.69 | | SII | 61 | | 5312.32
5312.650 | | Al II
Co I | 94
197 | 5336.809
5337.713 | | Ti II
Fe II | 69
48 | 5362.781 | | Co I
Fe II | 198 | | 5312.878 | | Cr I | 225 | 5337.79 | | Cr II | 43 | 5362.864
5362.98 | | Cr I | 48
258 | | 5313.239 | | 1 iT | 74 | 5338.326 | | Ti I | 35 | 5363.80 | | Fe III | | | 5313.41 | | Fe I | 1239 | 5338.66 | | N II | 69 | 5364.874 | | Fe I | 1146 | | 5313.43
5313.59 | | N II
Cr II | 69
43 | 5339.29
5339.40 | P | Ca II
Fe I | 20
1162 | 5365.403
5366.651 | 7- | Fe I
Ti I | 786
35 | | 5313.76 | P | Ti II | 81 | 5339.528 | • | Co I | 199 | 5367.470 | | Fe I | 1146 | | 5313.839 | | Fe I | 1238 | 5339.92 | | Fe III | | 5367.53 | P | νıι | 53 | | | | | | | | | | | | | | | 5314.45 | | N III | 15 | 5339.935
5340.20 | | Fe I
N II | 553 | 5367.78 | | Cr I | 258 | | 5315.07
5315.618 | | Fe I
Fe II | 1147
225 | 5340.437 | | Cr I | 69
225 | 5367.95
5368.10 | P
P | Ti II
Cr II | 80
29 | | 5315.78 | P | Fe I | 877 | 5340.66 | | La II | 91 | 5368.546 | | Cr I | 258 | | 5316.07 | | Al II | 94 | 5340.68 | | Ti I | 36 | 5368.904 | | Co I | 167 | | 5316.07 | | P II
Fe II | 6 | 5340.92 | | Fe III | 97 | 5368.97 | | Pt I | 6 | | 5316.609
5316.772 | | re II
Co I | 49
152 | 5341.026
5341.040 | | Fe I
Sc I | 37
19 | 5369.25
5369.591 | P | Cr II
Co I | 29
39 | | 5316.777 | | Fe II | 48 | 5341.065 | | Mn I | 4 | 5369.635 | | Ti I | 00 | | 5317.095 | | Mn I | 36 | 5341.096 | | Ne I | 9 | 5369.965 | | Fe I | 1146 | | | | | | = | | | | | | | | | 5317.394
5317.53 | P | Fe I
Fe I | 584
1032 | 5341.22
5341.328 | | V II
Co I | 239
199 | 5370.356
5371.43 | P | Cr I
Fe I | 1163 | | 5318.025 | • | Fe II | 1002 | 5341.492 | | Ti I | 316 | 5371.48 | • | Cr I | 258 | | 5318.04 | P | Fe I | 406 | 5342.05 | P | Sc II | .30 | 5371.493 | | Fe I | 15 | | 5318.267 | | Fe II | | 5342.703 | | Co I | 190 | 5371.621 | | Gd II | 60 | | 5318.337 | | Sc II | 22 | 5342.961 | P. | Sc I
O V | 4 | 5371.84 | | Al II | 42 | | 5318.41
5318.61 | P | Cr II
V II | 23
53 | 5343
5343.00 | F | Gd I | 13
7 | 5371.935
5372.216 | | Gd II | 79
99 | | 5318.775 | • | Cr I | 225 | 5343.284 | | Ne I | 9 | 5372.210 | | N I | 13 | | 5319.22 | P | Fe I | 1029 | 5343.383 | | Co I | 190 | 5373.704 | | Fe I | 1166 | | | | | | | | | | | | | | | 5319.818 | | Nd II
Fe I | 75
877 | 5344.570
5344.73 | | Co I
P II | 191
0 | 5373.715
537 1 .76 | P | Cr I
Fe I | 258,302
765 | | 5320.048
5320.70 | | SII | 677
38 | 5344.761 | | Cr I | 225 | 5375.346 | • | Sc I | 19 | | 5320.78 | | Y II | 20 | 5345.61 | P | Cr I | 225 | 5375.393 | | Gd II | 99 | | 5320.96 | | N II | 69 |
5345.67 | | S II | 38 | 5375.68 | _ | Fe III | | | 5321.106 | | Fe I | 1165 | 5345.807
5346.19 | ъ | Cr I | 18 | 5376
5376 59 | P
P | O V
Ti I | 13
3 | | 5321.496
5321.777 | | Gd I
Gd I | 6
6 | 5346.12
5346.30 | . P | Cr II
Hf II | 24
92 | 5376.59
5376.849 | F | Fe I | 1132 | | 5322.049 | | Fe I | 112 | 5346.34 | P | Fe I | 817 | 5377.08 | | La II | 95 | | 5322.778 | | Pr II | 35 | 5346.54 | | Cr II | 23 | 5377.628 | | Mn I | 42 | | | Туре | Rlement | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Type | Element | Multiplet No. | |-----------|------|-----------------|----------------|----------------------|------|----------------|---------------|----------------------|--------|----------------|---------------| | 17 | P | Cr II | 29 | 5405.778 | | Fe I | 15 | 5435.79 | P | Fe II | 48 | | .2 | | PII | 23 | 5406.36 | P | Fe I | 1026 | 5435.871 | | N1 I | 70 | | .9 | P | Ti II | 102
928 | 5406.77
5407.424 | P | Fe I
Mn I | 1148
4 | 5436.299
5436.594 | | Fe I
Fe I | 1161
113 | | 80 | | Fe I
C I | 928
11 | 5407.424 | | A II | * | 5436.703 | | Ti I | 51 | | 142
17 | | La II | 56 | 5407.520 | | Co I | 192 | 5436.80 | | Fe III | 110 | | 120 | | T1 II | 69 | 5407.62 | | Cr II | 23 | 5436.83 | | 0 I | 11 | | .05 | | Co I | 56 | 5408.119 | | Co I | 112 | 5437.19 | P | Fe I | 1145 | | :62 | | Pr II | 37 | 5408.59 | | 0 I | 53 | 5438.04 | P | Fe I | 1237 | | '7 | | La II | 91 | 5408.842 | | Fe II | 184 | 5438.310 | | Ti I | 108 | | '76 | | Co I | 196 | 5408.940 | | Ti I | 3 | 5438.41 | | Si II | | | 11 | | La II | 91 | 5409.125 | | Fe I | 1147 | 5439.30 | | V II | 53 | | 12 | P | Fe II | 184 | 5409.224 | | Ce II | 23 | 5440.53 | P | Ti I | 107 | | 50 | | Fe I | 741 | 5409.28 | P | Cr II | 29 | 5441.17 | | Gd II | 146 | | 6 | P | Ti I | 155 | 5409.609 | | Ti I
P II | 155
6 | 5441.321 | | Fe I
Nd II | 1144 | | 174 | | Fe I
N II | 1146
23 | 5409.66
5409.791 | | Cr I | 18 | 5442.274
5442.413 | | Cr I | 76
204 | | 2 | P | Fe I | 817 | 5410 | P | o vi | 13 | 5443.41 | P | Fe I | 1059 | | 34 | • | Ti I | 35 | 5410.39 | P | Cr II | 29 | 5443.42 | | C1 II | 2 | | 9 | | V II | 53 | 5410.76 | | 0 1 | 51,52 | 5443.88 | | Fe III | 110 | | | | | | * | | F- * | 1465 | E444.05 | | | 60 | | 4 | | Zr I | 26 | 5410.913 | | Fe I
N1 I | 1165
222 | 5444.07
5414.096 | | Hf II
Mn I | 69
31 | | :8 | P | Cr I
Fe I | 927 | 5411.227
5411.39 | P | Fe I | 670 | 5444.25 | | C1 II | 2 | | 8
41 | r | Fe I | 1004 | 5411.524 | • | He II | a | 5414.585 | | Co I | 196 | | 7 | | PII | 6 | 5412.56 | P | Fe I | 1237 | 5444.99 | | Cl II | 2 | | 58 | | Fe I | 875 | 5412.80 | P | Fe I | 1162 | 5445.045 | | Fe I | 1163 | | 78 | | Cr I | 191 | 5413.47 | | Ta I | 5 | 5445.97 | P | Fe II | 53 | | .36 | | Fe II
Fe III | | 5413.687
5414.089 | | Mn I
Fe II | 42
48 | 5446.46
5446.57 | P
P | Ti II
Cr II | 68
35 | | 5
1 | | Fe I | 1031 | 5414.089 | P | Fe I | 874 | 5446.58 | P | Fe I | 1144 | | - | | | | | | | | | | | | | 73 | | Cr I | 191 | 5415.201 | | Fe I | 1165 | 5446.593 | | Ti I | 3,259 | | 50 | | N1 I | 70 | 5415.277 | | V I | 130 | 5446.76 | | Cr I | 204 | | 8 | | Al II
Mn I | 34
36 | 5416.381 | P | Nd II
O V | 80
13 | 5446.87
5446.920 | P | Fe I
Fe I | 37
15 | | 21
80 | | Ti I | 35 | 5417
5417.03 | r | Fe I | 1148 | 5447.59 | | La II | 112 | | 61 | | Fe I | 1145 | 5418.01 | | Zr II | 94 | 5448.882 | | Ti I | 259 | | 96 | | Ti I | 155 | 5418.802 | | Ti II | 69 | 5449.155 | | Ti I | 107 | | 94 | | Cr I | 191 | 5419.189 | | Ti I | 258 | 5450.66 | | PII | 23 | | 6 | P | Ti I
Cr I | 155
191,302 | 5419.19
5419.36 | | Ta I
Cr II | 6
22,29 | 5450.836
5451.115 | | Sr I
Nd II | 9 | | 50 | | Or I | 191,302 | 3419.30 | | 01 11 | 20,00 | 3431.113 | | NG II | | | 6 | | Hf II | 48 | 5419.876 | | Gd II | 99 | 5451.60 | P | Fe II | 184 | | 93 | | Fe I | 1062 | 5420.362 | | Mn I | 4 | 5451.965 | | Ti I | 265 | | 0 | - | Ba II
Fe I | 6
270 | 5420.90 | | Cr II
Ba II | 23
6 | 5452.03 | | Ti II
Fe I | 109 | | 8
75 | P | Sc I | 19 | 5421.05
5421.40 | P | Fe I | 874 | 5452.119
5452.12 | | N II | 870
29 | | 2 | | C1 II | 28 | 5421.559 | • | Nd II | 79 | 5452.305 | | Co I | 175 | | 71 | | N1 I | 250 | 5421.85 | P | Fe I | 1183 | 5453.255 | | N1 I | 231 | | 5 | P | Cr II | 29 | 5422.15 | P | Fe I | 1145 | 5453.338 | | Co I | 194 | | 74 | | Fe I | 553
24 | 5422.47 | | Ti II | 80 | 5453.646 | | Ti I | 108 | | 91 | | Ce II | 24 | 5423.25 | | C1 II | 2 | 5453.81 | | S II | 6 | | 59 | | Gd I'I | 100 | 5423.52 | | C1 II | 2 | 5453.98 | P | Fe I | 1064 | | 21 | | Gd II | 63 | 5423.73 | P | Fe I | 927 | 5454.05 | P | Ti II | 68 | | 74 | | Mn I | 1 | 5423.82 | | La II | 7 | 5454.26 | | NII | 29 | | 82 | | Fe I
Fe I | 1031
1143 | 5424.072
5424.15 | P | Fe I
Fe I | 1146
1026 | 5454.41
5454.573 | | A II
Co I | 195 | | 5
1 | P | Cr II | 29 | 5424.15 | F | C1 II | 2 | 5455.09 | P | Fe I | 627 | | • | • | T1 II | 80 | 5424.551 | | Ba I | 9 | 5455.14 | • | La I | 3 | | 9 | P | Ti II | 102 | 5424.56 | P | N1 I | 231 | 5455.433 | | Fe I | 1145 | | 00 | | Ti I | 3 | 5424.654 | | N1 I | 70 | 5455.613 | | Fe I | 15 | | Đ | P | Fe I | 464 | 5425.269 | | Fe II | 49 | 5455.80 ₍ | | Cr II | 50 | | 93 | | Ti I | 155 | 5425.29 | P | Cr II | 29 | 5455.815 | | Nd II | 83 | | 31 | | Fe I | 15 | 5425.621 | _ | Co I | 196 | 5456.11 | | Si II | 50 | | 0 | | A II | | 5425.93 | | PII | 6. | 5456.27 | | C1 II | 2 | | 0 | | Fe I | 841 | 5426.256 | | Ti I | 3 | 5456.48 | | Fe I | 817 | | 85
2 | | Fe I
Ti IV | 1145 | 5427.832
5428.64 | | Fe II
S II | 6 | 5457.02 | | C1 II | 2 | | 89 | | Mn I | 42 | 5428.64
5428.71 | P | Fe I | 1032 | 5457.10
5457.47 | | V II
Cl II | 53
2 | | 09 | | Fe I | 1145 | 5428.79 | - | Ba II | 9 | 5457.471 | | Mn I | 4 | | 620 | | Ne I | 3 | 5428.85 | | Ni I | 161 | 5458.68 | | La II | 99 | | 08 | | Cr I | 191 | 5429.139 | | Ti I | 259 | 5460.502 | | Ti I | 3 | | 7 | | s II | 61 | 5429.43 | P | Fe I | 1029 | 5460.644 | | Mn I | 31 | | 5 | | Mg II | 24 | 5429.52 | P | Fe I | 1062 | 5460.742 | | Hg I | 1 | | 7 | P | Fe I | 1146 | 5429.699 | | Fe I | 15 | 5460.8 | | Fe III | 68 | | 2 | | Ti I | 35 | 5429.83 | P | Fe I | 1162 | 5460.909 | | Fe I | 464 | | 45 | | V I
Co I | 130,139 | 5430.14 | n | Fe III | 29 | 5461.31 | | Ta I | 4 | | 00
13 | | Fe II | 195 | 5430.41
5431.526 | P | Cr II
Nd II | 80
80 | 5461.54
5461.80 | 9 | Fe I
Fe I | 1145
817 | | 7 | | Fe III | | 5431.526 | P | 0 V | 13 | 5462.487 | - | re 1
Ni J | 817
192 | | 1 | | Ta I | 1 | 5432.09 | - | V II | 53 | 5462.62 | | N II | 29 | | 7 | | Lu I | 2 | 5432.318 | | Ti I | 265 | 5462.970 | | Fe I | 1163 | | ^ | | | | # 40 = 0 · · | | c | 004 | | | p | 1100 | | 9
8 | | A II
Y II | 35 | 5432.347 | | Cr I
Mn I | 204
1 | 5463.282 | | Fe I
Hf II | 1163
14 | | 23 | | Fe I | 1029 | 5432.548
5432.77 | | Mn I
S II | 6 | 5463.38
5463.974 | | Cr I | 204 | | 23 | | Ti I | 259 | 5432.950 | | Fe I | 1143 | 5464.286 | | Fe I | 1030 | | 2 | P. | Fe I | 1145 | 5432.98 | P | Fe II | 55 | 5464.36 | P | Cr II | 35 | | 44 | | Fe I | 1165 | 5434.527 | | Fe I | 15 | 5464.37 | _ | La II | 49 | | 7 | | 0 I | 53 | 5435.16 | - | 0 I | 11 | 5465.04 | P | Fe I | 840 | | 5
04 | | Ta I
Cr I | 13
191 | 5435.17
5435.27 | P | Fe I
Ta I | 1161
9 | 5466.021
5466.404 | | Fe II
Fe I | 1144 | | 5 | P | Fe I | 1162 | 5435.76 | | 0 I | 11 | 5466.46 | | Fe III | **** | | | | | | _ | | | | | | | | | I A | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |--------------------|--------|----------------|---------------------|-----------------------|--------|----------------|---------------|---------------------|----------|---------------|----------------| | 66.46 | | YI | 12 | 5490.65 | P | Ti II | 68 | 5519.83 | P | Fe II | 52 | | 66.55 | | S II
Fe II | 11 | 5490.840
5491.84 | | Ti I
Fe I | 3 | 5520.19 | P | Fe I | 1144 | | 66.94
66.993 | | Fe I | 784,817 | 5491.84 | | Ti IV | 1031 | 5520.496
5521.14 | P | Sc I
Fe I | 15
839 | | 67.76 | P | Fe I | 741 | 5492.8 | | 0 I | 62 | 5521.28 | P | Fe I | 1162 | | 68.101 | _ | Ni I | 192 | 5492.82 | P | Ti II | 68 | 5521.44 | | Ni I | 175 | | 168.37
168.44 | P
P | Ce II
Ti II | 24
102 | 5493.22
5493.33 | P | Hf II
Fe I | 113
873 | 5521.56 | P | Y II
Sr I | 27 | | 68.92 | r | Si II | 102 | 5493.45 | • | La II | 4 . | 5521.765
5522.46 | | Fe I | 9
1108 | | 169.09 | P | Fe I | 1131 | 5493.508 | | Fe I | 1061 | 5523.310 | | Co I | 112 | | 169.29 | P | Fe I | 1143 | 5493.850 | | Fe I | 464,1062 | 5524.25 | P | Fe I | 1059 | | 169.305 | | Co I | 56 | 5494.35 | P | V II | 53 | 5524.35 | | HÇ II | 25 | | 169.72
170.17 | | Gd II
Fe I | 60
1144 | 5494.468
5494.726 | | Fe I
Ti I | 1024
108 | 5524.990 | P | Co I
Fe II | 192 | | 170.460 | | Co I | 175 | 5494.890 | | N1 I | 231 | 5525.14
5525.48 | P | Fe I | 56
1107 | | 170.50 | | Ti I | 108 | 5495.682 | | Co I | 166 | 5525.552 | - | Fe I | 1062 | | 170.53 | | Gd II | 63 | 5495.70 | | N II | 29 | 5525.90 | P | Cr II | 22 | | 170.638
170.81 | P | Mn I
Fe II | 4
52 | 5495.8720
5496.020 | | A I
V I | 14
2 | 5526.06
5526.22 | | Se I
S II | 18
11 | | 171.198 | _ | Ti I | 106 | 5496.24 | | Si II | - | 5526.26 | | N II | 63 | | 172.297 | | Ce II | 24 | 5496.57 | P | Fe I | 1281 | 5526.809 | * | Sc II | 31 | | 172.63 | | Cr II | 50 | 5497.42 | | Y II | 27 | 5527.07 | P | Fe I | 484 | | 172.696 | | Ti I
Fe I | 107 | 5497.519 | | Fe I
Fe II | 15
204 | 5527.54 | | YI | 12 | | 172.720
173 | P | 0 V | 1108
13 | 5497.70
5497.86 | P
P | Cr II | 204
22 | 5527.606
5527.72 | | Ti I
V I | 265 | | 173.18 | P | Fe I | 1064 | 5497.92 | P | Ti I | 51 | 5528.3876 | | MgI | 1
9 | | 173.40 |
| Y II | 27 | 5498.18 | | s I | 12 | 5528.3986 | | Mg I | 9 | | 173.517 | | Ti I | 259 | 5498.19 | P | Fe II | 24 | 5528.4094 | _ | Mg I | 9 | | 173.517
173.59 | | Ti II
S II | 109
6 | 5499.39
5499.60 | P
P | N1 I
Fe I | 176
1159 | 5528.89
5529.15 | P | Fe I
Fe I | 1161
872 | | | | | | | - | | | | _ | | | | 173.908
174.09 | P | Fe I
Fe I | 1062
1314 | 5499.72
5500.43 | | P II
Gd II | 6
99 | 5529.80
5529.94 | P
P | Fe I
T1 II | 344
68 | | 174.228 | | Ti I | 108 | 5500.61 | .P | Cr II | 35 | 5529.940 | • | Fe II | 224 | | 174.449 | | Ti I | 259 | 5501.34 | | La I | 3 | 5530.10 | | v II | 247 | | 174.734
175.57 | | Nd II
Ni I | 82
159 | 5501.469 | | Fe I
S I | 15
12 | 5530.27
5530.780 | | N II | 63 | | 176.298 | | Fe I | 1029 | 5501.54
5502.05 | | Cr 11 | 50 | 5531.949 | | Co I
Fe I | 38
1281 | | 176.571 | | Fe I | 1062 | 5502.88 | | Al II | 78 | 5532.13 | P | Fe I | 344 | | 176.69 | | Lu II
Ni I | 2 | 5503.18 | | Cr II
Fe II | 50 | 5532.17 | | La II | 106 | | 176.906 | | | 59 | 5503.397 | | | | 5532.65 | | Fe III | 56 | | 177.089 | P | Co I
Cr II | 175
50 | 5503.897 | | Ti I
Ni I | 287
175 | 5532.752 | | Fe I | 783 | | 177.45
177.67 | P | Fe II | 49 | 5504.120
5504.184 | | Sr I | 9 | 5533.01
5534.68 | | Mo I
Fe I | 4
871,1063 | | 177.695 | | T1 I | 265 | 5504.21 | | Mn I | 31 | 5534.794 | | Sr I | 9 | | 177.82 | | Zr II | 115 | 5505.75 | P | Fe I | 1162 | 5534.860 | | Fe II | 55 | | 178.13
178.35 | | N II
Cr II | 29
50 | 5505.869 | | Mn I
Fe I | 4
1145 | 5535.382 | | V I | 1 | | £78.48 | | Fe I | 1062 | 5505.893
5506.268 | | Fe II | 1140 | 5535.39
5535.419 | | N II
Fe I | 63
626,1029 | | 178.6 | | CII | 34 | 5506.51 | | Mo I | 4 | 5535.484 | | Ba I | 2 | | 179.95 | P | Fe I | 1282 | 5506.782 | | Fe I | 15 | 5535.66 | | La II | 71 | | 480.10 | | N II | 29 | 5507.01 | | s I | 12 | 5536.0 | | c 11 | 10 | | 480.30
480.502 | | Ba II
Cr I | 9
204 | 5507.15 | | P II
V I | 23 | 5536.01 | _ | K II | 6 | | 480.72 | | La II | 90 | 5507.753
5508.11 | | 0 111 | 129
16 | 5536.59
5536.77 | P | Fe I
S II | 345
11 | | 480.75 | | Y II | 27 | 5508.60 | | Cr II | 50 | 5537.11 | | Ni I | 188 | | 480.865 | | Sr I | 9 | 5508.88 | P | Cr I | 224 | 5537.756 | | Mn I | 4 | | 480.893 | | Fe I
Ni I | 10 62
191 | 5509.67
5509.91 | | S II
Y II | 6
19 | 5538.32
5538.54 | | Ga 11
Fe I | 839,1064 | | 481.252 | | Fe I | 1058 | 5510.001 | | N1 I | 190 | 5539.28 | | Fe I | 871 | | 481.396 | | Mn I | 4,31 | 5510.174 | | Mn I | 31 | 5539.831 | | Fe I | 1130 | | 481.426 | | Ti I | 265 | 5510.23 | P | Fe I | 1023 | 5540.051 | | Sr I | 9 | | 481.451
481.862 | | Fe I
Ti I | 1061
106 | 5510.58
5510.68 | | Gd II
Cr II | 132
23 | 5540.16
5540.74 | | N II
Si II | 63
9 | | 481.989 | | Se I | 16 | 5511.795 | | Ti I | 108,275 | 5541.030 | | Sc I | 18 | | 482.26 | P | Fe I | 873 | 5512.085 | | Ce II | 24 | 5541.19 | | P II | 23 | | 482.27 | | La II
V I | 4 2 | 5512.277 | p | Fe I | 1143 | 5541.58 | P | Fe I | 627 | | 482.471
483.111 | | Fe I | 1061 | 5512.40
5512.529 | Ų | Ti I | 1148
106 | 5543.04 | P
P | Fe I | 1064
926 | | 483.354 | | Co I | 39 | 5512.69 | | Cr I | 121 | 5543.184 | • | Fe I | 926 | | 483.55 | | Li II | 1 | 5512.71 | | 0 I | 25 | 5543.49 | | N II | 63 | | 483.56 | | P II | 23 | 5512.979 | _ | Ca I | 48 | 5543.86 | P | Cr II | 35 | | 463.962
484.618 | | Sc I | 175
16 | 5513.86
5514.215 | P | Fe I
Sc I | 925
15 | 5543.930
5544.61 | | Fe I
Ÿ II | 1062
27 | | 485.6 | | Fe III | 68 | 5514.350 | | Ti I | 106 | 5544.76 | P | Fe II | 166 | | 485.65 | | Li II | 1 | 5514.536 | | Ti I | 106 | 5544.865 | - | VI | 38 | | 485.699 | | Nd II | 79 | 5514.712 | | W I | 1 | 5545.01 | | Gd II | 98 | | 486.136
486.6 | | Sr I
O I | 63
63 | 5514.80
5515.083 | | Ni I
V I | 189
2 | 5545.11
5545.26 | P | N I
Fe II | 26
24 | | 486.86 | | La II | 68 | 5515.371 | | V I | 1 | 5545.933 | . | V I | 38 | | 487.00 | | A II | 53 | 5515.990 | | Co I | 195 | 5545.937 | | Co I | 191 | | 487.16
487.49 | p | Fe I | 1143
870 | 5516.09 | p | Sm I
Fe I | 2
1057 | 5546.02 | | Y II | 27 | | 487.49 | P | Fe I | 1064 | 5516.29
5516.771 | م | Mn I | 1057 | 5546.519
5547.00 | | Fo I
Fe I | 1145
1061 | | 487.747 | | Fe I | 1025 | 5517.08 | | Fe I | 1109 | 5547.080 | | V I | 38 | | 487.915 | _ | V I | 129 | 5518.11 | P | Ti I | 265 | 5548.474 | | Nd II | 73 | | 488.14 | P | Fe I
Ti I | 1183 | 5518.491 | D | Ce II | 26
1314 | 5549.55 | P
P | Fe I | 1159 | | 488.210
488.97 | P | Cr II | 265
35 | 5518.57
5518.74 | P | Fe I
S II | 1314
61 | 5549.66
5549.68 | Р | Fe I
Sc I | 1314
15 | | 489.85 | P | Fe I | 1148 | 5519.047 | | Ba I | 9 | 5549.94 | | Fe I | 926 | | 490.151 | | Ti I | 107 | 5519.72 | P | Fe II | 204 | 5550.60 | | Hf. I | 1 | | | Туре | Blement | Multiplet No. | IA | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |------------|--------|---------------|-----------------------|----------------------|--------|----------------|---------------|----------------------|------|----------------|----------------------------| | }9 | P | Fe I | 714 | 5587.865 | | N1 I | 70 | 5624.605 | | V I | 37 | | '7 | P | Fe I | 1059 | 5587.9 | | Fe III | | 5624.895 | | V I | 37 | | 15 | | N II | 63 | 5588.07 | P | Fe I | 1109 | 5625.326 | | Ni I | 221 | | 185 | | Mn I | _ | 5588.25 | | PII | 27 | 5625.43 | | N I
A II | 24
121 | | .2 | | Hf I
Sc II | 7
25 | 5588.757 | P | Ca I
Fe I | 21
1160 | 5625.74
5626.014 | | V I | 37 | | 15
14 | | N II | 63 | 5589.00
5589.384 | P | N1 I | 205 | 5626.60 | P | Cr 11 | 22 | | 'O | P | Fe I | 1281 | 5590.120 | | Ca I | 21 | 5627.08 | P | Fe I | 1084 | | 15 | P | Fe I | 344 | 5590.73 | | Hf II | 48 | 5627.49 | P | Fe II | 57 | | :2 | P | Fe I | 1064 | 5590.744 | | Co I | 90 | 5627.628 | | v 1 . | 37 | | :86 | | Fe I | 1161 | 5591.322 | _ | Sc I | 18 | 5628.347 | | Ni I | 215 | | 93 | _ | N1 I | 69 | 5591.38 | P | Fe II
Ni I | 55
250 | 5628.645
5630.14 | | Cr I
Y I | 203
12 | | 11
195 | P | Cr II
Fe I | 34
1183 | 5592.146
5592.283 | | NI I | 69 | 5631.404 | | Tm I | 10 | | 14 | | 0 I | 24 | 5592.37 | | 0 111 | 5 | 5631.707 | | Sn I | 4 | | .7 | P | Fe I | 740 | 5592.409 | | V I | 37 | 5631.72 | | Fe I | 1159 | | 1 | | s II | 6 | 5592.962 | | A 1 | 1 | 5632.25 | | Gd I | 3 | | .9 | | Cr I | 120,121 | 5593.23 | | Al II | 16 | 5632.469 | | V I | 1 | | :8
≀8 | | Yb I
Al I | 6 | 5593.735
5594.425 | | N1 I
Nd II | 206
79 | 5633.970
5634.53 | P | Fe I
Fe I | 1314
1281 | | E 0 | | v 1 | 1 | 5504 460 | | Ca I | 21 | 5634.84 | | C1 II | . 23 | | .53
0 | P | Fe I | 164,1164 | 5594.468
5594.661 | | Fe I | 1182 | 5635.85 | | Fe I | 1088 | | 5 | • | Al I | 6 | 5595.06 | P | Fe I | 1314 | 5636.00 | P | Fe I | 1058 | | 54 | | Fe I | 1163 | 5597.21 | | Gd II | 95 | 5636.235 | | Ru I | 10 | | 1 | | As II | . 2 | 5597.87 | | Cr I | 239 | 5636.708 | | Fe I | 868 | | 52 | | ΨI | 77 | 5597.92 | | Ti I | 229 | 5637.121 | | N1 I | 218 | | 25 | | Co I
S II | 166
61 | 5598.303 | _ | Fe I
Fe I | 1183 | 5637.734 | | Co I
Fe I | 195
1087 | | 6
4 | P | S II
Fe I | .282 | 5598-47
5598-487 | Þ | Ca I | 113
21 | 5638.266
5638.82 | | Ni I | 203 | | 30 | • | Fe I | 1164 | 5600 | P | 0 V | 3 | 5639.492 | | Si II | 9 | | 7 | | N I | 25 | 5600.038 | | N1 I | 219 | 5639.96 | | s II | 14 | | 48 | | V I | 1 | 5600.242 | | Fe I | 866,1108 | 5640.32 | | s 11 | 11 | | 9 | _ | 69 II | 99 | 5601.285 | _ | Ca I | 21 | 5040.40 | | Fe I | 1202 | | | P | N IV
V I | 13
77 | 5602 | P | O VI
Fe I | 11
1281 | 5640.50 | | C II
Sc II | 15
29 | | 70
2 | | V II | 247 | 5602.54
5602.788 | P | Fe I | 1281 | 5640.971
5641.112 | | Ni I | 230 | | 2 | P | Fe I | 1162 | 5602.846 | | Ca I | 21 | 5641.464 | | Fe I | 1087 | | 12 | | Fe I | 626,1163 | 5602.955 | | Fe I | 686 | 5641.880 | | Ni I | 234 | | 69 | | Ne I | 19 | 5603.651 | | Nd I | 45 | 5642.01 | | V II | 238 | | 04 | | Fe I | 1062 | 5604.205 | | V I | 85 | 5642.362 | | Cr I | 239 | | 9 | P | Fe I | 112,1023 | 5604.943 | | v i | 37 | 5642.660 | _ | Ni I | 203 | | 7
61 | | N I
Sc I | 25
18 | 5605.91 | P
P | Fe II
O V | 51
3 | 5642.75
5643.099 | P | Fe I
Ni I | 1184
259 | | 4 | | 5 II | 6 | 5606
5606.11 | P | SII | 11 | 5643.24 | | Gd I | 3 | | ō | | N II | 63 | 5607.05 | | Ni I | 205 | 5643.94 | P | Fe I | 1021 | | 76 | | r1 I | 229 | 5607.12 | P | Fe II | 24 | 5644.137 | | T1 I | 240 | | 6 | | Hf II | 100 | 5607.66 | P | Fe I | 1058 | 5644.35 | P | Fe I | 1057 | | 08 | _ | Fe I | 1183 | 5608 | P | 0 V | 3 | 5644.84 | | Gd II | 60 | | 6
2 | P
P | Cr II
Fe I | 35
625 | 5608.98
5609.19 | P | Fe I
Cr I | 1108
223 | 5645.62
5645.665 | | S II
Si I | 6
10 | | 2 | | La II | 90 | 5609.97 | P | Fe I | 868 | 5646.112 | | v i | 37 | | 01 | | Fe I | 209 | 5610.01 | P | Cr II | 34 | 5646.70 | P | Fe I | 1109 | | 15 | | Fe II | | 5610.257 | - | Ce II | 26 | 5646.98 | | SII | 14 | | 7 | P | Fe I | 1059 | 5610.36 | | Y II | 19 | 5647.234 | | Co I | 112 | | 4 | P | Fe I | 1058 | 5610.53 | | La II | 106 | 5648.08 | | C II | 15 | | 1 | P | Fe I
Cl I | 1026
80 | 5611.35 | P | Fe I | 869 | 5648.18 | | Cr I | 239 | | 1 | | Fe I | 869 | 5613.19
5613.698 | | Al II
Ce II | 77
32 | 5648.570
5648.90 | P | Ti I
Fe I | 269
625 | | 25 | | Fe I | 686 | 5613.70 | P | Fe I | 1282 | 5649.371 | • | Gr I | 239 | | 6 | P | Fe I | 345 | 5614.29 | P | Fe I | 1314 | 5649.66 | | Fe I | 838 | | В | | Mo I | 4 | 5614.303 | | Nd II | 87 | 5649.697 | | Ni I | 231 | | | P | N IV | 13 | 5614.58 | P | Fe I | 739 | 5650.01 | | Fe I | 1314 | | 49 | P | Fe I
o V | 686 | 5614.790 | _ | N1 I | 250 | 5650.31 | P | Fe I | 1180
| | 0 | • | Fe I | 3
1061 | 5615.18
5615.308 | ₽ | Fo I
Fe I | 1113
209 | 5650.7034
5650.71 | ŀ | A I
Fe I | 19
1314 | | • | | Fe III | 68 | 5615.54 | P | Cr I | 239 | 5651.47 | P | Fe I | 1161 | | 1 | | Cr I | 120 | 5615.652 | | Fe I | 686 | 5651.53 | • | As II | 2 | | 97 | | Fe I | 686 | 5616.21 | | Gq II | 61 | 5651.734 | | Co I | 56 | | 1 3 | P | Si II
Fe I | 9
131 4 | 5616.54
5616.63 | | 8 II
N I | 24
11 | 5652.01
5652.3 | P | Fe I
La II | 1059
103 | | | - | • | | | | | | | | | • | | 0
34 | | A II
N1 I | 134
47 | 5617.14 | P | eΙ | 1085 | 5652.32 | | Fe I | 1108 | | 5 | | 8 II | 11 | 5617.22
5617.91 | | ∴e I
Gd I | 626
3 | 5653.389 | | Fe I
Fe I | 1159 | | 4 | P | Fe I | 1081 | 5618.646 | | Fe I | 1107 | 5655.179
5655.506 | | Fe I | 1314
1107,1 31 4 | | 1 | | Cr I | 223 | 5619.23 | P | Fe I | 923 | 5656.6588 | 5 | Ne I | 24 | | 7 | | Y I | 12 | 5619.60 | | Fe I | 1161 | 5656.895 | | v i | 127 | | 71 | _ | Ca I | 21 | 5620.04 | | Fe I | 1026,1205 | 5657.449 | | V I | 37 | | 3 | D | O V | 3
23 | 5620.16
5620.527 | | Zr I
Fe I | 25
1061 | 5657.870 | P | Sc II
Fe II | 29 | | B | | Gd II | 59 | 0000.041 | | 10 I | 7007 | 5657.92
5658.334 | z* | Sc II | 57
29 | | 7 | ¥ | Fe I | 1059 | 5620.62 | P | Nd II | 86 | 5658.542 | | Fe I | 686 | | • | P | οv | 3 | 5620.63 | • | Cr II | 189 | 5658.67 | P | Fe I | 1087 | | 90 | | V I | 37 | 5621,43 | | Od II | 132 | 5658.826 | | Fe I | 686 | | 38 | | V I | 85 | 5622.075 | | V I | 85 | 5659.104 | | Ti I | 50 | | 88 | | Fe I | 782 | 5622.23 | | Si I | 11 | 5659.121 | | Co I | 82 | | 07
8 | | V I | 85
78 | 5623.20 | | N I
Fe I | 24
625 | 5659.86
8680.08 | | Sm I
S I? | 2
11 | | 8 3 | | Fe I | 386 | 5623.64
5624.056 | P | Fe I | 1160 | 5659.95
5660.79 | | Fe I | 869 | | В | P | Fe I | 583 | 5624.223 | | V I | 127 | 5861.03 | P | Fe 1 | 1234 | | 82 | | Fe I | 1026 | 5624.549 | | Fe I | 686 | 5661.36 | | Fe I | 1108 | | 11.99 | A | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |---|--------|--------|---------|---------------|----------|------|---------|---------------|-----------|------|---------|---------------| | 1. 1. 1. 1. 1. 1. 1. 1. | 31.97 | P | Fe I | 1109 | 5701.138 | | Si I | 10 | 5731.771 | | | 1087 | | | 32.154 | | | | | | | 3 | | | | | | | | | | | | | | 00 | | | | | | | | p | | | | P | | | | F | | | | | | • | | | | | | | | P | N IV | | | Mathematics | Section Sect | | | | | | D | | | | | | | | 1. 1 | 14.040 | | 01 1 | 200 | 3100103 | • | | 2000 | 0.00.00 | | 2 | | | Second St. 1 | 34.55 | | | | | | | | | | | | | 10.64 | | | | | | n | | | | D | | | | 10.75 | | | | | | r | | | | r | | | | | | P | | | | | Fe I | | | P | Fe I | | | | | | | | | P | | | | | | | | 1 | | D | | | | | | | | p | | | | Section Call 20 | | • | | | | | | | | • | | | | 20.000 So II 20 S707.068 Fe I S68 S739.78 P Fe I 1007 | 38.868 | | Nd II | 84 | 5706.973 | | v i | 35 | 5739.464 | | Ti I | 228 | | 20.000 So II 20 S707.068 Fe I S68 S739.78 P Fe I 1007 | 20.001 | | Co. II | 94 | E707 00 | | Co. T | E4 | E700 760 | | 64 111 | | | 30.500 | | | | | | | | | | . Р | | | | 19.945 | | | Si II | | | P | Fe I | | | | | _ | | To.est | | P Forb | | | | P | | | | | | | | 71.02 La II 95 7708.280 MA II 79 7741.261 Sc I 12 12 12 12 10 10 10 10 | | | | | | | | | | | | | | 71.80 | | | | | | | | | | | | | | | | P | | | | | | | | | | | | 73.58 P | | n | | | | | | | | P | | 1084 | | 75.0 P | 72.28 | P | re I | 1434 | 2109.318 | | re I | 080 | 3743.28 | | Ua I | | | 75.419 | 73.58 | | | | | | | | | | | | | To To To To To To To To | | | | | | P | | 1088 | | P | | | | 75.863 | | P roro | | | | | | 3 | | | | | | 7.68 P | | | | 220 | | | | | | | | | | 78.08 P Fe 1 1290 5711.754 Sc 1 12 5747.88 P Fe 1 154 78.42 Cr I 189 5711.862 Ti 1 249 5747.86 Fe 1 1182 78.42 Cr I 189 5711.867 Fe I 1087 5748.15 P Fe I 1290 79.028 Fe I 1183 5711.950 Fe I 1686 5748.343 N. I 45 45 45 45 45 45 45 | | _ | | | | | | | | | | | | 78.48 P Fe 982 | | | | | | | | - | | | | | | 78.42 Cr II 189 | | | | | | | | | | r | | | | 79.023 | | | Cr II | 189 | | | Fe I | | | P | | | | 79.023 | 70 60 | 10 | Fo T | 119 | 5711 005 | | N4 T | 60 | 5710 200 | | No. T | 19 | | 79.56 | | | | | | | 1 | | | | | | | 50.28 | | | | | | | | 20 | | | | 127 | | | | | | | | | | *** | | * | | | | 51.188 Cr I 5714.88 P Fe I 552 5734.65 P Fe I 1100 52.294 Ni I 232 5715.086 Ni I 231 5750.444 0 I 40 52.483 Cr I 239 5715.107 Fe I 1061,1086 5751.41 Mo I 5 82.633 Na I 6 5715.107 Fe I 1061,1086 5751.41 Mo I 5 84.190 Sc II 29 5715.80 P Fe I 1198 5752.71 V I 92 84.523 Sc II 29 5715.80 P Fe I 1198 5752.71 V I 92 85.25 N II 11 5717.30 Sc I 129 5717.30 Sc I 129 5753.186 P Fe I 1004 86.22 N II 11 20 5717.30 Mc I 10 5753.38 P Fe I 1007 86.22 N II 16 5719.12 Mc II | | | | | | | | | | | | | | 82.204 | | | | | | P | | | | P | | | | 82.633 Na I 6 5715.123 T1 228 5752.043 Fe I 1180 82.88 Ca I 5715.47 P Fe I 1054 5752.043 Fe I 1180 82.88 Ca I 29 5715.47 P Fe I 1054 5752.04 N I 33 84.130 Sc II 29 5715.80 P Fe I 1198 5752.211 V I 92 84.523 S1 I 11 5716.450 T1 I 249 5752.89 T1 I 214 85.86 P Fe I 1281 5717.30 Sc I 12 5752.39 Fe I 1107 86.21 N II 3 5717.845 Fe I 1107 5753.38 P Fe I 107 86.21 N II 3 5717.845 Fe I 1107 5753.38 P Fe I 1084 86.836 Sc I 12 5719.130 M3 II 86 5733.97 P Fe I 1084 86.836 Sc I 12 5719.130 M3 II 86 5733.97 P Fe I 1084 88.193 Na I 6 5719.254 Ne I 28 5744.256 S1 I 1 88.205 Na I 6 5719.254 Ne I 28 5744.256 S1 I 10 88.205 Na I 6 5719.254 Ne I 28 5744.256 S1 I 10 88.205 Na I 6 5719.254 Ne I 28 5744.256 S1 I 10 88.505 S1 II 79 5720.445 T1 I 249 5754.456 Fe I 113 88.505 S1 II 79 5720.445 T1 I 249 5754.675 Ni I 68 88.503 S5 I II 5720.79 P Fe I 1281 5720.612 88.503 S1 II 5720.79 P Fe I 1281 5720.612 88.503 S1 II 5720.79 P Fe I 1281 5720.612 88.503 S1 II 5720.79 P Fe I 1281 5721.02 P Cr II 34 5755.970 Fe I 1184 89.405 T1 I 249 5721.02 P Cr II 34 5755.970 Fe I 1184 89.405 T1 I 249 5721.02 P Cr II 34 5755.970 Fe I 1184 89.405 T1 I 249 5721.02 P Cr II 34 5755.970 Fe I 1184 89.405 T1 I 249 5721.70 P Fe I 1087 5755.86 P Fe I 1087 90.470 S1 I 10 5721.71 P Fe I 1088 5755.970 Fe I 1184 90.470 S1 I 10 5721.71 P Fe I 1088 5755.970 Fe I 1087 90.470 S1 I 1087 5722.66 P Fe II 58 5760.03 P Fe I 1087 90.470 S1 I 1087 5722.69 P Fe II 58 5760.03 P Fe I 1087 90.470 S1 I 1 22 5722.60 P Fe II 58 5760.03 P Fe I 1087 90.470 S1 I 1 22 5722.60 P Fe II 58 5760.03 P Fe I 1087 90.470 S1 I 1 22 5722.60 P Fe II 58 5760.03 P Fe I 1087 90.470 S1 I 1 29 5722.00 P Fe I 1088 5750.00 P Fe I 1087 90.470 S1 I 1 22 5722.60 P Fe II 58 5760.03 P Fe I 1087 90.470 S1 I 1 22 5722.60 P Fe II 58 5760.03 P Fe I 1087 90.470 S1 II 1 29 5722.50 P Fe II 1089 5760.03 P Fe I 1087 90.470 S1 II 1 29 5722.50 P Fe II 1089 5760.03 P Fe I 1087 90.470 S1 II 1 29 5722.00 P Fe I 1088 5750.00 P Fe I 1087 90.470 S1 II 1 29 5722.00 P Fe I 1088 5750.00 P Fe I 1087 90.470 S1 II 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | | | | | | 82.88 | | | | | | | | | | | | | | SA 190 | | | | · · | | | | | 01,021040 | | | | | St. | | | | 00 | | | | | | | | | | St. 86 | | | | | | P | | | | | | | | Se. 533 | | P | | | | | | | | | | | | Sec. Sc. 12 | | | | | | | | | | P | | 1084 | | 88.193 | | | | | | | | | | D | | 170 | | 88.205 | | | | | | | | | | • | | 2.0 | | 88.525 Nd II 79 5720.445 Ti I 249 5754.675 Ni I 68 88.593 Co I 90 5720.613 0 I 40 5754.89 P Fe I 113 88.856 Si II 5720.79 P Fe I 1291 5756.45 P TI I 228 89.22 Mo I 5 5720.89 P Fe I 1291 5756.45 P TI I 228 89.22 Mo I 5 5720.89 P Fe I 1291 5756.45 P TI I 228 89.22 Mo I 5 5720.89 P Fe I 1291 5756.45 P TI I 228 89.25 Mo I 5 5720.89 P Fe I 1291 5756.45 P TI I 228 89.26 TI I 249 5721.02 P Cr II 34 5759.270 Fe I 1184 90.470 Si I 10 5721.70 P Fe I 1057 5759.56 P Fe I 1087 90.470 Si I 10 5721.71 P Fe I 1088 5759.57 P Fe I 1204 91.38 P Fe II 47 5721.99 Gd II 110
5760.351 Fe I 867 91.509 Fe I 1087 5722.56 P Fe II 58 5760.53 P Fe I 1054 91.52 Ni I 228 5722.65 Al III 2 5761.71 P Fe I 1056 10.60 P Fe I 1091 5722.56 P Fe II 120 5760.71 P Fe I 1056 10.60 P Fe I 1091 5722.56 P Fe II 109 5760.68 P Fe I 1091 5761.08 P Fe I 1057 91.99 P TI II 79 5724.073 Sc I 12 5761.27 Fe I 867 94.498 Ni I 229 5724.445 Fe I 1109 5761.88 Ca I 54 94.998 Ni I 220 5725.63 V I 135 5762.29 Ti I 30 96.0 C III 2 5722.95 P Fe II 109 5722.95 P Fe II 109 5761.88 Ca I 54 94.998 Ni I 220 5725.63 V I 135 5762.99 Fe I 1086 96.10 P Fe I 1179 5727.29 La II 48 5762.99 Fe I 108 96.0 C III 2 5727.75 Fe I 108 96.0 C III 2 5727.75 Fe I 109 5727.29 La II 48 5762.99 Fe I 109 96.33 S I 11 5727.75 Fe I 109 5764.49 P Fe I 108 96.33 S I 11 5727.75 Fe I 109 5764.49 P Fe I 108 98.330 Cr I 239 5727.66 V I 35 5762.99 Fe I 107 99.37 Fe I 1107 99.32 Gd I 3 5727.66 V I 35 5762.99 Fe I 1107 99.37 Fe I 1107 99.37 Fe I 1107 95.32 Gd II 60 5766.330 Ti I 30 99.330 Cr I 239 5727.66 V I 35 5762.99 Fe I 1107 99.37 Fe I 1107 95.32 Gd II 60 5766.330 Ti I 30 99.33 P Fe I 1107 99.37 Fe I 1107 95.32 Gd II 60 5766.330 Ti I 30 99.33 Fe I 11 5737.75 Fe I 1204 5767.43 N II 99.39.37 Fe I 1109 5728.91 Y II 34 5767.43 N II 99.39.37 Fe I 1109 5728.91 Y II 34 5767.43 N II 99.39.37 Fe I 1109 5728.91 Y II 34 5767.43 N II 99.39.37 Fe I 1109 5731.257 V I 35 5769.31 P Fe I 1179 00.24 S I 1 1 5731.257 V I 36 5769.31 P Fe I 1179 | | | Na I | 6 | | | | 28 | | | | | | 88.593 | 88.47 | | Ca I | | 5719.821 | | Cr I | 119 | 5754.41 | | Fe I | 866 | | 88.593 | 88.525 | | Nd II | 79 | 5720.445 | | Ti I | 249 | 5754.675 | | Ni I | 68 | | 89.22 Mo I 5 5720.89 P Fe I 1178 5757.69 Ca I 54 89.465 Ti I 249 5721.02 P Cr II 34 5759.270 Fe I 1184 90.07 P Fe I 1281 5721.70 P Fe I 1057 5759.56 P Fe I 1087 90.470 Si I 10 5721.71 P Fe I 1088 5759.57 P Fe I 1087 90.470 Si I 10 5721.71 P Fe I 1088 5759.57 P Fe I 1204 91.38 P Fe II 1087 5721.99 Gd II 110 5760.351 Fe I 867 91.509 Fe I 1087 5722.56 P Fe II 58 5760.53 P Fe I 1084 91.52 Ni I 228 5722.65 Al III 2 5760.71 P Fe I 1054 91.52 Ni I 228 5722.65 Al III 2 5760.71 P Fe I 1054 91.71 A II 134 5723.87 P Ti II 79 5761.08 P Fe I 1057 91.99 P Ti II 79 5724.073 Sc I 12 5761.27 Fe I 867 94.46 He II 8 5724.37 A II 12 5761.411 V I 35 94.780 Cr I 239 5724.45 Fe I 1109 5761.88 Ca I 54 94.98 Ni I 220 5725.653 V I 135 5762.295 Ti I 309 96.00 C III 2 5725.95 P Fe II 57 5762.434 Fe I 866 96.10 P Fe I 1179 5727.024 V I 35 5762.434 Fe I 866 96.10 P Fe I 1179 5727.024 V I 35 5762.434 Fe I 1086 96.29 Gd I 3 5727.062 V I 35 5764.410 Ne I 13 99.330 Cr I 239 5727.024 V I 35 5762.434 Fe I 1086 96.29 Gd I 3 5727.024 V I 35 5762.434 Fe I 1086 96.30 S I 11 5727.75 Fe I 109 5764.419 Ne I 13 99.330 Cr I 239 5727.062 V I 35 5764.300 Tm I | 88.593 | | | 90 | 5720.613 | | | | 5754.89 | | | | | 89.465 T1 I 249 5721.02 P CT II 34 5759.270 Fe I 1184 90.07 P Fe I 1281 5721.70 P Fe I 1057 5759.56 P Fe I 1087 90.470 S1 I 10 5721.71 P Fe I 1088 5759.57 P Fe I 1204 91.38 P Fe II 47 5721.99 Gd II 110 5760.351 Fe I 867 91.509 Fe I 1087 5722.56 P Fe II 58 5760.53 P Fe I 1054 91.52 Ni I 228 5722.65 P Fe II 58 5760.53 P Fe I 1056 | | | | _ | | | | | | P | | | | 90.07 P Fe I 1281 5721.70 P Fe I 1057 5759.56 P Fe I 1087 90.470 Si I 10 5721.71 P Fe I 1088 5759.57 P Fe I 1204 91.38 P Fe II 147 5721.99 Gd II 110 5760.351 Fe I 867 91.509 Fe I 1087 5722.56 P Fe II 58 5760.53 P Fe I 1054 91.52 Ni I 228 5722.65 Ni I 22 5760.71 P Fe I 1056 91.52 Ni I 228 5722.66 P Fe II 58 5760.53 P Fe I 1056 91.52 Ni I 228 5722.66 P Fe II 58 5760.53 P Fe I 1056 91.52 Ni I 228 5722.66 P Fe II 58 5760.53 P Fe I 1056 91.71 A II 134 5723.87 P Ti II 79 5761.08 P Fe I 1057 91.99 P Ti II 79 5724.073 Sc I 12 5761.27 Fe I 867 94.46 He II 8 5724.37 A II 12 5761.411 V I 35 94.730 Cr I 239 5724.445 Fe I 1109 5761.88 Ca I 54 94.988 Ni I 220 5725.63 V I 125 5762.295 Ti I 309 96.0 C III 2 5725.95 P Fe II 57 5762.434 Fe I 866 96.10 P Fe I 1179 5727.024 V I 35 5762.434 Fe I 866 96.10 P Fe I 1179 5727.024 V I 35 5762.99 Fe I 1086 96.11 P Fe II 18 5727.29 La II 48 5762.99 Fe I 1079 90.22 Gd I 3 5727.662 V I 35 5764.300 Tm I | | | | | | | | | | | | | | 90.470 Si I 10 5721.71 P Fe I 1088 5759.57 P Fe I 1204 91.309 Fe II 1087 5721.99 Gd II 110 5760.351 Fe I 867 91.509 Fe I 1087 5722.56 P Fe II 58 5760.53 P Fe I 1054 91.52 Ni I 228 5722.65 Al III 2 5760.71 P Fe I 1056 1.60 P Fe I 1084 5723.87 P Ti II 79 5761.08 P Fe I 1056 1.71 A II 134 5723.87 P Ti II 79 5761.08 P Fe I 1057 94.46 He II 8 5724.073 Se I 12 5761.27 Fe I 867 94.46 He II 8 5724.37 A II 12 5761.41 V I 35 94.730 Cr I 239 5725.633 V I 135 5762.295 TI I 309 96.0 C III 2 5725.633 V I 135 5762.295 TI I 309 96.0 C III 2 5725.633 V I 135 5762.295 TI I 309 96.10 P Fe I 1179 5727.024 V I 35 5762.44 Fe I 1086 96.11 P Fe II 118 5727.724 V I 35 5762.99 Fe I 1107 96.22 Gd I 3 5727.662 V I 35 5762.99 Fe I 1107 96.33 | | P | | | | | | | | P | | | | 91.509 Fe I 1087 5722.56 P Fe II 58 5760.53 P Fe I 1054 91.52 Ni I 228 5722.65 Al III 2 5760.71 P Fe I 1056 01.60 P Fe I 1084 5723.66 P Fe I 1160 5760.847 Ni I 231 91.71 A III 134 5723.87 P Ti II 79 5761.08 P Fe I 1057 91.99 P Ti II 79 5724.073 Sc I 12 5761.27 Fe I 867 94.46 He II 8 5724.37 A II 12 5761.411 V I 35 94.730 Cr I 239 5724.445 Fe I 1109 5761.88 Ca I 54 94.988 Ni I 220 5725.633 V I 135 5762.295 Ti I 309 96.10 P Fe I 1179 5727.024 V I 35 5762.434 Fe I 866 96.11 P Fe II 118 5727.29 La II 48 5762.992 Fe I 1107 96.22 Gd I 3 5727.662 V I 35 5764.300 Tm I 98.05 Fe I 867 5727.662 V I 35 5764.300 Tm I 98.30 Cr I 239 5728.74 P Fe I 1204 5764.310 Tm I 13 99.96.330 Cr I 239 5728.32 Gd II 60 5766.330 Ti I 309 98.330 Cr I 239 5728.74 P Fe II 1204 5764.419 Ne I 13 98.05 Fe I 867 5728.91 Gd II 60 5766.330 Ti I 309 98.330 Cr I 239 5728.74 P Fe II 51 57 5762.300 Tm I 22 98.337 Fe I 1130 5728.91 Y II 34 5767.18 Hr II 22 98.337 Fe I 1130 5728.91 Y II 34 5767.43 N II 98.5509 V I 35 5769.30 Cr I 239 5728.91 Y II 34 5767.43 N II 98.5509 V I 35 5769.30 Cr I 239 5728.91 Y II 34 5767.43 N II 98.5509 V I 35 5769.30 Cr I 257 5768.895 Ce II 32 00.14 Sc I 11 5731.103 O I 40 5769.31 P Fe I 1179 00.240 Cu I 2 5731.257 V I 36 5769.32 La II 8 | | | | | | P | | | | P | | | | 91.52 Ni I 228 572.65 Al III 2 5760.71 P Fe I 1056 01.60 P Fe I 1084 5723.66 P Fo I 1160 6760.847 Ni I 291 91.71 A II 134 5723.87 P Ti II 79 5761.08 P Fe I 1057 91.90 P Ti II 79 5761.08 P Fe I 1057 94.46 He II 8 5724.37 A II 12 5761.411 V I 35 94.730 Cr I 239 5724.445 Fe I 1109 5761.88 Ca I 54 94.98 Ni I 220 5725.633 V I 135 5762.295 Ti I 309 96.0 C III 2 5725.95 P Fe II 57 5762.295 Ti I 309 96.10 P Fe I 1179 5727.024 V I 35 5762.404 Fe I 866 96.11 P Fe II 118 5727.75 Fe I 108 96.22 Gd I 3 5727.662 V I 35 5764.300 Tm I 96.47 Al III 2 5727.75 Fe I 1204 5764.19 Ne I 13 96.47 Al III 2 5727.75 Fe I 1204 5764.19 Ne I 13 96.33 S I 11 5727.75 Fe I 1204 5764.19 Ne I 13 96.47 Al III 2 5727.75 Fe I 1204 5764.19 Ne I 13 98.35 Fe I 239 5728.74 P Fe II 51 5761.30 Ti I 309 98.330 Cr I 239 5728.74 P Fe II 51 5766.330 Ti I 309 98.330 Cr I 239 5728.74 P Fe II 51 5767.43 NI I 9 98.37 Fe I 1130 5728.91 Y II 34 5767.43 NI I 9 98.37 Fe I 1130 5728.91 Y II 34 5767.43 NI I 9 98.50 V I 35 5769.96 La II 70 00.240 Cu I 2 5731.257 V I 36 5769.32 La II 70 00.240 Cu I 2 5731.257 V I 36 5769.32 La II 70 00.240 Cu I 2 5731.257 V I 36 5769.32 La II 70 | | P | | | | | | | | ъ. | | | | 01.60 P Fe I 1091 5723.66 P Fe I 1160 5760.947 Ni I 291 91.71 A II 134 5723.87 P Ti II 79 5761.08 P Fe I 1057 91.99 P Ti II 79 5724.073 Sc I 12 5761.27 Fe I 867 94.46 He II 8 5724.37 A II 12 5761.411 V I 35 94.730 Cr I 239 5724.445 Fe I 1109 5761.88 Ca I 54 94.998 Ni I 220 5725.633 V I 135 5762.295 Ti I 309 96.0 C III 2 5725.63 V I 135 5762.295 Ti I 309 96.10 P Fe I 1179 5727.024 V I 35 5762.84 P Fe I 1086 96.11 P Fe II 18 5727.024 V I 35 5762.992 Fe I 107 96.22 Gd I 3 5727.662 V I 35 5764.300 Tm I 96.47 Al III 2 5727.66 P II 27 5764.32 Ca I 96.63 S I 11 5727.75 Fe I 1204 5764.419 Ne I 13 98.05 Fe I 867 5728.32 Gd II 60 5766.330 Ti I 309 98.330 Cr I 239 5728.74 P Fe II 51 5767.18 Hf II 22 98.330 Cr I 239 5728.74 P Fe II 51 5767.18 Hf II 22 98.37 Fe I 1130 5728.91 Y II 34 5767.48 N II 9 98.59 V I 35 5762.93 Cr I 257 5768.895 Ce II 32 00.14 Sc I 12 5730.67 N II 3 5769.06 La II 70 00.240 Cu I 2 5731.257 V I 36 5769.31 P Fe I 1179 00.240 Cu I 2 5731.257 V I 36 5769.31 P Fe I 1179 00.240 Cu I 2 5731.257 V I 36 5769.31 P Fe I 1179 | | | | | | P | | | | | | | | 91.71 | | | | | | | | | | | | | | 91.99 P T1 II 79 5724.073 Sc I 12 5761.27 Fe I 867 94.46 He II 8 5724.37 A II 12 5761.411 V I 35 94.730 Cr I 239 5724.445 Fe I 1109 5761.88 Ca I 54 94.998 Ni J 220 5725.633 V I 135 5762.295 T1 I 309 96.0 C III 2 5725.95 P Fe II 57 5762.44 Fe I 866 96.10 P Fe I 1179 5727.024 V I 35 5762.84 P Fe I 1086 96.11 P Fe II 18 5727.29 La II 48 5762.992 Fe I 1107 96.22 Gd I 3 5727.662 V I 35 5764.300 Tm I 96.47 Al III 2 5727.69 P II 27 5764.32 Ca I 96.63 S I 11 5727.75 Fe I 1204 5764.419 Ne I 13 98.05 Fe I 867 5728.32 Gd II 60 5766.330 T1 I 309 98.330 Cr I 239 5728.74 P Fe II 51 5767.18 Hf II 22 98.330 Cr I 239 5728.74 P Fe II 51 5767.18 Hf II 22 98.509 V I 35 5729.203 Cr I 257 5768.895 Ce II 32 00.14 Sc I 12 5730.67 N II 3 5769.06 La II 70 00.240 Cu I 2 5731.257 V I 36 5769.31 P Fe I 1179 00.240 Cu I 2 5731.257 V I 36 5769.32 La I 8 | | P | | | | | | | | Ð | | | | 94.46 He II 8 5724.37 A II 12 5761.411 V I 35 94.730 Cr I 239 5724.445 Fe I 1109 5761.88 Ca I 54 94.998 N1 I 220 5725.633 V I 135 5762.295 T1 I 309 96.0 C III 2 5725.95 P Fe II 57 5762.295 T1 I 309 96.10 P Fe I 1179 5727.024 V I 35 5762.434 Fe I 866 96.11 P Fe II 118 5727.29 La II 48 5762.992 Fe I 1107 96.22 Gd I 3 5727.662 V I 35 5764.300 Tm I 96.47 Al III 2 5727.662 V I 35 5764.300 Tm I 96.63 S I 11 5727.75 Fe I 1204 5764.419 Ne I 13 98.05 Fe I 867 5728.32 Gd II 60 5764.419 Ne I 13 98.05 Fe I 867 5728.32 Gd II 60 5764.419 Ne I 13 98.330 Cr I 239 5728.74 P Fe II 51 5767.18 Hf II 22 98.37 Fe I 1130 5728.91 Y II 34 5767.43 N II 9 98.550 V I 35 5769.90 Cr I 259 00.14 Sc I 12 5730.67 N II 3 5769.90
La II 70 00.240 Cu I 2 5731.257 V I 36 5769.32 La I 8 | | P | | | | • | | | | • | | | | 94.998 Ni J 220 5725.633 V I 135 5762.295 T1 I 309 96.0 C III 2 5725.95 P Fe II 57 5762.434 Fe I 866 96.10 P Fe I 1179 5727.024 V I 35 5762.84 P Fe I 1086 96.11 P Fe II 18 5727.29 La II 48 5762.992 Fe I 1107 96.22 Gd I 3 5727.662 V I 35 5764.300 Tm I 96.47 Al III 2 5727.69 P II 27 5764.32 Ca I 96.63 S I 11 5727.75 Fe I 1204 5764.419 Ne I 13 98.05 Fe I 867 5728.32 Gd II 60 5766.330 T1 I 309 98.330 Cr I 239 5728.74 P Fe II 51 5767.18 Hf II 22 98.330 Cr I 239 5728.74 P Fe II 51 5767.18 Hf II 22 98.509 V I 35 5729.203 Cr I 257 5768.895 Ce II 32 00.14 Sc I 12 5730.67 N II 3 5769.06 La II 70 00.240 Cu I 2 5731.257 V I 36 5769.31 P Fe I 1179 00.240 Cu I 2 5731.257 V I 36 5769.32 La I 8 | 94.46 | | He II | 8 | 5724.37 | | A II | 12 | 5761.411 | | A I | 35 | | 96.0 C III 2 5725.95 P Fe II 57 5762.424 Fe I 866 96.10 P Fe I 1179 5727.024 V I 35 5762.844 P Fe I 1086 96.11 P Fe II 118 5727.29 La II 48 5762.992 Fe I 1107 96.22 Gd I 3 5727.662 V I 35 5764.300 Tm I 107 96.47 Al III 2 5727.662 V I 35 5764.300 Tm I 107 96.63 S I 11 5727.75 Fe I 1204 5764.419 Ne I 13 98.05 Fe I 867 5728.32 Gd II 60 5764.419 Ne I 13 98.330 Cr I 239 5728.74 P Fe II 51 5767.18 Hf II 22 98.37 Fe I 1130 5728.74 P Fe II 51 5767.18 Hf II 22 98.37 Fe I 1130 5728.91 Y II 34 5767.43 N II 9 98.550 V I 35 5729.203 Cr I 257 5768.895 Ce II 32 00.14 Sc I 12 5730.67 N II 3 5769.96 La II 70 00.240 Cu I 2 5731.257 V I 36 5769.31 P Fe I 1179 00.240 Cu I 2 5731.257 V I 36 5769.32 La I 8 | | | | | | | | | | | | | | 96.10 P Fe I 1179 5727.024 V I 35 5762.84 P Fe I 1086 96.11 P Fe II 18 5727.29 La II 48 5762.992 Fe I 1107 96.22 Gd I 3 5727.662 V I 35 5764.300 Tm I 96.47 Al III 2 5727.75 Fe I 1204 5764.419 Ne I 13 98.05 Fe I 867 5728.32 Gd II 60 5766.330 Ti I 309 98.330 Cr I 239 5728.74 P Fe II 51 5767.18 Hf II 22 98.37 Fe I 1130 5728.74 P Fe II 51 5767.18 Hf II 22 98.59 V I 35 5729.203 Cr I 257 5768.895 Ce II 32 00.14 Sc I 12 5730.67 N II 3 5769.06 La II 70 00.240 Cu I 2 5731.257 V I 36 5769.31 P Fe I 1179 00.240 Cu I 2 5731.257 V I 36 5769.32 La I 8 | | | | | | P | | | | | | | | 96.11 P Fe II 18 5727.29 La II 48 5762.992 Fe I 1107 96.22 Gd I 3 5727.662 V I 35 5764.300 Tm I 96.47 Al III 2 5727.69 P II 27 5764.32 Ca I 96.63 S I 11 5727.75 Fe I 1204 5764.419 Ne I 13 98.05 Fe I 867 5728.32 Gd II 60 5766.330 Ti I 309 98.330 Cr I 239 5728.74 P Fe II 51 5767.18 Hf II 22 98.37 Fe I 1130 5728.74 P Fe II 51 5767.18 Hf II 22 98.59 V I 35 5729.203 Cr I 257 5768.895 Ce II 32 00.14 Sc I 12 5730.67 N II 3 5769.06 La II 70 00.240 Cu I 2 5731.257 V I 36 5769.31 P Fe I 1179 00.240 Cu I 2 5731.257 V I 36 5769.32 La I 8 | | P | | | | • | | | | P | Fe I | | | 96.47 Al III 2 5727.69 P II 27 5764.32 Ca I 96.63 S I 11 5727.75 Fe I 1204 5764.419 Ne I 13 98.05 Fe I 867 5728.32 Gd II 60 5766.330 T1 I 309 98.330 Cr I 239 5728.74 P Fe II 51 5767.18 Hf II 22 98.37 Fe I 1130 5728.91 Y II 34 5767.43 N II 98.509 V I 35 5729.203 Cr I 257 5768.895 Ce II 32 00.14 Sc I 12 5730.67 N II 3 5769.06 La II 70 00.240 Cu I 2 5731.257 V I 36 5769.32 La I 8 | 96.11 | P | | | 5727.29 | | | | 5762.992 | | | | | 96.63 S I 11 5727.75 Fe I 1204 5764.419 Ne I 13 98.05 Fe I 867 5728.32 Gd II 60 5766.330 T1 I 309 98.330 Cr I 239 5728.74 P Fe II 51 5767.18 Hf II 22 98.37 Fe I 1130 5728.91 Y II 34 5767.43 N II 9 98.509 V I 35 5729.203 Cr I 257 5768.895 Ce II 32 00.14 Sc I 12 5730.67 N II 3 5769.06 La II 70 00.24 S I 11 5731.103 0 I 40 5769.31 P Fe I 1179 00.240 Cu I 2 5731.257 V I 36 5769.32 La I 8 | 96.22 | | ua I | 3 | 5727.662 | | V 1 | 35 | 5764.300 | | Tm I | | | 98.05 Fe I 867 5728.32 Gd II 60 5766.330 T1 I 309 98.330 Cr I 239 5728.74 P Fe II 51 5767.18 Hf II 22 98.37 Fe I 1130 5728.91 Y II 34 5767.43 N II 9 98.509 V I 35 5729.203 Cr I 257 5768.895 Ce II 32 00.14 Sc I 12 5730.67 N II 3 5769.06 La II 70 00.24 S I 11 5731.103 0 I 40 5769.31 P Fe I 1179 00.240 Cu I 2 5731.257 V I 36 5769.32 La I 8 | | | | | | | | | | | | | | 98.330 Cr I 239 5728.74 P Fe II 51 5767.18 Hf II 22 98.37 Fe I 1130 5728.91 Y II 34 5767.43 N II 9 98.509 V I 35 5729.203 Cr I 257 5768.895 Ce II 32 00.14 Sc I 12 5730.67 N II 3 5769.06 La II 70 00.24 S I 11 5731.103 0 I 40 5769.31 P Fe I 1179 00.240 Cu I 2 5731.257 V I 36 5769.32 La I 8 | | | | | | | | | | | | | | 98.37 Fe I 1130 5728.91 Y II 34 5767.43 N II 9 98.509 V I 35 5729.203 Cr I 257 5768.895 Ce II 32 00.14 Sc I 12 5730.67 N II 3 5769.06 La II 70 00.24 S I 11 5731.103 0 I 40 5769.31 P Fe I 1179 00.240 Cu I 2 5731.257 V I 36 5769.32 La I 8 | | | | | | P | | | | | | | | 00.14 Sc I 12 5730.67 N II 3 5769.06 La II 70 00.24 S I 11 5731.103 0 I 40 5769.31 P Fe I 1179 00.240 Cu I 2 5731.257 V I 36 5769.32 La I 8 | 98.37 | | Fe I | 1130 | 5728.91 | | Y II | 34 | 5767.43 | | N II | 9 | | 00.24 S I 11 5731.103 0 I 40 5769.31 P Fe I 1179
00.240 Cu I 2 5731.257 V I 36 5769.32 La I 8 | | | | | | | | | | | | | | 00.240 Cu I 2 5731.257 V I 36 5769.32 La I 8 | | | | | | | | | | σ | | | | | | | | | | | | | | • | | | | | 00.514 | | Cr I | 203,228 | 5731.70 | | Ca I | 54 | 5769.598 | | Hg I | 5 | | | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |----------|--------|---------------|---------------|---------------------|--------|---------------|----------------|--------------------------------------|------|----------------|---------------| | 7 | P | Fe I | 1236a | 5801.71 | | Hf II | 59 | 5840.47 | | Gd II | 112 | | 58 | | Si I | 17 | 5804.020 | | Nd II | 79 | 5841.01 | | NI | 32 | | 02 | | v i | 92 | 5804.06 | | Fe I | 959 | 5841.86 | | Cr II | 198 | | 76 | | Cr I | 227 | 5804.265 | | Ti I | 309 | 5842.23 | | Hf II | 50 | | 5 | P | Fe II | 165 | 5804.4488 | | Ne I | 19 | 5842.391 | | Nd II | 86 | | 37 | | Ti I
Fe I | 309
1087 | 5804.478 | ~ | Fe I | 1087 | 5843.24 | | Cr I
C II | 119
22 | | 90
70 | | V I | 36 | 5804.91
5805.233 | P | Fe II
Ni I | 165
234 | 58 43. 77
58 43. 80 | | A II | 12 | | 5 | | Ta I | 5 | 5805.76 | | CI | 18 | 5844.606 | | Cr I | 119 | | 22 | | Ba I | 9 | 5805.76 | P | Fe I | 1313 | 5844.879 | | Fe I | 1056 | | | | | | | | | | | | | | | 7 | | Cr I | 257 | 5805.77 | | La II | 1 | 5845.27 | P | Fe I | 1313 | | 7 | ъ | Fe I
Fe I | 209
1203 | 5806.31 | P | Cr II | 3.1 | 5845.71
5846 | P | Gd II
N IV | 112
15 | | 1 | P
P | Fe II | 24 | 5806.56 | | La II
Fe I | 90
1180 | 5846.12 | r | Si II | 8 | | 5
39 | • | Mn I | ~- | 5806.727
5806.75 | | Si II | 8 | 5846.306 | | V I | 1.42 | | 52 | | Si I | 9 | 5806.77 | P | Sc II | 21 | 5846.575 | | Co I | 169 | | 21 | | Fe I | 552 | 5807.05 | | Gd II | 112 | 5847.010 | | Ni I | 44 | | 7 | | Ni I | 217 | 5807.14 | | A I | 142 | 5848.09 | | Fe I | 552,1175 | | 78 | | Ti I | 214 | 5807.22 | P
P | Fe I | 581 | 5848.95 | P | La II
Fe I | 111
922 | | 3 | | Fe I | 552,922,1159 | 5807.79 | P | Fe I | 552 | 5849.67 | r | re i | 922 | | 7 | | Cr I | 188 | 5807.97 | P | Fe I | 1178 | 5850.286 | | v I | 92 | | 95 | | Cr I | 119,188 | 5808.31 | | La II | 4 | 5851.63 | | Gd I | 3 | | 3 | | Y II | 34 | 5808.63 | | La II | 118 | 5852.19 | | Fe I | 1178 | | 3 | P | Ti II | 79 | 5809.249 | | Fe I | 982 | 5852.4878 | | Ne I
Fe I | 5
07 | |)6 | | Cr I
Cu I | 188
2 | 5809.50 | | Hf II
Ti I | 14
73 | 5853.18
5853.48 | P | Fe I | 35
1340 | | 32
56 | | Tm II | - | 5809.75
5809.88 | P | Fe I | 1084 | 5853.62 | r | Al II | 41 | |)1 | | v i | 35,127 | 5811.10 | r | Ta I | 3 | 5853.675 | | Ba II | 2 | | 12 | | Cr I | 188 | 5811.572 | | Nd II | 78 | 5854.1 | | Fe III | | | 5 | P | Cr I | 227 | 5811.93 | | Fe I | 1022 | 5854.16 | | N I | 32 | | | | | | | _ | | | FOF4 08 | | C- 1 | | |)9 | | V I
Cr I | 141 | 5811.93 | P
P | Fe II
N IV | 24 | 5854.27 | P | Cr I
Sc II | 21 | | 34
3 | | Ba II | 188
13 | 5812
5812.14 | P | C IV | 15
1 | 5854.31
5855.126 | - | Fe I | 1179 | | 30 | | v i | 141 | 5812.14 | | A II | 125 | 5855.24 | | GG II | 112 | | • | | Fe I | 686 | 5812.827 | | Ti I | 309 | 5856.084 | | Fe I | 1128 | | | | Fe II | 215 | 5813.33 | P | Fe I | 1054 | 5856.09 | | c 11 | 22 | |)2 | | Cr I | 188 | 5813.67 | | Fe II | 163 | 5856.22 | _ | Gd I | 3 | | 3 | | Mg I
Si II | 24 | 5814.00 | P | Ti I
Ti II | 73
79 | 5856.45 | P | Fe II
Gd PI | 183
60 | | Į.
7 | | Ti I | 309 | 5814.62
5814.80 | r | Fe I | 1086 | 5856.96
5857.454 | | Ca I | 47 | | • | | | | 0014100 | | | 2000 | | | | | | 50 | | Cr I | 188 | 5815.16 | | Fe I | 1055 | 5857.755 | | N1 I | 228 | | 3 | | Cr I | 17 | 5815.23 | P | Fe I | 1234 | 5857.9 | P | C III | 20 | | 79
53 | | Ti I
V I | 309
141 | 5815.42 | P | Fe I
Gd II | 1053
112 | 5858.27
5858.28 | P | Fe I
Mo I | 170
5 | |) | P | Fe I | 1084 | 5815.85
5816.07 | P | Fe I | 1127 | 5858.77 | P | Fe I | 1084 | | 36 | - | Cr I | 119 | 5816.36 | • | Fe I | 1179 | 5859.20 | | Fe I | 1084 | | 7 | P | Fe I | 625 | 5816.48 | | N I | 32 | 5859.23 | P | Si I | 9 | | 3 | | Cr I | 188 | 5816.844 | | Mn·I | | 5859.608 | | Fe I | 1181 | | 39 | | Cr I
V I | 119 | 5817.063 | | V I
V I | 92 | 5859.96 | P | Fe I | 1054 | | 19 | | V 1 | 92 | 5817.532 | | V I | 142 | 5860.73 | | Gd II | 58 | | 3 | | La I | 8 | 5817.87 | | C II | 22 | 5860.92 | P | Ti II | 79 | |) | | C1 II | 27 | 5818.74 | | Eu II | 9 | 5861.11 | P | Fe I | 1084 | |) | P | Cr I | 17 | 5819.22 | | s II | 14 | 5861.53 | | Al II | 41 | | 59
)5 | | Hg I
Cr I | 4
188 | 5819.93 | | V II
Ne I | 99
19 | 5862.357 | | Fe I
V II | 1180
91 | | 14 | | Fe I | 552 | 5820.155
5820.99 | | Gd II | 112 | 5862.80
5863.70 | | La II | 62 | | 3 | | La I | 8 | 5823.13 | | C II | 22 | 5863.96 | | Cr I | 185 | | 3 | | Gd I | 3 | 5823.17 | | Fe II | 164 | 5863.97 | | N1 I | 253 | | 7 | | VII | | 5823.679 | | Ti I | 239 | 5864.24 | P | Fe I | 1086 | | 3 | P | Fe I | 1234 | 5824.40 | P | Fe II | 58 | 5864.54 | P | Fe II | 24 | | 31 | | Cr I | 243 | 5826.12 | P | Fe II | 182
| 5866.453 | | Ti I | 72 | | 3 | | Mo I | 5 | 5826.299 | • | Co I | 169 | 5867.01 | P | Fe I | 1203 | | 38 | | Si I | 9 | 5826.61 | P | Fe I | 1084 | 5867.497 | | Si II | 8 | | 3 | P | Fe II | 47 | 5827.1 | | C III | 22 | 5867.572 | | Ca I | 46 | | 1 | | C I | 18 | 5827.24 | | Cr II | 198 | 5867.81 | | Al II | 41 | |)
32 | P | Fe I
Fe I | 1236a
1086 | 5827.80 | | C II
Si II | 22 | 5868.404 | ъ. | Si II
Fe I | 8 | | 12 | P | N IV | 15 | 5827.80
5827.89 | P | Fe I | 8
552 | 5870.65
5871.04 | P | Fe I | 1235
150 | | 7 | • | Fe II | 211 | 5828 | P | N IV | 15 | 5871.289 | | Fe I | 1055 | | 18 | | Ni I | 68 | 5829.12 | P | Fe II | 165 | 5871.6 | P | C III | 20 | | | _ | | | | | | | | | | | | 7 | P | Fe I
Cr I | 1054 | 5829.53 | | NI | 32 | 5871.81 | _ | Gd II | 79 | | 57
52 | | VI | 142 | 5830.719 | | V I
Ni I | 142 | 5872.73
5872.828 | P | Fe I
Ne I | 552
31 | | 15 | | Ti I | 309 | 5831.624
5832.47 | | Ti I | 233,250
309 | 5872.98 | | Eu II | 9 | | 3 | P | Cr I | 185 | 5833.65 | | Fe III | 114 | 5873.211 | | Fe I | 1087 | | 7 | | La II | 4 | 5833.93 | P | Fe I | 209 | 5874.00 | | La II | 48 | | 3 | | Zr I | 4 | 5834.06 | P | Fe II | 165 | 5875.6 | | Fe III | | | l
12 | P | Fe II
Si I | 165
9 | 5834.93 | P | Fe II | 57 | 5875.618 | | He I
He I | 11 | |) | P | Cr I | 185 | 5835.10
5835.41 | P
P | Fe I
Fe I | 1084
1313 | 5875.650
5875.989 | | не I
Не I | 11
11 | | • | • | * | 100 | 0000.41 | | 1.0 I | 1010 | 0010.309 | | 1 | ** | | 94 | | Fe I | 982 | 5835.43 | P | Fe II | 58 | 5876.27 | P | Fe I | 1084 | | 3 | | Cr I | 17 | 5835.50 | P | Fe II | 182 | 5876.55 | | Cr I | 119 | |)5 | | V I | 142 | 5835.58 | P | Fe I | 343 | 5877.26 | | Gd II | 94 | | 58
3 | P | Fe II
Ba I | 165
9 | 5835.61 | | Fe II
C II | 22 | 5877.770 | P | Fe I
Fe I | 1083
1201 | | 39 | | Si II | 8 | 5836.31
5837.29 | | Au I | 22 | 5879.49
5879.79 | r | Zr I | 4 | | í | | Cr I | 243 | 5837.709 | | Fe I | 1129 | 5880.00 | | Fe I | 1201 | | 7 | | CI | 18 | 5838.418 | | Fe I | 959 | 5880.306 | | Ti I | 71 | |) | | Gd II | 112 | 5838.66 | | Cr I | 119 | 5880.63 | _ | La II | 35 | | ì | | C IV | 1 | 5839.78 | P | Ti I | 105 | 5881.28 | P | Fe I | 1178 | | | | | | | | | | | | | | | | IA | Type | Element | Multiplet No. | IA | Type | Blewent | Multiplet No. | IA | Турс | Bloment | Multiplot No. | |---|--------------------|--------|---------------|---------------|----------------------|--------|---------------|-----------------|----------------------|------------|----------------|-----------------------| | | 981.76 | P | Fe I | 63 | 5929.700 | | Fe I | 1176 | 5978.970 | | Si II | 4 | | | 381.8950 | • | Ne I | 1 | 5930.173 | | Fe I | 1180 | 5980.748 | | VI | 49 | | | 883.06 | P | Fe I | 1124 | 5930.61 | | La I | 2 | 5980.89 | | T1 I | 72 | | | 883.421 | | Co I | 90 | 5930.68 | | La I | 2 | 5981.25 | P | Ba II
Fe I | . 13
837 | | | 383.83£
384.451 | | Fe I
Cr I | 982
119 | 5931.79
5931.89 | Ŕ | N II
Fe I | 28
1017 | 5981.38
5981.96 | r | Cr I | 185 | | | 384.59 | | Gd II | 112 | 5932.05 | P | Fe II | 47 | 5982.52 | | T1 I | 264 | | | 385.61 | | Zr I | 2 | 5932.95 | | s II | 13 | 5982.84 | | Cr I | 185 | | | 387.46
388.32 | P | Fe I
Mo I | 1203
5 | 5933.80
5934.658 | P | Fe I
Fe I | 1198
982 | 5983.704
5983.90 | | Fe I
Lu II | 175
2 | | | 889.951 | | Na I | 1 | 5934.747 | | Nd II | 78 | 5984.092 | | Co I | 37 | | | 389.97 | | CII | 5 | 5935.23 | | Zr I | 2 | 5984.253 | | Co I | 201 | | | 890.02 | P
P | Sc II
Fe I | 21 | 5935.391 | | Co I | 55 | 5984.586
5984.602 | | Ti I
V I | 2
49 | | | 890.48
390.487 | P | Co I | 1313
62 | 5936.22
5937.806 | | La II
Ti I | 19
72 | 5984.805 | | Fe I | 1260 | | | 891.12 | | Fe I | 581 | 5939.75 | | Ta I | 7 | 5986.54 | . P | Fe II | 24 | | | 391.16 | P | Fe I
Fe II | 1179 | 5940.25 | | N II | 28 | 5987.057 | | Fe I
Gd II | 1260
97 | | | 391.36
891.528 | | Nd II | 211
86 | 5940.68
5940.69 | | Ti I
S II | 2
21 | 5987.11
5988.560 | | Ti I | 154 | | | 391.5 | | Fe III | 114 | 5940.972 | | Fe I | 1083 | 5990.59 | P | Fe II | 51 | | | 891.65 | | C II | . 5 | 5941.36 | P | Fe II | 58 | 5991.34 | | 0 1 | 44 | | | 391.89 | P | Fe I | 1236 | 5941.67 | | N II | 28 | 5991.383 | _ | Fe II | 46 | | | 391.9
202.46 | P | Fe II
Fe I | 1201 | 5941.755 | n | T1 I
Fe I | 72 | 5991.58 | I | Fe I
Co I | 1232
90 | | | 892.46
892.66 | r | La II | 48 | 5942.71
5943.11 | P
P | Fe I | 1233
1021 | 5991.890
5991.93 | | 0 I | 44 | | | 892.71 | | Fe I | 1086 | 5943.58 | P | Fe I | 63 | 5992.65 | P | Fe I | 1080 | | | 992.76 | P | N1 I | 250 | 5943.62 | P | Fe I | 1085 | 5993.18 | | 1 0 | 44 | | | 892.80
892.878 | P | Fe I
Ni I | 63
68 | 5944.01
5944.65 | P | Ta I
Ti I | 8
2 | 5995.28
5995.685 | | O I
Ti I | 44
311 | | | 893.24 | P | Fe I | 1055 | 5944.8342 | r | Ne I | 1 | 5995.93 | P | Fe I | 1198 | | | 893.42 | | Ge II | 1 | 5946.484 | | Co I | 169 | 5996.007 | | T1 I | 154 | | | 894.1 | P | C III | 20 | 5947.30 | P | Fe I | 1056 | 5996.16 | | S II | 13 | | | 894.351 | | Zn II | 1 | 5947.50 | P | Fe I | 1199 | 5996.22 | P | Fe I | 624 | | | 895.007 | | Fe I
Tm I | 1235 | 5948.30 | | La II
Si [| 105 | 5996.49 | P | Fe I
Ni I | 1083 | | | 895.646
895.89 | | 8 11 | 20 | 5948.584
5949.35 | | Fe I | 16
14,1176 | 5996.74
5997.088 | | Ba I | 249
7 | | | 895.90 | | Cr II | 198 | 5950.13 | P | Fe I | 1200 | 5997.24 | | Ta I | 12 | | | 895.923 | | Na I | 1 | 5950.91 | | A II | 12 | 5997.610 | | Ni I | 252 | | | 897.54
897.62 | | Gd II | 98
112 | 5951.30
5951.45 | | S II
V II | 21
98 | 5997.808
5998.86 | | Fe I
N1 I | 1175
226 | | | 898.212 | | Fe I | 1259 | 5951.60 | | Gd II | 95 | 5999.003 | | Ti I | 198 | | | 899.295 | | T1 I | 72 | 5952.19 | P | Fe I | 1313 | 5999.30 | | Fe III | 117 | | | 901.0 | | Fe III | 115 | 5952.39 | _ | N II | 28 | 5999.47 | | NI | 16 | | | 901.53
901.95 | P | Fe I
La II | 1083
107 | 5952.55
5952.749 | P | Fe II
Fe I | 182
959 | 5999.668
5999.70 | | Ti I
Al II | 227
93 | | | 002.185 | | Cr I | 110 | 5053.163 | | Ti I | 154 | 5000.83 | | Al II | 03 | | | 902.52 | | Fe I | 1234 | 5953.65 | | Fe III | 115 | 5999.85 | | Ba II | 13 | | • | 903.317 | | Ti I
Fe II | 71 | 5955.12 | P | Fe I
Zr I | 1233 | 6000.668 | | Co I
Al II | 169
109 | | | 903.6
904.07 | | Gd II | 112 | 5955.37
5955.682 | | Fe I | 3
1106 | 6001.18
6001.53 | P | Sc II | 20 | | | 905.673 | | Fe I | 1181 | 5956.48 | | Gd II | 59 | 6001.81 | | Al II | 93 | | | 906.50 | P | Ti I | 105 | 5956.5 | | Fe II | | 6002.273 | | V I | 49 | | | 907.36
908.24 | | C II
Fe I | 44
150 | 5956.702
5957.612 | | Fe I
Si II | 14
4 | 6002.601
6002.640 | | V I
Ti I | 3 4
198 | | | 908.25 | | S II | 13 | 5958.22 | P | Fe I | 1199 | 6003.033 | | Fe I | 959 | | | 909.38 | P | Fe II | 57 | 5958.23 | P | Fe I | 14 | 6004.53 | | Lu I | 1 | | | 909.99
911.45 | | Fe I
Gd II | 552 | 5958.34
5958.46 | P | Fe I
O I | 63
23 | 6004.57
6005.030 | | Gd II | 112
37 | | | 913.35 | P | Fe I | 781 | 5958.63 | | 0 I | 23 | 6005.53 | | Fe I | 207,1079 | | | 913.55 | | Gd II | ,,,, | 5959.878 | | Fe I | 1020 | 6006.42 | | Al II | 93 | | | 913.730 | | Ti I | .2 | 5960.93 | _ | N II | 28 | 6007.313 | _ | N1 I | 42 | | | 913.87
914.16 | | Cr II
Fe I | 1180,1181 | 5961.91
5962.4 | P | Fe I
Fe II | 1080 | 6007.75
6007.961 | P | Fe I
Fe I | 581
1178 | | | 914.28 | | V II | 126 | 5963.25 | | Fe I | 63 | 6008.295 | | Mn II | 16 | | | 914.92 | | C II | 44 | 5965.040 | | Co I | 169 | 6008.35 | P | Fe I | 1079 | | | 915.123 | | T1 I | 228 | 5965.474 | | Ne I | 39 | 6008.48 | | N I | 16 | | | 915.266 | | Si II
Co I | 8
82 | 5965.828
5966.07 | | Ti I
Eu II | 154
9 | 6008.577
6008.648 | | Fe I
V I | 982
49 | | | 915.551
915.93 | | Or I | 185 | 5967.77 | | V II | 126 | 6009.298 | | Mn II | 16 | | | 916.250 | | Fe I | 170 | 5969.38 | | Hr II | 66 | 6009.45 | P | Fe I | 64 | | | 916.364 | | v II | 126 | 5969.554 | | Fe I | 1086 | 6009.83 | P | Fe I | 624 | | | 916.73 | | Cr I
Ti I | 185 | 5969.64
5071.07 | | K II
Ti I | 7 | 6009.962 | | Mn II
Gd II | 16
60 | | | 918.548
918.93 | P | Fe I | 71
1083 | 5971.07
5971.09 | | La II | 264
69 | 6011.12
6012.21 | P | Fe I | 64 | | | 919.60 | - | CII | 44 | 5971.28 | | Tm I | | 6012.251 | _ | N1 I | • • | | | 920.0 | | Fe III | 115 | 5971.699 | | Ba I | 7 | 6012.53 | | T1 I | 264 | | | 920.520 | | Fe I | 581 | 5971.94 | | Al II | 100 | 6012.75 | P | Fe I | 1198 | | | 922.112
922.365 | | Ti I
Co I | 72
55 | 5973.37
5973.52 | P | Fe I
La II | 1175
103 | 6013.498
6015.25 | P | Mn I
Fe I | 27
63 | | | 923.930 | | N1 I | 259 | 5973.66 | | N1 I | 226 | 6016.637 | | Mn I | 27 | | | 925.81 | P | Ni I | 42 | 5974.62 | P | Fe I | 1055 | 6016.66 | _ | Fe I | 738 | | | 926.83
927.15 | P | Fe I
S II | 1231
21 | 5974.628
5975.355 | | Ne I
Fe I | 28
1017,1260 | 6010.85
6017.52 | P
P | Fe I
Ti I | 1232
257 | | | 927.13 | | La II | 111 | 5975.5340 | | Ne I | 1017,1200 | 6917.90 | • | V I | 49 | | | 927.798 | | Fe I | 1175 | 5975.830 | | Ce II | 30 | 6018.34 | P | Fe I | 176 | | | 927.82 | P | N II | 28 | 5976.18 | P | Fe I | 1125 | 6018.423 | | Ti I | 198 | | | 928.50
928.86 | P | Fe I
V II | 1055
.98 | 5976.799
5978.17 | p | Fe I
Fe I | 959
1199 | 6018.62
6019.36 | P | Ti I
Fe I | 70
780 | | | 929.35 | | HP II | 69 | 5978.543 | - | Ti I | 154 | 6019.470 | - | Ba I | 7 | | | 929.5 | | Fe III | 114 | 5978.90 | | Fe III | 117 | 6020.173 | | Fe I | 1178 | | Cold 1 | | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. |
--|-----|------|---------|---------------|----------|------|-------------|---------------|------------------|------|---------|---------------| | Section | | | | | | | | | | | | | | To Fig. Californ Color | | P | | | | | | | | | | | | As 11 3 | | | | | | | | | | | | | | The color | | | | | | P | Fe I | | | | | | | 2 | 1 | | | | | P | | | | | | | | 23 | | | | | | | | | | | | | | 1 | | | | | | Þ | | | | | | | | 27 | | | | | | • | | | | P | | | | 1 | :1 | | V II | 125 | 6084.11 | | | 46 | 6124.85 | | Si I | 30 | | The color | | | | | | | | | | _ | | | | 0 | | | | | | | | | | P | | | | 0 | | P | | | | | | | | | | | | ### Coll Solid Sol | | - | | 97 | | | | | | | | | | C | 7 V II 97 6098.566 F1 1327 6138.21 S II 28 | | | | | | | | | | | | | | 9 71 1 9 6098.69 Cr II 187 6138.30 V I 33 34 44 1 11 19 6096.184 P V I 34 6138.735 Cr II 13 6096.184 P V I 34 6138.735 Cr II 13 6096.184 P V I 34 6138.735 Cr II 13 3 | 6 | | Ko I | 5 | 6089.473 | | | 33 | 6127.913 | | | 1017,1082 | | \$\frac{1}{24}\$ \$\begin{array}{c c c c c c c c c c c c c c c c c c c | | | | | | | | | | | | | | Fe II | | | | | | | | | | | | | | 7 | | | | | | P | | | | | | | | 1 | | | | | | | | | | | | | | 64 P F I 1126 0008.344 71 I 133 6129.77 La II 47 67 Ce II 20 5003.464 Ce II 37 6139.71 P F II 146 67 Ce II 20 5003.66 P I 1177 6130.77 P F I 109.77 009.78 I 109.78 P I | | | | | | P | | | | | | | | ### Coli | | P | | | | | | | | | | | | 87 | | P | | | | | | | | P | | | | Se I | | - | | | 2002 68 | | Po T | | | - | | | | | | | | 30 | | | | | | P | | | | 00 | • | | | 8 | | | | | | - | | | | ## NIT II 65 60096.88 | | | | | | | | | | _ | | | | S | | | | | | | | | | P | | | | Second S | | | | | | P | | | | | | | | Section Sect | | | | | 6097.12 | | | | | | | | | 38 | | | | | | _ | | | | | | | | 3 P Fe II 46 6088.685 | 86 | | Ce II | 30 | 6098.28 | P | | 1200 | | | Zr 1 | 2 | | 8 Ta I 10 6100.04 Zr II 93 6130.58 V I 34 67 Fe II 200 6100.23 P Fe I 1199 6135.759 Cr I 314 4 8 I 10 6100.29 P Fe I 1199 6135.759 Cr I 314 4 8 I 10 6100.29 P Fe I 1199 6135.759 Cr I 314 6 0 I 22 6100.37 La II 47 6136.620 Fe I 169 6 0 I 22 6102.279 Fe I 1195 6135.83 Ba II 12 6 0 I 22 6102.279 Fe I 1259 6130.699 Fe I 169 68 Cr I 342 6102.26 8 II 25 6130.699 Fe I 62 38 V I 49 6102.68 C II 24 6137.51 P Fe I 685 10 Co I 20 1 600.39 P Fe III 3 6137.51 P Fe I 685 11 E B III 9 6135.180 Fe III 3 6135.38 TI I 197 11 E B III 9 6103.140 Fe II 200 6138.44 V I 3 3 46 Mb III 16 6103.44 Fe II 200 6138.47 V I 34 46 Mb III 16 6103.45 Fe II 200 6138.77 Cr II 188 60 Mb III 16 6103.45 Fe II 200 6138.67 A II 27,103 60 Mb III 16 6103.45 Fe II 200 6138.67 Cr II 188 60 Mb III 10 6105.45 Fe II 176 6138.68 S II 63 60 Mb III 10 6105.45 Fe II 176 6138.65 P Fe I 1289 60 Mb III 10 6105.45 Bb I | | _ | | | | | | | | | | | | Fo Fo II 200 | | r | | | | | | | | | | | | 4 S I 10 6100.39 P Fe I 1199 6135.83 Ba II 12 6 0 I 22 6100.37 La II 47 6136.90 N II 36 08 C I 242 6102.26 8 II 26 6136.99 N II 36 38 V I 49 6102.59 C II 24 6137.51 P Fe I 625 38 V I 49 6102.59 P Fe III 3 6136.99 Fe I 266 10 Co II 50 6102.722 Co I 3 6137.51 P Fe I 267 11 Bu II 26 6103.72 Co I 3 6136.98 T I I 107 668 N II 10 668 N II 10 668 N II 11 20 6136.98 T I I 10 668 N II 11 10 6136.98 T I I I 11 10 6136.98 P Fe I 102 | | | | | | P. | | | | | | | | 6 0 I 22 6102.178 Fe I 1259 6138.99 Fe I 62 36 V I 49 6102.59 C II 24 6137.51 P Fe I 625 36 V I 49 6102.59 P Fe III 24 6137.51 P Fe I 625 10 0 II 59 P Fe III 24 6137.51 P Fe I 625 10 0 II 69 0 102.722 Ca I 3 6138.38 T1 I 197 1 Bu III 6 6103.190 Fe I 1200 6138.44 Y I 3 6 W III 16 6103.64 Fe II 1200 6138.47 C III 188 60 M III 16 6103.64 Fe II 200 6136.67 A III 21,103 0 M III 10 6103.64 P B II 11 12 6136.77 C III 188 8 C III 10 | | | | | | P | | | 6135.83 | | | 12 | | Section Sect | | | | | | | | | | | | | | 10 | | | | | | | | | | | | | | 10 | | | | | | | | | | P | | | | 1 | 10 | | Co I | 201 | 6102.59 | P | Fe III | 3 | | | Fe I | | | A | - | | | | | | | | | | | | | D | | | | | | | | | | | | - | | 60 Mn III 18 6103.642 Li I 4 6138.88 S II 63 8 S I 10 6105.151 P Fe I 1175 6139.851 P Fe I 208 98 Mn III 18 6105.381 Mn II 16 6140.50 Zr I 24 8 Cr II 105 6106.25 O I 43 6141.01 P Fe I 12 90 Fe I 1142 6106.47 Zr II 106,137 0141.734 PFe I 816 97 Fe I 1280 6106.84 P Fe I 308 6140.047 M1 I £44 13 V I 34 3108.987 V I 300 0142.21 P 81 I 30 8 P Ti 1 70 6107.099 PE I 1081 6142.53 81 I 30 8 P 8 C I 107.299 Mn II 10 6143.23 2r I 2 4 Fe I 1061 6107 | | P | | | | | | | | | | | | Second S | 60 | | Mn II | | | | | | | | | | | S | | | | | | P | | | | P | | | | SO | | | | | | | | | | D | | | | DO | | | | | | | | | | • | | | | 13 | | | Fe I | | | | | | | | Fe I | | | 13 | 0* | | Pa F | 1050 | 610è 94 | ъ | Do Y | | 2342 242 | | | | | 6 P Ti 1 70 6107.09 P Fe I 1081 6142.53 S1 I 30 5 P 8c I 20 6107.993 Mn II 16 6143.0623 Ne I 1 1 P Fe I 1081 6107.32 P Fe I 1015 6143.23 Zr I 2 4 Fe I 217 6108.121 Ni I 45 6145.06 S1 I 29 1 Al I 99 0.00c.6 P Mn II 10 0.040.42 P Fe I 885 5 Cr I 185 6109.318 Fe I 881 6146.225 Ti I 153 8 Zr I 3 6110.30 Ås II 5 6146.38 Co I 90 9 Fe I 63 6110.784 Ba I 7 6146.53 La II 4 17 Ba I 7 6111.06 Ni I 230 6147.15 Cr II 105 31 Ti I 69 6111.082 V I 34 6147.735 Fe II 74 51 Ti I 69 6111.082 V I 34 6147.735 Fe II 74 51 Ti I 69 6111.082 V I 34 6147.85 Fe I 1016 N II 27 6113.33 Fe II 46 6148.65 P Fe I 1016 N II 27 6113.33 Fe II 46 6148.65 P Fe I 1016 N II 92 6114.41 P Fe I 981 6149.743 Ti I 197 4 Al II 92 6114.41 P Fe I 981 6149.743 Ti I 197 4 Al II 92 6114.41 P Fe I 981 6149.743 Ti I 197 4 Al II 92 6114.41 P Fe I 981 6149.743 Ti I 197 5 La II 48 6144.76 Zr II 93 6150.132 V I 20 2 P 31 I 15 614.92 A II 102 6150.132 V I 20 5 Cr II 197 6115.21 C II 19 6151.504 Fe I 62 6 Cr II 197 6115.21 C II 19 6151.504 Fe I 1312 8 Cr II 197 6116.04 P Fe II 8 6155.22 F Fe I 1312 8 Cr II 197 6116.06 Ni I 220 6155.24 P C III 13 9 A II 1 92 6116.06 Ni I 220 6155.24 P Fe I 1312 8 Cr II 105 6116.994 CO I 37 6154.25 Ha I 5 3 A II 1 92 6116.06 Ni I 220 6155.73 Si I 29 9 Fe I 1176 6120.25 P Fe I 14 61355.99 O I 10 | | | | | | - | | | 02481021 | P | | | | 1 P Fe I 1081 6107.32 P Fe I 1015 6143.23 Zr I 2 4 Fe I 217 6108.121 Ni I 45 6145.06 S1 I 29 1 A1 I 99 0108.6 P Mi II 10 0145.42 P Fe I 685 5 Cr I 185 6109.318 Fe I 581 6146.25 Ti I 153 8 Zr I 3 6110.30 Ås II 5 6146.38 Co I 90 9 Fe I 63 6110.784 Ba I 7 6146.53 La II 4 17 Ba I 7 6111.06 Ni I 230 6147.735 Fe II 74 87 Fe I 207 6112.26 Cr II 105 6147.735 Fe II 74 87 Fe I 207 6112.26 Cr II 105 6147.85 Fe I 1016 N II 27 6113.33 Fe II 46 6147.85 Fe I 1016 N II 27 6113.33 Fe II 46 6148.65 P Fe I 1016 1 P Fe I 581 6114.07 Od I 3 6149.28 Fe II 74 2 Al II 92 6114.41 P Fe I 981 6149.743 Ti I 197 4 Al II 92 6114.8 N II 36 6126.10 P Fe II 48 9 La II 48 6114.77 Zr II 93 6150.132 V I 20 1 Al II 92 6114.9 A II 102 6150.9 N II 36 0 Cr II 107 6115.21 C II 19 6151.509 V I 33 6 Al II 92 6116.04 P Fe II 46 6151.509 V I 33 6 Al II 92 6116.04 P Fe II 48 6151.509 V I 33 6 Al II 92 6118.08 Ni I 230 6155.2 Si I 29 8 Cr II 105 6116.24 Fe I 1312 8 Cr II 105 6116.94 P Fe II 48 6151.509 V I 33 8 Al II 92 6118.08 Ni I 230 6155.4 P C III 13 9 Fe II 33 6118.2 He II 8 6155.4 P C III 13 9 Fe I 1259 6120.12 A II 24 6155.4 P C III 13 9 Fe I 1259 6120.12 A II 22 6155.73 Si I 29 9 Fe I 1176 6120.25 P Fe I 14 6155.99 O I 100 | | | | | | P | | 1081 | 6142.53 | | Si I | 30 | | ## Fe I 217 6108.121 Ni I 45 6146.06 Si I 29 1 | | | | | | ъ | | | | | | | | 1 Al I 98 0108.6 P Mi II 10 0145.42 P Fe I 885 5 Cr I 185 0109.318 Fe I 581 0146.225 Ti I 153 8 Zr I 3 6110.30 Ås II 5 6146.38 Co I 80 9 Fe I 63 6110.784 Ba I 7 6146.53 LA II 4 17 Ba I 7 6111.06 Ni I 230 6147.15 Cr II 105 31 Ti I 69 6111.622 V I 34 6147.735 Fe II 74 87 Fe I 207 6112.28 Cr II 105 6147.85 Fe I 1016 N II 27 6113.33 Fe II 46 6148.65 P Fe I 1016 N II 27 6113.33 Fe II 46 6148.65 P Fe I 1016 1 P Fe I 581 6114.07 Gd I 3 6149.238 Fe II 74 2 Al II 92 6114.41 P Fe I 981 6149.743 Ti I 197 4 Al II 92 6114.8 N II 26 6150.10 P Fe II
48 3 LA II 48 6114.77 Zr II 93 6150.10 P Fe II 48 3 LA II 197 6115.21 C II 197 6155.21 Fe I 381 6 Al II 92 6114.92 A II 102 6150.9 N II 36 0 Cr II 197 6115.21 C II 19 6151.509 V I 33 6 Al II 92 6116.04 P Fe II 46 6151.624 Fe I 62 9 Cr II 105 6116.94 CO I 37 6164.22 Fe I 1312 8 Cr II 105 6116.94 CO I 37 6164.22 Fe I 1312 9 Gr II 197 6115.22 He II 8 6118.22 He II 8 6118.22 Si I 29 377 No I 3 6119.505 V I 34 6155.73 Si I 29 4 Fe I 1259 6120.25 P Fe I 14 6155.79 O I 105 | | • | | | | - | | | | | | | | 5 Cr I 185 6109.318 Fe I 581 6146.225 T1 I 153 8 Zr I 3 6110.784 Ba I 7 6146.53 La II 4 17 Ba I 7 6111.06 Ni I 230 6147.15 Cr II 105 31 T1 I 69 6111.622 V I 34 6147.735 Fe II 74 87 Fe I 207 6112.286 Cr II 105 6147.85 Fe II 74 87 Fe I 207 6113.33 Fe II 46 6148.65 P Fe I 1016 N II 27 6113.33 Fe II 44 6149.238 Fe II 74 1 P Fe I 581 6114.07 0d I 3 6149.238 Fe II 74 2 Al III 92 6114.41 P Fe I 981 6149.743 Ti I 197 3 La II 48 6114.77 | | | | | | P | | | | P | | | | 9 Fe I 63 6110.764 Ba I 7 6146.53 La II 4 17 Ba I 7 6141.06 Ni I 230 6147.15 Cr II 105 31 Ti I 69 6111.622 V I 34 6147.735 Fe II 74 87 Fe I 207 6112.26 Cr II 105 6147.85 Fe II 74 88 Fe I 207 6112.33 Fe II 46 6148.65 P Fe I 1016 N II 27 6113.33 Fe II 46 6148.65 P Fe I 1141 1 P Fe I 581 6114.07 Od I 3 6149.288 Fe II 74 2 Al III 92 6114.41 P Fe I 981 6149.743 Ti I 197 4 Al III 92 6114.6 N II 36 6150.10 P Fe II 48 3 La II 48 6114.77 Zr II 93 6150.10 P Fe II 48 2 P 31 I 15 6114.92 A II 102 6150.9 N II 36 0 Cr II 197 6115.21 C II 19 6151.509 V I 33 6 Al II 92 6116.04 P Fe II 46 6151.624 Fe I 62 9 Cr II 197 0110.181 NI 1 218,251 0102.82 F Fe I 1312 8 Cr II 105 6116.94 Co I 37 6154.25 Ha I 5 3 Al II 92 6118.06 Ni I 230 6154.4 P C III 13 Re II 8 6118.2 He II 8 6155.24 P Fe II 161 3 Al II 12 6119.780 Ni I 244 6155.4 P Fe II 161 3 Al II 12 6119.780 Ni I 244 6155.73 Si I 29 Fe I 1259 6120.12 A II 22 6155.73 Si I 29 Fe I 1259 6120.12 A II 22 6155.73 Si I 29 Fe I 1176 6120.25 P Fe I 14 6155.69 O I 10 | | | | | | | | | | | | | | 17 Ba I 7 6111.06 Ni I 230 6147.15 Cr II 105 31 Ti I 69 6111.622 V I 34 6147.735 Fe II 74 87 Fe I 207 6112.26 Cr II 105 6147.85 Fe I 1016 N II 27 6113.33 Fe II 46 6148.65 P Fe I 1016 1 P Fe I 581 6114.07 Gd I 3 6149.288 Fe II 74 2 Al II 92 6114.41 P Fe I 981 6149.743 Ti I 197 4 Al II 92 6114.6 N II 96 6150.10 P Vo II 46 9 La II 48 6114.77 Zr II 93 6150.10 P Vo II 46 10 Cr II 197 6115.21 C II 19 6151.509 V I 33 6 Al II 92 6116.04 P Fe II 46 6151.624 Fe I 62 9 Cr II 197 6115.21 C II 19 6151.624 Fe I 62 9 Cr II 197 6115.21 C II 37 6154.25 Ha I 5 8 Cr II 105 6118.994 Co I 37 6154.25 Ha I 5 1 | | | | | | | | | | | | | | St | | | | | | | | | | | * V | | | 87 Fe I 207 6112.26 Cr II 105 6147.85 Fe I 1016 N II 27 6113.33 Fe II 4F 6148.65 P Fe I 1016 1 P Fe I 551 551 6114.07 Gd I 3 6149.288 Fe II 74 2 Al II 92 6114.41 P Fe I 981 6149.743 Ti I 197 4 Al II 92 6114.6 N II 96 6150.10 P Vo II 46 9 La II 48 6114.77 Zr II 93 6150.10 P Vo II 46 10 Cr II 197 6115.21 C II 19 6151.509 V I 33 6 Al II 92 6116.04 P Fe II 46 6151.624 Fe I 62 9 Cr II 197 0110.161 NI 1 218,251 0152.82 F Fe I 1312 8 Cr II 105 6116.994 Co I 37 6154.25 Ha I 5 3 Al II 92 6118.06 Ni I 230 6154.4 P C III 13 16 18 6118.2 He II 8 615.22 Si I 29 177 No I 3 6119.505 V I 34 6155.24 P Fe II 161 3 A II 12 6119.780 Ni I 244 6155.24 P Fe II 161 3 A II 12 6119.780 Ni I 244 6155.24 P Fe II 161 3 A II 12 6119.780 Ni I 244 6155.24 P C III 13 96 Fe I 1259 6120.12 A II 22 6155.73 Si I 29 178 Fe I 1176 6120.25 P Fe I 14 6155.59 O I 10 | | | | | | | N1 I
V T | | | | | | | N II 27 | | | | | | | | | | | | | | 1 P Fe I 581 6114.07 0d I 3 6149.288 Fe II 74 2 Al III 92 6114.41 P Fe I 981 6149.743 Ti I 197 3 La II 92 6114.6 N II 96 6150.10 P Vo II 46 9 La II 48 6114.77 2r II 93 6150.132 V I 20 0 F 31 I 15 6114.92 A II 102 6150.19 N II 36 0 Cr II 197 6115.21 C II 19 6151.509 V I 33 6 Al II 92 6116.04 P Fe II 46 6151.624 Fe I 62 9 Cr II 197 6116.04 P Fe II 46 6151.624 Fe I 62 9 Cr II 197 6116.94 C I 37 6154.25 Ra I 5 | | | N II | | 6113.33 | | Fe II | | 6148.65 | P . | | | | 4 Al III 92 6114.6 N II 96 6150.13 P Fo II 46 3 La II 48 6114.7 Zr II 93 6150.13 V I 20 2 P 31 I 15 6114.92 A II 102 6150.9 N II 36 0 Cr II 197 6115.21 C II 19 6151.509 V I 33 6 Al II 92 6116.04 P Fo II 46 6151.624 Fo I 62 9 Cr II 197 0110.121 N1 I 218,231 0102.82 F Fo I 1312 8 Cr II 105 6116.994 Co I 37 6154.25 Ha I 5 3 Al II 92 6118.06 N1 I 230 6154.4 P C III 13 He II 8 6118.2 He II 8 6155.22 S1 I 29 377 No I 3 6119.505 V I 34 6155.24 P Fo II 161 3 A III 12 6119.780 N1 I 244 6155.4 P C III 13 96 Fo I 1259 6120.12 A II 22 6155.73 S1 I 29 2 Fo I 1176 6120.25 P Fo I 14 6185.99 O I 10 | | P | | | | _ | | | 6149.238 | | | 74 | | 3 La II 48 6114.70 Zr II 93 6150.132 V I 20 2 P 31 I 15 6114.92 A II 102 6150.9 N II 36 0 Cr II 197 6115.21 C II 19 6151.509 V I 33 6 Al II 92 6116.04 P Fe II 46 6151.624 Fe I 62 9 Cr II 197 0110.161 N1 218,251 0102.22 F Fe I 1312 8 Cr II 105 6116.994 Co I 37 6154.225 Ha I 5 3 Al II 92 6118.06 N1 I 230 6154.4 P C III 13 He II 8 6118.2 He II 8 6155.2 31 I 29 377 Ne I 3 6119.505 V I 34 6155.24 P Fe II 161 3 A II 12 6119.780 N1 I 244 6155.4 P C III 13 96 Fe I 1259 6120.12 A II 22 6155.75 31 I 29 2 Fe I 1176 6120.25 P Fe I 14 6155.99 O I 10 | | | | | | ν. | | | | т. | | | | 2 P 31 I 15 6114.92 A II 102 6150.9 N II 36 0 0 Cr II 197 6115.21 C II 19 6151.509 V I 33 6 Al II 92 6116.04 P Fe II 46 6151.624 Fe I 62 9 Cr II 197 0110.161 N1 I 218,251 0152.82 F Fe I 1812 8 Cr II 105 6116.994 Co I 37 6154.225 Ha I 5 3 Al II 92 6118.06 Ni I 230 6154.4 P C III 13 He II 8 6118.2 He II 8 6155.22 Si I 29 377 No I 3 6119.505 V I 34 6155.24 P Fe II 161 3 A II 12 6119.780 Ni I 244 6155.4 P C III 13 96 Fe I 1259 6120.12 A II 22 6155.73 Si I 29 2 Fe I 1176 6120.25 P Fe I 14 6125.99 O I 10 | | | | | | | | | | * | | | | 6 Al II 92 6118.04 P Fe II 46 6151.624 Fe I 62 9 Gr II 197 0110.161 N1 I 218,251 0102.82 P Fe I 1312 8 Cr II 105 6116.994 Co I 37 6154.225 Na I 5 3 Al II 92 6118.06 Ni I 230 6154.4 P C III 13 He II 8 6118.2 He II 8 6155.22 Si I 29 377 Ne I 3 6119.505 V I 34 6155.24 P Fe II 161 3 A II 12 6119.780 Ni I 244 6135.4 P C III 13 96 Fe I 1259 6120.12 A II 22 6155.73 Si I 29 2 Fe I 1176 6120.25 P Fe I 14 6135.99 O I 10 | 2 | P | 31 I | 15 | 6114.92 | | A II | 102 | 6150.9 | | N II | 36 | | 9 | | | | | | | | | 6151.509 | | v I | 33 | | 8 | | | | | | P | | | | 25 | | | | 3 Al II 92 6118.06 Ni I 230 6154.4 P C III 13 He II 8 6118.2 He II 8 6155.22 S1 I 29 377 No I 3 6119.505 V I 34 6155.24 P Fe II 161 3 A II 12 6119.780 Ni I 244 6155.4 P C III 13 96 Fe I 1259 6120.12 A II 22 6155.73 S1 I 29 2 Fe I 1176 6120.25 P Fe I 14 6185.99 O I 10 | | | | | | | | | | | | | | He II 8 6118.2 He II 8 6155.22 Si I 29 377 No I 3 6119.505 V I 34 6155.24 P Fe II 161 3 A II 12 6119.780 Ni I 244 6155.4 P C III 13 96 Fe I 1259 6120.12 A II 22 6155.73 Si I 29 2 Fe I 1176 6120.25 P Fe I 14 6155.99 O I 10 | | | | 92 | 6118.06 | | | | | P | | | | 3 A II 12 6119.780 N1 I 244 6135.4 P C III 13 96 Fe I 1259 6120.12 A II 22 6135.73 S1 I 29 2 Fe I 1176 6120.25 P Fe I 14 6135.99 0 I 10 | 2.5 | | | | | | | | 6155.22 | | | 29 | | 96 Fe I 1259 6120.12 A II 22 6155.73 Si I 29
2 Fe I 1176 6120.25 P Fe I 14 6155.99 O I 10 | | | | | | | | | | | | | | 2 Fe I 1176 6120.25 P Fe I 14 6155.99 0 I 10 | | | | | | | | | | - F | | | | 1 V II 206 6120.86 2r I 24 6156.10 Ca I 20 | 2 | | Fe I | 1176 | 6120.25 | P | Fe I | 14 | 6155.99 | | 0 1 | 10 | | | 1 | | A II | 206 | 5120.86 | | Zr I | 24 | 61 56. 10 | | Ca I | 20 | | | IA | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |--|---------|------|---------|---------------|----------|------|---------|---------------|-----------|------|---------------|---------------| | March Marc | | | | | | | | | | | | | | 161-4-6 P F I | | F | | | | | | | | | | | | 10.7-75 | 157.41 | P | Fe I | 624 | 6213.438 | | Fe I | 62 | | | | | | Ba-4-09 | | | | | | | | | 6258.706 | | Ti I | 104 | |
(407-777 \$4, 1 | | | | | | | | | | | | | | | 160.747 | _ | | 5 | | | Ti I | 293 | | | | | | | | Þ | 1335 | 6261.55 | | 0 I | 50 | | 981-42 | | | | | | P | | | | | | | | General Fig. General | | | | | | P | | | | | | | | 1881-798 | | | | | | | | | | | | 62 | | 105-138 P N. 1 200 620-78 F 1 688 630-6400 P 1 5 | | | | | | | | | | | | | | 160.566 | | P | | | | | | | 6266.4950 | | Ne I | 5 | | 100-444 Cal 20 | | | | | | | | | | P | | | | 167-56 N II 20,00 6220.00 Y I 2 5868.941 Y I 20 | | | | | | | | | | | | | | 169-46 | | | | | | | | | | | | | | 1981-085 | | | | 196 | 6222.81 | | Hf II | 57 | 6270.238 | | Fe I | | | 109.565 | | | | | | P | | | | р | | | | 170.460 Y 1 20 6286.18 A II 104 6277.76 A II 13 170.47 A II 1 1 1 104 6277.76 A II 13 13 170.482 Y I 1200 6286.28 Y I 104 6277.76 A II 13 13 170.482 Y I 1200 6286.72 Fe I 306 6274.67 Y I 19 170.482 I I I I I I I I | 169.559 | | CaI | 20 | 6224.26 | | V I | 20 | 6271.83 | • | | | | 170.47 | | | | | | | | | | | | | | 170.568 | | | | | | | | | | | | | | 170.0 B I S 6229.234 F 1342 6274.34 C I 188 I 170.0 R I 156 6229.234 F I 134 6227.354 R I 134 6227.354 R I 134 6227.354 R I 134 6227.354 R I 134 6227.355 R I 135 6227.355 R I 135 6227.355 R I I I I I I I I I | | | | | | | | | | | | | | 172-28 A II 108 6230.115 N I 227 6277.525 II 1 144 172-28 A II 1 4 6 6230.728 N I 207 6278.30 AI 1 1 173-343 P I 62 6230.738 N I 207 6278.30 AI 1 1 173-343 P I 62 6230.738 N I 1 307 6278.70 S II 2 173-343 P I 62 6230.738 N I 1 30 6279.70 S II 2 174-18 L II 47 6231.78 N II 1 30 6220.68 C I 37 174-18 L II 47 6231.78 S I 3 6280.625 C I 37 174-18 L II 47 6231.78 AI II 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 170.6 | _ | He II | 8 | 6229.234 | | Fe I | 342 | | | | | | 173-72 | | P | | | | P | | | | | | | | 173-043 | 172.72 | | La II | 4 | 6230.728 | | Fe I | | | | | | | 173-40 | | | | | | | | | | | | 28 | | 174.15 | 173.40 | | N II | 36 | 6230.968 | | Co I | | | | | | | 176.158 Fe II 200 6232.661 Fe I 516 6284.00 P Fe I 624 177.464 N II 217 6232.755 Fe I 685 6284.00 N II 32 177.288 N II 227 6232.755 Fe I 685 6284.00 N II 32 177.288 N II 236 6233.8 Fe II 20 6285.138 V I 13 13 177.288 N II 236 6233.8 Fe II 20 6285.138 V I 13 13 177.288 N II 236 6233.8 Fe II 20 6285.138 V I 13 18 177.288 N II 236 6233.8 Fe II 20 6285.25 P Fe I 208 177.49 N II 244 6237.62 SI I 27 6280.686 Fe I 228 178.18 P Fe II 167 6233.8 Fe II 74 6282.888 V I 13 18 179.275 Fe II 167 6233.37 Fe II 74 6282.888 V I 13 18 179.275 Fe II 167 6239.40 Fe II 20 6239.40 Fe II 20 6239.64 6239.778 6239.788 623 | 174.15 | | La II | 47 | | | | 3 | 6282.636 | | Co I | | | 175.424 | 175.158 | | Fe II | 200 | | | | | | . ъ | | | | 170.955 | 175.424 | | N1 I | 217 | 6232.735 | | Fe I | 685 | | • | N II | | | 177.285 | | | | | | | | 20 | | | | | | 179.13 P Fe I 46 6237.62 Si 27 6290.968 Pe I 1286 179.47 Fe II 167 6236.375 Pe II 74 6236.385 V 19 19 179.376 Fe II 163 6239.36 P Fe II 34 6230.08 P Ti 103 10 | 177.258 | | Ni I | 58 | 6233.8 | | He II | 7 | | | | | | 179.17 | | P | | | | | | | | P | | | | 180.083 | 179.17 | • | Cr II | 187 | 6238.375 | | Fe II | 74 | 6292.858 | | V I | | | 180.216 | | | | | | P | | | | | | 103 | | 180.42 | | | | | | | | | | P | | | | 181.68 | L80.42 | | Gd II | 111 | 6239.73 | | A II | 21 | | | Ti I | 144 | | 182.28 | | | | | | | | | | | | | | 183.42 | 182.28 | | Al II | 66 | 6239.95 | P | Fe II | 74 | | | Ti I | | | 183.892 | | | | | | | | | | | | | | 185.1 | 183.892 | | Ni I | 226 | 6240.656 | | Fe I | | | | Gd II | | | 185.34 | | P | | 163 | | | | 57 | 6299.74 | P | Fe III | 3 | | 180-14 | | P | | 46 | | | | | | | Ni I
Sc II | | | 187.41 | | | | | | | | | | n | | | | 188.037 | | P | Fe I | | | | | | | r | | | | 188.09 | | P | | | | P | | | | | | | | 188.005 | | | | | | | | | | | | | | 191.186 N1 I 45 6245.629 Sc II 28 6305.262 Pr II 39 191.562 Fe I 169 6245.84 Fe I 1289 6305.318 Fe II 200 191.73 V I 2 6246.334 Fe I 816 6305.46 IA II 5 192.96 Zr I 24 6247.562 Fe II 74 6305.51 S II 19 193.672 Sc I 3 6248.916 Fe II 6305.60 Cr II 195.18 Cr II 105 6248.95 Hf II 22 6305.671 Sc I 2 196.71 P Fe II 46 6249.65 P Fe I 685 6306.047 Sc I 3 199.16 Fe II 162 6249.92 La I 7 6306.17 Hf II 81 199.202 V I 19 0251.20 P Fe I 11/0 0300.19 P Fe I 1230 199.475 Fe I 208 6251.83 V I 19 6307.25 La II 117 200.323 Fe I 208 6251.83 V I 19 6307.25 La II 117 200.323 Fe I 208 6252.561 Fe I 169 6307.85 P Fe I 863 201.52 Al II 57 6253.82 P Fe I 1256 6309.92 Sc II 28 201.70 Al II 57 6253.82 P Fe I 1256 6309.543 Fe I 405 202.31 P Fe I 208 6254.262 Fe I 111 6310.8 He II 7 203.51 La II 111 6254.96 Si I 28 6310.543 Fe I 405 202.31 P Fe I 208 6254.262 Fe I 111 6310.8 He II 7 203.51 La II 111 6256.365 Ni I 43 6311.289 Ti I 103 207.251 V I 20 6256.370 Fe I 169 631.506 Fe I 342 208.18 Cr II 105 6256.84 O I 50 6312.240 Ti I 104 200.79 P Fe I 091 6356.006 V I 10 6312.260 FI I 104 200.79 P Fe I 091 6356.006 V I 10 6312.260 FI I 104 | | | | 37 | | | | 27 | 6304.35 | | Zr I | 24 | | 191.562 Fe I 169 6245.84 Fe I 1289 6305.318 Fe II 200 101.73 V I 2 6246.334 Fe I 1289 6305.318 Fe II 200 101.73 V I 2 6246.334 Fe I 816 6305.46 IA II 5 192.96 Zr I 24 6247.562 Fe II 74 6305.51 S II 19 193.672 Sc I 3 6248.916 Fe II 6305.60 Cr II 195.18 Cr II 105 6248.95 Hf II 22 6305.671 Sc I 2 196.71 P Fe II 46 6249.65 P Fe I 685 6306.047 Sc I 3 199.16 Fe II 162 6249.92 La I 7 6306.17 Hf II 81 199.202 V I 19 6251.20 F Fe I 1170 6305.25 La II 117 117 117 11 117 118 119.202 V I 19 6307.25 La II 117 117 117 118 118 119.202 V I 19 6307.25 La II 117 117 118 119.202 V I 19 6307.25 La II 117 117 118 118 119.203 11 11 11 11 11 11 11 11 11 11 11 11 11 | | | N1 I | | | | | | | | | | | 192.96 Zr I 24 6247.562 Fe II 74 6305.51 S II 19 193.672 Sc I 3 6248.916 Fe II 74 6305.60 Cr II 195.18 Cr II 105 6248.95 Hf II 22 6305.671 Sc I 2 196.71 P Fe II 46 6249.65 P Fe I 685 6306.047 Sc I 3 199.16 Fe II 162 6249.92 La I 7 6306.17 Hf II 81 189.202 V I 19 0251.20 F Fe I 1170 0306.19 P Fe I 1230 199.475 Fe I 208 6251.83 V I 19 6307.25 La II 117 200.323 Fe I 207 6252.561 Fe I 169 6307.85 P Fe I 863 201.52 Al II 57 6253.82 P Fe I 1256 6309.902 Sc II 28 201.70 Al II 57 6253.82 P Fe I 1256 6309.902 Sc II 28 201.71 P Fe I 208 6254.25 Si I 28 6310.543 Fe I 405 202.31 P Fe I 208 6254.262 Fe I 111 6310.8 He II 7 203.51 La II 111 6254.96 Si I 28 6310.91 La II 103 204.640 Ni I 226 6256.365 Ni I 43 6311.289 Ti I 103 207.251 V I 20 6256.365 Ni I 43 6311.289 Ti I 103 207.251 V I 20 6256.360 V I 10 6312.240 Ti I 104 206.73 P Fe I 091 6256.066 V I 10 6312.260 Ti I 104 | 191.562 | | Fe I | 169 | 6245.84 | | Fe I | 1289 | 6305.318 | | Fe II | 200 | | 193.672 Sc I 3 6248.916 Fe II 6305.60 Cr II 195.18 Cr II 105 6248.95 Hf II 22 6305.671 Sc I 2 196.71 P Fe II 46 6249.65 P Fe I 685 6306.047 Sc I 3 199.16 Fe II 162 6249.92 La I 7 6306.17 Hf II 81 189.202 V I 19 0251.20 F Fe I 1170 0300.19 P Fe I 1230 199.475 Fe I 208 6251.83 V I 19 6307.25 La II 117 200.323 Fe I 207 6252.661 Fe I 169 6307.85 P Fe I 863 201.52 Al II 57 6253.82 P Fe I 1266 6309.902 Sc II 28 201.70 Al II 57 6254.25 Si I 28 6310.543 Fe I 405 202.31 P Fe I 208 6254.262 Fe I 111 6310.8 He II 7 203.51 La II 111 6254.96 Si I 28 6310.91 La II 103 204.640 Ni I 226 6256.365 Ni I 43 6311.289 Ti I 103 204.640 Ni I 226 6256.365 Ni I 43 6311.289 Ti I 103 207.251 V I 20 6256.370 Fe I 169 6312.240 Ti I 104 200.79 P Fe I 091 6256.066 V I 10 6312.260 S II 28 | | | | | | | | | | | | | | 196.71 P Fe II 46 6249.65 P Fe I 685 6306.047 Sc I 3 199.16 Fe II 162 6249.92 La I 7 6306.17 Hf II 81 189.202 V I 189 0251.20 P Fe I 1170 0306.19 P Fe I 1230 199.475 Fe I 208 6251.83 V I 19 6307.25 La II 117 200.323 Fe I 207 6252.561 Fe I 169 6307.85 P Fe I 863 201.52 Al II 57 6253.82 P Fe I 1256 6309.902 Sc II 28 201.70 Al II 57 6253.82 P Fe I 1256 6309.902 Sc II 28 201.70 Al II 57 6254.25 Si I 28 6310.543 Fe I 405 202.31 P Fe I 208 6254.262 Fe I 111 6310.8 He II 7 203.51 La II 111 6254.96 Si I 28 6310.91 La II 103 204.640 Ni I 226 6256.365 Ni I 43 6311.289 Ti I 103 207.251 V I 20 6256.370 Fe I 169 6311.506 Fe I 342 208.18 Cr II 105 6256.84 O I 50 6312.240 Ti I 104 206.73 P Fe I 081 6256.968 V I 10 6312.26 S II 28 | 193.672 | | | 3 | | | Fe II | | 6305.60 | | Cr II | | | 199.16 Fe II 162 6249.92 La I 7 6306.17 Hf II 81 189.202 V I 19 0251.26 F Fe I 1170 0306.19 F Fe I 1200 199.475 Fe I 208 6251.83 V I 19 6307.25 La II 117 200.323 Fe I 207 6252.661 Fe I 169 6307.85 P Fe I 863 201.52 Al II 57 6253.82 P Fe I 1256 6309.902 Sc II 28 201.70 Al II 57 6254.25 Si I 28 6310.543 Fe I 405 202.31 P Fe I 208 6254.25 Fe I 111 6310.8 He II 7 203.51 La II 111 6254.96 Si I 28 6310.91 La II 103 204.640 Ni I 226 6256.365 Ni I 43 6311.289 Ti I 103 207.251 V I 20 6256.370 Fe I 169 6311.506 Fe I 342 208.18 Cr II 105 6256.84 O I 50 6312.260 FI I 104 200.79 P Fe I 091 6256.966 V I 19 6312.260
S II 28 | | P | | | | P | | | | | | | | 199.475 Fe I 208 6251.83 V I 19 6307.25 La II 117 200.323 Fe I 207 6252.561 Fe I 169 6307.85 P Fe I 863 201.52 Al II 57 6253.82 P Fe I 1256 6309.902 Sc II 28 201.70 Al II 57 6254.25 Si I 28 6310.543 Fe I 405 202.31 P Fe I 208 6254.262 Fe I 111 6310.8 He II 7 203.51 La II 111 6254.96 Si I 28 6310.91 La II 103 204.640 Ni I 226 6256.365 Ni I 43 6311.289 Ti I 103 207.251 V I 20 6256.370 Fe I 169 6311.506 Fe I 342 208.18 Cr II 105 6256.84 O I 50 6312.240 Ti I 104 200.73 P Fe I 091 6256.906 V I 10 6312.26 S II 28 | 199.16 | _ | Fe II | 162 | 6249.92 | | La I | 7 | 6306.17 | | Hf II | 81 | | 201.52 Al II 57 6253.82 P Fe I 1256 6309.902 Sc II 28 201.70 Al II 57 6254.25 Si I 28 6310.543 Fe I 405 202.31 P Fe I 208 6254.262 Fe I 111 6310.8 He II 7 203.51 La II 111 6254.96 Si I 28 6310.91 La II 103 204.640 Ni I 226 6256.365 Ni I 43 6311.289 Ti I 103 207.251 V I 20 6256.370 Fe I 169 6311.506 Fe I 342 208.18 Cr II 105 6256.84 0 I 50 6312.240 Ti 1 104 200.73 P Fe I 091 6256.966 V I 19 6312.69 S II 28 | | | | | | P | | | | P | | | | 201.70 Al II 57 6254.25 Si I 28 6310.543 Fe I 405 202.31 P Fe I 208 6254.262 Fe I 111 6310.8 He II 7 203.51 La II 111 6254.96 Si I 28 6310.91 La II 103 204.640 Ni I 226 6256.365 Ni I 43 6311.289 Ti I 103 207.251 V I 20 6256.370 Fe I 169 6311.506 Fe I 342 208.18 Cr II 105 6256.84 0 I 50 6312.240 Ti I 104 200.73 P Fe I 991 6256.966 V I 19 6312.69 S II 28 | | | | | | | | | | P | | | | 202.31 P Fe I 208 6254.262 Fe I 111 6310.8 He II 7 203.51 La II 111 6254.96 Si I 28 6310.91 La II 103 204.640 Ni I 226 6256.365 Ni I 43 6311.289 Ti I 103 207.251 V I 20 6256.370 Fe I 169 6311.506 Fe I 342 208.18 Cr II 105 6256.84 0 I 50 6312.240 Ti I 104 200.73 P Fe I 081 6256.006 V I 10 6312.266 S II 28 | | | | | | P | | | | | | | | 204.640 Ni I 226 6256.365 Ni I 43 6311.289 Ti I 103
207.251 V I 20 6256.370 Fe I 169 6311.506 Fe I 342
208.18 Cr II 105 6256.84 0 I 50 6312.240 Ti I 104
200.73 P Fe I 991 6256.966 V I 19 6312.69 S II 28 | 202.31 | P | Fe I | 208 | 6254.262 | | Fe I | 111 | 6310.8 | | He II | 7 | | 207.251 V I 20 6256.370 Fe I 169 6311.506 Fe I 342
208.18 Cr II 105 6256.84 0 I 50 6312.240 Ti I 104
200.73 P Fe I 081 6256.908 V I 10 6312.66 S II 28 | | | | | | | | | | | | | | 209.73 P Fo I 981 6256.906 V I 19 6312.69 S II 28 | 207.251 | | v I | 20 | 6256.370 | | Fe I | 169 | 6311.506 | | Fe I | 342 | | | | P | | | | | | | | | | | | | | - | | | | | | | | | | | | A | Туре | Element | Multiplet No. | I A | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |-----------------|------|----------------|---------------|----------------------|--------|----------------|---------------|----------------------|------|----------------|----------------------| | 1.57 | | Zr II | 136 | 6371.359 | | Si II | 2 | 6435.02 | | I Y | 2 | | 22 | | Gd II | 121 | 6374.08
6374.31 | | La II
O I | 111
59 | 6435.148 | | V I
Fe I | 107 | | 1.29 | | S II
Ni I | 28
67 | 6375.96 | | Fe II | . 38 | 6436.43
6437.01 | | N I | 1016
23 | | 666
67 | P | Ni I | 249 | 6376.00 | | A II | 61 | 6437.63 | | A II | 25 | | .316 | | Fe I | 1015 | 6376.22 | P | Fe I | 1140 | 6437.64 | | Eu II | 8 | | 1.42 | P | Fe I | 1016 | 6378.263
6378.824 | | Ni I
Sc I | 247
1 | 6438.4696 | | Cd I
Fe I | 3 | | i.79
i.814 | | La II
Fe I | 117
1014 | 6378.91 | | Ba II | 12 | 6438.775
6439.073 | | Ca I | 1158
18 | | 1.61 | | Ni I | 248 | 6379.63 | | N II | 2 | 6440.974 | | Mn I | 39 | | 1.022 | | Fe I | 168 | 6380 . 11 | | V II
Fe I | 231
1015 | 6441.70 | | N I | 23 | | 1.027 | | Ti I
Ca I | 103
53 | 6380.748
6380.95 | | Gd II | 111 | 6441.95
6442.97 | | A II
Fe II | | | 1.11 | | Mg I | 23 | 6381.416 | | Ti I | 196 | 6443.05 | | La II | 117 | | 1.75 | | MgI | 23 | 6382.169 | | Mn I | 39 | 6443.492 | | Mn I | 39 | | .39 | | La II | 19 | 6382.9914
6383 | P | Ne I
N IV | 3
2 | 6445.05 | | N III
Zr I | 14
57 | | .854 | | Se II
Ni I | 28
249 | 6383.753 | | Fe II | ~ | 6445.76
6446.281 | | Mn II | 19 | | 1.693 | | Fe I | 207 | 6384.669 | | Mn I | 39 | 6446.43 | | Fe II | 191 | | . 98 | P | Fe III | 3 | 6384.697 | | N1 I | 246 | 6446.62 | | La II | 10 | | 1.39 | | 0 I | 31 | 6384.89 | | S II | 19 | 6448.10 | | Sc I | | | .45 | | A II | | 6385.196
6385.473 | | Nd II
Fe II | 85 | 6449.810 | P | Ca I
Co I | 1٤
80 | | 84 | | 0 I
T1 I | 31
1 | 6385.74 | P | Fe I | 1253 | 6450.09
6450.230 | P | Co I | 37 | | .90 | | La I | ž | 6386.48 | | 8 11 | 5 | 6450.78 | | N III | 14 | | 1.43 | | SII | 63 | 6386.75 | P | Fe II
Fe I | 203
685 | 6450.854 | | Ba I | 6 | | 845 | | V I
N1 I | 84
44 | 6388.41
6390.48 | P | La II | 33 | 6450.99
6451.58 | | Fe I
Fe I | 1344
921 | | .603 | | N II | 46 | 6391.214 | | Mn I | 39 | 6451.580 | | N1 I | 257 | | , | P | o v | 14 | 6392.534 | | Fe I | 109 | 6452.354 | | V r | 48 | | .101 | | Cr I | 6 | 6393.605 | | Fe I | 168 | 6452.77 | | N1 I | 226 | | .856 | | Fe I | 1254 | 6394.23
6395.158 | | La I
Co I | 7
174 | 6453.50
6453.64 | | Sn II
O I | 1
9 | | 969 | | Fe II
Ne I | 199
1 | 6395.16 | | Ca I | 11.4 | 6453.95 | | N III | 14 | | .335 | | Fe I | 62 | 6395.27 | | S II | | 6454.48 | | 0 1 | 9 | | .74 | | Al II | 22 | 6396.39 | P | Fe I
S II | 921 | 6454.998 | | Co I | 174 | | . 104 | | Ti I
Fe I | 103
816 | 6397.30
6398.05 | | SII | 19
19 | 6455.600
6455.85 | | Ca I
Hf II | 19
82 | | .835
.896 | | Fe I | 1258 | 6399.04 | | La II | 104 | 6455.99 | | La I | 1 | | .090 | | V I | 84 | 6399.23 | | A II | 21 | 6456.01 | | 0 1 | 9 | | 1.148 | | Ni I | 248 | 6399.41 | | C1 II
Fe I | 58 | 6456.376 | _ | Fe II | 74 | |).96 | P | Fe I
N II | 685
46 | 6400.010
6400.335 | | Fe I | 816
13 | 6456.87
6456.907 | P | Fe I
Ca II | 1256
19 | | .682 | | Ba I | 6 | 6402.005 | | Y I | 2 | 6457.93 | | N I | 22 | | 1.682 | | Sc II | 28 | 6402.2455 | _ | Ne I | 1 | 6458.68 | P | Fe III | 3 | | 1.29 | | Ca I | 53 | 6402.43
6403.58 | P | Fe I
S I | 1344
9 | 6460.1 | | P II
Mn II | 32
20 | | 1.963
154 | | Ce II
Fe I | 169 | 6405.89 | | Cal | · · | 6462.210
6462.454 | | Mn II | 20 | | .831 | | Sc I
Zr II | 1
128 | 6406.3
6406.42 | | He II
Fe I | 7
1334 | 6462.566
6462.72 | P | Ca I
Fe I | 18
13 | | | | | 96 | 6407.03 | | Zr I | 2 | 6462.731 | _ | Fe I | 168 | | i. 65
i. 67 | | Gd II
Mg II | 16 | 6407.30 | | Fe II | 74 | 6462.799 | | Mn II | 20 | | .091 | | Si II | 2 | 6408.031 | | Fe I | 816 | 6463.03 | | N III | 14 | | '.1 | | N II | 46 | 6408.13 | | S I
Sr I | 9
8 | 6463.11 | | Lu II | 2 | | '. 843
 . 50 | | Co I
F I | 200
3 | 6408.463
0410.98 | | LaI | 7 | 6463.195
6463.637 | | Mn II
Mn II | 20
20 | | 1.477 | | ví | 84 | 6411.10 | ₽ | Fe I | 1256 | 6464.67 | P | Fe I | 13 | | 1.748 | | Mn I | 39 | 6411.658 | _ | Fe I | 816 | 6464.70 | | Ca I | 19 | | 17 | P | 0 I
Fe I | 61
1140 | 6412.20
6413.13 | P
P | Fe I
Ti I | 169
1 | 6466.86
6466.97 | | N III
V I | 1 4
32 | | | - | Co I | 200 | 6413.353 | | Sc I | 1 | 6468.32 | | N I | 22 | | 1.448
1.84 | P | Fe I | 13 | 6413.66 | | FI | 3 | 6468.77 | | N III | 14 | | 1.038 | | Fe I | 342 | 6413.71 | | S II | 19 | 6468.86 | P | Fe I | 1254 | | 1.057 | | Mn I
Fe I | 39
208 | 6413.92
6414.603 | | Mn I
Ni I | 39
244 | 6469.12
6469.214 | P | Fe I
Fe I | 168
1258 | | .293 | | N II | 208
46 | 6415.24 | | Si I | W.F.E. | 6470.25 | | Zr I | 65 | | 1.10 | P | Zr I | 2 | 6415.50 | | S I | , 9 | 6471.660 | | Ca I | 18 | | '.297 | | V I | 84 | 6415.59 | | Cr II | 196 | 6472.15 | ₽ | Fe I | 1140 | | 1,12
1.692 | | La II
Fe I | 47
13 | 6416.905
6416.94 | P | Fe II
Fe I | 74
1253 | 6472.34
6473.89 | | Sm II
Hf II | 60
91 | | 1.895 | | T1 I | 1 | 6417.824 | | Co I | 111 | 0474.556 | | Co I | 105 | |).798 | | N1 I | 229 | 6418.87 | | Cr II | 196 | 6474.61 | | Fe I | 861 | | 1.41 | | Ti I
Ca I | 196 | 6419.15
6419.65 | P | Ti I
Fe I | 196
958 | 6475.632
6477.861 | | Fe I
Co I | 206
174 | | 1.79
3.286 | | Sc I | 53
1 | 6419.982 | • | Fe I | 1258 | 6478.69 | | N III | 14 | | 3.347 | | Zn I | 6 | 6420.47 | | N I | 23 | 6480.11 | | Gd II | 109 | | 3.414 | | Ni I | ۵ | 6421.355
6421.507 | | Fe I
Ni I | 111
258 | 6481.73 | | N I
Fe I | 21
109 | | 3.874
3.889 | | Cr I
Fe I | 6
1019 | 6424.905 | | N1 I | 227 | 6481.878
6482.07 | | N II | 8 | | 1.384 | | Fe I | 1253 | 6428.80 | | Fe I | 1138 | 6482.205 | | Fe II | 199 | | 1.597 | | N1 I | 67 | 6429.913 | | Co I | 81 | 6482.74 | | N I | 21 | | 1.717 | | Fe I | 1229 | 6430.471
6430.78 | | V I
Ta I | 107
11 | 6482.811 | | N1 I
A II | 66
27 | | 1.92
5.7 | | T1 I
N II | 1
2 | 6430.78 | | Fe I | 62 | 6483.10
6483.75 | | NI | 21 | | 3.33 | | 0 I | 60 | 6431.620 | | VI | 107 | 6483.95 | P | Fe I | 34 | | 3.354 | | Ti I | 103 | 6432.06 | | Ni I | 126 | 6484.88 | | N I | 21 | | 1.483 | | N1 I
S II | 230
19 | 6433.17 | | Fo II
V I | 40
107 | 0465.30
6487.43 | | Ta I
Fe II | 203 | |).34
).45 | | Fe II | 40 | 6433.85 | | Fe II | 199 | 6487.48 | P | Fe III | 3 | |).383 | | N1 I | 127 | 6434.44 | P | Fe III | 3 | 6487.55 | | N III | 14 | | A | Туре | Element | Multiplet No. | I A 7 | Cype | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |----------------|------|----------------|---------------|----------------------|--------|----------------|---------------|---------------------|--------|---------------|---------------| | 9.10 | | Yb I | 3 | 6560.099 | | He Il | 2 | 6634.10 | P | Fe I | 1258 | | 9.68 | | Zr I | 65 | 6560.68 | | 81 I | 62 | 6634.36 | | Gd II | 94 | | 0.344 | | ·Co I | 81 | 6561.032 | | D
H | 1 1 | 6635.15
6635.68 | P | Ni I
Fe I | 264
1155 | | 1.28
1.28 | | Fe II
N I | 21 | 6562.817
6563.403 | | Co I | 80 | 6636.53 |
• | La II | 61 | | 1.61 | P | Ti II | 91 | 6563.86 | | Hr II | 81 | 6637.01 | | N I | 20 | | 1.712 | | Mn I | 39 | 6565.62 | | Ti I | | 6638.24 | _ | A II | 20 | | 2.0 | | N II | 45 | 6565.88 | _ | V I
Fe I | 48
168 | 6639.35 | P
P | Fe I
Fe I | 1279
1195 | | 3.05
3.780 | | Fe II
Ça I | 18 | 6567.22
6567.39 | P | Hf II | 90 | 6639.71
6639.72 | r | A II | 20 | | 4.11 | | Gd I | 123 | 6568.00 | | Gd II | 121 | 6639.90 | P | Fe I | 1007 | | 4.52 | P | Fe I | 1255 | 6569.261 | | Fe I | 1253 | 6640.90 | | 0 11 | 4 | | 4.985 | | Fe I | 168
65 | 6569.31 | | Sm II
He II | 62
7 | 6641.06
6642.79 | | S II
La II | 25
103 | | 5.45
5.779 | | Fe I | 1253 | 6570.0
6570.834 | | Mn I | 51 | 6643.023 | | Cr I | 256 | | 6.456 | | Fe I | 1258 | 6570.96 | | La II | 47 | 6643.536 | | Sr I | 8 | | 6.896 | | Ba II | 2 | 6571.22 | | Fe I
Ca I | 1121 | 6643.641
6643.79 | | Ni I
A II | 43
20 | | 7.689
8.19 | | Ti I
La II | 102
104 | 6572.781
6572.900 | | Cr I | 1
16 | 6644.60 | | Hf II | 34 | | 8.759 | | Ba I | 6 | 6574.238 | | Fe I | 13 | 6644.96 | | N I | 20 | | 8.950 | | Fe I | 13 | 6575.022 | | Fe I | 206 | 6645.11 | | Eu II | 8 | | 9.52 | | N I | 21 | 6575.180 | | Ti I | 286 | 6646.52 | _ | N I | 20 | | 9.649 | | Ca I
A II | 18
26 | 6576.95 | P | N1 I
C II | 283
2 | 6646.90 | P | Fe I
Fe I | 1156
206 | | 0.25
1.212 | | Cr I | 16 | 6578.03
6578.51 | | LaI | ĩ | 6646.98
6647.06 | | Hf II | 65 | | 1.681 | | Fe I | | 6578.96 | | V I | 32 | 6647.90 | P | Fe I | 551 | | 3.989 | | Sr I | 8 | 6580.22 | | N1 I | 265 | 6648.08 | P | Fe I | 13 | | 4.164
4.9 | | V I
N II | 48
45 | 6580.96
6581.22 | | Cr I
Fe I | 16
34 | 6653.41
6653.75 | | N I
Cl II | 20
38 | | 6.33 | | Fe II | *** | 6582.85 | | C II | 2 | 6653.78 | | 0 I | 65 | | 6.45 | | N I | 21 | 6584.53 | | HF II | 99 | 6653.88 | | Fe I | 1052 | | 6.5278 |) | Ne I
Ti I | 3
102 | 6584.89 | | Y I
Ni l | 1 | 6656.61
6657.54 | | N I
Cr I | 20
262 | | 8.135
8.742 | | Ca I | 18 | 6586.328
6586.343 | | Mn I | 51 | 6660.49 | | Si II | | | 9.16 | | A II | 21 | 6586.69 | | Fe II | · - | 6661.076 | | Cr I | 282 | | 9.56 | | Fe I | 1012 | 6587.75 | | CI | 22 | 6661.39 | | N1 I
C1 II | 246
38 | | 1.62
2.61 | | HP II
HP II | 60
49 | 6598.01
6591.32 | | Sm I
Fe I | 1
1229 | 6661.69
6663.26 | | Fe I | 1195 | | 6.026 | | Cr I | 265 | 6591.834 | | Co I | 202 | 6663.446 | | Fe I | 111 | | 6.053 | | Fe II | 40 | 6592 | P | C IV | 10 | 6665.42 | P | Fe I | 1156 | | 7.01 | | Fe II | | 6592.472 | _ | N1 I | 248 | 6665.43 | P | Fe I | 34 | | 7.27
8.376 | | V II
Fe I | 230
342 | 6592.91
6592.919 | P | Ti I
Fe I | 102
268 | 6666.36
6666.548 | | A II
Ti I | 25
101 | | 9.371 | | Mn I | 39 | 6593.878 | | Fe I | 168 | 6666.94 | | 0 11 | 85 | | 1.39 | | S II | 25 | 6595.326 | | Ba I | -6 | 6667.17 | P | Fe I | 110 | | 2.3 | | N II
Cl II | 45 | 6595.869 | | Co I
Cr I | 174
282 | 6667.42
6667.73 | P | Fe I
Fe I | 168
1228 | | 2.38
4.76 | P | Fe I | 59
1280 | 6597.556
6597.607 | | Fe I | 282
1253 | 6669.257 | | Cr I | 282 | | 6.99 | • | La II | 33 | 6598.594 | | N1 I | 249 | 6671.36 | | Fe I | 1343 | | 7.20 | P. | Si I | 52 | 6598.9529 | | Ne I | 16. | 6671.41 | , | La. II | 33 | | 7.312 | | Ba I | 6 | 6599.112 | | Ti I | 19 | 6671.43 | P | Fe I
Sus I | 1255
1 | | 7.49
8.53 | | Si I
Fe I | 62 | 6601.13
6603.20 | P
P | Fe I
Fe I | 1290
862 | 6671.51
6671.88 | | Si II | • | | 9.197 | | Cr I | 265 | 6603.67 | P | Fe I | 860 | 6672.84 | | V II | 229 | | 1.44 | | v r | 48 | 6604.60 | | Sc II | 19 | 6672.88 | P | Fe I | 205 | | 1.66
2.891 | | HP II
Ni I | 48
64 | 6604.67 | | Fe I
Mn I | 1254
51 | 6673.84
6675.271 | P | Fe I
Ba I | 1254
6 | | 3.0 | | N II | 45 | 6605.546
6605.98 | | v i | 48 | 6676.86 | P | Fe I | 1194 | | 3.97 | | Fe I | 1197 | 6607.02 | P | Ţ1 II | 91 | 6677.24 | | Cr I | 256 | | 7.921 | | Cr I | 16 | 6607.82 | | V I |) 8 | 6677.25 | | Ti I | 274 | | 9.72 | _ | Fe I | 405 | 6608.03 | | Fe I | 108 | 6677.33 | _ | Fe II
Fe I | 210
1280 | | 1.49
2.80 | P | Fe I
Hf II | 1195
100 | 6609.116
6609.20 | | Fe I
Hf II | 206
105 | 6677.49
6677.54 | P
P | Fe I | 551 | | 3.17 | | La I | 7 | 6609.56 | | Fe I | | 6677.96 | P | Fe I | 205 | | 3.51 | | V I | 48 | 6609.64 | | Al II | 76 | 6677.993 | | Fe I | 268 | | 3.98 | | Fe I
N II | 1139
45 | 6609.68
6610.04 | P | Fe I
Gd II | 13
108 | 6678.03
6678.149 | | Zr II
He I | 128
46 | | 5.2
5.80 | | Mg II | 23 | 6610.5 8 | | N IT | 31 | 6678.19 | | 0 11 | 85 | | 6.245 | | Fe I | 268 | 6612.17 | | Cr I | 282 | 6678.276 | | Ne I | 6 | | 6.276 | | Ti I | 102 | 6613.74 | | Y II | 26 | 6678.60 | P | Ti I | 213 | | 6.791
7.58 | P | Sr I
Fe I | 8
13 | 6613.83
6615.03 | P
P | Fe I
Fe I | 13
1155 | 6678.818
6680.19 | ı | Co I
Cr I | 54
282 | | 8.72 | • | HC II | | 6617.126 | | Co I | 202 | 0080.20 | | 21 LT | 110 | | 0.01 | | Hr II | 111 | 6617.14 | P | N1 I | 248 | 6681.03 | | C1 II | 38 | | 0.244
1.466 | | Sr I
Co I | -12
54 | 6617.266 | | Sr I
Ni I | 8
97 | 6681.23
6681.34 | P | Gd II
Fe I | 94
1155 | | 1.466 | P | Fe I | 13 | 6621.24
6622.28 | | GG II | 110 | 6682.23 | P | Fe I | 1008 | | 2.77 | - | Fe I | 1325 | 6622.41 | P | Fe I | 1157 | 6683.2 | - | He II | 7 | | 4.18
4.226 | i | La II
Ti I | 109
102 | 6622.53
6623.78 | P | N I
Fe I | 20
1010 | 6684.36
6686.04 | | C1 II | 20
38 | | 5.20 | | 81 I | 62 | 6624.86 | | v I | 48 | 6687.57 | | Y I | 1 | | 5.87 | P | Fe I | 1007 | 6625.04 | | Fe I | 13 | 6690.80 | _ | Ni I | 140 | | 6.066 | i | Ti I
Fe I | 102
1255 | 6627.28 | | Fe II
Fe I | 210
1174 | 6692.47
6693.84 | . P | Fe I
Ba I | 1192
6 | | 6.79
7.40 | | Y I | 1200 | 6627.558
6627.62 | | 0 II | 85 | 6695.97 | - | Al I | 5 | | 7.87 | | Sc I | 24 | 6630.015 | | Cr I | 16 | 6696.30 | P | Fe I | 1255 | | 7.91 | | Hf II | 66 | 6630.5 | | N II | 41 | 6696.39 | | Al II | 29
5 | | 8.02
8.05 | | V I
Sc I | 59
24 | 6632.438
6633.44 | | Co I
Fe I | 111
1258 | 6698.63
6699.14 | | Al I
Fe I | 1228 | | 9.580 |) | Ti II | 91 | 6633.764 | | Fe I | 1197 | 6699.46 | | Al II | 29 | | | | | | | | | | | | | | | A | Туре | Element | Multiplet No. | I A | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |-------------|--------|----------------|---------------|---------------------|--------|---------------|---------------|-------------------------------------|------|---------------|---------------| | .89 | P | Fe I | 1156 | 6752.832 | | AI | 11 | 6823.48 | | Al II | 9 | | .90 | P | Fe I | 1333 | 6753.00 | | V I | 31 | 6824.82 | P | Fe I | 1280 | | .90 | P | N1 I | 248 | 6753.45 | P | Fe I | 1196 | 6828.25 | | Gd I | 2 | | .64 | | Cr I | 256 | 6754.61 | | Hr II | 35 | 6828.5 | | C I | 21 | | .12
.573 | | Gd II
Fe I | 130
268 | 6754.75
6755.609 | | C II
Fe I | 21 | 6828.610
6829.92 | | Fe I
Co I | 1195
81 | | .18 | | Gd II | 110 | 6756.56 | P | Fe I | 1120 | 6829.94 | | V I | 31 | | .48 | P | Fe I | 1052 | 6756.61 | • | A II | 20 | 6830 | P | o v | 12 | | .117 | - | Fe I | 1197 | 6757.16 | | s I | 8 | 6830.83 | | La II | 108 | | . 13 | P | Fe I | 1280 | 6757.78 | | Cr I | 315 | 6831.44 | P | Fe I | 550 | | .20 | | N I | 31 | 6758.60 | | N I | 30 | 6831.62 | | C1 II | 44 | | .74 | | Li I | 1 | 6759.41 | | N1 I | 245 | 6832.44 | | V I | 31 | | .89 | | L1 I | 1 | 6759.42 | _ | C1 II | 54 | 6832.49 | | Y II | 26 | | .27 | | F I
N I | 2 | 6761.07 | P | Fe I
Zr I | 1227
1 | 6832.93
6833.24 | | Zr I
Fe I | 1
1194 | | .81
.49 | | LaI | 6 | 6762.38
6762.41 | | Cr I | 315 | 6834.07 | | La II | 3 | | .88 | | CaI | 45 | 6764.13 | P | Fe I | 1225 | 6834.26 | | FI | 2 | | .31 | | Fe I | 34 | 6766.49 | - | v i | 31 | 6835.03 | | Sc I | - | | .24 | P | Fe I | 1220 | 6767 | P | 0 V | 12 | 6835.29 | | Hf II | 13 | | .44 | P | Fe I | 1279 | 6767.778 | | N1 I | 57 | 6836.2 | | N II | 54 | | .68 | P | Fe I | 206 | 6769.62 | | Ba II | 8 | 6837.00 | | Fe I | 1225 | | . 14 | | Fe I | 1013,1195 | 6769.66 | P | Fe I | 1226 | 6837.14 | | Al II | 9 | | .43
.76 | | Cl II
Fe I | 38
1255 | 6771.040
6772.36 | | Co I
N1 I | 54
127 | 6837.91
6838.08 | | La II
Fe I | 33
1192 | | .08 | | La II | 103 | 6773.97 | | FI | 2 | 6838.86 | | Fe I | 1136 | | .38 | | Cr I | 282 | 6774.28 | | La II | 2 | 6839.828 | | Fe I | 205 | | .410 | | Fe I | 1174 | 6775.97 | | Al II | 111 | 6841.349 | | Fe I | 1195 | | . 24 | | Fe I | 1225 | 6777.44 | | Fe I | 1010,1013 | 6841.65 | P | Fe I | 1333 | | .879 | | T1 I | 273 | 6779.74 | | C II | 14 | 6841.86 | | CI II | 54 | | .556 | | Fe :I | 1194 | 6780.27 | | C II | 14 | 6841.89 | | v I | 31 | | .685 | | Ca I | 32 | 6783.27 | P | Fe I | 206 | 6842.07 | P | Ni I
Si I | 126 | | .911 | | Ti II
Gd II | 112
130 | 6783.71
6783.75 | | Fe I
C II | 205
14 | 68 42.35
68 42.668 | P | Fe I | 61
1197 | | .14
.68 | | Le II | 128 | 0784.88 | | V I | 31 | 0843.071 | | Fe I | 1173 | | | P | N V | 11 | 6785.25 | P | T1 II | 112 | 6844.05 | | Sn II | 1 | | .40 | | Hf II | 110 | 6785.76 | P | Fe I | 1226 | 6844.67 | P | Fe I | 34 | | .35 | | O II | 4 | 6785.88 | P | Fe I | 1007 | 6845.24 | | YI | 16 | | .97 | | 81 I | •• | 6786.41 | P | Fe I | 551 | 6845.93 | P | Fe I | 1190 | | .67
.12 | | 81 I
N I | 38
31 | 6786.88
6787.09 | | Fe I
C II | 1052
14 | 6846.60
6846.97 | | Gd II | 94
45 | | .39 | | Fe I | 1052 | 6787.15 | | Zr II | 135 | 6847,60 | P | Fe I | 1078 | | .25 | | 0 I | 2 | 6787.61 | P | Fe I | 1156 | 6848.65 | | 81 I | 37 | | .50 | | 0 I | 2 | 6789.17 | | Cr I | | 6848.86 | P | Fe I | 1192 | | .668 | | Fe I | 1197 | 6790 | P | 0 V | 12 | 6850.07 | | HF II | | | .78 | |
Fe I | | 6790.00 | | Sm II | 56 | 6850.21 | | C1 II | 54 | | 84 | P | C II
C II7 | 21
3 | 6791.022
6791.30 | | Sr I
C II | 3
14 | 6850.48
6851.64 | P | Ni I
Fe I | 157
34 | | .1
.83 | • | Gd II | 96 | 6793.26 | | Fe I | 1005 | 6854.82 | | Fe I | 1224a | | .72 | | Cr I | 301 | 6793.62 | | Fe I | 2000 | 6855.176 | | Fe I | 1195 | | .80 | P | Si I | 61 | 6793.71 | | YI | 1 | 6855.74 | | Fe I | 1194 | | .38 | P. | 81 I | 61 | 6794.60 | P | Fe I | 1279 | 6856.02 | | F I | 2 | | .7 | P | C III | 3 | 6795.41 | | A II | 26 | 6856.03 | | Sm II | 58 | | .73 | | Gd I | 2 | 6795.52 | | FI | 2 | 6857.13 | | Gd II | 122 | | .79
.84 | | C II
Sm II | 21
59 | 6796.11
6798.04 | | Fe I
C II | 1007
14 | 6857.25
6857.3 | P | Fe I
C III | 1006
19 | | .06 | | Fe I | 1225 | 6798.51 | | Ca I | 31 | 6857.6 | - | N II | 71 | | .80 | | La II | 109 | 6799.32 | | A II | 74 | 6858.164 | | Fe I | 1173 | | . 88 | | 8 11 | 25 | 6799.61 | | Yb I | 3 | 6858.25 | | Y II | 26 | | .164 | | Fe I | 1195 | 6800.50 | | CII | 14 | 6859.03 | | La II | 34 | | .48 | | NI | 31 | 6801.16 | | A II | 219 | 6859.49 | P | Fe I | 340 | | ,56 | | C II | 21 | 6801.31 | P | Fe I | 551 | 6860.13 | P | Fe I | 1255 | | . 16 | _ | Cr I | 282 | 6801.38 | _ | La II | 130 | 6860.29 | _ | Fe I | 205 | | .00 | P
P | Fe I
Fe I | 1157
1122 | 6801.87 | P | Fe I | 34 | 6860.96 | P | Fe I | 341 | | .56
.29 | P | Fo I | 551 | 6803.30
6803.84 | P
P | Fe I
Fe I | 1192
1191 | 6861.24
6861.30 | | N1 I
A II | 293
25 | | .87 | • | Sc I | | 6804.020 | • | Fe I | 1174 | 6861.47 | | Ti I | 237 | | .36 | | C II | 21 | 6804.27 | | Fe I | 1225 | 6861.93 | | Fe I | 109 | | .81 | | Cr I | 315 | 6805.72 | P | Fe I | 1220 | 6862.481 | | Fe I | 1191 | | .54 | | Fe I | 34 | 6806.851 | | Fe I | 268 | 6862.82 | | Sm II | .55 | | .29 | | N I | 31 | 6808.55 | | A II | 24 | 6862.9 | P | C 111 | 19 | | .05 | | C II | 21 | 6808.80 | P | Fe I | 340 | 6863.52 | | A II | 20 | | .124 | | Ti I | 48 | 6808.88 | | La II
Fe I | 1 | 6864.31 | P | Fe I | 1186 | | .58 | P | S I
C III | 8
3 | 6810.28 | | C II | 1197
14 | 6869.74 | | O II
F I | 45
2 | | .2
.66 | r | Cr I | 315 | 6812.19
6812.26 | | N II | 54 | 6870.22
6870.8 | | N II | 71 | | .11 | | Fe I | 1227 | 6812.40 | | v I | 31 | 6871.7 | P | Č III | 19 | | .56 | P | Ti I | 226 | 6813.55 | P | Fe I | 1288 | 6872.32 | | Co I | 54 | | .96 | P | Fe I | 1005 | 6813.598 | | N1 I | 288 | 6874.09 | | Ba II | 8 | | .433
.96 | P | Ti I
Fe I | 152
205 | 6813.68
6813.85 | P | La II
Si I | 110
61 | 6875.45
6875.98 | | Fe I
Fe I | 167
1013 | | | - | Ti I | 152 | | | Co I | 54 | 6876.71 | | N1 I | 97 | | .43
.79 | | 3 I | . 8 | 8814.950
5816.80 | | Al II | 9 | 6878 | P | 0 V | 12 | | .52 | P | Fe I | 860 | 6817.08 | | Sc I | | 6878.313 | _ | Sr I | 3 | | .152 | | Fe I | 111 | 6818.39 | _ | AII | 50 | 6879.51 | P | Fe I | 1157 | | :22 | | C II | 21
138 | 6819 | P | O V
Fe I | 12
463 | 6879.59 | P | Fe I
Fe I | 551
1051 | | .28
.94 | | Cr I
Ti I | 515
152 | 6819.42
6819.60 | P
P | re 1
Fe I | 403
1051 | 6880.65
6881.07 | P | Fe I | 1174 | | .40 | | N I | 30 | 6820.43 | - | Fe I | 1197 | 6881.46 | - | Fe I | | | .67 | | Gd II | 130 | 6822.00 | P | Fe I | 1220 | 6881.64 | | Cr I | 222 | | .724 | | Fe I | 1195 | 6822.05 | P | Fe I | 110 | 6881.74 | | Fe I | 1194 | | A | Туре | Element | Multiplet No. | I A | Type | Element | Multiplet No. | I A | Type | Element | Multiplet No. | |-------------|------|----------------|------------------|-----------------------------|--------|---------------|---------------|----------------------|--------|---------------|-----------------| | .48 | | Cr I | 222 | 6971.95 | | Fe I | 404 | 7039.22 | | Sm II | 57,61 | | .04 | | Cr I | 222 | 6975.46 | | Fe I | | 7039.36 | | Ti I | 307 | | .07 | | 0 11 | 45 | 6976.306 | | Fe I | 1194 | 7042.06 | | Al II | 3 | | .772 | | Fe I
A II | 1173
20 | 6976.53
6976.8 | | Si I
N II | 60
53 | 7042.24
7044.60 | | Sm II
Fe I | 58
1276 | | .57
.63 | | Gd II | | 6976.934 | | Fe I | 1221 | 7045.8 | | C 11 | 26 | | .7 | | N II | 71 | 6977.445 | | Fe I | 1225 | 7045.96 | | La I | 6 | | • 88 | | He II | 7 | 6978.46 | | Cr I | 222 | 7050.65 | | Ti I | 256 | | .585
.92 | р | Sr I | 1
34 | 6978,855
6979.10 | | Fe I
N T | 111
29 | 7051.00 | | Gd II
Co I | 122 | | .92 | P | Mg I | 3-4 | 5979.10 | | | 2.5 | 7052.872 | | C0 1 | 54 | | .29 | | 0 11 | 45 | 6979.17 | P | Fe I | 340 | 7052.9 | | C II | 26 | | .00 | | YII | 26 | 6979.82 | | Cr I | 222 | 7053.48 | P | Fe I | 1186 | | .31 | | Fe I
Gd II | 1078 | 6980.86 | | Gd II
Cr I | 222 | 7054.042 | | Co I | 140 | | .73
.52 | | Gd II
Co I | 122
164 | 6980.91
6980.91 | | Hf II | 22 | 7054.62
7055.01 | | Gd II
A II | 130
74 | | :.46 | | FI | 2 | 6981.40 | | S II | 18 | 7056.60 | | Al II | 3 | | 80 | | Fe I | | 6983.53 | P | Fe I | 1220 | 7057.96 | P | Fe I | 815 | | .54 | | 0 11 | 45 | 6983.54 | P | Fe II
A II | 63
137 | 7058.02 | | Gd II | 130 | | .08 | | Co I
O II | 164
45 | 6985.74
6985.89 | | Gd II | 137 | 7059.941
7060.43 | P | Ba I
Mg I | 5
32 | | **** | | | | | | | | 1000110 | - | | 02 | | | P | 0 V | 12 | 6988.530 | | Fe I | 167 | 7061.90 | | yf II | | | .82 | | FI | 2 | 6988.75 | P | Gd II
Fe I | 130 | 7062.80 | P | Fe I | 1273 | | .75
.84 | | O II
Co I | 45
80 | 6989.64
6990.16 | P | A II | 1191
20 | 7062.97
7063.4 | | N1 I
C II | 64
26 | | 52 | | Fe I | 109 | 6991.92 | | Gd I | 2 | 7060.57 | | Ni I | 270 | | . 43 | P | Fe I | 341 | 6995.35 | | Ta I | 5 | 7063.64 | | Al II | 3 | | .562 | | Ni I
Gd I | 62
2 | 6996.63
699 6. 76 | | Ti I
Gd II | 256
121 | 7065.15 | | T1 I | 100 | | .702 | | Fe I | 1052 | 6997.13 | P | Fe I | 1273 | 7065.188
7065.719 | | He I
He I | 10
10 | | .52 | P | Fe I | 1190 | 6997.83 | | Hf II | 89 | 7066.15 | P | Fe I | 1277 | | | | | | | | n | | | | | | | .93 | | Al II
Al II | 75
15 | 6999.902
7000.633 | | Fe I
Fe I | 1051
1005 | 7066.24 | | La Il | 1 | | .96
.16 | P | Fe I | 1192 | 7000.000 | | Gd II | 122 | 7067.2170
7067.44 | | A I
Fe II | 1 | | .62 | - | Gd II | 122 | 7001.57 | | Ni I | 64 | 7067.50 | | Ni I | 277 | | .13 | | Cr I | 222 | 7001.93 | | 0 I | 21 | 7068.02 | P | Fe I | 1276 | | . 24 | | Cr I | 222 | 7002.22 | | O I | 21
53 | 7068.37 | | LaI | 1 | | .40 | P | Cr I
Fe I | 222
1222 | 7003.0
7003.58 | | Si I | 60 | 7068.415
7068.60 | P | Fe I
Fe I | 1004
1276 | | .90 | • | N I | 29 | 7004.60 | | Ti I | 256 | 7069.11 | • | Ti I | 307 | | . 25 | | Ni I | 110 | 7004.81 | | Co I | 89 | 7069.54 | P | Fe I | 205 | | .319 | | Zn I | 10 | 7005.84 | | Si I | 60 | 2020 024 | | S- T | | | .52 | P | N1 I | 61 | 7006.16 | | Gd II | 130 | 7070.071
7071.88 | | Sr I
Fe I | 3
1194 | | .4678 | | Ne I | 6 | 7007.81 | | Ti I | 100 | 7072.82 | P | Fe I | 1003 | | • 96 | P | Fe I | 34 | 7008.014 | | Fe I | 1078 | 7074.45 | P | Fe I | 1173 | | .35 | P | Fe I
Fe I | 1186
1221 | 7008.35
7010.302 | | Ti I
Fe I | 256
1221 | 7077.03
7077.10 | | A II
Eu II | 20
ອ | | .49 | P | Fe I | 1220 | 7010.94 | | Ti I | 256 | 7079.32 | P | Fe I | 1278 | | .04 | | Fe I | 1051 | 7011.364 | | Fe I | 1221 | 7082.22 | | N1 I | 267 | | -55 | | ΥI | 1 | 7014.99 | | Fe I | 167 | 7082.37 | | Sm II | 55 | | .628 | | Fe I | 167,1005 | 7015.3 | | · N II | 53 | 7083.396 | | Fe I | 1277 | | .16 | | Hf II | 35 | 7016.075 | | Fe I | 109 | 7084.25 | P | Ti I | 99 | | .27 | _ | K I | 7 | 7016.436 | | Fe I | 1051 | 7084.33 | | Si I | 60 | | -48 | P | Fe I
Co I | 1196 | 7016.602 | P | Co I
Si I | 54
51 | 7084.974 | | Co I
Gd II | 54 | | .81
.472 | | Zn I | 139
10 | 7016.90
7016.99 | r | Hf II | 99 | 7085.52
7086.76 | | Fe I | 130
815,1311 | | . 82 | P | Re T | 1008 | 7017.68 | | Si T | 51 | 7087.35 | | Zr I | 42 | | :•9 | | N II | 53 | 7017.73 | | Gd II | 137 | 7089.03 | P | Si I | 70 | | .202
.67 | P | Zn I
Fe I | 10
1349 | 7017.98
7020.44 | | Si I
Sm II | 51
59 | 7089.73 | P | Fe I
Fe I | 1220
1051 | | .208 | r | Fe I | 111 | 7021.23 | | Hf II | 67 | 7090.404
7090.55 | | A II | 60 | | -200 | | | | | | | | | | | | | .22 | * | N I | 29 | 7022.39 | P | Fe I | 1078 | 7091.83 | _ | Fe I | 1278 | | .98 | | Gd II
Co I | 122
110 | 7022.976
7024.0508 | | Fe I
Ne I | 1051
6 | 7091.91 | P
P | Fe I
Fe I | 1277
1189 | | .31 | | Fe I | 1221,1224 | 7024.084 | | Fe I | 1003 | 7093.10
7094.30 | P | Fe I | 778 | | .37 | P | Fe I | 1220 | 7024.649 | | Fe I | 1187 | 7095.40 | | N1 I | 276 | | .32 | _ | Y I | 16 | 7024.86 | | Ni I
O I | 271 | 7095.425 | | Fe I | 1105 | | .82 | P | Fe I
Fe I | 205
1186,1193 | 7025.52
7027.60 | | Fe I | 32
1221 | 7097.78
7100.20 | P | Zr I
Fe I | 42
267 | | .261
.62 | P | Fe I | 1078 | 7027.797 | | Co I | 179 | 7101.28 | P | Fe I | 61 | | .68 | | Y II | 33 | 7028.58 | P | Fe I | 463 | 7102.95 | | Zr I | 42 | | | | | | | | | 450 | | _ | | | | .52 | | C1 II
La II | 54
18 | 7028.60
7028.95 | P
P | N1 T
N1 I | 156
61 | 7103.15
7103.28 | P | Fe T
N IV | 167
4 | | .01 | P | Fe I | 815 | 7030.06 | • | N1 I | 126 | 7103.77 | | Zr I | 42 | | .54 | | La II | 1 | 7030.33 | | Hf II | 66 | 7105.34 | P | Si I | 70 | | .06 | | Ni I | 157 | 7031.02 | P | Fe I | 1173 | 7105.90 | P | Fe I | 1008 | | .95
.11 | | S II
La II | 18
67 | 7031.42
7032.16 | P | Fe I | 1278
279 | 7107.30
7107.461 | P | Fe I
Fe I | 1324
1005 | | . 24 | | Gd II | 130 | 7032.4127 | | Ne I | 1 | 7109.48 | | N IV | 4 | | .334 | | Fe I | 1222 | 7034.06 | P | Fe I | 1190 | 7109.67 | P | Fe I | 1190 | | .02 | P | Fe I | 1007 | 7034.08 | P | Fe I | 1190 | 7110.91 | | Ni I | 64 | | .18 | | кі | 7 | 7034.42 | | Ni I | 97 | 7111.28 | | N IV | 4 | | .69 | | K I | 7 | 7034.96 |
| Si I | 50 | 7111.71 | | Zr I | 23 | | .42 | P | Mg I | 33 | 7035.86 | _ | Ti I | 307 | 7112.176 | | Fe I | 404 | | .4302 | : | A I
F I | 1
6 | 7037.04
7037.26 | P | Fe I
Gd II | 61 | 7112.36
7114.55 | P | C II
Fe I | 20
267 | | .35 | | F I | 198 | 7037.26 | | Ni I | 288 | 7115.13 | * | CII | 20 | | .6 | | N II | 53 | 7037.45 | | FI | -6 | 7115.25 | P | Fe I | 1196 | | .78 | | La II | 109 | 7038.251 | | Fe I | 1051 | 7116.77 | | Gd II | 130 | | •48
•66 | P | Fe I
Gd II | 463
130 | 7038.80
7038.818 | | Ti I
Fe I | 256
1078 | 7118.12
7118.5 | P | Fe I
C I | 1278
26 | | 00 | | II | 100 | , 500-510 | | | | .110.0 | | | | | A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |---------------|--------|---------------|------------------|----------------------|--------|---------------|---------------|---------------------|--------|---------------|---------------| | 3.86 | | Gd II | 130 | 7193.74 | | Y II | 33 | 7284.27 | | A II | 24 | | 3.45 | P | C II | 20 | 7193.89
7194.02 | P | Si I
Fe I | 25
1307 | 7284.843 | | Fe I | 1004 | |).01
).56 | P | Fe I
Fe I | 1187
1006 | 7194.81 | • . | Eu II | 8 | 7285.28
7285.286 | | Co I
Fe I | 140
1188 | | 2.24 | • | Ni I | 126 | 7194.92 | | Fe I | 1273 | 7285.94 | P | Si I | 58 | | 3.10 | | N IV | 4 | 7195,235 | _ | Ba I | 10 | 7286.56 | | N1 I | 109 | | 1.28 | | s II | 18 | 7196.37 | P | Fe I
Cr I | 1252 | 7287.36 | | Fe II | 197 | | 1.47
5.00 | P | Co I
Fe I | 53
815 | 7196.83
7197.07 | | NI I | 264
62 | 7288.760
7289.05 | P | Fe I
Fe II | 1077
72 | | 5.28 | P | Fe I | 1220 | 7197.08 | | Gd II | 121 | 7289.25 | • | Si I | 24 | | | | | | | | | | | | | | | 5.49 | | C II | 20 | 7202.194 | | Ca I | 29 | 7290.21 | | Si I | 24 | | 3.71
7.21 | | Ni I
N IV | 97
4 | 7202.37
7205.51 | P | F I
Fe I | 6
1251 | 7290.87 | P | Ni I
Ti I | 287
143 | | 7.58 | P | Fe I | 1273 | 7207.123 | • | Fe I | 1001 | 7291.03
7291.48 | F | Ni I | 63 | | 7.88 | - | FI | 6 | 7207.406 | | Fe I | 1051 | 7292.856 | | Fe I | 1189 | | • | P | N IV | 4 | 7207.85 | | Cr I | 264 | 7293.068 | | Fe I | 1077 | | 3.30 | P
P | Fe I | 1219 | 7208.20 | | Si I
Ti I | 25
99 | 7295.00 | | Fe I | 1187 | |).34 | P | Ti I
Fe I | 100
1051 | 7209.44
7212.47 | | Fe I | 1273 | 7295.27
7297.75 | P | Fe I
N1 I | 1189
293 | | 1.29 | | Al II | 114 | 7213.35 | | Ti I | 143 | 7299.67 | | Ti I | 97 | | | | | | | _ | | | | | | | | 2.989 | | Fe I | 1002 | 7213.84 | P
P | Fe I
Ti II | 1105 | 7300.47 | _ | Fe I | 1275 | | 3.16
3.52 | | Gd II
C II | 137
20 | 7214.78
7214.97 | P | Ti I | 101
314 | 7300.59
7301.17 | P | Fe I
Eu II | 1003
8 | | 1.290 | | Co I | 179 | 7216.20 | | Ti I | 98 | 7301.57 | P | Fe II | 72 | | 1.66 | | Al II | 114 | 7216.68 | P | Fe I | 1273 | 7302.89 | | Mn I | 50 | | 1.99 | | Fe II | 197 | 7217.0 | | N II | 52 | 7305.87 | | T1 I | 143 | | 5.73
3.05 | P | Gd II
Ti I | 98 | 7217.34
7217.55 | | Co I
Eu II | 126
8 | 7306.61
7307.938 | | Fe I
Fe I | 1077
1002 | | 3.81 | • | A) II | 114 | 7218.57 | | Cr I | 264 | 7307.97 | | Fe II | 73 | | 3.91 | | T1 I | 99 | 7219.686 | | Fe I | 1001 | 7310.24 | | Fe II | 73 | | | | | | | | | | | | | | | 9.79
9.8 | | S II
N II | 18
52 | 7220.79
7221.22 | | Ni I
Fe I | 294
1189 | 7311.02 | | F I
Fe I | 5 | | 1.17 | | Gd II | 131 | 7222.39 | | Fe II | 73 | 7311.101
7311.26 | P | Fe I | 1077
1105 | | 1.62 | | N1 I | 283 | 7222.88 | | Fe I | 1187,1311 | 7312.05 | P | Fe I | 1310 | | 2.522 | | Fe I | 1274 | 7223.668 | | Fe I | 463 | 7315.73 | | Co I | 89 | | 5.317
6.13 | | Fe I
Gd II | 1186,1193
130 | 7224.51
7225.82 | P | Fe II
Fe I | 73
1278 | 7316.77
7317.03 | P | Fe I
S II | 267 | | 7.0406 | | A I | 1 | 7226.20 | - | 81 I | 26 | 7317.03 | P | Fe I | 18
1278 | | 7.31 | | Gd II | | 7228.70 | | Fe I | 267 | 7318.39 | | Ti I | 212 | | 8.147 | | Ca I | 30 | 7228.974 | | Pb I | 2 | 7320.694 | | Fe I | 1188,1276 | | 8.61 | | Ta I | 11 | 7231.12 | | C II | 3 | 7320.70 | | Fe II | 73 | | 8.69 | | Fe I | 1078,1339 | 7233.58 | | AII | 9 | 7323.20 | P | Ti II | 101 | | 1.18 | P | Sc II | 27 | 7235.32 | | Si I | 26 | 7323.38 | P | Fe I | 859 | | 1.495 | | Fe I | 109 | 7235.86 | | 81 I | 25 | 7324.89 | | Gd II | | | 4.688
5.64 | | Co I
Fe I | 89
1276 | 7236.19
7236.91 | | C II
S II | 3
18 | 7325.33 | P | Fe I | 980 | | 6.80 | | 0 1 | 38 | 7229.885 | | Fe I | 1105 | 7326.146
7326.51 | | Ca I
Mn I | 44
50 | | 8.502 | | Fe I | 815 | 7242.24 | | Gd II | 137 | 7327.67 | | N1 I | 140 | | 0.33 | _ | T1 I | 98 | 7244.77 | | S I | 15 | 7328.64 | | Hf II | 65 | | 0.85 | P | Fe I | 1310 | 7244.86 | | Fe I | 1276 | 7330 | P | N V | 12 | | 1.04 | P | Fe I | 1190 | 7244,86 | | Ti I | 99 | 7330.16 | P | Fe I | 1187 | | 2.37 | P | Fe I | 1278 | 7245.1668 | | Ne I | 3 | 7330.54 | P | Mn II | 4 | | 4.469 | | Fe I | 1051 | 7247.82 | | Mn I | | 7330.97 | | Ti I | 143 | | 1.63
1.75 | | S II
Si I | 18
49 | 7250.12
7250.69 | | Co I
Si I | 53
25 | 7331.95
7332.26 | | F I
Ti I | 1 | | 4.90 | | od II | T30 | 7251.74 | | T1 I | 99 | 7332.20 | | Y II | 143
25 | | 5.09 | P | S1 I | 49 | 7252.70 | | Gd II | 109 | 7333.49 | | Ni I | 263 | | 5.62 | | Si I | 48 | 7253.76 | | Ti I | 143 | 7333.62 | | Fe I | 1078 | | 7.01
8.37 | | N1 I
Gd I | 109
1 | 7254.19
7254.47 | | 0 I | 20
20 | 7334.66
7336.03 | | Fe II
Zr I | 20.9 | | | | | • | | | | 20 | 7550.05 | | 21 1 | 23 | | 9.14 | | Zr I | 42 | 7254.649 | | Fe I | | 7337.61 | | s II | 18 | | 0.14
2.26 | | Ni I
Gd II | 282 | 7255.28 | P
P | Si I | 59 | 7337.78 | P | Ti I | 212 | | 3.73 | | N1 I | 109
269 | 7256.13
7256.63 | r | Fe I
Cl I | 1278
5 | 7338.92
7340.78 | P | V I
Fe I | 117 | | 3.9389 | | Ne I | 6 | 7256.72 | | N1 I | 97 | 7341.78 | P | Fe I | 684
1307 | | 5.937 | | Fe I | 1188 | 7256.96 | | SII | 18 | 7944.18 | p | Fo I | 268 | | 6.886
7.50 | | Fe I
He II | 1276 | 7259.3 | P | N II | _ 52 | 7344.72 | | Ti I | 97 | | 8.33 | P | Sc II | 6
27 | 7261.00
7261.29 | ΑP | Fe I
Fe I | 267
1273 | 7346.37
7347.16 | P | Ta I
Fe I | 12
266 | | 9.16 | P | Fe II | 72 | 7261.54 | - | Fe I | 1188 | 7347.72 | P | Mn II | 4 | | | | | | | | | | | | | | | 0.020 | | Fe II | 33 | 7261.94 | | Ni I | 62 | 7348.11 | _ | A II | 60 | | 1.21
1.222 | P | Fe I | 72
1078 | 7262.46
7264.19 | P | Fe I
Y II | 859
33 | 7348.51 | P
P | Fe I
Fe I | 1004 | | 1.93 | | Fe I | 1274 | 7264.99 | | Fe II | 197 | 7350.55
7351.160 | r | Fe I | 509
1273 | | 2.00 | | Ni I | , 126 | 7266.22 | | N1 I | 288 | 7351.56 | | Fe I | 1275 | | 4.54 | | 81 I | 25
25 | 7266.29 | P | Ti I | 143 | 7352.16 | _ | Ti I | 272 | | 4.89
5.50 | | S1 I
Cr I | 25
264 | 7267.00
7268.58 | P | Fe I
Fe I | 61
957 | 7353.52
7353.528 | P | Mn II
Fe I | 4 | | 7.341 | | Fe I | 1051 | 7271.41 | - | Ti I | 97 | 7354.579 | | Co I | 1251
53 | | 8.06 | | Cr I | 264 | 7273.20 | | S II | 18 | 7355.46 | P | Ti II | 101 | | | | m, v | 0.5 | 7070 | | m | 04- | | | _ | | | 8.55
8.7 | | Ti I
N II | 99
52 | 7273.77
7275.28 | | Ti I
Si I | 212
24 | 7355.94
7356.51 | | Cr I
V I | 99
117 | | 9.17 | | Fe I | 463 | 7277.67 | | Hf II | 66 | 7356.81 | P | Fe I | 117
1187 | | 9.57 | | Gd II | 138 | 7278.48 | P | Fe I | 1274 | 7357.74 | | Ti I | 97 | | 9.89 | | T1 I | 285 | 7278.72 | | Hf II | 111 | 7359.95 | P | Fe I | 1310 | | 0.12
1.66 | P | Fe I
Fe I | 463
1274 | 7280.298
7281.949 | | Ва I
не I | 5
45 | 7361.39
7301.56 | P | V I
Ti I | 117 | | 3.20 | P | Mg I | 31 | 7282.36 | | La II | 1 | 7361.59 | • | Al I | 212
11 | | 3.23 | | Fe II | 197 | 7282.39 | | Fe I | 1274 | 7362.31 | | Al I | 11 | | 3.56 | | Si I | 25 | 7283.80 | | Mn I | 50 | 7363.16 | | V I | 117 | | . A | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I Å | Type | Element | Multiplet No | |--------------|------|--------------|---------------|----------------------|--------|----------------|---------------|----------------------|------|---------------|--------------| | 3.96 | | Fe I | 1274 | 7449.34 | | Fe II
Al II | 73
00 | 7559.62 | | N1 I
Fe I | 292 | | 4.11 | | Ti I | 97 | 7449.42
7450.32 | | A II | 96
25 | 7559.68
7561.08 | | HC II | 1308
80 | | 6.37 | | Fe I
Ti I | 1188
96 | 7452.08 | P | Fe I | 1303 | 7563.03 | | Fe I | 1251 | | 6.60
9.73 | | Mn II | 4 | 7454.02 | • | Fe I | 1001 | 7565.53 | | C1 II | 1007 | | 0.16 | | Fe I | 1250 | 7455.47 | P | Si I | 75 | 7567.35 | | N1 I | 291 | | 0.22 | | Eu II | 8 | 7458.92 | | N1 I | 291 | 7568.925 | | Fe I | 1077 | | 3.02 | | Si I | 58 | 7461.28 | P | Fe I | 1357 | 7573.41 | | FI | 1 | | 3.07 | P | Fe I | 108 | 7461.534 | | Fe I | 204 | 7573.53 | | Fe I | | | 6.43 | 4 | Fe I | | 7462.37 | | Cr I | 93 | 7573.76 | P | Fe I | 957 | | 6.46 | | Fe II | | 7462.38 | | Fe II | 73 | 7574.08 | | N1 I | 156 | | 0.45 | | A II | | 7463.38 | P | Fe I | 1307 | 7578.07 | | C1 II | 79 | | 1.94 | | N1 I | 292 | 7466.44 | P | T1 I | 142 | 7578.96 | | S I | | | 2.63 | | Fe I | 266 | 7468.29 | | N I | 3 | 7580.55 | | Ti I | 211 | | 2.99 | | Fe I | 1188 | 7468.41 | | CaI | | 7582.15 | P | Fe I | 1274 | | 4.96 | | Fe I | 1308 | 7471.36 | | O I
Al II | 55
21 | 7583.796 | | Fe I
Fe I | 402 | | 5.24 | | N1 I
Fe I | 84
1251 | 7471.41
7471.75 | P | Fe I | 21
267 | 7586.044
7586.72 | | Co I | 1137
139 | | 5.54
5.97 | | Gd II | 139 | 7473.23 | • | 0 I | 55 | 7588.30 | P | Fe I | 1306 | | 6.21 | | N1 I | 286 | 7473.56 | | Fe I | 1188 | 7588.48 | = | Zn II | 2 | | | | | | | _ | | | | | | | | 6.39 | | Fe I | 1275 | 7474.50 | P | Fe I
Fe I | 957 | 7590.57 | | Co I | 89 | | 7.10 | | Mn II | 4 | 7474.60
7474.94 | P | Ti I | 980
142 | 7592.74 | |
He II | 6 | | 7.70 | | Mg I | 30
37 | 7476.40 | P | Fe I | 1251 | 7605.32
7607.17 | | Fe I
F I | 1308
4 | | 8.46
8.68 | | Co I | 139 | 7476.45 | _ | 0 I | 55 | 7610.24 | | Co I | 126 | | 9.34 | | Fe I | 1274 | 7476.92 | P | Fe I | 1004 | 7614.50 | | Ti I | 211 | | 9.42 | | ře I | 1077 | 7477.21 | | 0 I | 55 | 7617.00 | | N1 I | 139 | | 2.18 | 3 P | Si I | 75 | 7477.52 | P | Fe I | 957 | 7617.19 | P | Fe I | 1304 | | 2.41 | | Ba I | 10 | 7478.77 | | Co I | 53 | 7617.86 | _ | A II | 73 | | 3.63 | 3 | N1 I | 109 | 7478.79 | | Zn II | 1 | 7617.97 | P | Fe I | 1001 | | 4 00 | | Gd II | 109 | 7478.87 | P | Fe I | 683 | 7619.21 | | N1 I | 156 | | 4.90
6.50 | | Fe I | 1278 | 7479.06 | • | οi | 55 | 7620.538 | | Fe I | 1250 | | 8.68 | | FI | 1 | 7479.70 | P | Fe II | 72 | 7624.48 | | Al II | 91 | | 8.72 | | Co I | 164 | 7480.66 | | 0 I | 55 | 7624.75 | | N1 I | 292 | | 8.78 | 3 P | Fe I | 684 | 7481.49 | | N1 I | 286 | 7627.85 | | Al II | 91 | | 8.96 | | H£ II | 110 | 7481.74 | P | Fe I | 266 | 7629.82 | | 8 1 | | | 8.98 | | Po I
Cr I | 1306
93 | 7481.93
7482.20 | P
P | Fe I
Fe I | 1250
1308 | 7634.50
7635.1053 | | Co I
A I | 189
1 | | 0.23
0.87 | | Fe I | 204 | 7482.72 | • | FI | 1 | 7635.33 | | ÃI II | 91 | | 1.13 | | Ni I | 291 | 7483.48 | | La II | 1 | 7639.99 | | 0 I | 42 | | | | | | | _ | | | | | | | | 1.17 | | N1 I | 283 | 7484.28 | P
P | Fe I
Fe I | 1306
980 | 7647.83 | P | Fe I | 1137 | | 1.68 | | Fe I
Si I | 1004 | 7486.13
7488.083 | r | Ba I | 5 | 7650.95 | P | Fe I
Fe I | 266
1250 | | 5.88
5.28 | | Co I | 23
164 | 7488.73 | | N1 I | 157 | 7853.783
7654.44 | | Ti I | 211 | | 6.23 | | Y II | 25 | 7489.14 | | FI | 5 | 7655.47 | | Fe II | 73 | | 9.11 | | Si I | 23 | 7489.61 | | Ti I | 225 | 7657.30 | | Ni I | 278 | | 9.17 | | N1 I | 283 | 7491.678 | _ | Fe I | 1077 | 7657.60 | | Mg I | 22 | | 9.39 | | N1 I | 139 | 7494.72 | P | Fe I | 33 | 7661.223 | _ | Fe I | 1077 | | 1.17 | | Fe I | 1077 | 7495.088
7495.67 | P | Fe I
Fe I | 1077
1275 | 7661.46
7663.09 | P | Fe I
Hf II | 1309
68 | | 1.10 | , | C1 I | 4 | 1489101 | • | | 1210 | 1000.08 | | 11 | 00 | | 1.5 | 1 | N1 I | 62 | 7496.12 | | Ti I | 225 | 7663.45 | | 0 I | 42 | | 5.19 | | Fe I | 1308 | 7498.56 | | Fe I | 1001 | 7664.15 | P | Fe I | 1250 | | 5.37 | | S1 I | 23 | 7501.25 | P | Fe I | 1002 | 7664.302 | | Fe I | 402 | | 5.78 | | Mn II | 4 | 7501.81 | | N1 I | 282
8 | 7664.907
7665.02 | | S II | 1
70 | | 3.00 | | Si I
Co I | 22
89 | 7503.8676
7505.35 | | Gd II | 109 | 7665.48 | | 0 I | 42 | | 7.38 | | Fe I | 1002 | 7505.98 | P | Fe I | 1306 | 7672.092 | | Ba I | 5 | | 3.67 | | Fe I | 1001 | 7507.300 | | Fe I | 1137 | 7672.44 | | Cl I | 3 | | 9.3 | | N1 I | 287 | 7508.53 | P | Fe I | 1274 | 7677.46 | | Mn I | 54 | |).20 |) P | Fe I | 1307 | 7509.03 | | S II | 24 | 7679.60 | | SI | 7 | | | _ | B. 7 | **** | 7510.74 | | Au I | 2 | 7680.22 | | Mn I | 55 | | 1.60 | | Fe I
Ni I | 1188
139 | 7511.045 | | Fe I | 1077 | 7680.22 | | Si I | 36 | | 2.36
3.17 | | Ti I | 97 | 7512.12 | P | Fe I | 108 | 7686.13 | | ŠĪ | 7 | | 3.54 | | 81 I | 23 | 7512.17 | P | Fe I | 1001 | 7687.779 | | Ag I | 2 | | 3.6 | | N I | 3 | 7514.93 | | FI | 1 | 7689.10 | P | Fe I | 1304 | | 1.6 | | Si I | 23 | 7515.88 | | Fe II | 73 | 7689.36 | _ | A II | | | 5.13 | | Fe II | 209 | 7521.09
7522.79 | | N1 I
N1 I | 282
126 | 7691.57
7696.73 | P | Mg I
s I | 29
7 | | 5.0 | | F I
Eu II | 1
8 | 7525.14 | | N1 I | 139 | 7698.979 | | кi | 1 | |).5° | | Fe I | 204 | 7526.2 | | Al II | 119 | 7699.49 | | Yb I | 3 | | ,.,,, | 9 | | WV 2 | | | | | , | | | | |).7 | 3 | Fe I | 1351 | 7526.72 | P | Fe I | 1352 | 7706.52 | | Mn I | 54 | |).90 | | Fe I | 1189 | 7528.15 | P | Fe I | 1307 | 7706.77 | | 0 I | 42 | | 1.1 | | Si I | 89 | 7531.171
7533.42 | | Fe II | 1137
72 | 7709.78 | | Al II
Mn I | 113
54 | | 1.94 | | Fe I
Ti I | 1189
142 | 7534.83 | P | Fe II | 87 | 7709.98
7710.390 | | Fe I | 1077 | | 1.9 | | Mn II | 142
4 | 7537.44 | P | Fe I | 1000 | 7711.71 | | Fe II | 73 | | 1.4 | | Ni I | 280 | 7537.97 | P | Fe I | 1352 | 7712.42 | | Mn I | 55 | | 7.10 | | Co I | 53 | 7540.44 | P | Fe I | 266 | 7712.661 | | Co I | 126 | | 3 | P | 0 V | 17 | 7541.61 | | Fe I | 957 | 7714.27 | | Ni I | 62 | |).8 | 9 | Zr I | 23 | 7545.69 | | N1 I | 287 | 7715.63 | | Ni I | 109 | | , - | 4 | A II | 60 | 7546.177 | | Fe I | | 7717.57 | | C1 I | 4 | |).54
).66 | | Ti I | 225 | 7547.06 | | C1 I | 5 | 7719.05 | P | Fe I | 1304 | | 1.9 | | Fe I | 1273 | 7547.89 | P | Fe I | 1306 | 7720.68 | P | Fe I | 1304 | | 1.2 | | NI | . 3 | 7551.10 | P | Fe I | 1303 | 7722.60 | P | Mg I | 44 | | 1.0 | 31 | Fe I | 1002 | 7552.24 | _ | FI | 1 | 7723.20 | | Fe I | 108 | | 1.2 | 6 P | Fe I | 1309 | 7552.52 | P | N1 I | 286
1303 | 7723.7597 | | AI | 1
6 | | i. 7 | | Fe I | 107 | 7552.79
7553.970 | P | Fe I
Co I | 1303 | 7724.2064
7727.66 | | A I
Ni I | 156 | | 7 | | Fe I
Fe I | 1077 | 7553.970
7554.73 | | Zr I | 23 | 7732.50 | | Zn II | 2 | | 1.0 | | Fe I | 1273
1352 | 7555.60 | | Ni I | 187 | 7733.24 | | Mn I | 54 | | , | | | 2300 | A | Type | Element | Multiplet No. | IA | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |---------------|-------|---------------|---------------|----------------------|--------|---------------|---------------|-----------------------|------|----------------|----------------------| | 1.50 | .,,,, | Gd I | 1 | 7909.60 | P | Fe I | 1287 | 8035.39 | | Si I | 57 | | 1.68 | P | Fe I | 1306 | 7910.50 | - | Cr I | 316 | 8043.306 | | Co I | 193 | | 43 | | Mn I | 55 | 7911.338 | | Ba I | 1 | 8046.073 | | Fe I | 1136 | | i.99 | | N1 I | 281 | 7912.55 | | Si I | 68 | 8046.78 | P | Si I | 73 | | -67 | P | Fe I | 1137 | 7912.866 | | Fe I
Si I | 12
35 | 8047.60 | | Fe I | 12 | | 1.7 | | Si I
Fe I | 1206 | 7913.47
7917.48 | | Ni I | 109 | 8048.70
8051.91 | | Sm II
S II | 67
31 | | 1.71 | | Si I | 1306 | 7917.45 | | Cr I | 316 | 8055.996 | | Co I | 193 | | 1.27 | | Co I | 183 | 7918.38 | | Si I | 57 . | 8058.14 | | Zr I | 41 | | 94 | | Cl Í | 5 | 7923.95 | | s I | 22 | 8061.27 | | Cr I | 300 | | .05 | | S II | 70 | 7924.14 | P | Fe I | 1250 | 8063.10 | | Zr I | 40 | | .48 | P | `Fe I | 1305 | 7924.62 | | Cl I | 4 | 8065.99 | _ | Al I | 16 | | 1.56 | P | Fe I | 1309 | 7926.37 | | Ti I
Sm FI | 308
65 | 8066.05 | P | T1 I
Y II | 151
31 | | 1.281
1.37 | | Fe I
Gd II | 402
142 | 7928.14
7928.84 | | SI | 22 | 8066.20
8068.24 | | Ti I | 151 | | 1.93 | | Ni I | 156 | 7930.25 | | Gd II | ~~ | 8068.46 | | Sm II | 68 | | 18 | | Fe I | 1304 | 7930.33 | | s I | 22 | 8070.12 | | Zr I | 40 | | .70 | | FI | 4 | 7930.83 | P | Mg I | 42 | 8070.64 | P | Si I | 67 | | . 15 | | Mn I | 55 | 7931.70 | | S I | 22 | 8072.16 | P | Fe I | 108 | | ′•89 | | Hf II | 66 | 7932.20 | | Si I | 57 | 8075.13 | | Fe I | 12 | | 1.72 | _ | Mn I | 54 | 7933.130 | | Cu I | 6 | 8075.37 | _ | Al I | 16 | | 1.72 | P | Fe I | 957 | 7937.166 | P | Fe I
Ti I | 1136 | 8080.55 | P | Ti I
Fe I | 195 | | 74 | | Cr I
O I | 1 | 7938.53
7939.49 | P | 0 I | 151
35 | 8080.668
8082.4580 | | Ne I | 623
6 | | 1.96
1.18 | | 0 I | i | 7941.09 | | Fe I | 623 | 8084.98 | | Cr I | 299 | | i.40 | | οī | 1 | 7941.84 | P | Fe I | 508 | 8085.200 | | Fe I | 1136 | | 1.479 | | Ba I | 5 | 7942.02 | | Cr I | 300 | 8085.29 | | S II | 69 | | 1.586 | | Fe I | 1154 | 7942.91 | | Mn I | | 8086.18 | P | Si I | 67 | | 1.95
'.62 | | N1 I
N1 I | 62
201 | 7943.15
7943.1802 | | O I
Ne I | 35
18 | 8086.67
8086.91 | | S II
Al II | 31
116 | | | P | Fe I | 403 | 7943.93 | | Ti I | 308 | 9090 86 | | s II | 69 | | 1.90 | - | Si I | 403
81 | 7943.93 | | 81 I | 57 | 8089.86
8089.96 | | Gd II | 145 | |).22 | | FI | 4 | 7944.65 | | Zr I | 40 | 8092.634 | | Cu I | 6 | | 1.227 | | Rb I | 1 | 7945.878 | | Fe I | 1154 | 8093.25 | | SII | 68 | | 2.49 | P | Fe I | 1303 | 7945.98 | P | Fe I | 107 | 8093.32 | | 81 I | 34 | | 7.97 | P | Fe I
Fe I | 1303 | 7947.204 | | 0 I | 35
35 | 8093.48 | | V I
Co I | 30 | | 1.04 | | Co I | 79 | 7947.58
7947.60 | | Rb I | 35
1 | 8093.932
8095.93 | | Ni I | 189
290 | |).4 | | Na I | 20 | 7948.1754 | | ĀĪ | 6 | 8096.874 | | Fe I | 999 | |).81 | P | Fe I | 1303 | 7949.17 | | Ti I | 125 | 8098.50 | P | Ti I | 195 | | l.14 | P | Mg I | 43 | 7950.83 | | 0 1 | 35 | 8098.72 | P | Mg I | 41 | | 3.31 | | Al II | 90 | 7952.18 | | 0 I | 35 | 8103.6922 | _ | AI | 3 | | 3.62 | P | Fe I | 1305 | 7953.11 | P | N1 I
Fe I | 266 | 8108.33 | P | Fe I
Co I | 265 | | 5.83
3.16 | | Al II
Re I | 90
69 | 7954.94
7955.81 | F | Fe I | 402
1305 | 8112.13
8112.17 | P | Fe I | 183
265 | |).80 | P | Fe I | 1118 | 7956.69 | | Zr I | 41 | 8114.93 | • | S II | 69 | | 1.47 | _ | S II | 31 | 7959.21 | | Fe I | 1304 | 8115.3115 | | AI | 1 | | 3.72 | | Al II | 90 | 7961.58 | | Ti I | 308 | 8116.80 | | A I | 30 | | 3.81 | | N1 I
Fe I | 109
1154 | 7969.25
7964.93 | P | Ca II
Fe I | 1303 | 8119.13
8119.72 | | Or I
Al II | 299
110 | | | | | | | | | | | | | | | 5.08
5.33 | | Sm II
Al I | 69
10 | 7965.52
7967.03 | P
P | Fe I
Fe I | 1305
1000 | 8121.89 | | Al II
Al II | 110 | | 3.15 | | Al I | 10 | 7967.43 | r | SII | 12 | 8122.08
8123.52 | | Al II | 110
110 | | 7.27 | | Sm II | 64 | 7970.26 | | 81 I | 57 | 8126.52 | | Li I | 3 | | 3.09 | P | Fe II | 87 | 7978.88 | | Ti I | 151,308 | 8128.28 | | Cr I | 300 | | 1.40 | P | Fe II | 72 | 7980.04 | P | Fe I | 1304 | 8129.32 | P | Fe I | 265 | | 1.55 | P | Fe I
Gd II | 1250 | 7980.58 | | C1 I | 2 | 8133.00 | | Zr I | 40 | | 1.87
5.35 | | Gd II | | 7981.97
7982.41 | | 0 I | 19
19 | 8133.02
8133.36 | P | S II
Ti I | 68
195 | | 8.47 | P | Fe I | 1323 | 7983.66 | | Hf II | 99 | 8136.4060 | | Ne I | 23 | |
9.38 | | Zr I | 40 | 7987.00 | | o I | 19 | 8144.58 | | V I | 30 | | D | • | CI | 32 | 7987.34 | | 0 I | 19 | 8145.47 | | Fe I | | | 0.5 | _ | 81 I | 81 | 7987.36 | | Co I | 89 | 8146.67 | P | Fe I | 623 | | 2.74
5.12 | P | Ti I
Ni I | 94
267 | 7989.36 | | Cr I
Fe I | 300 | 8140.50 | - | Fe I
Si I | 1917,1918 | | 5.41 | P | Fe I | 1305 | 7994.473
7995.00 | P | Si I | 21 | 8150.57
8151.95 | P | Co I | 20
193 | | 1.10 | • | N1 I | 156 | 7995.12 | • | 0 1 | 19 | 8160.15 | | Al II | 118 | | 1.22 | | Hr II | 66 | 7996.53 | | Ti I | 308 | 8161.06 | | VI | 30 | | 3.79 | | N1 I | 268 | 7996.80 | | Co I | 79 | 8163.22 | | Cr I | 298 | | 9.65 | | Fe I | 1137 | 7997.80 | | C1 I | 3 | 8156.66 | | Cr 1 | 298,299 | | 9.868 | | Co I | 189 | 7997.85 | | 8 11 | 69 | 8167.94 | | Cr I | 291 | | 0.00 | | Zr I | 41 | 7998.972 | _ | Fe I | 1136 | 8169.80 | _ | Cr I | 300 | | 1.370
7.13 | | Co I
Mg II | 189
8 | 8002.55
8005.24 | P | Fe I
S II | 1217
68 | 8171.30
8179.03 | P | Fe I
Fe I | 1 <i>322</i>
1136 | | 8.22 | | Cl I | 3 | 8006.1556 | | A I | 3 | 8179.03 | | SII | 69 | | 9.75 | P | Fe I | 1306 | 8009.39 | P | Si I | 74 | 8179.43 | P | S1 I | 33 | | 1.90 | | Y II | 32 | 8014.7856 | | AI | 1 | 8183.256 | | Na I | 4 | | 5.00 | P | T1 I | 34 | 8016.51 | P | Fe I | 1249 | 8184.80 | | NI | 2. | | 5.26
6.31 | | 8 II
o I | 68
64 | 8018
8018.04 | | C I | 31
200 | 8185.69
8186.73 | | Cr I
V I | 299
30 | | 0.22 | | N1 I | 200,267 | 8018.70 | | 8 II | 68 | 8186.80 | | Fe I | 1272 | | 5.50 | P | Ti I | 34 | 8024.50 | | Fe I | | 8187.95 | | N I | 2 | | 6.37 | _ | Mg II | 8 | 8024 - 84 | | T1 I | 151 | 8194.35 | | C1 I | 2 | | 8.38 | P | Si I | 69 | 8025.12 | | Sm II | 63 | 8194.791 | | Na I | 4 | | 4.12
5.751 | P | Fe I
Ba I | 403
10 | 8026.32
8027.36 | | Sm II | 67
30 | 8194.824
8196.52 | P | Na I
Fe I | 1217 | | 8.06 | | Gd II | 120 | 8027.96 | P | Fe I | 623 | 8198.87 | - | v i | 30 | | 8.30 | | Cr I | 316 | 8028.341 | - | Fe I | 1154 | 8198.951 | | Fe I | 1154 | | 8.679 | | Co I | 189 | 8032.63 | | Sm II | 61 | 8200.31 | | NI | 2 | | 9.34 | P | Ti I | 308 | 8034.56 | | N1 I | 109 | 8201.73 | | Zr I | 40 | | A | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No | |--------------|--------|---------------|---------------|---------------------|--------|--------------|---------------|----------------------|--------|--------------|------------------------| | 3.2 | P | Ca II | 13 | 8316.38 | | Gd II | | 8428.342 | | 0 I | 54 | | 3.572 | _ | Н | 14 | 8317.45 | | Si I | 19 | 8428.94 | | As I | 4 | | 1.10 | P | Fe I | 12 | 8322.06 | | Cr I | 298 | 8429.128 | | 0 I | 54 | | 1.93 | P | Fe I
Fe I | 12
1136 | 8323.428 | | H
C- T | 12 | 8429.36 | | Y II | | | 1.57 | | Co I | 193 | 8323.44
8327.063 | | Cr I
Fe I | 298
60 | 8431.20 | | Mn I | 53 | |).64 | | N I | 2 | 8331.941 | | Fe I | 1153 | 8434.51
8434.98 | P | Fe I
Ti I | 1270
33 | | 1.48 | | Si I | 19 | 8333.29 | | C1 I | 2 | 8435.28 | P | Si I | 33
8 | | 3.00 | | C1 I | 2 | 8333.785 | | H | 11 | 8435.68 | Ε. | Ti I | 33 | | 1.43 | | Mn I | | 8334.37 | | Ti I | 33 | 8437.958 | | Н | 10 | | 3.59 | | Zr I | 40 | 8335.19 | | C I | 10 | 8438.93 | | Ti I | 224 | | 1.02
3.28 | P | Mg I
Cr I | 28
299 | 8338.43 | | Si I
Cr I | 33 | 8439.603 | | Fe I | 1172 | | 3.28 | | N I | 2 | 8338.83
8339.431 | | Fe I | 298
1153 | 8442.58 | | Gd II | | | '•8 | P | Mg II | 7 | 8342.21 | P | Fe I | 401 | 8442.98
8444.00 | | Ti I
Si I | 210
46 | | 1.40 | | C1 I | 3 | 8342.95 | | Fe I | 1270 | 8444.48 | | Si I | 46 | | 1.406 | | Fe I | 1136 | 8345.20 | P | Fe I | 265 | 8446.35 | | 0 I | 4 | | . • 63 | | SII | 31 | 8345.553 | | H | 11 | 8446.42 | P | Fe I | 1272 | | .73
.84 | | C1 I | 3
34 | 8346.13
8348.28 | P | Mg I
Cr I | 40
56 | 8446.56
8446.76 | P | Fe I
O I | 1267
4 | | :. 15 | | s II | 68 | 8348.68 | | Sm II | 64 | 8447.41 | P | Fe I | 1266 | | 1.07 | | N I | 2 | 8349.05 | P | Fe I | 12 | 8447.63 | P | Fe I | 1200 | | .16 | | S II | 68 | 8353.15 | | Ti I | 33 | 8449.54 | • | s i | 14 | | 09 | | Cr I | 98 | 8354.35 | | Al II | 40 | 8450.26 | | Cr I | 56 | | 1.15 | | S II
Cr I | 69 | 8355.16 | P | Fe I | 1050 | 8450.89 | | T1 I | 224 | | .67
.64 | | 0 I | 299
34 | 8356.07 | P
P | Fe I | 1117 | 8451.55 | | SI | 14 | | .01 | | 0 I | 34 | 8358.53
8359.006 | , P | Fe I
H | 401 | 8452.14 | | SI | 14 | | -67 | | Si I | 19 | 8359.23 | | Al II | 11
40 | 8455.24
8457.10 | | Cr I
Ti I | 56 | | . 347 | | Fe I | 1136 | 8359.57 | | Al II | 40 | 8459.01 | P | Fe I | 1 41
1270 | | :- 99 | | 0 I | 34 | 8360.63 | | C1 11 | 5 | 8461.41 | P | Fe I | 814 | | .30 | | SII | 68 | 8360.822 | | Fe I | 1153 | 8464.02 | P | Fe I | 1330 | | .31 | | 0 I | 34 | 8361.77 | | He I | 68 | 8464.65 | | Zr I | 40 | | .89 | | Cr I
HC II | 298 | 8361.95 | | SII | 31 | 8465.23 | P | Fe I | 1270 | | .13
.77 | | He II | 65
6 | 8363.30
8363.52 | | Al II | 40
40 | 8466.10 | P | Fe I | 1269 | | .29 | | Cr I | 298 | 8363.58 | P | Ti I | 182 | 8466.54
8467.15 | P | Fe I
Ti I | 999
182 | | .4 | P | Mg II | 7 | 8364.24 | _ | Ti I | 33 | 8467.256 | | н | 10 | | .130 | | Fe I | 108 | 8365.642 | | Fe I | 623 | 8468.413 | | Fe I | 60 | | .61 | | V I | 30 | 8369.87 | P | Fe I | 1271 | 8468.46 | | Ti I | 150 | | .34
.151 | | N I
Fe I | 2
1136 | 8370.21 | | Zr I
Co I | 40 | 8471.75 | _ | Fe I | 1270 | | .2 | P | Ca II | 130 | 8372.79
8374.478 | | H | 193
11 | 8480.63
8481.96 | P
P | Fe I
Fe I | 1272
999 | | .51 | - | V I | 30 | 8375.95 | | C1 I | 2 | 8483.16 | r | Ti I | 150 | | .78 | P | Fe I | 1216 | 8376.41 | | Ne I | 12 | 8485.99 | | Sm II | 66 | | .10 | | Be I | 2 | 8377.6068 | | Ne I | 12 | 8493.79 | P | Fe I | 1269 | | .34 | P | Fe I | 508 | 8377.79 | | S II | 31 | 8494.42 | | T1 I | 141 | | .153
.90 | | H
V I | 14
30 | 8377.90 | | Ti I | 33 | 8495.3600 | | Ne I | 18 | | •1 | P | Ca II | 13 | 8379.44
8380.77 | | Co I
Mn I | 193 | 8495.51
8496.03 | | Ti I
Ti I | 210
209, 313 | | .859 | | н | 14 | 8382.23 | P | Fe I | 12 | 8496.51 | P | Fe I | 1136 | | .27 | | s II | 31 | 8382.54 | | T1 I | 33 | 8497.00 | | Fe I | 1172 | | 938 | | H | 14 | 8382.82 | | Ti I | 33 | 8498.018 | | Ca II | 2 | | - 95 | _ | Cr I | 98 | 8386.24 | P | T1 I | 182 | 8498.44 | | Zr I | 40 | | -86 | P | Fe I
Fe I | 1272 | 8387.781 | | Fe I | 60 | 8501.50 | | Si I | 47 | | .27
.288 | | H I | 1332
14 | 8389.42
8389.48 | | Zr I
Ti I | 40
182 | 8501.81 | | N1 I
Si I | 186
46 | | .5209 | | ĀI | 8 | 8392.400 | | H | 11 | 8502.38
8502.487 | | H | 10 | | .076 | | Ne I | 27 | 8395.87 | | Mn I | 53 | 8503.17 | | Si I | | | .941 | | H | 13 | 8396.93 | | Ti I | 33 | 8509.63 | P | Fe I | 1136 | | .66 | P | Fe I | 1218 | 8397.04 | | Cr I | 57 | 8510.90 | | Sm II | 64 | | .934 | | H | 13 | 8397.96 | P | S1 I | 18 | 8512.95 | P | Fe I | 462 | | .46 | | 8 11 | 31 | 8401.42 | _ | Fe I | 108 | 8514.075 | | Fe I | 60 | | .519 | | Ag I
Fe I | 2 | 8401.68 | P | Fe I | 1136 | 8514.64 | P | Si I | 18 | | .28
.91 | | re 1
Fe I | 1332
1270 | 8402.54
6408.208 | | T1 I
A I | 224
8 | 8515.08
8515.48 | | Fe I
5 II | 401
37 | | .310 | | H | 13 | 8409.88 | | Mn I | 53 | 8518.05 | | Ti I | 182 | | .125 | | H | 13 | 8412.36 | | T1 I | 33 | 8518.37 | | Ti I | 150 | | .434 | | H | 13 | 8413.321 | | H | 10 | 8519.05 | P | Fe I | 1267 | | .38 | | Cr I | 298 | 8414.00 | | Zr I | 40 | 8520.23 | | s II | 34 | | .62 | | Cr I
H | 298
12 | 8414.08 | P | Fe I
Ti I | 1154 | 8521.10 | | Cs I | 1 | | .309
.527 | | Fe I | 623 | 8416.97
8417.24 | | N1 I | 224
156 | 8521.4407
8522.64 | | SII | 8
62 | | .90 | | Cr I | 57 | 8417.54 | | Ti I | 182 | 8525.04 | P | Fe I | 1215 | | 58 | | Cr I | 297 | 8417.89 | P | Si I | 18 | 8526.685 | - | Fe I | 1270 | | .837 | | H | 12 | 8418.4274 | | Ne I | 18 | 8527.32 | P | Si I | 18 | | .01 | P | Fe I | 1331 | 8418.70 | | Ti I | | 8527.88 | P | Fe I | 1270 | | .3258 | | Ne I | 12 | 8420.968 | | 0 I | 54 | 8531.36 | | T1 I | 141 | | , 11
, 19 | P | Fe I
Cr I | 265
57 | 8422.39
8422.95 | | S II
Fe I | 37
999 | 8523.38
8538.02 | P | S1 I
Fe I | 80
1266 | | ,62 | | As I | . 5 | 8423.10 | | Ti I | 150 | 8539.36 | | Ti I | 209 | | .79 | | Sm II | 69 | 8424.14 | | Fe I | 1272 | 8541.65 | | As I | 3 | | .94 | | Zr I | 40 | 8424.41 | | T1 I | 182 | 8542.089 | | Ca II | 2 | | 115 | | H | 12 | 8424.647 | | AI | · 3 | 8543.72 | | Cr I | 56 | | .80 | | S1 I | 19 | 8424.780 | | 0 I | 54 | 8545.384 | | H
ma r | 10 | | 41 | ~ | Ti I | 33 | 8425.37 | - | 8 II | 62 | 8548.07 | | Ti I | 150 | | ,61 | P
P | Fe I
Fe I | 12 | 8425.89 | P | Fe I
O I | 12
54 | 8548 · 83 | P | Cr I
Si I | 56
88 | | .98
.262 | F. | re 1 | 12
12 | 8426.326
8426.50 | | Ti I | 54
33 | 8550.34
8550.46 | r | C1 I | 13 | | 73 | | s II | 12 | 8428.25 | | C1 I | 2 | 8550.54 | | Ti I | 141 | | | | | | | | _ | | - | | | | | | Type | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |------------|--------|---------------|---------------|---------------------|------|---------------|-----------------|---------------------|--------|--------------|---------------| | 54 | | Cr I | 56 | 8680.77 | P | Fe I | 999 | 8819.42 | P | Fe I | 1266 | | 64 | | Si I | 45 | 8681.920 | | Ne I | 23 | 8819.48 | P | Fe I | 1269 | | 98 | | Fe I | 1321 | 8682.99 | | Ti I
N I | 68
1 | 8820.45 | | O I
Ti I | 37
139 | | 13 | P | Fe I
As I | 1153
3 | 8683.38
8686.13 | | N I | 1 | 8821.14
8821.76 | | As I | 3 | | 71
45 | | Ti I | 141 | 8686.28 | | Cl I | 14 | 8824.227 | | Fe I | 60 | | 74 | | N I | 8 | 8080.77 | P | Fc I | 1269 | 8628.08 | P | Fc I | 1269 | | 78 | P | Fe I | 1269 | 8686.79 | P | Fe I | 956 | 8828.91 | |
Al I | 15 | | 72 | | Ti I | 209 | 8688.633 | | Fe I
Fe I | 60 | 8834.04 | P | Fe I
Cr I | 1050 | | 84 | P | Fe I | 1272 | 8689.71 | Þ | re 1 | 507 | 8835.67 | | OF 1 | 142 | | 25 | | Cl I | 2 | 8689.83 | P | Fe I | 1330 | 8835.85 | | Y II | 30 | | 46 | P | Si I | 87 | 8692.34 | - | Ti I | 68 | 8838.433 | | Fe I | 339 | | 50 | P | Fe I | 1215 | 8693.24 | | s I | 6 | 8841.26 | | Al I | 15 | | 40 | | Ti I | 141 | 8693.98 | | s I | 6 | 8846.82 | | Fe I | 1267 | | 15 | | Si I | 56 | 8694.70 | P | S I
Fe I | 6
400 | 8848.25 | P
P | Fe I
Fe I | 1153
1214 | | 88 | | Hf II
Fe I | 66
401 | 8698.71
8699.13 | P | Mn I | 49 | 8848.46
8852.30 | P | Fe I | 1318 | | 267
82 | P | Fe I | 1270 | 8699.43 | | Fe I | 1267 | 8853.867 | • | Ne I | 27 | | 60 | - | s I | | 8700.34 | P | Fe I | 1266 | 8858.39 | | Al II | 115 | | 96 | | Cl I | 2 | 8701.05 | | Mn I | 49 | 8858.77 | | Al II | 115 | | | | = | | | | N. T | | | | N4 T | 044 | | 20 | P | N1 I | 296
193 | 8702.49
8703.24 | | Ni I
N I | 83 | 8862.59
8862.787 | | Ni I
H | 214
9 | | 78
2584 | | Co I
Ne I | 30 | 8703.76 | | Mn I | 49 | 8863.64 | | Fe I | 1283 | | 10 | P | Fe I | 1269 | 8704.15 | | Ne I | 23 | 8865.759 | | Ne I | 8 | | 97 | | Fe I | 1267 | 8707.42 | | Cr I | 56 | 8866.961 | | Fe I | 1172 | | 01 | | N I | 8 | 8707.95 | | Cr I | 296 | 8868.42 | | Fe I | 400 | | 02 | P | Si I | 80 | 8710.29 | | Fe I | 1267 | 8869.69 | | As I
S I | 4 | | 00 | | Si I
Ti I | 80
236 | 8710.82
8711.69 | | Ba II
N I | 5
1 | 8874.53
8876.13 | | Fe I | 21
1267 | | 18
394 | | Н. | 9 | 8713.19 | | Fe I | 400,1267 | 8877.07 | | N1 I | 285 | | 034 | | ••• | | | | | , | | | | | | 79 | | Fe I | 1153 | 8718.70 | | Cr I | 296 | 8878.26 | P | Fe I | 401 | | 98 | | Ti I | 141,209 | 8718.82 | | N I | 1 | 8878.76 | P | Fe I | 1050 | | 43 | | Si I | 55 | 8719.56 | | Ti I
Ti I | 140
139 | 8880.70 | | S I
S I | 21
21 | | 45 | P | N1 I
Fe I | 275
1272 | 8725.76
8727.10 | P | Fe I | 999 | 8882.47
8883.84 | | Si I | 54
54 | | 08
62 | P | Fe I | 1153 | 8728.38 | • | Si I | 79 | 8884.23 | | SI | 21 | | 807 | - | Fe I | 339 | 8728.88 | | N I | 1 | 8887.10 | P | Fe I | 1265 | | 91 | | T1 I | 141 | 8729.02 | | Si.I | 79 | 5892.13 | P | Fe I | 1302 | | 93 | P | Fe I | 1272 | 8729.12 | P | Fe I | 713 | 8892.97 | _ | Si I | 54 | | 27 | P | Fe I | 1266 | 8732.17 | | Cr I | 296 | 8896.00 | P | Fe I | 1153 | | 44 | | Ti I | 209 | 8734.60 | | Mn I | 49 | 8898.97 | | Si I | 79,86 | | 612 | | Fe I | 401 | 8734.70 | | Ti I | 68 | 8899.50 | | Si I | 79 | | 24 | | N I | 8 | 8736.0 | P. | MgI | 39 | 8901.0 | | Mn I | 56 | | 42 | P | Fe I | 1050 | 8737.32 | | Mn I | 49 | 8902.94 | P | Fe I | 1266 | | 6480
26 | | Ne I
Cr I | 23
56 | 8737.74
8740.93 | | Ba II
Mn I | 5
49 | 8905.99
8912.88 | P | Fe I
Al I | 1302
14 | | 04 | | Ni I | 186 | 8742.60 | | Si I | 44 | 8912.88 | | Cl I | 13 | | 70 | | Al II | 4 | 8747.32 | | Fe I | 401 | 8916.26 | | Fe I | 32 | | 47 | | T1 I | | 8747.35 | | NI | 1 | 8918.88 | | Se I | 1 | | 03 | | Cr I | 56 | 8750.13 | | Co I | 203 | 8919.50 | | Ne I | 27 | | 29 | P | Fe I | 1261 | 8750.475 | | н | 9 | 8919.95 | | Fe I | 1301 | | 29
05 | r | Ne I | 33 | 8751.18 | P | Si I | 44 | 8920.02 | P | Fe I | 1261 | | 89 | | Si I | • | 8752.17 | | Si I | 43 | 8922.00 | P | Fe I | 1296 | | 6 | | Na I | 19 | 8757.192 | | Fe I | 339 | 8923.56 | | Al I | 14 | | 50 | P | Fe I | 1050 | 8761.44 | | Ti I | 139 | 8923.8 | | Mg I | 25 | | 16 | | As I
Ne I | . 3 | 8764.000 | | Fe I
Ti I | 1172 | 8925.55
8925.75 | | Si I
Cr I | 54 | | 3835
40 | P | Fe I | 33
623 | 8766.64
8766.68 | | Si I | 68
54 | 8926.06 | | Mn I | 142
56 | | 51 | - | Ne I | 33 | 8767.65 | P | Fe I | 814 | 8929.04 | | Fe I | 1301 | | 63 | | Mn I | 59 | 8770.68 | | Ni I | 82 | 8929.72 | | Mn I | 56 | | | | | _ | | | | | | _ | | | | 88 | n | N I
Fe I | 8 | 8771.70 | | Ne I | 38 | 8931.78 | P | Fe I | 507 | | 67
38 | P | Mn I | 1269
59 | 8772.88
8773.56 | | Al I
Cr I | 9
296 | 8943.00
8943.50 | | Fe I
Cs I | 338
1 | | 908 | | Fe I | 60 | 8773.91 | | Al I | 9 | 8943.6 | | Na I | 26 | | 140 | | Ca II | 2 | 8778.66 | | Ti I | 140 | 8945.204 | | Fe I | 1301 | | 73 | P | Fe I | 1270 | 8779.12 | P | Fe I | 1050 | 8946.25 | | Fe I | 338 | | 021 | _ | H | 9 | 8780.6223 | | Ne I
Ne I | 27 | 8947.20 | | Cr I | 142 | | 37
40 | P
P | Fe I
Si I | 166
55 | 8783.755
8784.44 | | Fe I | 38
1270 | 8948.01
8949.33 | | Cl I
Si I | 1
54 | | 9430 | _ | AI | 6 | 8786.28 | P | Cr I | 142 | 8950.20 | P | Fe I | 1050 | | | | | | | | | | | | | | | 19 | | s I | 6 | 8786.96 | | Cr I | 296 | 8954.65 | _ | N1 I | 200 | | 65 | | S I
Mn I | 6 | 8790.62 | | Fe I
Si I | 1267 | 8956.26 | P
P | Fe I
Fe I | 1266 | | 92
06 | | Al II | 49
112 | 8790.88
8791.28 | | Si I | 79
79 | 8959.88
8965.94 | | Ni I | 1320
225 | | 28 | | Al II | 112 | 8793.376 | | Fe I | 1172 | 8967.53 | P | Fe I | 1286 | | 37 | | s I | 6 | 8796 | | Na I | 27 | 8968.20 | | Ni I | 284 | | 86 | P | Fe I | 1272 | 8796.42 | | Fe I | 1266 | 8975.408 | | Fe I | 400 | | 06 | | Mn I | 49 | 8798.05 | P | Fe I | 1286 | 8976.88 | | Cr I | 142 | | 97
751 | | Mn I
Fe I | 49
339 | 8801.78
8804.624 | P | Fe I
Fe I | 956
106 | 8978.04
8978.17 | P
P | Fe I
Fe I | 1266
713 | | , 51 | | -3 - | 000 | 0001.024 | | | 100 | 3313.11 | | • | • 20 | | 92 | | Al II | 112 | 8805.21 | P | Fe I | 1265 | 8979.34 | P | Ti II | 100 | | 28 | | Al II | 112 | 8806.7032 | | Mg I | 7 | 8982.35 | | Ni I | 213 | | 38 | | T1 I | 68 | 8806.7358 | | MgI | 7 | 8984.87 | | Fe I | 1301 | | 00
491 | | S I
Ne I | o
37 | 8808.17 | P | Mg I
Fe I | 7
1267 | 8988.58
8989.44 | | Ne I
Ti I | 8
138 | | 61 | P | Fe I | 1286 | 8809.47 | • | Ni I | 200 | 8994.57 | P | Fe I | 622 | | 70 | • | SI | 6 | 8814.50 | P | Fe I | 1330 | 8999.561 | - | Fe I | 339 | | 24 | | N I | 1 | 8816.86 | P | Fe I | 1271 | 9002.00 | | Sc I | 1 | | 31 | | Al II | 112 | 8819.11 | | Co I | 203 | 9006.72 | | Fe I | 1261 | | 47 | | S I | 6 | 8819.39 | | Ti I | 68 | 9008.37 | | Fe I | 1329 | | I A | Туре | Element | Multiplet No. | I A | T) pe | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | |-----------------|------|--------------|------------------------|----------------------|--------|----------------|---------------|--------------------|------|--------------|---------------| | 109.04 | | Si I | 91 | 9214.85 | P | Fe II | 71 | 9413.46 | | s I | 18 | | 09.95 | | Cr I | 187 | 9217.4 | P | Mg II | 1 | 9413.59 | | S1 I | 14 | | 10.55 | | Fe I | 202 | 9217.54 | | Fe I | 1298 | 9414.14 | _ | Fe I | 1298 | | 12.098 | | Fe I
Fe I | 1301 | 9220.05 | | Ne I
Ne I | 33
33 | 9415.04 | P | Fe I
Mg I | 1297
38 | | 13.90 | | н | 106
9 | 9221.59
9224.498 | | A I | 8 | 9415.5
9421.82 | | Si I | 72 | | 15.16 | | Zr I | 39 | 9225.55 | | Fe I | 1213 | 9421.93 | | SI | 18 | | 17.10 | | Cr I | 187 | 9226.67 | | Ne I | 30 | 9423.07 | P | Fe I | 1300 | | 19.84 | | Fe I | 1301 | 9228.11 | | s i | 1 | 9425.38 | | Ne I | 36 | | 21.69 | | Cr I | 187 | 9229.017 | | Н | 8 | 9429.58 | | Mn I | 57 | | 24.47 | | Fe I | 1265 | 9233.15 | P | Fe I | 1342 | 9430.08 | | Fe I | | | 124.78 | P | Fe I | 1297 | 9237.49 | | S I | 1 | 9433.29 | P | Fe I | 1292 | | 27.32 | | Ti I | 138 | 9238.60 | | Si I
Fe I | 66 | 9437.11 | | SI | 18 | | 127.90 | P | Ti II
N I | 100
15 | 9242.32
9243.29 | | Mn I | 1262
46 | 9437.91
9443.98 | | Fe I
Fe I | 1171
1298 | | 30.67 | | Fe I | 338 | 9213.4 | P | Mg II | 1 | 9444.36 | | Cr I | 29 | | 35.86 | | Cr I | 142 | 9246.54 | _ | Fe I | 203 | 9447.00 | | Cr I | 29 | | 35.92 | | S I | 13 | 9248.13 | P | Fe I | 1338 | 9452.06 | | C1 I | 13 | | 136.32 | | SI | 13
13 | 9248.80 | P | Fe I
Al II | 1285
117 | 9452,45 | | Fe I
Fe I | 1263,1292 | | 36.73 | | | | 9249.41 | | | | 9454.24 | | | 1298 | | 36.74 | P | Fe I
Sc I | 1269
1 | 9252.67 | P
P | Ti II
Fe I | 100
1261 | 9459.21 | P | Ne I
N I | 38 | | 38.65
38.72 | | SI | 13 | 9253.72
9254.59 | F | Si I | 1201 | 9460.66
9462.97 | P | Fe I | 7
1263 | | 38.84 | P | Fe I | 400 | 9256.0 | | Mg I | 27 | 9463.57 | | He I | 67 | | 39.27 | = | SI | 13 | 9258.30 | | Fe I | 1172 | 9466.0 | | Na. I | 24 | | 45.40 | | C1 I | 13 | 9259.05 | | Fe I | 1263 | 9476.57 | | Mn I | 57 | | 52.56 | P | Fe I | 1342 | 9260.88 | | 0 I | . 8 | 9482.82 | P | Fe I | 1319 | | 59.74 | | Cr I | 165 | 9262.73 | | 0 I | 8 | 9485.93 | P | Fe I | 622 | | 60.6 | _ | NI | 15 | 9263.97 | | Cr I | 165 | 9486.680 | | Ne I | 8 | | 61.33 | P | Fe II | 71 | 9265.99 | | 0 I | 8 | 9486.89 | • | C1 I | 1 | | 61.48 | | C I
Fe I | 3 | 9267.29 | | As I | 3 | 9487.49 | | 0 I | 47 | | 62.24
62.53 | | CI | 1301
3 | 9276.89
9286.578 | | Zr I
Al II | 39
64 | 9498.04
9499.39 | | 0 I | 47
46 | | 63.40 | | He I | 77 | 9286.794 | | Al II | 64 | 9502.12 | | Mn I | 58 | | 64.06 | | Si I | 91 | 9288.145 | | Al II | 64 | 9505.28 | | S1 I | 72 | | 70.42 | | Fe I | 1076,1300 | 9288.550 | | Al II | 64 | 9505.67 | | 0 I | 46 | | 73.15 | | Cl I | 12 | 9288.82 | | C1 I | 11 | 9506.04 | | Ti I | 312 | | 78.32 | | C I | 3 | 9289.39 | P | Fe I | 1298 | 9508.49 | | T1 I | 312 | | 79.599
80.48 | | Fe I
Fe I | 1172
1265,1298 | 9290.44
9290.649 | | Cr I
Al II | 29
64 | 9510.81
9511.55 | | Ti I
Ti I | 312
312 | | | _ | | | | | | | | | | | | 84.20 | P | Fe I
Mn I | 1076
46 | 9290.747 | | Al II
Cr I | 64
29 | 9511.80
9513.24 | | Ti I
Fe I | 312
1298 | | 84.29
88.326 | | Fe I | 339 | 9294.17
9294.66 | | Fe I | 1301 | 9516.51 | | He I | 76 | | 88.57 | | CI | 3 | 9297.14 | P | Fe I | 1247 | 9516.66 | | He I | 76 | | 89.413 | | Fe I | 400 | 9298.05 | P | Fe I | 1262 | 9520.06 | | N1 I | 224 | | 90.70 | | Ti I | 138 | 9300.62 | | As I | 5 | 9522.01 | | 0 I | 45
 | 94.89 | | C I | 3 | 9300.85 | | Ne I | 33 | 9525.78 | | PΙ | 3 | | 00.50 | | Fe I
Si I | 126 4
66 | 9304.88 | | P I
Fe I | 3
1297 | 9526.17 | P | He I
Fe I | 82
1297 | | 03.37
03.64 | | Fe I | 1076 | 9307.94
9313.55 | | Cr I | 80 | 9527.73
9529.27 | . • | He I | 86 | | 06.40 | | N1 I | 289 | 9313.98 | | Ne I | 33 | 9529.31 | | Fe I | | | 11.85 | | CI | 3 | 9318.13 | | Fe I | 1263 | 9531.22 | P | Fe I | 1292 | | 12.25 | P | Fe I | 1297 | 9318.24 | | Si I | 66 | 9534.17 | | Ne I | 38 | | 12.95 | P | Fe II | 71 | 9324.07 | | Fe I | 1300 | 9535.72 | | Mn I | 57 | | 14.02 | | Mn I | 46 | 9326.52 | | Ne I | 36 | 9543.376 | | D | 2 | | 16.89 | P | Fe I | 1265 | 9328.64 | P | Fe I | 1261 | 9545.974 | | H
Trans | 8
32 | | 17.10 | | Fe I
Fe I | 338 | 9331.546 | | Al II
Al II | 56
56 | 9546.07
9547.26 | | T1 I
Zr I | 39 | | 18.888
21.10 | | C1 I | 338
1 | 9331.979
9333.94 | | Fe I | 1297 | 9547.40 | | Ne I | 38 | | 22.9660 |) | A I | i | 9335.27 | P | Fe I | 1338 | 9550.90 | | Fe I | 1263 | | 24.27 | | Al II | 108 | 336.47 | | Mn I | 58 | 9556.56 | | Fe I | 622 | | 40.15 | P | Fe I | 622 | 9343.40 | | Fe I | 1300 | 9563.45 | | PI | 2 | | 46.11 | | Fe I | 202 | 9344.93 | | He II | 6 | 9568.58 | | Cr I | 29 | | 47.800 | | Fe I | 1301 | 9346.69 | | La II | 152 | 9569.960 | | Fe I | 1296 | | 48.45 | | Cr I
Ne I | 165
30 | 9350.46 | | Fo I
A I | 1171
8 | 9570.08 | | Si I
Cr I | 42,65
29 | | 48.68
54.7 | | Ne I
Na I | 25 | 9354.218
9359.420 | | Fe I | 203 | 9571.76
9573.65 | P | Fe I | 1297 | | 55.67 | P | Fe I | 1301 | 9362.06 | | Cr I | 80 | 9574.25 | • | Cr I | 29 | | 56.02 | • | 0 I | 41 | 9362.370 | | Fe I | 106 | 9582.28 | | v I | 106 | | 56.23 | P | Fe I | 400 | 9370.57 | P | Fe I | 338 | 9584.77 | | C1 I | 1 | | 57.07 | P | Fe I | 1268 | 9372.900 | | Fe I | 202 | 9585.72 | | Si I | 7 | | 57.08 | P | Fe I | 1261 | 9373.28 | | Ne I | 33 | 9592.20 | | ClI | 11 | | 64.51 | | Fe I | 1263 | 9375.14 | P | Fe I | 400 | 9593.54 | | PI | 2 | | 72.09 | _ | Mn I | 46 | 9382.93 | P | Fe I | 1284 | 9595.60 | _ | K I | 10
10 | | 73.20 | P | Fe I | 203 | 9383.40 | P | Fe I | 1285 | 9597.76 | | K I
As I | 10
3 | | 73.63
73.83 | P | Fe I
Fe I | 1300
622 | 9385.62 | | N1 I
N I | 225
7 | 9597.94
9599.53 | | Ti I | 32 | | 75.85 | | P I | 3 | 9386.79
9388.28 | | Fe I | 1263 | 9602.07 | | Fe I | 1283 | | 78.57 | | Fe I | 1262 | 9392.77 | P | Fe I | 1262 | 9603.09 | | CI | 2 | | 91.67 | | C1 I | 1 | 9392.80 | - | N I | 7 | 9603.50 | | He I | 71 | | 97.49 | | C1 I | 14 | 9393.40 | | Si I | 72 | 9608.56 | | Mn I | 60 | | 99.52 | | Fe I | 1298 | 9393.81 | | C1 I | 1 | 9608.89 | P | Fe I | 1285 | | 01.76 | - | Ne I | 30 | 9394.71 | | Fe I | 1264 | 9608.97 | | P I
V I | 2
106 | | 03.10 | P | Fe I
Cr I | 1298
165 | 9396.57 | | N1 I
Fe I | 1297 | 9611.60
9614.68 | | VI | 106 | | 08.29
08.55 | | Si I | 66 | 9401.09
9403.36 | P | Fe II | 71 | 9620.86 | | ċ î | 2 | | 10.030 | | Fe I | 338 | 9404.80 | P | Fe I | 1264 | 9620.93 | P | Fe I | 737 | | 10.28 | | He I | 83 | 9405.77 | - | CI | 9 | 9625.72 | | Ge I | 7 | | 12.91 | | S I | 1 | 9409.55 | P | Fe I | 1296 | 9625.80 | | He I | 90 | | 14.45 | | Fe I | 1264 | 0410 15 | Ð | Pa T | 1902 | 0898.90 | | Cr T | RN . | | | Туре | Element | Multiplet No. | I A | Туре | Element | Multiplet No. | T A | Type | Element | Multiplet No. | |-------------|------|--------------|---------------|----------------------|--------|---------------|---------------|----------------------|------|--------------|---------------| | 562 | | Fe I | 1296 | 9790.08 | | PΙ | 4 | 10061.29 | | Ni I | 284 | | 37 | | C1 I | 12 | 9796.79 | | PΙ | 2 | 10065.080 | | Fe I | 1247 | | D | P | Mg II | 15 | 9800.335 | _ | Fe I | 1296 | 10066.47 | | Ti I | 193 | | 02 | | Mn I | 58 | 9800.79 | P | Fe I
Fe I | 1292 | 10067.84 | P | Si I
Fe I | 64 | | 78 | | S I | 17 | 9811.36 | P | Fe I | 1285
106 | 10070.58 | P | He I | 1345
80 | | 22
69 | | Fe I
Fe I | 1296
1212 | 9820.24
9821.8 | r | N I | 19 | 10072.10
10076.29 | | Al II | 6 | | 55 | | Fe I | 1612 | 9822.30 | | Zr I | 39 | 10077.32 | | Al II. | 6 | | 28 | | Ti I | 32 | 9826.69 | | As I | 3 | 10077.53 | | Al II | 6 | | 40 | P | Ca I | 55 | 9832.15 | | Ti I | 149 | 10080.32 | | Cr I | 226 | | 40 | | Ti I | 32 | 9833.76 | | As I | 2 | 10080.44 | P | Fe I | 1293 | | 94 | | SI | 17 | 9834.04 | | Fe I | 1294 | 10081.40 | P | Fe I | 106 | | 143 | | Fe I | 1247 | 9839.38 | | Fe I | 1211 | 10084.22 | _ | PI | 4 | | 00 | | La II | 60 | 9839.58 | P | Si I
Ca II | 65
12 | 10084.42 | P | Fe I
Zr I | 1209
39 | | 30 | | Fe I | 1296
3 | 9856.7
9861.793 | P | Fe I | 1296 | 10084.70
10086.27 | P | Fe I | 399 | | 7841
49 | | A I
C I | 2 | 9862.5 | | N I | 19 | 10091.12 | • | Te I | 1 | | 94 | | Fe I | 1292 | 9865.44 | | v i | 76 | 10091.64 | | Cl I | 10 | | 42 | | Ti I | 194 | 9868.09 | | Fe I | 1292,1299 | 10107.19 | | Al II | 6 | | 58 | P | Ca I | 55 | 9875.95 | | C1 I | 11 | 10108.01 | | Al II | 6 | | 29 | P | Ca I | 55 | 9878.18 | P | Fe I | 1293 | 10108.37 | | Al II | 6 | | 426 | | Ne I | 8 | 9879.41 | - | Ti I | 149 | 10113.4 | | N I
Fe I | 18 | | 59 | | Fe I
Cr I | 29 | 9881.51
9886.92 | P | Fe I
Si I | 1209
85 | 10113.86
10117.81 | P | re I
Fe I | 264
1295 | | 20
9 | | VI | 106 | 9889.082 | | Fe I | 1296 | 10117.81 | | Ti I | 315 | | 48 | | Cr I | 29 | 9891.90 | | Si I | 71 | 10120.90 | | Ti I | 193 | | 34 | | SI | 17 | 9898.90 | | N1 I | 243 | 10122.50 | | Al II | 6 | | 16 | | Fe I | 580 | 9900.87 | | Cr I | 80 | 10123.61 | | He II | . 2 | | 55 | | Ti I | 32 | 9903.74 | | PΙ | 4 | 10137.06 | P | Fe I | 1294 | | 25 | P | Ca I | 55 | 9913.16 | | Si I | 65 | 10138.50 | | He I | 89 | | 42 | | Fe I | 1345 | 9913.19 | P | Fe I | 1292 | 10142.82 | | Fe I | 1294 | | 50 | | Mn I | 60 | 9917.93 | _ | Fe I | 1317 | 10143.59 | P | Fe I | 979 | | 41 | | 0 1 | 58 | 9920.46 | P | Fe I
As I | 1292
2 | 10145.00 | P | Fe I
Ni I | 621 | | 80 | | S I
Fe I | 17
1337 | 9923.03
9924.35 | P | Fe I | 737 | 10145.37
10145.48 | | Ti I | 243 | | 57
9 | | Mn I | 60 | 9927.35 | • | Ti I | 149 | 10145.601 | | Fe I | 1247 | | 3 | | Mn I | •• | 9932.26 | | s I | 16 | 10147.09 | | Ti I | 315 | | 60 | P | Ca I | 55 | 9933.3 | P | Ca II | 12 | 10147.3 | | N I | 18 | | 86 | | Ti I | 32 | 9937.10 | P | Fe I | 1210 | 10149.09 | P | Fe I | 1294 | | 35 | | Ni I | 295 | 9941.33 | | Ti I | 193 | 10153.13 | P | Si I | 40 | | 41 | | Si I | 65 | 9944.13 | | Fe I | 1285 | 10153.30 | P | Fe I | 1348 | | 62 | | Ti I | 194 | 9948.98 | | Ti I
Cr I | 193
226 | 10155.18 | P | Fe I
Si I | 59
64 | | 58
68 | | V I
S I | 106
20 | 9949.06
9949.84 | | SI | 16 | 10155.88
10156.50 | P | Fe I | 1209 | | 69 | | Fe I | 1292 | 9950.5 | | кī | 8 | 10164.5 | - | N I | 18 | | 33 | | SI | 17 | 9950.70 | P | Fe I | 1209 | 10167.4 | | Fe I | 59 | | 70 | | Fe I | 1292,1299 | 9951.15 | P | Fe I | 1346 | 10170.60 | | Ti I | 95 | | 81 | P | Ca I | 55 | 9953.45 | P | Fe I | 1346 | 10179.92 | | Ti I | 315 | | 35
66 | | C1 I
He I | 1
75 | 9955.2
9955.85 | P | K I
Fe I | 8
1211 | 10189.26
10191.51 | P | Ti I
Fe I | 95
149 | | | | | | | - | | | | • | | | | 86
64 | | Ti I
Ti I | 248
32 | 9958.90
9959.18 | P | S I
Fe I | 998 | 10193.25
10193.66 | | N1 I
V I | 213
76 | | -21 | P | N1 I | 285 | 9961.0 | • | Na. I | 23 | 10195.11 | | Fe I | 264 | | 00 | - | Ti I | 248 | 9967.32 | P | Fe I | 1293 | 10197.05 | | Cr I | 80 | | ∍96 | | Ti I | 124 | 9967.46 | | Si I | 64 | 10203.45 | | VΙ | . 76 | | -88 | | Te I | 1 | 9970.26 | P | Fe I | 461 | 10204.72 | | PI | 4 | | 36 | | Ti I | 32 | 9976.65 | | P I
Fe I | 2 | 10216.351 | | Fe I | 1247 | | 32
52 | | Cr I
Ćr I | 226
29 | 9977.52
9980.55 | | Fe I | 1293
1295 | 10218.36
10262.49 | P | Fe I
Si I | 461
63 | | .74 | | PI | 2 | 9981.16 | | Ti I | 1280 | 10265.23 | P | Fe I | 59 | | .50 | | V I | 106 | 9987.0 | | Mg I | 36 | 10283.87 | P | Fe I | 1346 | | 60 | | Si I | | 9987.88 | P | Fe I | 59 | 10288.83 | • | Si I | 6 | | 624 | | Fe I | 1296 | 9993.7 | | MgI | 36 | 10295.05 | | Ni I | | | .74 | | s I | 20 | 9997.94 | | Ti I | 149 | 10302.61 | | Ni I | 242 | | .49 | | 0 I | 57 | 10001.35 | P | Si I
Ti I | 64 | 10307.48 | P | Fe I | 1208 | | .03 | | S I
Hf II | 20
66 | 10003.02 | | Ti I | 103
193 | 10807.60 | | se r
He I | £
74. | | .60 | | Ti I | 32 | 10012.15 | P | Fe I | 1336 | 10311.18
10311.37 | | He I | 74 | | 33 | | C1 I | 10 | 10015.33 | - | Si I | | 10311.88 | P | Fe I | 106 | | 86 | | Ti I | 248 | 10016.67 | P | Fe I | 1293 | 10321.10 | | N1 I | 289 | | . 24 | | Fe 1 | 1209 | 10019.77 | P | Fe I | 1348 | 10327.30 | | Se I | 2 | | .73 | | PΙ | 2 | 10020.16 | | Si I | 41 | 10327.314 | | Sr II | 2 | | .84 | | Cr I | 80 | 10022.34 | P | Fe I | 1345 | 10330.23 | | Ni I | 224 | | , 129 | | Fe I | 1247 | 10023.98 | _ | As I | 2 | 10332.33 | P | Fe I | 858 | | .08 | | Si I
O I | 65
56 | 10025.80
10026.10 | P
P | Si I
Fe I | 64
1211 | 10333.24 | P | Fe I
Fe I | 1208
59 | | .65
.450 | | Fe I | 1296 | 10025.10 | r | He I | 81 | 10340.77
10343.85 | | Ca I | 59
43 | | 913 | | Fe I | 1292 | 10031.16 | | He I | 85 | 10348.16 | | Fe I | 1347 | | .40 | P | Fe I | 1348 | 10032.84 | P | Fe I | 1348 | 10353.85 | P | Fe I | 1346 | | .27 | | Si I | 7 | 10034.45 | | Ti I | 95 | 10362.73 | P | Fe I | 1345 | | , 10 | | Si I | | 10036.658 | | 9r II | 2 | 10864.18 | P | Fc I | 1847 | | .28 | _ | Ti I | 32 | 10046.64 | | D
N4 T | 2 | 10371.23 | | Si I | 6 | | .06
.30 | P | Fe I
Ti I | 1211
32 | 10048.60
10048.78 | | Ni I
Ti I | 242
95 | 10378.62 | P | Ni I
Fe I | 224
59 | | .59 | | Ti I | 32
32 | 10049.38 | | R | 8 | 10379.01
10386.45 | r | Se I | 2 | | 96 | | Fe I | 1295 | 10051.55 | | Te I | i | 10388.73 | P | Fe I |
1346 | | 5010 |) | AI | 8 | 10057.64 | | Fe 1 | 1294 | 10392.45 | - | G1 1 | 10 | | .62 | | Fe I | 1171 | 10057.69 | _ | Ti I | 193 | 10395.75 | | Fe I | 59 | | .67 | | Ti I | 32 | 10058.28 | P | Fe I | 59
95 | 10396.85 | ~ | Ti I | 31
461 | | . 24 | | Si I | 68 | 10059.87 | | Ti I | 95 | 10401.72 | P | Fe I | 461 | | 36 | | | | | LINI | DING TIS | 11 | | | | | |------------------|------|--------------|---------------|----------------------|------|-------------------|---------------|----------------------|------|--------------|---------------| | I A | туре | Element | Multiplet No. | I A | Type | Element | Multiplet No. | IA | Type | Element | Multiplet No. | | 405.05 | | Ge I | 7 | 10838.77 | | Ca I | 56 | 11564.8 | | N I | 12 | | 422.99 | | Fe I | 264 | 10844.02 | | Si I | 31 | 11588.73 | P | Ni I | 242 | | 423.65 | | Fe I | 461 | 10844.54 | | Ne I | 26 | 11591.98 | | Si I | 90 | | 435.38 | P | Fe I | 1246 | 10847.72 | | Ti I | 31 | 11593.55 | | Fe I | 58 | | 452.70 | | Fe I | 955 | 10849.68 | | Fe I | 1352 | 11602.94 | P | CI | 25 | | 455.47 | | S I | 3 | 10861.51 | | Ca I | 56 | 11607.42 | | Si I | 82 | | 456.79 | | S I | 3 | 10863.60 | | Fe _. I | 1246 | 11607.57 | | Fe I | 58 | | 459.46 | | S I | 3 | 10863.72 | | Ca I | 56 | 11609.41 | | Ti I | | | 460.07 | | Ti I | 223 | 10869.37 | | CaI | 56 | 11609.91 | P | °C I | 25 | | 469.59 | | Fe I | 979 | 10869.54 | | Si I | 13 | 11611.49 | | Si I | 90 | | 470.051 | | AI | 6 | 10872.47 | P | Al I | 12 | 11619.0 | | c r | 25 | | 486.24 | | Cr I | 118 | 10875.00 | P | Fe I | 1316 | 11626.40 | | He II
N I | 6 | | 496.14 | | Ti I
N I | 31
28 | 10879.78 | | Ca I
Fe I | 56
336 | 11628.0 | P | N I
C I | 12
25 | | 506.5 | | N I
Cr I | 118 | 10881.65
10882.66 | | Si I | 53 | 11631.59
11638.25 | r | Fe I | 58 | | 509.96 | | PI | 1 | 10884.30 | | Fe I | 979 | 11638.60 | Р | CI | 25 | | 511.45
529.45 | | ΡĪ | i | 10885.16 | | Si I | 77 | 11640.58 | - | Si I | 90 | | 530.53 | | Ni I | 224 | 10890.13 | P | Fe I | 1341 | 11656.0 | | CI | 29 | | 532.21 | | Fe I | 979 | 10891.21 | P | Al I | 12 | 11656.0 | | N I | 12 | | 539.0 | | N I | 28 | 10891.25 | | N1 I | 224 | 11667.1 | | C I | 25,29 | | 548.0 | | е і | 20 | 10893.72 | P | Si I | 78 | 11676.99 | P | СІ | 25 | | 548.0 | | N I | 28 | 10896.10 | | Ti I | 310 | 11689.76 | | K I | 6 | | 553.02 | | Ti I | 223 | 10896.30 | | Fe I | 461 | 11689.98 | | Fe I | 58 | | 555.63 | P | Fe I | 1345 | 10912.92 | | He I | 79 | 11747.5 | | CI | 24 | | 562.49 | | No I | 40 | 10014.2 | P | Mg II | 3 | 11754.0 | | c i | 24 | | 565.97 | | Ti I | 223 | 10914.877 | | Sr II | 2 | 11769.41 | | K I | 6 | | 577.14 | P | Fe I | 579 | 10916.98 | | He I | 84 | 11772.66 | | K I | 6 | | 581.52 | | PI | 1 | 10925.80 | | Fe I
Cr I | 1350 | 11783.28 | | Fe I | 337 | | 582.66 | | Si I
Ti I | 84
31 | 10929.90
10935.11 | | D | 118
2 | 11801.8 | | C I
Mg I | 24
6 | | 584.66 | | | | | | | | 11828.8 | | _ | | | 585.12 | | Si I
P I | 6
1 | 10938.09
10947.51 | | H
Ge I | 8
6 | 11836.4 | P | Ca II
C I | 5
23 | | 596.92
603.38 | | Si I | 5 | 10949.4 | P | Mg II | 3 | 11849.3
11863.0 | | C I | 23 | | 607.78 | | Ti I | 31 | 10957.19 | - | Cr I | 118 | 11880.4 | | CI | 23 | | 616.75 | P | Fe I | 579 | 10961.2 | P | Mg I | 35 | 11882.80 | | Fe I | 58 | | 627.81 | • | Si I | 32 | 10966.1 | P | MgI | 35 | 11884.12 | | Fe I | 58 | | 647.66 | | Cr I | 118 | 10979.27 | | Si I | 5 | 11890.44 | P | Si I | 12 | | 653.6 | | СІ | 8 | 10979.87 | | N1 I | 242 | 11894.9 | | СІ | 23 | | 660.98 | | Si I | 5 | 10982.28 | | Si I | 77 | 11905.83 | | Cr I | 221 | | 661.61 | | Ti I | 31 | 10984.24 | | Si . I | 77 | 11927.89 | P | N1 I | 242 | | 667.53 | | Cr I | 118 | 10987.22 | P | Fe I | 337 | 11947.0 | P | Ca II | 5 | | 667.60 | | He I | 73 | 10996.55 | | He I | 78 | 11969.07 | | He I | 72 | | 672.17 | | Cr I | 118 | 11012.97 | | He I | 70 | 11973.01 | | Fe I | 58 | | 673.55 | | A I
Ti I | 10 | 11013.27 | | Fe I
Cr I | 1246
221 | 11984.20 | | Si I
Si I | 4
4 | | 677.04 | | P I | 31
1 | 11015.63
11018.00 | | Si I | 39 | 11991.57
11997.9 | | N I | 37 | | 681.43
683.18 | | C ·I | i | 11018.00 | | K I | 9 | 12031.49 | | Si I | 4 | | 685.44 | | CI | 1 | 11044.64 | | Cr I | 118 | 12074.1 | | N I | 37 | | 689.52 | | Si I | 53 | 11044.95 | | He I | 88 | 12083.79 | P | Mg I | 26 | | 691.36 | | CI | 1 | 11119.80 | | Fe I | 337 | 12103.46 | | Si I | 4 | | 594.14 | | Si I | 53 | 11125.28 | | Ge I | 6 | 12107.4 | | N I | 37 | | 707.44 | | CI | 1 | 11130.37 | | Si I | 77 | 12128.6 | | N I | 27. | | 725.19 | P | Fe I | 858 | 11149.34 | | Fe I | 336 | 12186.9 | | N I | 27,34 | | 726.33 | | Ti I | 31 | 11157.03 | | Cr I | 221 | 12203.4 | | N I | 27 | | 727.21 | | Si I | 53 | 11187.74 | | Si I | 76 | 12232.9 | | N I | 27 | | 729.59 | | CI | 1 | 11196.70 | P | N1 I | . 81 | 12270.50 | | Si I | 4 | | 732.89 | | Ti I | 31 | 11202.02 | | Si I | 76 | 12288.0 | | N I | 27,34 | | 734.14 | | Ge I | 6 | 11225.83 | | He I | 87 | 12327.7 | _ | N I
Si I | 34 | | 745.9
748.7 | | Na I
Na I | 18
18 | 11227.5
11230.91 | | N I
Ti I | 17 | 12395.97
12434.3 | P | KI | 4
5 | | | | | | | | | | | | | | | 749.40
752.99 | | SI I
Fe I | 5
1352 | 11251.09
11253.81 | P | Fe I
Al I | 337
8 | 12461.2
12467.8 | | N I
N I | 36
36 | | 754.09 | P | CI | 1 | 11255.69 | P | Al I | 8 | 12521.0 | | CI | 28 | | 762.24 | _ | Ni I | 242 | 11290.01 | - | Si I | 76 | 12523.0 | | K I | 5 | | 768.39 | P | Al I | 13 | 11294.0 | | NI | 17 | 12551.0 | | CI | 30 | | 774.92 | | Ti I | 31 | 11294.97 | | 0 I | 7 | 12565.0 | | СІ | 30 | | 780.71 | P | Fe I | 579 | 11297.54 | | 0 I | 7 | 12582.3 | | C I | 30 | | 782.12 | P | Al I | 13 | 11298.83 | | Fe I | 337 | 12582.3 | | ΝI | 36 | | 783.09
784.33 | | Fe I
Si I | 461
53 | 11302.22
11308.45 | | O I
Si I | 7
76 | 12602.6
12614.8 | | CI | 30
30 | | | | | | | | | | | | | | | 786.78
786.86 | Р | Al I
Si I | 13
5 | 11313.8
11329.0 | | N T
N I | 17
17 | 12679.0
12814.56 | | Na T
D | 21
2 | | 792.59 | P | Ti I | 31 | 11329.0 | | CI | 19 | 12814.56 | P | Ca I | 52 | | 793.65 | - | Ti I | 310 | 11355.97 | | Fe I | 858 | 12818.05 | - | Н | 8 | | 796.52 | | Si I | 78 | 11374.02 | | Fe .I | 58 | 12823.89 | P | Ca I | 52 | | 798.12 | | Ne I | 22 | 11381.21 | | Na I | 3 | 12827.09 | P | Ca I | 52 | | 301.37 | | Cr I | 118 | 11381.53 | | T1 I | | 13123.37 | P | Al I | 4 | | 312.8 | | Mg I | 37 | 11403.55 | | Na I | , 3 | 13150.68 | P | Al I | 4 | | 313.03 | | P I
Cr I | 1
118 | 11403.89 | | Ti I
Fe I | 58 | 13164.1 | | СІ | 27 | | 316.91 | | | | 11422.30 | | | 98 | | | | | | 318.36 | | Fe I
Ti I | 979
310 | 11439.06 | | Fe I
S I | 337 | | | | | | 320.31
321.62 | | Cr I | 310
118 | 11453
11464 | | SI | 19
19 | | | | | | 327.09 | | Si I | 5 | 11468.54 | | Si I | 76 | | | | | | 328.04 | | Ti I | 31 | 11472 | | SI | 19 | | | | | | 329.081 | | He I | 1 | 11479.87 | P | Fe I | 1315 | | | | | | 330.250 | | He I | 1 | 11485.68 | _ | Si I | 83 | | | | | | 330.341 | | He I | 1 | 11502.94 | | Si I | 90 | | | | | | 333.12 | | Ca I | 56 | 11539.50 | _ | Ti I | | | | | | | 334.4 | | Na I | 22 | 11542.96 | P | Fe I | 1341 | | | | | | | | | | | | | | | | | | ### FINDING LIST Forbidden Lines | | Element | Multiplet No. | I A | Element | Multiplet No. | I A | Element | Multiplet No. | |-------------|------------------|---------------|--------------------|------------------|---------------|---------------------|------------------|---------------| | | Ne V | 2 F | 3298.61 | Cr II | 5 F | 3492.5 | Co VII | 3 F | | 3 | 0 I | 2 F | 3299.6 | N1 VII | 1 F | 3493.55 | Fe I | 10 F | | 4 | ·N1 VII | 1 F | 3299.8 | Co VI | 1 F | 3494.7 | Fe VI | 4 F | | .6
1 | N1 VII
A III | 3 F
2 F | 3300.5
3301.6 | Fe III
Fe III | 6 F | 3500.4
3501.62 | Mg VI
Fe II | 1 F
26 F | | 4 | Ti III | 5 F | 3307.0 | Co VI | 2 F | 3503.0 | Mg VI | 20 F | | .4 | N1 VIII | 4 F | 3316.1 | Fe III | 7 F | 3503.5 | Fe V | 4 F | | .3 | N1 VIII | 3 F | 3318.38 | Fe II | 27 F | 3503.8 | N1 VII | 1 F | | .3
.4 | N1 VII
N1 VII | 1 F
3 F | 3319.2
3319.3 | Fe III
Na IV | 6 F
1 F | 3504.02
3504.51 | Fe II
Fe II | 26 F
26 F | | .44 | Mn II | 4 F | | Fe III | 5 F | | Fe II | 25 F | | 61 | Mn II | 4 F | 3322.54
3326.9 | Co VI | 2 F | 3505.81
3509.78 | Fe I | 10 F | | .52 | Mn II | 4 F | 3329.3 | Ca XII
Fe III | 1 F | 3511.6 | Fe VI | 4 F | | ,8
,05 | Ni VII
Mn II | 3 F
4 F | 3333.8
3334.9 | Fe III | 6 F
6 F | 3511.64
3512.9 | Fe I
Co VI | 10 F
1 F | | ,0 | N II | 2 F | 3336.9 | Co VI | 2 F | 3516.17 | Fe I | 10 F | | ,29 | Cr II | 8 F | 3337.7 | Ti III | 4 F | 3522.76 | Fe I | 10 F | | .8 | Al VII | 1 F | 3337.77 | Cr II | 5 F | 3524.38 | Fe II | 26 F | | .8
.0 | N II
Co VII | 2 F
4 F | 3337.82
3338.5 | Mn II
Co VII | 3 F | 3527.33
3528.28 | Fe I
Fe II | 10 F
25 F | | | | | | | | | | | | .0
.11 | Al VII
Ni II | 1 F
6 F | 3339.14
3340.7 | Fe II
Fe III | 27 F
6 F | 3532.2
3536.25 | F IV
Fe II | 2 F
26 F | | .6 | Ni VIII | 3 F | 3341.38 | Mn II | 3 F | 3538.69 | Fe II | 26 F | | .6 | N1 VII | 3 F | 3341.5 | Co VI | 1 F | 3538.8 | Co VI | 1 F | | .76 | Cr II | 8 F | 3342.7 | C1 III | 2 F | 3539.19 | Fe II | 26 F | | .4
.6 | Al VII
Co VII | 1 F
4 F | 3342.9
3344.72 | Ne III
Mn II | 2 F
3 F | 3543.5
3558.1 | Fe VI
Fe VI | 5 F
4 F | | .7 | Al VII | 1 F | 3345.9 N | Ne V | 1 F | 3559.86 | N1 II | 5 F | | .0 | Ni VII | 1 F | 3353.4 | C1 III | 2 F | 3569.0 | Fe VI | 5 F | | .1 | N1 VII | 3 F | 3355.5 | Fe III | 6 F | 3575.6 | Fe VI | 4 F | | •0 | A III | 2 F | 3356.6 | Fe III | 6 F | 3575.72 | Fe II | 25 F | | .1 | Ni VII
Cl IV | 3 F
2 F | 3361.7 | Co VII
Fe V | 3 F
4 F | 3579.81 | Fe II
Cl II | 25 F
2 F | | .3
.18 | Fe II | 12 F | 3362.5
3363.2 | Ti III | 4 F |
3583.2
3586.8 | Co VI | 1 F | | .5 | Co VII | 4 F | 3366.2 | Fe III | 6 F | 3587.2 | Fe VII | 3 F | | .21 | Fe II | 12 F | 3367.3 | Fe III | 6 F | 3590.8 | Sc VI | 2 F | | .4 | N1 VII
Co VII | 3 F
3 F | 3367.5 | Co VI
Fe V | 2 F
4 F | 3593.3 | T1 III
N1 XVI | 6 F
1 F | | .2
.55 | Cr II | 7 F | 3368.9
3371.4 | Fe III | 5 F | 3601.3
3608.5 | Ti III | 6 F | | .38 | Fe II | 11 F | 3374.6 | Fe V | 4 F | 3615.5 | Ti III | 9 F | | .05 | Fe II | 12 F | 3376.20 | Fe II | 26 F | 3616.00 | Fe II | 25 F | | .01 | Fe II | 11 F | 3378.4 | Ti III | 4 F | 3622.9 | Ti III | 6 F | | .79
.1 | Cr II
Co VII | 7 F
3 F | 3378.55
3379.7 | N1 II
N1 VII | 5 F
1 F | 3627.35
3628.65 | Ni II
Fe II | 5 F
25 F | | .76 | Fe II | 12 F | 3380.95 | Fe II | 27 F | 3630.3 | Fe VI | 5 F | | . 2 | N1 VII | 1 F | 3387.10 | Fe II | 26 F | 3631.4 | Mn VI | 3 F | | .3 | N1 VII | 3 F | 3387.7 | Fe XIII | 2 F | 3631.8 | Ti III | 6 F | | .25 | Cr II
Cl IV | 6 F
2 F | 3388.2 | Co VI
Ni VII | 2 F
2 F | 3638.4 | Ti III
Ti III | 6 F
6 F | | .3
.46 | Cr II | 6 F | 3396.7
3398.5 | Co VI | 2 F | 3640.6
3643.3 | N1 XIII | 2 F | | .6 | Ti III | 7 F | 3400.3 | Fe V | 4 F | 3645.7 | Fe VI | 4 F | | 1.3 | Co VII | 4 F | 3402.50 | Fe II | 27 F | 3646.3 | Ca VI | 1 F | | 1.94 | Fe II | 12 F | 3403.3 | Co VI | 1 F | 3656.3 | T1 III | 6 F | | 1.75 | Cr II
Ni VII | 6 F | 3403.65
3405.39 | Fe I
Fe I | 10 F
10 F | 3658.1 | Co VI
Fe II | 1 F
10 F | | :•5
:•5 | T1 III | 1 F | 3406.2 | Fe III | 10 F | 3659.96
3661.3 | T1 III | 10 F | | : • 67 | Fe II | 11 F | 3406.6 | Fe V | 4 F | 3664.1 | Fe VI | 4 F | | .32 | Cr II | 6 F | 3413.3 | N1 VII | 2 F | 3670.62 | Fe II | 10 F | | 54 | Fe II
Ti III | 11 F
7 F | 3425.8 N | Ne V
Fe II | 1 F
27 F | 3672.37
3675.0 | Cr I
Cl II | 4 F
2 F | | 1.7 | | | 3428.24 | | | | | | | 1.99 | Fe II | 11 F | 3428.8 | Fe III | 5 F | 3675.2 | Fe VI | 5 F
4 F | | 1.2 | Ni VIII
Fe II | 3 F
12 F | 3430.3
3439.29 | Fe V
Ni II | 4 F
5 F | 3678.71
3680.3 | Cr I
Ni IX | 2 F | | 3.7 | Fe III | 7 F | 3440.3 | N1 VII | 1 F | 3686 | V VIII | 1 F | | 1.07 | Cr II | 5 F | 3440.99 | Fe II | 26 F | 3688? | Ca VII | 2 F | | 1.7 | Fe III | 6 F | 3444.1 | Co VI | 2 F | 3695.0 | N1 VIII | 2 F | | 1.2 | Co VII
Ni VII | 3 F
1 F | 3445.4
3445.9 | Fe V
Na IV | 4 F
1 F | 3702.7
3705.8 | Ca VI
Ni VIII | 1 F
2 F | | 1.18 | Fe II | 11 F | 3450.39 | Fe II | 27 F | 3708.3 | Co VI | 1 F | | 1.24 | Fe II | 11 F | 3452.30 | Fe II | 26 F | 3709.14 | Fe II | 10 F | | 1.7 | Fe III | 6 F | 3452.54 | Fe I | 10 F | 3712.26 | Fe II | 10 F | | 3.31 | Fe II | 11 F | 3454.34 | Fe I | 10 F | 3721.1 | s III | 2 F | | 3.73 | Fe II | 11 F | 3455.11 | Fe II | 26 F | 3726.16 N | 0 II | 1 F | | 1.7
3.1 | Co VII
Ti VII | 3 F
2 F | 3457.3
3458.73 | Fe VII
Fe I | 3 F
10 F | 3728.91 N
3733.6 | Mn VI | 1 F
3 F | | 1.84 | Fe II | 11 F | 3460.20 | Fe II | 25 F | 3735.2 | Fe V | 3 F | | 8.9 | Co VI | 2 F | 3461.40 | Fo II | 27 F | 3736.17 | Fe II | 10 F | | 3.5 | Cr IX | 1 F | 3463.4 | Fe V
Co VI | 4 F
2 F | 3740.2 | Fe VI
Fe V | 5 F
3 F | | 1.7
5.02 | Co VII
Fe II | 4 F
11 F | 3465.7
3466.4 | N I | 2 F | 3744.1
3751.66 | Fe II | 10 F | | 7.12 | Fe II | 11 F | 3470.0 | N1 IX | 2 F | 3754.98 | Fe I | 9 F | | 7.12 | Co VI | 1 F | 3476.5 | Co VI | 2 F | 3755.5 | Fe V | 3 F | | 7.55 | Fe II | 11 F | 3481.5 | Co VI | 1 F | 3759.9 | Fe VII | 3 F | | 3.1 | Fe III | 7 F | 3484.01 | Fe II | 27 F
1 F | 3761.0 | Co VI
Fe V | 1 F
3 F | | 5.6
6.2 | Co VI
Fe III | 2 F
6 F | 3485.5
3486.6 | Mg VI
N1 VII | 1 F
2 F | 3764.8
3774.9 | Fe VI | 3 F | | 7.35 | Fe II | 11 F | 3487.23 | Fe I | 10 F | 3776.1 | Fe VI | 4 F | | 9.46 | Fe II | 11 F | 3488.1 | Mg VI | 1 F | 3777.4 | Fe V | 1 F | | 9.89 | Fe II | 11 F | 3489.07 | Fe I | 10 F
26 F | 3782.9
3794 6 | Fe V
Fe V | 3 F
3 F | | 5.4 | Co VI | 2 F | 3489.98 | Fe II | ZU F | 3794.6 | Y.C. 1 | 3 . | # FINDING LIST Forbidden Lines | | | | | | G | | | | |------------------|-----------------|---------------|---------------------|------------------|---------------|--------------------|-------------------|---------------| | I A | Element | Multiplet No. | I A | Element | Multiplet No. | I A | Element | Multiplet No. | | 3 6.7 | s III | 2 F | 4055.5 | Mn V | 4 F | 4231.56 | Fe II | 21 F | | 98.2 | Fe V | 1. F | 4059.3 | F IV | 1 F | 4234.81 | Fe II | 37 F | |)6.34 | Cu II | 2 F | 4062.2 | Mn V | 4 F | 4243.98 | Fe II | 21 F | | 10.6 | N1 IX | 2 F | 4065.7 | 'N1 IX | 2 F | 4244.81 | Fe II | 21 F | | 12.07 | Fe I | 9 F | 4068.62 N | S II | 1 F | 4249.07 | Fe II | 36 F | | l4.58 | Fe I | 9 F | 4070.7 | Fe III | 4 F | 4249.48 | N1 II | 4 F | | 15.1 | Fe VI | 3 F | 4071.5 | Fe V | 1 F | 4251.99 | Cr I | 2 F | | 20.2 | Fe V
Fe II | 3 F
9 F | 4076.22 N
4077.5 | S II
Fe V | 1 F
2 F | 4262.7 | Co VII
Ti VIII | 2 F
1 F | | 14.73
16.89 | Fe II | 8 F | 4079.7 | Fe III | 2 F | 4263?
4263.07 | Fe I | 7 F | | 10.00 | | • • | 201011 | | • • | 2200101 | | | | 8.1 | Fe V | 1 F | 4080.00 | Fe II | 24 F | 4263.62 | Fe I | 8 F | | 18.9 | Fe V | 3 F | 4083.78 | Fe II | 23 F | 4266.34 | Fe II. | 36 F | | :6.46 | Fe I | 9 F | 4084.32 | Fe II | 24 F | 4268.67 | Fe II | 37 F | | 7.78 | Fe II
Fe VI | 8 F
3 F | 4086.5 | Ca XIII | 1 F
2 F | 4269.60 | Fe I | 7 F | | 9.1
0.3 | Ni VIII | 3 F
2 F | 4093.0
4096.6 | Fe V
Fe III | 2 F
4 F | 4270.62
4274.87 | Fe II
Mn II | 36 F
6 F | | 0.8 | Fe V | 3 F | 4097? | K VI | 2 F | 4275.21 | Mn II | 6 F | | 1.63 | Fe II | 9 F | 4099.29 | Fe I | 8 F | 4276.83 | Fe II | 21 F | | 6.98 | Fe I | 9 F | 4103.1 | Co VII | 2 F | 4278.21 | Fe I | 7 F | | 2.3 | N1 VIII | 2 F | 4104.59 | Fe I | 8 F | 4278.97 | Mn II | 6 F | | | | | | | | | | _ | | 6.9 | Mn VI
Ne III | 3 F
1 F | 4106.1 | N1 VIII | 2 F | 4280.04 | Fe I | 8 F | | 8.74 N
3.51 | Fe. I | 9 F | 4107.51
4108.02 | Fe I
Fe I | 7 F
8 F | 4285.90
4287.40 | N1 II
Fe II | 4 F
7 F | | 4.07 | Fe II | 8 F | 4112.7 | N1 IX | 2 F | 4294.70 | Ni II | 4 F | | 2.73 | Fe- 11 | 24 F | 4113.42 | Cr I | 3 F | 4297.8 | N1 VIII | 1 F | | 4.57 | Fe I | 9 F | 4113.7 | Mn V | 4 F | 4298.8 | N1 VIII | 2 F | | 9.58 | Fe I | 9 F | 4114.10 | Cr I | 3 F | 4302.3 | Cr V | 3 F | | 0.9 | Fe VI | 3 F | 4114.48 | Fe II | 23 F | 4305.90 | Fe II | 21 F | | 1.8 | Fe V | 3 F | 4116.36 | Cr I | 3 F | 4308.4 | Mp V | 4 F | | 1.40 | Fe II | 8 F | 4116.60 | Ti II | 20 F | 4310.46 | Ni II | 10 F | | 5.7 | Fe V | 1 F | 4117.09 | Cr I | 3 F | 4314.92 | N1 II | 10 F | | 9.19 | Fe I | 9 F | 4120.7 | Mn V | 4.F | 4319.62 | Fe II | 21 F | | 5.62 | Fe II | 8 F | 4122.6 | Mn X | 2 F | 4321.92 | Fe II | 37 F | | 1.1 | Fe V | 3 F | 4123.9 | Fe V | 2 F | 4326.85 | Ni II | 3 F | | 1.83 | Se III | 1 F | 4125? | K L | 1 F | 4329.43 | Fo II | 36 F | | 7.23 | Fe I | 9 F | 4129.4 | Fe III | 4 F | 4331.7 | N1 IX | 1 F | | 7.64
3.5 | Fe I
Fe V | 9 F
3 F | 4129.49
4130.47 | Ti II
Fe I | 20 F
8 F | 4331.9 | Mn V
Fe II | 3 F | | 3.35 | Fe II | 24 F | 4130.7 | Fe III | 4 F | 4346.85
4347.35 | Fe II | 21 F
36 F | | 1.44 | Fe II | 8 F | 4131.51 | Fe JI | 24 F | 4351.05 | Fe II | 36 F | | | | | | | | | | | | 1.50 | Fe I | 9 F | 4134.01 | Fe II | 21 F | 4351.80 | Fe II | 36 F | | 3.72 | Fe II | 8 F | 4136.4 | Fe V | 1 F | 4352.78 | Fe II | 21 F | | 1.80
3.34 | Fe II
Sc III | 8 F
1 F | 4139.5
4140.4? | Co VII
Ti III | 2 F
8 F | 4356.14 | Fe II
Fe II | 22 F
6 F | | 1.70 | Fe I | 9 F | 4142.5 | Fe V | 2 F | 4358.10
4358.37 | Fe II | 21 F | | 3.0 | Co VIII | 2 F | 4143.17 | Ni II | 10 F | 4359? | A XIV | 1 F | |).27 | Fe II | . 8 F | 4144.3 | Fe III | 4 F | 4359.34 | Fe II | 7 P | | '-51 N | Ne III | 1 F | 4144.8 | Ti VII | 1 F | 4363.21 N | 0 III | 2 F | | 1.23 | Ti II | 11 F | 4144.97 | Fe I | 7 F | 4365.2 | Mn V | 3 F | | 1.27 | Fe II | 8 F | 4146.65 | Fe II | 21 F | 4372.43 | Fe II | 21 F | | 1.66 | Fe II | 24 F | 4147.21 | Ti II | 20 F | 4375.71 | Cu II | 1 F | | 1.1 | Fe V | 1 F | 4147.30 | N1 II | 10 F | 4377.37 | Fe I | 6 F | | 1.2 | Fe III | 4 F | 4149.52 | Cr I | 2 F | 4382.75 | Fe II | 6 F | | 1.97 | Fe II | 8 F | 4153.72 | Fe I | 8 F | 4384.21 | Fe II | 36 F | | .78 | Fe II | 9 F | 4156.25 | T1 II | 20 F | 4387.4 | Mn IV | 2 F | | .93 | Fe II
Ti II | 8 F | 4157.5 | F II | 2 F | 4391.1 | Mn IV
Cr V | 2 F | | 1.08
1.1 | Fe XI | 11 F
2 F | 4157.89
4160.9 | Fe II
Ti III | 37 F
10 F | 4396.9
4398.4 | Mn V | 3 F
3 F | | .38 | Fe II | 8 F | 4163.6? | Ti III | 8 F | 4402.60 | Fe II | 36 F | | .47 | Cr II | 4 F | 4165.79 | Cu II | 1 F | 4404.4 | Ni VIII | 1 F | | | | | | | | | | | | •64• | Fe II | 6 F | 4100? | ĸ v | 1 F | 4405.2 | Mn IV | 2 F | | -08 | Cr II
Cr II | 4 F | 4169.40 | T1 II
T1 II | 20 F
20 F | 4406.39 | Fe II
Fe II | 36 F
36 F | | .29
.57 | Cr II | 4 F | 4169.41
4175.2 | Fe V | 20 F
2 F | 4407.16
4407.9 | Cr IX | 36 F | | .65 | N1 II | 4 F | 4177.21 | Fe II | 21 F | 4408.5 | Mn IV | 2 F | | .8 | Fe VI | 3 F | 4178.93 | Fe I | 7 F | 4409.86 | Fe II | 22 F | | .3 | Ca V | 2 F | 4178.95 | Fe II | 23 F | 4413.78 | Fe II | 7 F | | .3 | F IV | 1 F | 4179.45 | Fe I | 8 F | 4414.45 | Fe II | 6 F | | .2 | Fe V | 1 F | 4181.3 | Fe V | 1 F | 4416.27 | Fe II | 6 F | | .07 | Ti II | 11 F | 4185.74 | Fe I | 8 F | 4422.4 | Co VIII | 2 F | | .07 | T1 II | 11 F | 4100 40 | Ti II | 20 F | 4427.7 | Mn IV | 2 F | | .3 | Fe III | 4 F | 4187.46
4190.53 | Fe II | 37 F | 4430.79 | Ti I | 25 F | | ,91 | Fe II | 9 F | 4190.6 | N1 IX | 2 F | 4432.45 | Fe II | 6 F | | .2 | Na V | 1 F | 4196.3 | Mn V | 4 F | 4432.8 | Mn V | 3 F | | .3 | Na. V | 1 F | 4197.81 | Fe II | 22 F | 4435.08 | Fe II | 36 F | | .38 | Fe II | 24 F | 4198.0 | Co VIII | 2 F | 4435.1 | Co VII | 2 F | | .5 | Na V | 1 F | 4200.6 | Ti III | 10 F | 4437.10 | Fe I | 6 F |
| .20 | Ti II
Na V | 11 F
1 F | 4201.56 | Fe I | 8 F
3 F | 4438.92 | Fe II | 36 F
36 F | | .6
.80 | Na V
Ni II | 1 F
4 F | 4201.74
4203.39 | Ni II
Fe I | 3 F
7 F | 4439.73
4442.0 | Fe II
Mn IV | 36 F
2 F | | | 114 44 1 | • • | #500.0ia | | , 2 | TITE:U | Mrs TA | | | .6 | Fe V | 1 F | 4203.5 | Mn V | 4 F | 4446.2 | Ni VIII | 1 F | | .41 | Fe II | 9 F | 4204.9 | Co VIII | 2 F | 4452.11 | Fe II | 7 F | | .15 | Ti II | 11 F | 4216.4 | N1 VIII | 1 F | 4454.37 | Fe I | 21 F | | .3 | N1 VIII | 2 F | 4217.71 | Fe I | 7 F | 4457.95 | Fe II | 6 F | | .56 | Ni II
Fe II | 4 F
24 F | 4225.9 | Ni VIII
Fe V | 1 F
2 F | 4458.57 | Fe I
Co VIII | 6 F
1 F | | .98
.57 | Ti II | 24 F
11 F | 4226.8
4229.8 | re v
Fe V | 2 F
1 F | 4461.0
4461.0 | Mn IV | 2 F | | .4 | Ni IX | 1 F | 4229.86 | Fe I | 7 F | 4461.54 | N1 II | 10 F | | .4 | Fe III | 4 F | 4230.40 | Fe I | 8 F | 4466.33 | Ni II | 10 P | | .5 | Ni VII1 | 1 F | 4231.4 | Nt XII | 1 F | 4468? | Ti VIII | 1 F | | | | | | | | | | | | | Element | Multiplet No. | I A | Element | Multiplet No. | I A | Element | Multiplet No. | |--------------|-----------------|---------------|--------------------|------------------|---------------|----------------------|------------------|---------------| | 29 | Fe II | 6 F | 4658.1 | Fe III | 3 F | 4874.21 | . v 11 | 8 F | | 37
46 | Ti I
Fe I | 19 F
6 F | 4662.7
4664.45 | Mn IV
Fe II | 1 F
4 F | 4874.49
4876.0 | Fe II
Cr III | 20 F
3 F | | 91 | Fe II | 7 F | 4664.97 | Fe II | 5 F | 4877.01 | Ti II | 10 F | | 0 | Co VII | 2 F | 4665.5 | Co VII | 2 F | 4880.00 | V 11 | 8 F | | 91 | Ti I
Mn IV | 15 F
1 F | 4665.65 | Fe II
Fe III | 4 F | 4881.0
4881.87 | Fe III
Mn II | 2 F
5 F | | 8
6 | Mn IV | 2 F | 4667.0
4669.5 | P II | 3 F
2 F | 4883.9 | Fe III | 1 F | | 84 | Ti I | 19 F | 4672.2 | Sc VI | 1 F | 4886.56 | Fe I | 4 F | | 87 | Ni II | 3 F | 4674.64 | Fe I | 21 F | 4887.27 | Cr II | 15 F | | 35 | T1 I | 19 F | 4677.94 | Fe I | 21 F | 4889.49 | Mn II | 5 F | | 75 | Fe II | 6 F | 4680.05 | Fe I | 5 F | 4889.63 | Fe II | 4 F | | 76
3 | Ti I
Co VIII | 19 F
2 F | 4685.99 | Fe I | 21 F | 4889.70
4893.9 | Fe II
Fe VII | 3 F
2 F | | 64 | Fe II | 6 F | 4687.56
4692.6 | Fe II
Co VII | 5 F
1 F | 4894.1 | Cr III | 3 F | | 23 | Fe I | 5 F | 4693.56 | Fe I | 5 F | 4894.8 | Cr IV | 4 F | | .3
57 | Ni VIII
Fe I | 1 F
6 F | 4694.59 | Fe I
Fe VII | 5 F
2 F | 4896.65
4896.87 | Mn II
V II | 5 F
8 F | | .3 | Mn IV | 2 F | 4699.0
4699.3 | Mn IV | 1 F | 4897.21 | v II | 8 F | | .21 | Ti I | 19 F | 4701.5 | Fe III | 3 F | 4898.49 | Ti I | 13 F | | .23 | Ti I | 19 F | 4711.4 | A IV | 1 F | 4898.64 | v m | 8 F | | .4 | Mn IV | 1 F | 4711.86 | Fe I | 21 F | 4899.4 | Cr IV | 4 F | | , 90 | Ti I | 19 F | 4714? | Ne IV | 1 F | 4901.1 | Co VII
Fe II | 1 F
20 F | | ,00
,36 | Ti I
Ti I | 19 F
19 F | 4715.21
4716? | Fe I
Ne IV | 21 F
1 F | 4905.35
4907.6 | Cr IV | 5 F | | .71 | Ti I | 19 F | 4716.36 | Fe II | 5 F | 4908.8 | Mn IV | 1 F | | .9 | Co VII | 1 F
2 F | 47177 | No IV | 1 F | 4911.9
4912.82 | Cr III
Ca I | 3 F
1 F | | .52 | Ti I | 19 F | 4719.7
4720? | Mn IV
Ne IV | 1 F
1 F | 4916.18 | Ca I | î F | | .61 | Fe II | 6 F | 4723.39 | Fe I | 21 F | 4916.26 | Fe I | 4 F | | .85 | Ti I | 19 F | 4700.07 | D- ** | 4 17 | 4916.81 | Ti II | 23 F | | .63 | Fe I | 6 F | 4728.07
4733.9 | Fe II
Fe III | 4 F
3 F | 4917.22 | Fe II | 3 F | | .0 | K IV | 2 F | 4734 | A AIII | 1 F | 4923.05 | V 11 | 7 F | | .90
.52 | Fe II
.T1 I | 6 F
19 F | 4736.6 | P II
Co VII | 2 F
1 F | 4924.5
4924.81 | Fe III
Cr II | 2 F
15 F | | .60 | Fe I | 6 F | 4738.9
4740.3 | A IV | 1 F | 4925.84 | Ti II | 23 F | | .36 | Ti I | 19 F | 4745.49 | Fe II | 20 F | 4928.68 | V II | 8 F | | .76
.16 | T1 I
Ni J | 19 F
3 F | 4750.57
4751.75 | Fe II
Fe .I | 5 F
4 F | 4928.9
4930.5 | Cr III
Fe III | 3 F
1 F | | .6 | Cr V | 3 F | 4754.7 | Fe III | 3 F | 4931.8 | 0 111 | 1 F | | ** | T1 I | 19 F | 47704 0 | M- *** | . 73 | 4936.4 | Fe III | 1 F | | .55
.3 | Mn IV | 2 F | 4761.9
4769.4 | Mn IV
Fe III | 1 F
3 F | 4938.6 | Ca VII | 1 F | | .39 | Fe II | 6 F | 4771.54 | Ti II | 10 F | 1940.22 | v II | 7 F | | .7 | Mn V
Fe I | 3 F
6 F | 4772.07 | Fe II | 4 F | 1942.3
1942.95 | Fe VII
Fe I | 2 F
4 F | | .00 | Fe II | 6 F | 4772.4
4774.74 | N1 VIII
Fe II | 1 F
20 F | 4946.76 | Ti I | 12 F | | .7 | Mn IV | 1 F | 4777.7 | Fe III | 3 F | 4947.17 | Cr II | 15 F | | .05 | Ti I
Fe I | 19 F
5 F | 4779? | Ti VIII | 1 F | 4947.38
4950.74 | Fe II
Fe II | 20 F
20 F | | .36
? | Ti VIII | 1 F | 4785.21
4785.9 | Ti II
Co VIII | 10 F
1 F | 4956.35 | Fe I | 4 F | | | W- * | O4 17 | | | | 4050.00 | F- 17 | . 70 | | .20 | Fe I
Be I | 21 F
1 F | 4789.19
4789.5 | Fe I
F II | 4 F
1 F | 4958.23
4958.91 N | Fe II
O III | 4 F
1 F | | .32 | Fe I | 21 F | 4793,03 | Ti II | 10 F | 4961.18 | Fe I | 4 F | | 1.5 | Mn IV | 2 F | 4798.28 | Fe II | 4 F | 4965.31
4965.6 | V II | 7 F | | .48
.64 | Fe II
Fe I | 6 F | 4799.31
4799.4 | Fe II
Cr IV | 4 F
5 F | 4965.78 | Cr III
Fe II | 3 F
3 F | | . 98 | Fe II | 6 F | 4799.5 | Fe III | 3 F | 4968.65 | V II | 7 F | | 49 | Fe I | 6 F | 4806.83 | T1 II | 10 F | 4968.8 | Fe VI | 2 F | | 1.7 | Fe II
Mn IV | 6 F
2 F | 4807.5
4813.27 | Fe VI
Ni I | 2 F
3 F | 4969.3
4971.8 | Cr IV
Cr IV | 5 F
4 F | | | | _ | 4010127 | 42.2 | 0.2 | | | | | 7 | Co VIII | 2 F
6 F | 4813.9
4814.0 | Fe III | 3 F | 4973.39 | Fe II
Fe VI | 20 F
2 F | | 1.23 | Fe I
N1 II | 10 F | 4814.0
4814.55 | Cr IV
Fe II | 5 F
20 F | 4974.0
4976.33 | V 11 | 7 F | | 1.9 | .Fe. III | 3 F | 4823.3 | Mn IV | 1 F | 4976.5 | Cr IV | 4 F | | 3.93 | Cr I | 1 F | 4823.44 | Ţ1 II | 10 F | 4982.73 | Ti II | 23 F | | i.46
i.84 | Ca I
Cr I | 2 F
1 F | 4824?
4824.1 | Sc VII
Fe III | 1 F
3 F | 4982.92
4983.42 | Ti I
Fe I | 11 F
4 F | | '.32 | Cr I | 1 F | 4835.4 | Cr 111 | 3 F | 4985.27 | · v II | 7 F | | 3.83 | Fe I | 5 F | 4837.42 | Ti II | 10 F | 4985.64 | Cr II
Fe III | 15 F | |).80 | Cr II | 9 F | 4838.7 | Cr IA | 4 F | 4985.9 | Pe 111 | 2 F | |).88 | Cr II | 3 F | 4842.4 | Cr III | 3 F | 4987? | Sc VII | 1 F | | 1.18 | Cr II
8 I | 3 F
2 F | 4843.1 | Cr IV | 4 F | 4987.2
4987.68 | Fe III
T1 II | 2 F
19 F | | 3.0
1.4 | Mn IV | 1 F | 4843.34
4843.51 | Fe I
Fe II | 4 F
3 F | 4988.75 | Ti I | 12 F | | 3.07 | Fe II | 4. F | 4847.01 | T1 I | 13 F | 4989.4 | Fe VII | 2 F | | 3.66
1.48 | Fe I
Fe II | 5 F
5 F | 4847.58 | Fe I | 4 F | 4992.68
5002.01 | Cr II
Fe I | 2 F
4 F | | 7.0 | Fe III | 3 F | 4850.9
4851.6 | Fe VI' | 2 F
1 F | 5002.63 | Ti II | 19 F | |)? | A V | 2 F | 4852.73 | Fe II | 20 F | 5002.88 | V II | 7 F | | 3.97 | Fe I | 21 F | 4857.50 | V II | 8 F | 5005.52 | Fe II | 20 F | | 1.5 | C I | 2 F | 4858.4 | Co VII | 1 F | 5006.63 | Ti II | 19 F | | 2.19 | Fe I | 21 F | 4859.87 | Cr II | 15 F | 5006.65 | Fe II | 4 F | | 7.3
3.06 | C I
Fe I | 2 F
21 F | 4861.41 | T1 II
T1 II | 23 F
10 F | 5006.84 N
5011.3 | O III
Fe III | 1 F
1 F | | 1.93 | Fe I | 5 F | 4862.80
4863.9 | Mn IV | 10 F
1 F | 5014.37 | Fe I | 4 F | | 2.27 | Fe II | 5 F | 4869.3 | F II | 1 F | 5020.24 | Fe II
Ti II | 20 F
19 F | | 9.68
0.05 | Fe II
Fa I | 4 F
5 F | 4870.8
4871.43 | Cr III
V II | 3 F
8 F | 5021.69
5025.53 | T1 I1 | 19 F | | 4.2 | N1 VIII | 1 F | 4872.80 | v II | 8 F | 5027.34 | Ni I | 3 F | | 2.2 | Co VII | 1 F | 4873.4 | Cr IV | 5 F | 5032.69 | Ti II | 19 F | | 1 A | Element | Multiplet No. | I A | Element | Multiplet No. | IA | Element | Multiplet No. | |----------------|-------------------|-------------------------------------|--------------------|------------------|--|--------------------|---------------------|----------------------------------| | 12.7 | Fe III | 2 F | 5227.25 | v II | 6 F | 5428.6 | Fe VI | 1 F | | 4.05 | Cr II
Fe II | 15 F | 5228.44 | Cr II
Zr II | 13 F
7 F | 5431.39 | Ni II | 9 F | | 5.50 | re II
Fe II | 4 F
3 F | 5229.06
5235.07 | V II | 6 F | 5432.1
5433.15 | Cr III
Fe II | 2 F
18 F | | 16.55
19.10 | Fe II | 19 F | 5236.6 | Fe VI | 1 F | 5433.69 | Zr III | 1 F | | 3.30 | Ti I | 12 F | 5237.7 | V IV | 3 F | 5434.30 | Zr II | 6 F | | 3.53 | Fe II | 20 F | 5238.35 | Cr II | 13 F | 5435.6 | Cr III | 2 F | | .5? | Sc VII | 1 F | 5239.47 | Cr I | 15 F | 5439.72 | Fe I | 3 F | | 7.91
9.29 | Ti II
Fe II | 19 F
20 F | 5242.00
5245.25 | Cr II
V II | 13 F
6 F | 5439.9
5440.45 | Fe III
Fe II | 1 F
16 F | | 0.20 | 40 | | 3212723 | | • - | 0110010 | | 20 0 | | 9.73 | Cr II | 2 F | 5247.84 | Cr II | 13 F | 5442.82 | Cr II | 12 F | | 6.5
0.3 | N1 IX
Fe III | 1 F
1 F | 5248.64
5254.49 | Cr II
V II | 14 F
6 F | 5446.0
5449.43 | V IV
Cr II | 3 F
12 F | | 3.7 | Fe III | 2 F | 5255.97 | Cr II | 13 F | 5453.4 | Cr III | 2 F | | 5.43 | Ti II | 19 F | 5261.61 | Fe II | 19 F | 5460.0 | Ca VI | 2 F | | 1.6 | Cr IV | 4 F | 5268.4 | Co VIII | 1 F | 5466.67 | Ti I | 9 F | | 2.40
4.90 | Fe II
Fe I | 19 F
19 F | 5268.82
5268.88 | Fe I
Fe II | 19 F
18 F | 5470.51
5471.3 | Cr II
Cr III | 12 F
2 F | | 8.3 | Co VII | 1 F | 5269.16 | N1 II | 14 F | 5472.09 | V II | 5 F | | 6.57 | Fe II | 20 F | 5270.19 | Cr II | 13 F | 5473.37 | Mn II | 9 F | | 0.84 | Ti II | 19 F | 5270.4 | Fe III | 1 F | 5473.94 | Mn II | 9 P | | 2.54 | Cr I | 16 F | 5273.38 | Fe II | 18 F | 5475.59 | v II | 5 F | | 3.72 | Fe II | 35 F | 5274.27 | N1 II | 9 F | 5477.25 | Fe II | 34 F | | 1.8
8.52 | Fe III
Fe II | 1 F
3 F | 5275.83
5276.1 | Ni II
Fe VII | 14 F
2 F | 5477.40
5478.76 | Fe
I
V II | 20 F
5 F | | 2.60 | Cr II | 2 F | 5278.39 | Fe II | 35 F | 5481.17 | Fe I | 20 F | | 2.97 | Cr I | 8 F | 5279.2 | Fe VI | 1 F | 5482.91 | V II | 5 F | | 3.44 | Cr I | 16 F | 5279.80 | Cr II | 13 F | 5483.3 | Cr III | 2 F | |).4
 -5 | Fe VI
Ti VII | 1 F
1 F | 5280.25
5281.46 | Fe II
Ni II | 16 F
9 F | 5485.7
5493.10 | Fe VI
V II | 1 F
20 F | | 1.0 | 11 111 | | 0201.40 | W1 11 | 9.1 | 0493.10 | , 11 | 20 F | | 5.16 | Cr I | 8 F | 5282.88 | V II | 6 F | 5494.80 | Mn II | 9 F | | 7.95
3.53 | Fe II
Cr I | 18 F
8 F | 5283.11
5285.21 | Fe II
Cr II | 35 F
13 F | 5495.42
5495.82 | Zr II
Fe II | 7 F
17 F | | 3.57 | Cr II | 14 F | 5285.34 | Cr I | 15 F | 5496.84 | V II . | 5 F | | 1.63 | Fe II | 19 F | 5286.31 | Ti I | 10 F | 5504.22 | V II | 5 F | | 1.03 C | N1 XIII | 1 F | 5288.83 | Cr II | 12 F | 5505.1 | Cr III | 2 F | | 3.3
3.07 | Ni XIII
Zr III | 1 F
1 F | 5289.66
5290.75 | Fe I
Fe I | 19 F
20 F | 5505.25 | Cr II
Ti I | 12 F
7 F | | 1.47 | Cr II | 2 F | 5295.70 | Fe II | 20 F
17 F | 5509.51
5509.63 | V II | 5 F | | 1.88 | Zr II | 7 F | 5296.3 | Cr IV | 3 F | 5517.2 | C1 111 | 1 F | | .41 | Cr I | 16 F | 5296.84 | Fe II | 19 F | 5517.24 | Zr III | . 1 F | | . 25 | Cr I | 16 F | 5299.42 | Cr II | 13 F | 5518.00 | Ti I | 9 F | | .09 | Cr II | 14 F | 5302.86 C | Fe XIV | 1 F | 5520.18 | Zr II | 7 F | | .16
.3 | Cr I
Co VII | 15 F
1 F | 5303.37 | Zr III
Fe XIV | 1 F
1 F | 5523.28 | Fe II
Cr III | 33 F
2 F | | .39 | Zr II | 7 F | 5303.6
5303.99 | Fe I | 3 F | 5523.3
5527.33 | Fe II | 17 F | | 5 | Cr IV | 3 F | 5304.06 | Fe I | 20 F | 5527.61 | Fe II | 34 F | | 55 | Cr 1 | 15 F | 5308.68 | Cr II | 12 F | 5527.92 | V II | 5 F | | .8
.16 | Fe VI
Fe I | 2 F
19 F | 5308.9
5310.36 | Ca V
Ti I | 1 F
10 F | 5528.87
5530.11 | Zr II
Mn II | 6 F
9 F | | 120 | | | | | | 3000111 | | | | .07 | Cr I | 15 F | 5312.52 | Ti I | 10 F | 5530.69 | Mn II | 9 F | | .9
.28 | Fe III
Cr I | 1 F
16 F | 5313.88
5316.97 | Cr II
Zr III | 13 F
1 F | 5532.41 | Fe I
A X | 20 F
1 F | | .59 | Cr II | 16 F | 5322.2 | C1 IV | 3 F | 5534.6
5535.09 | Ti I | 7 F | | •00 | Fe II | 16 F | 5323.04 | Or II | 13 F | 5530.98 | Mn II | 9 F | | .3 | Fe VII
Fe II | 2 F
19 F | 5326.5 | V IV
Zr II | 3 F
7 F | 5537.7 | C1 III
Sc VI | 1 F
1 F | | .81
.53 | Cr I | 15 F | 5331.46
5332.4 | P I | 2 F | 5539.6
5539.74 | Zr III | 1 F | | .94 | Fe II | 35 F | 5333.65 | Fe II | 19 F | 5541.7 | Mn VI | 2 F | | .98 | Cr I | 15 F | 5334.30 | Ti I | 10 F | 5542.54 | T1 I | 8 F | | .84 | Fe I | 3 F | 5336.4 | Fe VI | 1 F | 5543.9 | Mn V | 2 F | | .95 | Cr 11 | 14 F | 5339.65 | Cr II | 13 F | 5545.88 | Fe II | 33 F | | .0 | Fe VI | | 5339.7 | PI | 9 F | 5546.59 | Fe II | 2 F | | .78
.21 | Fe I
Cr I | 20 F | 5341.39
5347.67 | Cr II
Fe II | 12 F | 5549.49
5550.25 | A II | 5 F
14 F | | .97 | Fe II | 15 F
18 F
16 F
19 F
1 F | 5352.29 | Fe I | 12 F
18 F
20 F
13 F
7 F
1 F | 5550.3 | Cr III | 2 F | | 71 | Cr I | 16 F | 5354.15 | Cr II | 13 F | 5551.31 | Fe II | 39 F | | .80 | Fe II | 19 F | 5354.76 | Zr II | 7 F | 5552.93 | Cr II | 12 F | | ,4 N | Co XI
A III | 1 F
3 F | 5355.9
5356.32 | Fe III
Fe I | 1 F
3 F | 5554.68
5555.33 | V II
Ti I | 20 F
7 F | | | | | | | | | | | | ,13 | Fe I
Cr I | 19 F
15 F | 5358.79 | Ti I
Fe II | 10 F
17 F
20 F | 5556.31 | Fe II
Cr II | 18 F
12 F | | .82
.19 | Fe I | 20 F | 5362.06
5363.91 | Fe I | 20 F | 5557.14
5561.21 | Mn II | 9 F | | .31 | Cr I | 15 F | 5368.91 | | | 5561.66 | Ti I | 7 🗜 | | .5 | N I | 1 F | 5370.5 | Fe VI | 2 F | 5562.94 | T1 I | 8 F | | ,18
,7 | Fe II
N I | 35 F
1 F | 5374.6
5376.47 | Mn Vi
Fe II | 2 F
10 F | 5565.68
5567.08 | Fe I
Mn II | H C | | .02 | Cr II | 14 F | 5382.26 | Fe I | 3 F | 5572.6 | Cr III | 2 F | | . 8 4 | Zr II | 1 F
14 F
7 F
3 F | 5386.27 | Cr II | 2 F
2 F
19 F
3 F
12 F
9 F | 5573.84 | V II | 14 F | | , 1 | Cr IV | 3 F | 5394.78 | Mn II | 9 F | 5574.04 | Mn II | 8 F
3 F
2 F
14 F
9 F | | 95 | Fe I | 19 F | 5396.71 | | | 5575.69 | | 14 F | | 07 | V II | 6 F | 5404.80 | Fe I | 10 F
20 F
1 F
17 F | 5577.350 A | 0 T | | | 02 | Cr II | 13 F | 5412.0 | Fe III | 1 F | 5579.06 | Cr II | 12 F
14 F
9 F | | 06
*e | Fe II
Fe I | 19 F
3 F | 5412.64 | Fe II
Fe I | | 5579.65 | V II | 14 F | | , 5 6 | re 1
Sc VII | 3 F
1 F | 5412.97
5413.34 | re I
Fe II | 20 F
16 F
9 F | 5579.73
5580.82 | Mn II
Fe II | 9 F | | 15 | Fe I | 3 F · | 5415.04 | Mn II | | 5582.01 | Fe II | 2 F | | 30 | Cr II | 13 F | 5418.0 | Cr III | 2 F | 5584.81 | Ti I | 9 F | | 90
64 | V II
Cr I | 6 F
15 F | 5425.3
5427.17 | Fe VI
Fe I | 1 F
20 F | 5587.2
5587.73 | Ca VI
Ti I | 2 F
7 F | | | - | - | V | | | | | | | | Element | Multiplet No. | I A | Element | Multiplet No. | I A | Element | Multiplet No. | |--------|-----------------|---------------|----------------------------|-----------------|---------------|----------------------|----------------|---------------| | 1 | Fe II | 39 F | 5832.40 | Eu II | 2 F | 6100.26 | Fe I | 30 F | | | Cr III | 2 F | 5834.64 | Fe I
Cr I | 2 F
14 F | 6101.1
6104.67 | K IV
Cr I | 1 F
12 F | | | Mn V
Ti I | 2 F
8 F | 5836.21
5843.6 | Cr III | 14 F | 6104.8 | A 111 | 12 F | | * | Cr III | 1 F | 5843.90 | Fe II | 34 F | 6106.17 | Cr I | 12 F | | 3 | Fe II | 33 F | 5846.3 | Xe III | 2 F | 6111.14 | Cr I | 12 F | | | Mn VI | 2 F | 5852.48 | Cr I | 14 F | 6112.75 | Cr I | 12 F | | | K VI
V II | 1 F
14 F | 5852.8
5855.37 | Co II
Zr II | 2 F
6 F | 6113.40
6113.97 | Fe I
Fe I | 17 F
30 F | | , . | Fe I | 31 F | 5863.1 | ⊮n V | 2 F | 6114.52 | Fe I | 18 F | | | | | | | - " | | | | | 1 | V II | 14 F
14 F | 5867.17
5867.87 | Fe I
Ti I | 2 F
6 F | 6114.66
6114.85 | Cr I
V II | 12 F
19 F | | 3 | T1 I | 8 F | 5868.3 | Mn V | 1 F | 6117.60 | Cr I | 11 F | | j . | Cr II | 12 F | 5872.77 | Fe I | 2 F | 6124.57 | Ti II | 22 F | | | Ca VII | 1 F | 5876.23 | Cr I | 14 F | 6140.20 | Cr I | 11 F | | | Cr III | 1 F | 5876.92 | Cr I
Eu II | 14 F
2 F | 6147.13 | Ti II
Ti II | 22 F
26 F | | | Mn VI
Co II | 2 F
2 F | 5879.32
5884.9 | Cr III | 1 F | 6151.82
6152.9 | C1 II | 3 F | | ŀ | T1 I | 7 F | 5889.0 | Mn V | 2 F | 6159.3 | Mn V | 1 F | | 5 | Ti I | 8 F | 5893.89 | Fe I | 17 F | 6159.3 | A III | 3 F | | | Ca VI | 2 F | 5898.30 | Fe I | 2 F | 6160.1 | v III | 3 F | | | Fe VI | 1 F | 5900.64 | Zr II | 12 F | 6164.64 | T1 II | 26 F | | 3 | v II | 20 F | 5901.26 | Fe II | 34 F | 6165.35 | Zr II | 12 F | | 5 | Fe I | 2 F | 5902.64 | Fe I | 18 F | 6167.7 | Mn V | 1 F | | F 5 | Zr III
Fe II | 1 F
39 F | 5907.1
5913.34 | Mn VI
Cr I | 2 F
13 F | 6167.84
6169.37 | Cr I
Cr I | 12 F
12 F | | 5 | Fe II | 18 F | 5926.18 | Cr I | 14 F | 6172.91 | Ti II | 28 F | | | Ca XV | 1 F | 5929.20 | Zr II | 12 F | 6174.44 | Cr I | 12 F | | 7 | Fe II
Fe II | 39 F | 5929.31 | Eu II
Fe I | 2 F | 6176.08 | Cr I
Fe I | 12 F | | 3 | re II | 2 F | 5931.19 | LA I | 17 F | 6177.21 | re 1 | 17 F | | 1 | Fe II | 39 F | 5932.88 | Zr II | 6 F | 6178.35 | Fe I | 18 F | | 5 | Fe II | 17 F | 5933.4 | Mn VI | 1 F | 6180.9 | Co II | 2 F | | 9
3 | Fe I
Fe II | 3 F
33 F | 5934.41
5934.73 | Fe I
Cr I | 2 F
14 F | 6184.51
6188.55 | Cr I
Fe II | 11 F
44 F | | 3 | V 11 | 14 F | 5936.99 | Fe I | 2 F | 6193.7 | Zr III | 3 F | | 2 | Ti I | 8 F | 5943.2 | Co II | 2 F | 6196.53 | Zr II | 12 F | | В | Zr II | 6 F | 5945.1 | Cr 111 | 1 F | 6196.75 | Fe I | 17 F | | 3 | Zr II
Fe VI | 6 F
1 F | 5946.87
5949.99 | Fe I
Cr I | 30 F
13 F | 6215.6
6220.7 | V III
Mn V | 3 F
1 F | | | Mn VI | 1 F | 5951.24 | Cr I | 14 F | 6223.4 | K V | 2 F | | | _ | _ | 1 | | | | | | | 5 | Fe II
Cr III | 33 F
1 F | 5952.21
5955.61 | Fe I
Fe I | 30 F
18 F | 6226.64
6227.19 | Fe I
Ti II | 17 F
22 F | | | Mn V | 2 F | 5968.87 | Fe I | 2 F | 6229.2 | K VI | 1 F | | 6 | Fe I | 2 F | 5971.33 | Fe I | 17 F | 6230.4 | Cr V | 2 F | | 7 | T1 I | 6 F | 5971.6 | Co II | 2 F | 6231.27 | Fe I | 29 F | | 4 | Mn V
Ni II | 2 F
14 F | 5972.59
5975.39 | Cr I
Cr I | 13 F
13 F | 6233.9
6249.35 | V 111
Cr 1 | 3 F
11 F | | 8 | Fe I | 2 F | 5982.55 | Cr I | 7 F | 6249.75 | Cr I | 12 F | | 6 | N1 II | 14 F | 5983.99 | Cr I | 7 F | 6250.51 | T1 II | 22 F | | | Cr III | 1 F | 5988.76 | Cr I | 7 F | 6251.33 | Cr I | 12 F | | 5 | Fe II | 2 F | 5990.31 | Cr I | 7 F | 6258.22 | Cr I | 12 F | | 4 | Fe I | 3 F | 5991.0 | Mn V | 1 F | 6277.3 | Mn VI | 1 F | | | Fe VII | 1 F | 5992.15 | Cr I | 7 F | 6280.22 | Cr I | 6 F | | 5 | F III
Fe II | 1 F
33 F | 5999.99
6007.34 | Fe I
N1 II | 2 F
8 F | 6300.23 L
6310.2 | 0 I
S III | 1 F
3 F | | 2 | Fe II | 39 F | 6010.53 | Cr I | 14 F | 6314.58 | Zr II | 17 F | | 2 | Fe II | 39 F | 6013.28 | Ti II | 9 F | 6316.6 | K V | 2 F | | 9 | F II
T1 I | 1 F | 6015.26
6016.15 | Zr II
Fe I | 12 F
18 F | 6317.64
6328.46 | Zr II
Ti II | 11 F
31 F | | 1 | Fe II | 33 F | 6018.15
6018.54 | Fe I | 18 F | 6333.46 | Cr I | 31 F | | _ | | | | | | | " | | | 7 | Fe I
Fe I | 17 F
3 F | 6019.63 | Fe I
Cr I | 18 F | 6339.70 | Fe II | 15 F | | 0 | re 1
Fe II | 3 F
17 F | 6026.18
6029.7 | Mn V | 13 F
1 F | 6342.98
6344.56 | Cr I
Zr II | 11 F
12 F | | o o | Fe II | 94 F | 0040.91 | v II | 19 F | 0340.2 | Mn V | 1 F | | 9 | Fe I | 30 F | 6040.94 | Cr I | 12 F | 6349.5 | K V | 2 F | | 5 | Fe II | 2 F | 6044.94 | Zr II | 12 F | 6360.66 | Ti II | 18 F | | 3
N | Fe II
N II | 33 F
3 F | 6045.80
6047.46 | Cr I
T1 II | 12 F
9 F | 6363.88 L
6365.52 | O I
Ni II | 1 F
8
F | | 9 , | Ti I | 6 F | 6049.37 | Cr I | 13 F | 6367.28 | Cr I | 11 F | | Ō | T1 I | 6 F | 6053.14 | T1 II | 9 F | 6372.11 | V II | 13 F | | | Ca VI | 2 F | 6059.21 | Cr I | 6 F | 6372.9 | Fe X | 1 F | | 1 | Zr III | 1 F | 6061.50 | Cr I | 12 F | 6374.51 C | Fe X | 1 F | | 5 | Fe I | 2 F | 6062.98 | Cr I | 12 F | 6376.6 | Cr V | 2 F | | 5 | Fe II | 33 F | 6065.2 | V III | 4 F | 6377.59 | Zr II | 12 F | | 7
9 | Zr II
Cr I | 6 F
14 F | 6065.34
6067.88 | Ti II
Cr I | 26 F
12 F | 6377.83
6381.13 | T1 II
V II | 31 F
13 F | | • | Mn VI | 2 F | 6069.2 | Mn V | 2 F | 6382.03 | v II | 13 F' | | | Cr III | 1 F | 6071.35 | Cr I | 12 F | 6391.51 | Ti II | 18 F | | 6 | Ti I
Cr I | 6 F | 6077.80 | Ti II | 26 F | 6393.72 | Fe I | 29 F | | 8 | GP 1 | 14. F | 6083.2 | Co II | 2 F | 6396.2 | Mn ∇ | 1 F | | 8 | Eu II | 2 F | 6085.5 | Fe VII | 1 F | 6396.30 | Fe II | 44 F | | 3 | Fe I | 31 F | 6085.9 | Ca V | 1 F | 6404.46 | Ni I | 2 F | | 5
3 | Fe I
Fe II | 2 F
33 F | 6087.77
6088.5 | Ti II
Mn V | 9 F
1 F | 6405.27
6405.67 | Ti II
V II | 18 F
13 F | | 3 | Ti I | 33 F | 0083.32 | Fe I | 1 F
17 F | 0400.07 | Zr VI | 15 F | | 3 | Fe I | 17 F | 6094.65 | Fe I | 30 F | 6409.46 | Ti II | 31 F | | 9 | Cr I | 14 F | 6095.96 | Ti II | 9 F | 6414.93 | Cr I | 11 F | | 4 | Cr I | 14 F | 6096.3 | Fe III
V III | 10 F
4 F | 6415,69
6418 86 | V II
Zr II | 13 F
17 F | | 2 | Cr III
Ti I | 1 F
6 F | 6098.1
609 9.3 1 | Fe I | 17 F | 6418.86
6420.88 | Cr I | 6 F | | - | | | 2000.04 | | | | | | | I A | | Element | Multiplet No. | 1 A | Element | Multiplet No. | I & . | Element | Multiplet No. | |---------------------------|---|-----------------|---------------|--------------------|-----------------|---------------|--------------------------------|---------------|---------------| | 8422.66 | | Ti II | 31 F | 6729.85 | Fe II | 31 F | 7093.98 | Fe II | 31 F | | 6423.45 | | Mn II | 8 F | 6730.25 | Ni I | 5 F | 7102.84 | N1 II | 13 F | | 3430.7 | | Cr V
V II | 2 F
13 F | 6730.99
6731.2 | Fe I
Cr IV | 16 F
2 F | 7107.04
7109.01 | Fe I
Fe I | 27 F
28 F | | 3431.11
3434.04 | | Ti II | 18 F | 6731.3 | 8 II | 2 F | 7110.54 | Zr II | 4 F | | 3434.9 | | A. V | 1 F | 6738.40 | Sr II | 1 F | 7111.4 | Cr IV | 1 F | | 3436.55 | | T1 II | 18 F | 6739.63 | T1 I | 5 F | 7115.47 | Ti II | 17 F | | 3437.70 | | Ni I
Fe II | 5 F
15 F | 6739.91 | Y II
Gr IV | 2 F
2 F | 7117.45 | Cr I
T1 11 | 10 F | | 3446.5 | | K V | 15 F | 6746.2
6758.48 | Fe I | 16 F | 7119.56
7122.07 | Cr I | 17 F
10 I | | 220.0 | | - | | 0.00.20 | | 10 - | 122001 | | | | 449.21 | | Zr II | 11 F | 6760.61 | Fe I | 15 F | 7125.65 | Cr I | 10 F | | 456.04 | | V II
Cr V | 13 F | 6763.56 | Mn II | 2 F | 7126.40 | Ti I | 4 F | | 462.3
467.52 | | N1 II | 2 F
8 F | 6768.65
6785.44 | Ti I
Zr II | 5 F
5 F | 7130.24
7131.13 | Ni I
Fe II | 5 F
43 | | 473.52 | | Ti II | 31 F | 6787.00 | N1 I | 5 F | 7131.55 | YII | 1 F | | 473.86 | | Fe II | 44 F | 6791.02 | Ti I | 5 F | 7131.77 | Fe II | 30 F | | 1484.72 | | Cr I
Zr III | 11 F
3 F | 6791.61 | N1 II
Zr II | 8 F
11 F | 7134.08 | Fe I
A III | 15 F | | 487.5
489.61 | | Ni I | 5 F | 6793.01
6794.37 | Ni II | 7 F | 7135.8
71 44 .60 | YII | 1 F
4 F | | 497.76 | | V II | 13 F | 6794.8 | K IV | 1 F | 7147.16 | Fe I | 15 F | | | | | _ | | | | | | | | 506.40
507.62 | | Zr II
Fe II | 17 F
32 F | 6808.42 | Fe I
Fe II | 16 F
31 F | 7149.08 | Zr II
Ti I | 5 F
4 F | | 511.90 | | Cr I | 32 F
11 F | 6809.21
6813.73 | Ni II | 8 F | 7150.21
7152.8 | Ti III | 4 F | | 809.00 | | Mn II | 8 F | 6620.42 | Fe I | 27 F | 7155.14 | Fe II | 14 P | | 525.11 | | Fe I | 15 F | 6826.9 | Kr III | 1 F | 7156.26 | Zr II | 5 F | | 526.85
527.4 | | Si I
N II | 1 F
1 F | 6829.01
6829.24 | Fe II
Zr II | 31 F
11 F | 7156.94 | Zr II
Fe I | 20 F
14 F | | 535.99 | | Mn II | 8 F | 6830.06 | Fe II | 32 F | 7168.42
7169.0 | A IV | 2 F | | | N | N II | 1 " | 6836.94 | Fe I | 15 F | 7171.6 | Cr IV | 1 F | | 548.47 | | Zr II | 18 F | 6850.42 | Mn II | 2 F | 7171.98 | re II | 14 F | | #40 0 7 | | Ti II | 0 P | 9004 4 | 0- TTT | 4 72 | #4#0 OB | ma v | 4 79 | | 548.87
550.29 | | Ti II | 8 F
37 F | 6864.4
6868.18 | Zr III
Sr II | 4 F
1 F | 7173.92
7177.04 | Ti I
Cr I | 4 F
10 F | | 558.51 | | Fe II | 15 F | 6872.17 | Fe II | 31 F | 7180.4 | Cr IV | 1 F | | 561.75 | | Cr I | 11 F | 6873.87 | Fe II | 43 F | 7181.74 | Cr I | 10 F | | 569.73 | v | Ti II | 34 F
1 F | 6884.50 | Fe I | 15 F | 7185.39 | Cr I | 10 F | | 583.6
583.66 | N | N II
Zr II | 1 F
16 F | 6893.2
6896.18 | Cr IV
Fe II | 2 F
14 F | 7193.97
7196.91 | Ni I
Zr II | 5 F
15 F | | 586.7 | | Cr V | 2 F | 6906.1 | Cr IV | 1 F | 7197.89 | Zr ÍÍ | 20 F | | 589.42 | | Ti II | 8 F | 6911.05 | N1 II | 7 F | 7204.82 | Zr II | 4 F | | 589.74 | | 81 I | 1 F | 6915.6 | Cr IV | 2 F | 7213.88 | Ti I | 4 F | | 590.10 | | Mn II | 8 F | 6919 | A XI | 1 F | 7214.69 | Fe II | 30 F | | 590.88 | | T1 II | 37 F | 6932.4 | Cr V | 1 F | 7219.15 | Zr II | 3 F | | 591.0 | | Cr IV | 2 F | 6933.53 | Zr II | 5 F | 7220.0 | Fe III | 15 F | | 592.93 | | Ti II | 8 F | 6933.67 | Fe II | 31 F | 7233.4 | Cr IV | 1 F | | 595.88
599.7 | | Ti I
Fe VII | 5 F
1 F | 6941.60
6944.91 | N1 I
Fe II | 2 F
43 F | 7236.0
7238.29 | A IV
Ti I | 2 F
4 F | | 803.99 | | Mn II | 8 F | 6954.69 | Fe I | 27 F | 7243.99 | N1 I | 2 F | | 804.30 | | N1 I | 5 F | 6956.25 | N1 II | 8 F | 7250.78 | Y II | 4 F | | 814.0 | | Fe III
Ti II | 10 F | 6963.02 | Ti II | 17 F | 7252.8 | Cr V | 1 F
7 F | | 616.12 | | 11 11 | 34 F | 6963.85 | Zr II | 20 F | 7256.16 | Ni II | 7 F | | 816.18 | | Fe ı | 16 F | 6966.32 | Fe II | 31 F | 7263.3 | A IV | 2 F | | 817.06 | | Mn II | 8 F | 6972.07 | Fe I | 15 F | 7264.43 | Zr II | 23 F | | 817.12
817.17 | | Ti I
Zr II | 5 F
17 F | 6978.57
6984.07 | Mn II
Zr II | 2 F
11 F | 7264.51
7269.33 | Cr I
Cr I | 10 F
10 F | | 822.05 | | Zr II | 11 F | 6989.04 | N1 I | 5 F | 7273.06 | Cr I | 10 F | | 325.75 | | Ti II | 37 F | 6991.75 | Zr II | 5 F | 7273.33 | Zr II | 4 F | | 831.20 | | Fe II
Fe I | 31 F | 6991.8
6999.99 | Ti III | 3 F | 7274.6 | Co II | 3 F | | 833.48
840.0 | | Cr IV | 15 F
2 F | 7002.02 | T1 II
N1 I | 17 F
2 F | 7281.67
7287.25 | Fe II
Ti I | 30 F
4 F | | 342.57 | | Ti I | 5 F | 7003.95 | Ti II | 17 F | 7290.42 | Fe I | 14 F | | | | | | | | | | | | | 342.66
346.31 | | Mn II
Zr II | 8 F
11 F | 7005.23 | Fe I
A V | 15 F
1 F | 7291.46
7294.30 | Ca II
V II | 1 F
4 F | | 347.05 | | Ti II | 8 F | 7006.3
7008.84 | Cr I | 5 F | 7307.76 | Zr II | 23 F | | 350.61 | | Ti II | 8 F | 7008.89 | Fe I | 15 F | 7307.82 | N1 II | 7 F | | 351.26 | | Ti II | 37 F | 7011.24 | Fe II | 31 F | 7309.90 | V 11 | 26 F | | 356.77
360.68 | | Mn II
Zr II | 8 F
16 F | 7013.33
7016.21 | Cr I
Fe I | 5 F
28 F | 7316.44
7317.43 | Fe I
Fe I | 28 F
14 F | | 361.7 | | Zr III | 3 F | 7016.21 | Cr T | 5 F | 7318.6 | 0 11 | 2 F | | 368.16 | | N1 II | 2 F | 7017.94 | Fe II | 31 F | 7319.4 | 0 11 | 2 F | | 368.63 | | Mn II | 8 F | 7021.0 | Cr IV | 1 F | 7321.23 | Fe I | 28 F | | 370.76 | | T1 I | 5 F | 7033.0 | T1 III | 3 F | 7321.87 | V II | 12 F | | 371.31 | | Ti II | | 7047.99 | Fe II | 31 F | 7323.88 | Ca II | 1 F | | 371.90 | | Fe II | 31 F | 7051.04 | Ti II | 17 F | 7328.50 | T1 I | 4 F | | 382.18 | | Fe I | 16 F | 7051.7 | Cr IV | 1 F | 7329.9 | 0 11 | 2 F | | 392.4E
393.12 | | Ti I
Ti II | 5 F
37 F | 7054.37
7055.06 | Ni II
Ti II | 8 F
17 F | 7330.7
7332.0 | O II
A IV | 2 F
2 F | | 397.09 | | Zr II | 16 F | 7058.76 | Zr II | 3 F | 7332.06 | V II | 2 F | | 398.02 | | Fe II | 32 F | 7059.62 C | Fe XV | 1 F | 7338.0 | Cr IV | 1 F | | r00.1 | | Cr V | 1 F | 7066.07 | Zr II | 15 F | 7344.03 | V 11 | 12 F | | 100.6 | | N1 XV | 1 F | 7075.26 | Fe II | 31 F | 7353.77 | A 11 | 4 F | | 700.61 | | N1 II | 8 F | 7078.2 | Fe III | 9 F | 7355.92 | La II | 1 F | | 700.68 | | Fe II | 43 F | 7078.25 | N1 II | 8 F | 7370.00 | v II | 12 F | | 701.83 | C | Ni XV | 1 F | 7080.2 | Fe XV | 1 F | 7370.94 | Fe II | 30 F | | 705.5
709.08 | | Cr V
Mn II | 2 F
2 F | 7086.7
7087.10 | Cr IV
Cr I | 2 F
10 F | 7373.32
7379.57 | V II
N1 II | 4 F
2 F | | 710.88 | | Fe I | 2 F
16 F | 7087.10 | Ti I | 4 F | 7379.57 | Cr I | 10 F | | 717.0 | | s II | 2 F | 7088.3 | Fe III | 15 F | 7386.11 | 'Zr II | 5 F | | 721.89 | | Fe I | 15 F | 7091.17 | Y II | 1 F | 7387.23 | Cr I | 10 F | | 722.02
7 25. 67 | | Ti II
Ti II | 8 F | 7091.68
7092.89 | Cr I
Fe I | 10 F
15 F | 7387.47
7387.74 | V II | 4 F
12 F | | | | ** | • | 1002.00 | .4. | 10 1 | 1001118 | , 11 | -~ · | FINDING LIST Forbidden Lines | | | | Idden Din | | | | | |----------------|---------------|--------------------|----------------|---------------|--------------------|-----------------|---------------| | Element | Multiplet No. | I A | Element | Multiplet No. | IA | Element | Multiplet No. | | Fe II | 14 F | 7689.65 | Cr II | 11 F | 8039.68 | Ti II | 39 F | | Cr IV | 1 F | 7692.91 | Mn II | 7 F | 8043.80 | Cr I | 9 F | | N1 I
N1 I | 1 F
2 F | 7693.38
7694.82 | Mn II
Ni II | 7 F
7 F | 8045.57 | Cr I
Cl IV | 9 F | | V 11 | 4 F | 7696.30 | Mn II | 7 F | 8046.1
8047.93 | Cr I | 1 F
9 F | | Zr II | 20 F | 7706.06 | Y II | 3 F | 8054.83 | Fe I | 13 F | | Fe I | 14 F | 7706.58 | Cr II | 20 F | 8060.16 | Ti II | 6 F | | V II
N1 II | 4 F
2 F | 7708.83
7710.58 | Fe I
Zr II | 1 F
23 F | 8074.29
8076.58 | Ti II
V II | 7 F | | V II | 4 F | 7710.38 | Fe II | 30 F | 8085.17 | T1 II | 31 F
6 F | | | | | m | a. 7 | | | | | Fe II
Co II | 1 F
3 F | 7717.29
7724.7 | Ti I
S I | 24 F
3 F | 8086.73
8091.87 | Fe
I
Ti I | 24 F
18 F | | V II | 3 F | 7733.12 | Fe II | 1 F | 8098.70 | Zr II | 25 F | | V II | 12 F | 7740.11 | Fe II | 29 F | 8101.03 | A II | 18 F | | V IV
Fe II | 2 F
47 F | 7741.96
7750.56 | Fe I
Cr II | 14 F
11 F | 8106.38 | Ti II | 39 F | | Fe I | 28 F | 7751.0 | A III | 11 F | 8106.88
8111.97 | Cr II
Ni I | 20 F
8 F | | v II | 3 F | 7752.86 | Cr II | 11 F | 8119.16 | Fe II | 38 F | | Zr II | 3 F | 7756.59 | Fe I | 14 F | 8119.46 | Ti I | 18 F | | Zr II | 4 F | 7757.43 | Cr II | 11 F | 8125.50 | Cr II | 1 F | | Fe II | 30 F | 7758.47 | Cr II | 11 F | 8137.88 | Zr II | 19 F | | Fe II | 14 F | 7759.25 | Fe I | 14 F | 8138.59 | Ti II | 7 F | | Zr II
V II | 5 F
4 F | 7764.69
7769.35 | Fe II
Zr II | 30 F
4 F | 8138.62
8148.37 | V II
Ti I | 31 F
18 F | | V II | 4 F | 7773.91 | Fe I | 13 F | 8151.33 | Fe I | 1 F | | v II | 3 F | 7786.03 | Zr II | 3 F | 8153.46 | Ti I | 18 F | | Zr II | 3 F | 7787.00 | YII | 3 F | 8160.66 | Ti I | 18 F | | N1 I
Co II | 2 F
3 F | 7793.9
7797.2 | Co II
Co II | 3 F
3 F | 8164.85
8166.83 | Fe I
Ti II | 13 F
24 F | | v 11 | 4 F | 7800.90 | Fe II | 1 F | 8170.33 | Ti I | 18 F | | V II | 3 F | 7805.47 | Mn II | 7 F | 8183.69 | Cr I | 9 F | | Y II | 4 F | 7805.66 | Ti I | 23 F | 8185.52 | Cr I | 9 F | | V II | 12 F | 7805.96 | Mn II | 7 F | 8189.44 | Ti II | 24 F | | V II | 12 F | 7806.22 | Fe II | 1 F | 8192.33 | Ti II | 39 F | | Zr II
V II | 15 F
29 F | 7806.88
7835.98 | Cr II
Ti II | 20 F
6 F | 8194.57
8201.77 | N1 I
N1 I | 8 F
1 F | | v II | 3 F | 7845.41 | Cr 11 | 11 F | 8220.64 | Zr II | 10 F | | N1 I | 4 F | 7847.76 | Cr II | 11 F | 8225.25 | Sc II | 3 F | | Fe I | 14 F | 7849.08 | Zr II | 4 F | 8228.16 | Fe II | 30 F | | V II | 4 F | 7853.3 | Zr III | 2 F | 8229.81 | Cr II | 1 F | | V 11 | 29 F | 7853.51 | Cr II | 11 F | 8229.81 | T1 II | 24 F | | Zr II
Fe II | 4 F
1 F | 7859 . 60 | Fe I
Cr I | 14 F
9 F | 8231.57 | Fe I | 1 F | | V II | 26 F | 7867.83
7869.5 | PII | 3 F | 8233.22
8235.69 | Fe I
V II | 24 F
18 F | | V II | 3 F | 7874.23 | Fe II | 1 F | 8245.12 | Fe II | 29 F | | C1 IV | 1 F | 7876.34 | Fe I | 13 F | 8249.61 | Ti I | 3 F | | V II
S XII | 3 F
1 F | 7879,32
7888.6 | Mn II
Fe XI | 7 F
1 F | 8251.14 | Cr I
Fe II | 9 F | | Fe I | 14 F | 7889.15 | Zr II | 19 F | 8252.38
8261.21 | Sc II | 38 F | | Mn II | 7 F | 7891.94 C | Fe XI | 1 F | 8261.59 | Zr II | 25 F | | Fe II | 38 F | 7893.57 | Zr II | 3 F | 8268.36 | Cr II | 25 F | | v II | 12 F | 7894.10 | Ti II | 6 F | 8271.32 | Sc II | 3 F | | YII | 3 F | 7899.63 | Fe I | 14 F | 8272.21 | Cr II | 25 F | | Mn II
Fe I | 7 F
28 F | 7904.04
7906.95 | Y II
Zr II | 3 F
22 F | 8275.57 | Fe I
Sc II | 1 F | | V II | 4 F | 7908-30 | Ni I | 4 F | 8279.99
8884.1 | A A 20 11 | 3 F
1 F | | Fe II | 14 F | 7916.25 | T1 II | 6 F | 8289.45 | Fe I | 13 F | | Mn II | 7 F | 7916.98 | Fe II | 29 F | 8303.23 | N1 II | 2 F | | V IV
Fe II | 2 F
1 F | 7917.03
7926.90 | Ti Il
Fe II | 25 F
1 F | 8307.67
8308.68 | Sc II
Cr II | 3 F
1 F | | | | 7020100 | | • • | .0000400 | 0. 11 | | | V II
Co II | 29 F
3 F | 7929.70 | N1 I
Fe I | 8 F | 8315.71 | Zr II | 25 F | | V 11 | 3 F | 7935.32
7938.41 | Cr 1 | 26 F
9 F | 8321.51
8326.66 | Fe I
Sc II | 26 F
3 F | | Y II | 3 F | 7940.71 | Cr I | 9 F | 8328.78 | Cr II | 19 F | | Fe I | 14 F | 7945.02 | Ti II | 7 F | 8337.65 | Fe I | 1 F | | V IV
Co II | 2 F
3 F | 7947.28
7954.24 | Cr II
Y II | 20 F
3 F | 8339.72
8342.34 | La III
Fe II | 1 F | | NI II | 7 F | 7954.76 | Zr II | 25 F | 8343.02 | V II | 30 F
17 F | | Fe II | 30 F | 7956.90 | T1 II | 39 F | 8347.16 | V II | 17 F | | Zr II | 3 F | 7958.50 | Fe II | 29 F | 8347.24 | Sc II | 3 F | | Zr II | 15 F | 7959.00. | Fe I | 1 F | 8347.55 | Fe I | 1 F | | Fe II | 1 F | 7960.85 | Cr II | 20 F | 8348.93 | T1 II | 30 F | | Cr II | 11 F
3 F | 7964.27 | Fe I
Cr II | 1 F
11 F | 8357.78 | Cr II | 1 F | | Co II
Cr II | 3 F
11 F | 7965.96
7966.36 | Ti II | 11 F
7 F | 8363.05
8367.07 | Ti II
Ti I | 27 F
3 F | | Cr II | 11 F | 7974.31 | Cr II | 11 F | 8371.34 | Ti II | 30 F | | Fe I | 14 F | 7975.58 | T1 IT | 6 F | 8380.68 | Zr II | 22 F | | Y II
Zr II | 3 F
23 F | 7976.95
7978.7 | Ti II
Mn IX | 6 F
1 F | 8384.28
8400.89 | Sc II
Cr II | 3 F
19 F | | Y II | 3 F | 7999.47 | Fe II | 1 F | 8403.62 | Sc II | 3 F | | | | | C= 11 | | 840= 40 | | | | Fe II
Fe II | 1 F
38 F | 8000.12
8009.53 | Cr II
Fe II | 1 F
46 F | 8405.16
8408.39 | Ti II
Zr II | 27 F
19 F | | Fe II | 46 F | 8012.08 | Fe II | 46 F | 8412.97 | Fe I | 12 F | | Cr II | 11 F | 8022.25 | Fe I | 13 F | 8413.26 | Fe II | 38 F | | Cr II | 11 F | 8022.63 | Fe II | 29 F | 8413.83 | V 11 | 17 F | | Fe II
Fe II | 46 F
14 F | 8024
8024.21 C | N1 XV
N1 XV | 1 F
1 F | 8416.96
8420.72 | Zr II
V II | 25 F
2 F | | Fe II | 1 F | 8028.94 | Ti II | 7 F | 8428.62 | Zr II | 22 F | | Fe II | 46 F | 8033.86 | N1 II | 7 F | 8430.1 | N1 VIII | 5 F | | Cr II | 11 F | 8037.29 | Fe II | 30 F | 8431.56 | Fe I | 1 F | | . I A | Element | Multiplet No. | I A | Element | Multiplet No. | IA | Element | Multiplet No. | |--------------------|----------------|---------------|--------------------|-----------------|---------------|--------------------|----------------|---------------| | 3433.7 | C1 III | 3 F | 8702.70 | Zr II | 9 F | 9105.8 | NI VIII | 5 F | | 3436.37 | T1 II | 15 F | 8703.03 | Ţ1 II | 33 F | 9106.17 | Fe I | 36 F | | 3437.9 | A 111 | 2 F | 8703.79 | Cr 11 | 18 F | 9106.60 | V II
Ti II | 25 F | | 3441.27 | Cr II | 25 F | 8704.24 | N1 II
T1 I | 12 F
16 F | 9108.42 | Zr II | 32 F
10 F | | 3444.83 | Zr II
Cr II | 10 F
25 F | 8705.08
8706.79 | Fe II | 16 F
52 F | 9108.53
9116.41 | Fe II | 51 F | | 3445.28
3446.11 | Fe II | 29 F | 8708.23 | Ti I | 17 F | 9125.8 | C1 II | 1 F | | 1446.39 | Cr II | 25 F | 8709.38 | v ii | 2 F | 9133.63 | Fe II | 42 F | | 1456.74 | Fe I | 33 F | 8715.84 | Fe II | 42 F | 9134.50 | Sc II | 1 F | | 457.2 | V III | 2 F | 8716.24 | Ti I | 2 F | 9136.73 | Fe I | 36 F | | 466.38 | N1 I | 4 F | 8719.70 | Ti II | 36 F | 9137.01 | Ti I | 15 F | | 466.95 | Fe I | 24 F | 8721.54 | Ti I | 16 F | 9144.25 | V 11 | 10 F | | 467.54 | Fe I
Fe I | 33 F
25 F | 8722.54 | Ti II
Ti I | 16 F
29 F | 9149.11
9165.30 | Ti II
V II | 35 F
10 F | | 469.75
471.07 | V II | 25 F | 8723.13
8727.4 | CI | 29 F | 9166.00 | V II | 10 F | | 481.6 | C1 III | 3 F | 8728.09 | Fe III | 8 F | 9179.54 | Zr II | 9 F | | 485.90 | V II | 17 F | 8730.02 | Cr II | 18 F | 9180.13 | Ti I | 21 F | | 488.19 | Fe I | 24 F | 8731.38 | Ti I | 17 F | 9183.58 | V II | 9 F | | 488.93 | T1 I | 2 F | 8735.0 | A 111 | 1 F | 9189.22 | Ti I | 15 F | | 490.18 | V II | 17 F | 8738.1 | Fe VII | 4 F | 9191.34 | Sc II | 1 F | | 490.34 | Fe I
V II | 25 F
11 F | 8739.71 | Ti I
Ti I | 16 F
17 F | 9196.26 | Fe II
Ti I | 51 F
15 F | | 490.44
490.71 | Ti II | 11 F
15 F | 8740.05
8743.65 | Zr II | 10 F | 9199.44
9199.54 | Ti II | 35 F | | 491.16 | Ti II | 27 F | 8743.66 | Ti II | 29 F | 9202.81 | Zr II | 8 F | | 493.1 | V III | 1 F | 8745.0 | V III | 1 F | 9208.72 | Zr II | 8 F | | 501.8 | C1 III | 3 F | 8746.99 | Fe I | 33 F | 9209.25 | V II | 9 F | | 510.24 | V II | 11 F | 8761.8 | N1 VIII | 5 F | 9216.20 | Fe II | 51 F | | 518.20 | Sc II | 2 F | 8763.28 | V II | 2 F | 9217.51 | V II | 27 F | | 520.22 | Cr II | 19 F | 8763.95 | Ti II | 36 F | 9222.25 | Cr II | 16 F | | 521.66 | Ti I | 3 F | 8766.76 | Zr II | 10 F | 9223.81 | Cr II | 24 F | | 525.41 | Zr II
Ti II | 10 F
15 F | 6770.71 | Ti I
Fe I | 17. F
12 F | 9226.60 | Pe II
Cr II | 10 F
24 F | | 529.50
530.15 | Cr II | 15 F
19 F | 8771.24
8774.69 | A II | 12 F
11 F | 9228.60
9235.10 | Ti I | 24 F
15 F | | 532.12 | Ti I | 30 F | 8775.19 | Fe I | 33 F | 9235.60 | v II | 10 F | | 544.49 | V II | 28 F | 8777.26 | Ti I | 2 F | 9245.82 | Ti I | 15 F | | 545.12 | V II | 2 F | 8782.6 | A III | 2 F | 9251.37 | Ti I | 21 F | | 549.64 | T1 11 | 16 F | 8787.6 | P 1 | 1 F | 9253.44 | V 11 | 9 F | | 550.5 | C1 III | 3 F | 8787.81 | T1 I | 17 F | 9255.10 | Y II | 5 F | | 553.73 | T1 II | 16 F | 8789.70 | T1 II | 29 F | 9256.51 | V II | 9 F | | 553.87 | A II | 11 F | 8792.09 | Cr II | 18 F | 9258.83 | Ti I | 15 F | | 561.42 | Zr II | 26 F | 8792.49 | Fe I | 24 F | 9267.54 | Fe II | 13 F | | 564.56 | Fe I
Ti II | 1 F
15 F | 8794.80 | Fe I
Ti II | 25 F
33 F | 9268.77
9273.10 | V II
Cr II | 10 F
29 F | | 365.94
567.60 | Sc II | 2 F | 8798.79
8798.82 | Zr II | 26 F | 9274.58 | Cr II | 16 F | | 575.4 | A IA | 1 F | 8799.09 | Ti I | 2 F | 9274.68 | Cr II | 29 F | | 576.73 | Ti I | 22 F | 8799.1 | PΙ | 1 F | 9279.59 | v II | 10 F | | 579.15 | A II | 11 F | 8808 • 47 | T1 I | 17 F | 9281.86 | T1 I | 15 F | | 579.5 | C1 11 | 1 F | 8815.9 | A IA | 1 F | 9282.92 | V II | 27 F | | 582.52
585.04 | V II
Ti II | 28 F
15 F | 8826.02
8830.3 | Cr II
Co II | 19 F
1 F | 9285.20
9288.45 | Sc II
Ti I | 1 F
15 F | | | | | | | | | | | | 585.14
588.84 | Fe I
T1 I | 33 F
2 F | 8830.7
8831.94 | Fe III
Cr II | 8 F
18 F | 9291.03
9292.19 | Zr II
V II | 9 F
25 F | | 596.27 | Fe I | 2 F
33 F | 8832.31 | N1 I | 7 F | 9307.5 | Zr III | 25 F | | 598.3 | V III | 2 F | 8838.2 | Fe III | 8 F | 9308.03 | Tį I | 21 F | | 198,79 | Ti I | 29 F | 8843.42 | Ni I | 1 F | 9313.72 | ¥ 11 | 9 F | | 399.1 | A III | 1 F | 8848.50 | T1 I | 17 F | 9324.01 | Y II | 5 F | | 312.91 | Ti I | 30 F | 8850.73 | Zr II | 9 F | 9324.8 | Ti III | 2 F | | 313.35 | Ti I | 2 F | 8851.13 | Fe II | 52 F | 9336.2 | Co II | 1 F | | 115.4 | V III
Fe II | 2 F
13 F | 8851.45
8858.94 | Ti I
Cr II | 17 F
18 F | 9337.40
9342.24 | Cr II
Cr II | 23 F
23 F
| | 316.96 | | | | | | | | | | 321.67 | Zr II | 26 F | 8862.47 | Zr II | 26 F | 9343.61 | Cr 11 | 23 F | | 323.51
325.25 | Fe I
Zr II | 33 F
8 F | 8868.91
8872.37 | Fe I
Zr II | 1 F
8 F | 9349.2
9356.40 | Zr III
V II | 5 F
27 F | | 325.8 | V 111 | 1 F | 8878.98 | v 11 | 2 F | 9358.90 | v II | 9 F | | 325.93 | Ti II | 16 F | 8884.12 | Ti I | 2 F | 9364.08 | Cr II | 16 F | | 126.85 | T1 I | 16 F | 8885.66 | Fe II | 42 F | 9376.93 | Zr II | 2 F | | 327.35 | A 11 | 11 F | 8891.88 | Fe II | 13 F | 9377.33 | N1 II | 1 F | | 140.22 | T1 I | 22 F | 9899.71 | Cr II | 16 T | 9377.93 | Zr II | 24 F | | 140.27 | Ti I | 29 F
12 F | 8909.40 | Zr II
Zr III | 2 F
5 F | 9381.78 | Cr II | 23 F | | 143.14 | Fe I | | 8921.0 | | | 9386.74 | Cr II | 23 F | | 45.95 | T1 I | 22 F | 8929.91 | Cr II | 18 F | 9386.96 | Fe I | 12 F | | 47.89 | Fe I | 1 F | 8930.70 | T1 I | 17 F | 9388.12 | Cr II | 23 F | | H48:72 | Ti II
Sc II | 16 F
2 F | 8931.47
8954.34 | Fe II
Zr II | 49 F
9 F | 9392.65 | Eu II
V II | 1 F
9 F | | 49.11
49.72 | Fe I | 24 F | 8969.06 | Zr II | 22 F | 9395.23
9398.59 | Ti II | 21 F | | 51.14 | Ti .II | 29 F | 8970.23 | T1 I | 2 F | 9399.02 | Fe II | 13 F | | 52.17 | Cr II | 18 F | 8970.56 | Cr II | 18 F | 9405.71 | Ti II | 21 F | | 53.20 | Cr II | 19 F | 8983.71 | Eu II | 1 F | 9427.18 | Cr II | 23 F | | 58.20 | Ti I | 16 F | 9012.04 | Cr II | 18 F | 9428.3 | T1 III | 2 F | | 61.20 | T1 II | 15 F | 9033.45 | Fe II | 13 F | 9432.18 | Cr II | 23 F | | 61.96 | Ti II | 15 F , | 9033.73 | Cr II | 16 F | 9442.77 | Y II | 5 F | | 65. 66 | A II | 6 F | 9043.52 | V II | 10 F | 9444.2 | Fe III | 12 F | | 69.28 | T1 I
V II | 2 F
17 F | 9051.92 | Fe II
Zr II | 13 F | 9454.15 | V II | 9 F | | 94.27 | V II | 17 F
2 F | 9058.16
9069.4 | 2F 11 | 2 F
1 F | 9457.95
9470.93 | Cr II
Fe II | 23 F
13 F | | 182.13
183.4 | V 111 | 1 F | 9071.07 | Ti II | 35 F | 9487.4 | Ti III | 2 F | | 89.73 | T1 I | 16 F | 9072.86 | Cr II | 24 F | 9487.5 | Xe II | 1 F | | 91.53 | Zr II | 19 F | 9089.24 | Zr II | 10 F | 9488.3 | Ti III | 2 F | | 98.18 | V 11 | 11 F | 9093.67 | Fe I | 36 F | 9490.96 | Zr II | 8 F | | i 98.69 | A II | 11 F | 9096.76 | V II | 10 F | 9491.15 | Cr II | 29 F | | | | | | | | | | | ### FINDING LIST Forbidden Lines | | | FOI | progen True | es | | | | |------------------|---------------|----------------------|------------------|---------------|------------------------|------------------|---------------| | Element | Multiplet No. | . I A | Element | Multiplet No. | I A | Element | Multiplet No. | | Zr II | 27 F | 10021.39 | T1 II | 4 F | 10461.95 | 2r II | 24 F | | Cr II | 16 F | 10028.62 | Fe II | 28 F | 10464.94 | Zr II | 1 F | | Fe II | 41 F | 10028.71 | Zr II | 1 F | 10475.96 | Ti I | 27 F | | Fe II | 52 F | 10034.9 | Zr III | 5 F | 10486.97 | Sc II | 6 F | | V II
S III | 32 F
1 F | 10036.79 | Fe II | 40 F | 10491.99 | Cr 11. | 28 F | | 8 III
7. II | 1 F
14 F | 10038.79
10055.97 | Fe II
Fa I | 48 F
11 F | 10494.00
10500.65 | Cr II
Cr II | 28 F | | Zr III | 5 F | 10066.92 | TI II | 5 F | 10502.67 | Cr 11 | 10 F
10 F | | Ti I | 28 F | 10066.98 | Ti II | 5 F | 10503.47 | Ti II | 3 F | | Co VII | 5 F | 10074.84 | Eu II | 1 F | 10504.3 | Fe III | 8 F | | N1 VII
V II | I 5 F
9 F | 10075.00 | Fe I | 38 F | 10508.07 | Fe II | 28 F | | V II
Zr II | 9 F | 10088.27
10098.2 | 2r II
Cr VIII | 13 F
1 F | 10510.25
10519.77 | V II
Ti I | 15 F | | Cr II | 16 F | 10116.66 | Ti II | 4 F | 10553.58 | Mn II | 27 F
1 F | | Ti III | 2 F | 10119,57 | Cr II | 22 F | 10561.05 | A II | 24 F | | Ti I | 28 F | 10120.75 | Zr II | 24 F | 10568.84 | Ti I | 27 F | | V II | 32 F | 10125.99 | Ti II | 5 F | 10569.44 | Sc II | 7 F | | Zr II | 8 F | 10128.19 | Zr II | 27 F | 10576.98 | A 11 | 15 F | | Fe III | 12 F | 10136.59 | Cr II | 10 F | 10592.32 | Fe I | 23 F | | Fe I | 12 F | 10137.00 | Cr II | 10 F | 10594.89 | Fe II | 40 F | | T1 I
Cr V | 28 F
4 F | 10138.47
10148.57 | Cr II
Ti II | 10 F
4 F | 10601.80 | Fe I
Zr II | 37 F | | Co II | 1 F | 10163.13 | Ti II | 5 F | 10603.65
10608.1 | Fe III | 1 F
14 F | | T1 II | 21 F | 10178.29 | Fe I | 11 F | 10608.18 | Ti II | 3 F | | V II | 25 F | 10188.1 | Co II | 1 F | 10627.5 | Ni VIII | 6 F | | Ti II | 21 F | 10196.82 | Fe I | 36 F | 10640.19 | T1 II | 3 F | | Cr II | 17 F | 10202.05 | Ti II | 5 F | 10640.4 | Fe III | 13 F | | Fe II
Zr II | 13 F
24 F | 10206.5 | Xe III | 1 F | 10642.86 | Ti I | 27 F | | Zr II | 27 F | 10208.43
10209.10 | Zr II
Ni II | 14 F
12 F | 10660.35
10671.7 | Sc II
Co VII | 7 F
5 F | | Zr III | 5 F | 10209.78 | Cr 11 | 10 F | 10676.61 | ·T1 II | 3 F | | T1 I | 28 F | 10210.20 | Cr II | 10 F | 10696.87 | Cr II | 27 F | | T1 I | 28 F | 10211.69 | Cr II | 10 F | 10718.16 | N4 TI | 1 P | | Fe II | 41 F | 10215.85 | Cr 11 | 22 F | 10719.84 | Cr II | 10 F | | Cr II | 16 F | 10223.27 | Cr II | 22 F | 10748.80 C | Fe XIII | 1 F | | Ku II
Ti I | 1 F
28 F | 10223.27 | T1 II
N1 VIII | 5 F | 10747.64 | Ti II | 3 F | | Fe III | 26 F | 10225.3
10229.79 | Fe I | 11 F | 10749.7
10755.91 | Fe XIII
Cr II | 1 F
27 F | | Zr II | 9 F | 10235.17 | Fe I | 36 F | 10758.04 | Cr II | 27 F | | Ti III | 2 F | 10245.4 | Co II | 1 F | 10758.32 | T1 II | 3 F | | Ti I | 20 F | 10261.18 | Zr II | 1 F | 10770.38 | Fe I | 36 F | | Fe I | 23 F | 10262.84 | Fe I | 11 F | 10771.88 | Fe I | 23 F | | V II
Co VII | 16 F
5 F | 10264.65 | Fe I
Co II | 23 F
1 F | 10780.17 | Sc II
Ti II | 7 F | | Fe II | 50 F | 10280.7
10284.3 | S II | 3 F | 10784.80
10796.00 | Cr II | 3 F
27 F | | Zr II | 14 F | 10291.94 | v II | 15 F | 10796.2 | Fe XIII | 1 F | | Fe I | 35 F | 10297.11 | Cr II | 28 F | 10796.48 | Fe II | 45 F | | Ti I | 28 F | 10297.14 | Ti I | 27 F | 10797.66 | Cr II | 27 F | | Fe I
Tl I | 12 F
28 F | 10298.63
10299.05 | Cr II
Cr II | 28 F
28 F | 10797.95 C
10798.14 | Fe XIII
Cr II | 1 F
27 F | | Fe II | 28 F | | Cr 11 | 22 F | | | | | · Cr II | 28 F
17 F | 10299.79
10300.86 | Ti II | 22 F
5 F | 10800.75
10807.8 | V II
Cr V | 15 F
5 F | | CI | 1 F | 10305.67 | Cr II | 22 F | 10819.8 | SI | 3 F | | Fe I | 39 F | 10307.34 | Cr II | 22 F | 10835.22 | V 11 | 23 F | | CI | 1 F | 10314.96 | Fe I | 38 F | 10860.44 | Zr 11 | 1 F | | Fe I | 11 F | 10317.7 | SII | 3 F | 10867.84 | Fe I | 37 F | | Ti I | 20 F | 10318.68 | Fe I | 23 F | 10872.05 | Sc II | 5 F | | C I
Fe II | 1 F
40 F | 10321.34
10327.56 | Fe II
Fe II | 40 F
28 F | 10882.6 | Fe III
Zr II | 14 F
13 F | | Cr II | 17 F | 10327.50 | Cr II | 10 F | 10890.02
10901.79 | Ti II | 3 F | | Zr II | . 8 F | 10331.86 | Cr 11 | 10 F | 10908.34 | Fe I | 34 F | | Ti I | 20 F | 10333.39 | Cr II | 10 F | 10912.8 | Co VII | 5 F | | N1 II | 1 F | 10336.0 | s II | 3 F | 10916.5 | Fe III | 13 F | | Zr II
N1 I | 27 F | 10351.92 | Zr II | 13 F | 10916.64 | Fe I | 41 F | | Kr III | 6 F
1 F | 10355.58 | Zr II
V II | 1 F
15 F | 10921.07 | Ni II | 1 F
3 F | | La II | 1 F | 10355.93
10356.68 | Ti I | 27 F | 10956.10
10965.77 | Ti II
Ti II | 3 F
14 F | | Eu II | 1 F | 10366.26 | Cr II | 22 F | 10972.9 | Co II | 1 F | | s vii | | 10369.7 | SII | 3 F | 10983.23 | V II | 23 F | | Fe II | 51 F | 10372.30 | Cr II | 22 F | 10986.0 | Co VII | 6 F | | Zr III | 5 F | 10373.30 | Cr II | 21 F | 10991.52 | Si I | 2 F | | Zr II | 27 F | 10373.98 | Cr II | 22 F | 11011.70 | La II | 1 F | | Fe II | 51 F | 10379.73 | Ti II | 5 F | 11018.07 | Fe I | 32 F | | Fe II | 51 F | 10380.40 | Cr II | 21 F | 11019.11 | V II
Ti II | 24 F | | Fe III
Zr II | 11 F
14 F | 10382.14
10386.86 | V II
Ti I | 15 F
27 F | 11024.82
11044.11 | T1 II
Fe I | 13 F
35 F | | Fe II | 48 F | 10388.07 | Cr II | 21 F | 11049.28 | Ti I | 26 F | | Co VII | | 10394.3 | Cr V | 5 F | 11056.70 | Cr II | 26 F | | Ni II
Fe II | 12 F
28 F | 10395.4
10399.33 | N I
Sc II | 3 F
6 F | 11057.76
11058.94 | Ti II
Cr II | 14 F
26 F | | | | | | | | | | | Fe III
Fe III | | 10400.53
10404.1 | Fe II
N I | 40 F
3 F | 11069.08
11078.26 | Fe I
Ti II | 37 F
2 F | | Ti II | 5 F | 10431.10 | Fe II | 40 F | 11080.02 | Ti II | 14 F | | Fe I | 23 F | 10432.60 | Fe II | 48 F | 11084.87 | Ti I | 32 F | | Ni VII | | 10443.95 | Fe I | 11 F | 11088.0 | Fe III | 13 F | | V II | 16 F | 10447.44 | Ti I
Fe I | 27 F
11 F | 11096.98
11098.96 | Zr II
V II | 18 F
23 F | | Fe I
Mn X | 39 F
1 F | 10452.56
10456.86 | Sc II | 8 F | 11107.3 | Fe III | 13 F | | e I | 11 F | 10458.9 | Zr 111 | 5 F | 11110.92 | Ti II | 2 F | | Fe II | 41 F | 10459.79 | N1 II | 11 F | 11117.80 | Ti II | 13 F | | | | | | | | | | FINDING LIST Forbidden Lines | IA | Element | Multiplet No. | I A | Element | Multiplet No. | I A | Element | Multiplet No. | |------------|---------|---------------|----------|--------------|---------------|----------|---------|---------------| | .1123.53 | Ti I | 26 F | 11595.50 | Zr II | 18 F | 11951.78 | Cr II | 9 F | | 1132.24 | Zr II | 21 F | 11602.41 | T1 II | 1 F | 11971.26 | Ti II | 1. F | | 1151.54 | Ti II | 14 F | 11606.00 | V II | 23 F | 11997.42 | Fe I | 40 F | | 1173.94 | Ti II | 14 F | 11611.10 | Ti II | 12 F | 12012.60 | Ti I | 1 F | | 1178.94 | Ti II | 13 F | 11616.88 | N1 II | 1 F | 12019.17 | Fe I | 470 F | | 1185.14 | Ti I | 26 F | 11618.68 | Ti II | 2 F | 12024.89 | Ti I | 14 F | | | Ti II | 14 F | 11619.10 | V II | 1 F | 12025.23 | Fe I | 22 F | | 1185.70 | Ti I | 26 F | 11621.54 | T1 I | 1 F | 12061.0 | T1 III | 1 5 | | 1191.43 | Ti I | 26 F | 11658.88 | V II | 22 F | 12072.48 | Fe I | 40 F | | 1193.04 | Fe I | 41 F | 11659.62 | Zr II | 18 F | 12094.78 | Zr II | 21 F | | 1202.11 | re I | 41 1 | 11008.02 | | | 12004.15 | | | | 1203.92 | Zr II | 13 F | 11665.66 | Ti I | 31 F | 12095.67 | Ti I | 14 F | | 1228.14 | Ti II | 2 F | 11679.85 | T1 I | 14 F
| 12168.18 | Cr II | 9 F | | 1233.80 | Fe I | 22 F | 11681.81 | Ti I | 14 F | 12168.8 | Co II | 1 F | | 1237.04 | Fe I | 32 F | 11690.94 | T1 I | 14 F | 12168.80 | T1 I | 1 F | | 1242.12 | Ti II | 2 F | 11698.62 | Zr II | 21 F | 12170.50 | Cr·II | 9 F | | 1246.87 | V II | 1 F | 11714.28 | Ti II | 12 F | 12178.83 | Cr II | 9 F | | 1261.79 | Ti I | 26 F | 11715.20 | V II | 1 F | 12209.6 | Co VII | 6 F | | 1272.6 | Fe III | 13 F | 11735.52 | Ti II | 1 F | 12211.22 | Zr II | 18 F | | | Co II | 1 F | 11748.60 | Ti I | 14 F | 12219.66 | V II | 22 F | | 1280.5 | | | | V II | 1 F | | | 26 F | | 1284.9 | Fe III | 13 F | 11757.66 | , 11 | 1 4 | 12300.16 | Cr II | 20 F | | 1305.8 | SI | 1 F | 11764.23 | Fe I | 32 F | 12300.77 | Cr II | 26 F | | 1315.52 | v II | 30 F | 11765.16 | Fe I | 40 F | 12323.27 | N1 II | 11 F | | 1324.18 | V II | 22 F | 11767.30 | Ti I | 14 F | 12372.55 | Fe I | 22 F | | 1332.50 | Ti I | 26 F | 11771.95 | Ti I | 1 F | 12387.48 | Fe I | 22 F | | 1347.6 | Co VII | 6 F | 11778.39 | Ti II | 12 F | 12417.8 | T1 III | 1 F | | 1359.87 | Ni II | 11 F | 11782.27 | Ti II | 1 F | 12460.65 | Cr II | 9 F | | 1368.21 | V II | 22 F | 11782.63 | Cr II | 26 F | 12463.08 | Cr II | 9 F | | 1396.50 | Ti II | 2 F | 11784.62 | Cr II | 26 F | 12471.70 | Or II | 9 F | | 1402.97 | T1 I | 26 F | 11785.17 | Cr II | 26 F | 12645.23 | Fe I | 22 F | | 1414.22 | A 11 | 1 F | 11786.08 | Fe I | 40 F | | | | | 1432.93 | Ti II | 1 F | 11789.27 | Cr II | 9 F | | | | | 1444.61 | V II | 1 F | 11790.50 | Fe I | 32 F | | | | | 1444.66 | v II | 30 F | 11791.90 | Fe I | 22 F | | | | | 1450.66 | Fe I | 40 F | 11792.55 | Ti I | 14 F | | | | | 1458.27 | Ti II | 2 F | 11799.5 | Ti III | 1 F | | | | | | V II | 23 F | | Ti II | 12 F | | | | | 1471.69 | | | 11823.03 | Ti I | 12 F | | | | | 1477.29 | Ti II | 1 F | 11835.06 | | 1 F | | | | | 1478.92 | Ti II | 38 F | 11849.83 | Ti I
V II | 22 F | | | | | 1479.51 | V II | 23 F | 11852.49 | | | | | | | 1483.2 | PII | 1 F | 11856.02 | T1 I | 1 F | | | | | 1495.96 | Fe I | 32 F | 11857.28 | V II | 1 F | | | | | 1509.6 | N1 VIII | 6 F | 11857.96 | Ti II | 12 F | | | | | 1518.28 | Fe I | 32 F | 11881.08 | T1 I | 14 F | | | | | 1520.46 | Ti I | 31 F | 11884.57 | Ti II | 12 F | | | | | 1521.31 | Ti I | 33 F | 11896.48 | Sc II. | 4 F | | | | | 1524.46 | Fe I | 32 F | 11898.2 | P II | 1 F | | | | | 1537.68 | Fe I | 22 F | 11918.75 | . A II | 21 F | | | | | 1557.08 | Ti II | 1 F | 11933.60 | Ti I | 14 F | | | | | 1568 - 38 | VII | 22 F | 11943.75 | Cr II | 9 F | | | | | 1580.17 | V II | 1 F | 11950.77 | Ti I | 14 F | | | | | TOOD : T ! | | - • | 11000 | | | | | |